JP5405814B2 - Copper powder for conductive paste and conductive paste - Google Patents
Copper powder for conductive paste and conductive paste Download PDFInfo
- Publication number
- JP5405814B2 JP5405814B2 JP2008330319A JP2008330319A JP5405814B2 JP 5405814 B2 JP5405814 B2 JP 5405814B2 JP 2008330319 A JP2008330319 A JP 2008330319A JP 2008330319 A JP2008330319 A JP 2008330319A JP 5405814 B2 JP5405814 B2 JP 5405814B2
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- conductive paste
- atm
- copper
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 95
- 239000002245 particle Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 description 22
- 238000007254 oxidation reaction Methods 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 13
- 239000004020 conductor Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 230000009467 reduction Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000003985 ceramic capacitor Substances 0.000 description 6
- 238000009689 gas atomisation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009692 water atomization Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- -1 SiO 2 Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は、導電性ペースト用銅粉及びそれを用いた導電性ペーストに関し、特に、スクリーン印刷アディティブ法による導体回路形成用や積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等に好適な銅粉とそれを用いた導電性ペーストに関する。 The present invention relates to copper powder for conductive paste and conductive paste using the same, and in particular, conductivity for various electrical contact members such as a conductor circuit formation by a screen printing additive method and an external electrode of a multilayer ceramic capacitor. The present invention relates to a copper powder suitable for a conductive material of a paste and a conductive paste using the copper powder.
銅粉は、その取り扱いの容易性から、スクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等として従来から広く利用されている。 Copper powder has been widely used as a conductive material for conductive pastes for various electrical contact members such as conductor circuit formation by screen printing additive method and external electrodes of multilayer ceramic capacitors because of its ease of handling. Has been.
上記導電性ペーストは、例えば、銅粉にエポキシ樹脂等の樹脂及びその硬化剤等の各種添加剤を配合して混練することにより得ることができる。このときに使用される銅粉は、銅塩を含む溶液等から還元剤により析出させる湿式還元法や、銅塩を加熱気化させて気相中で還元させる気相還元法や、溶融した銅地金を不活性ガスや水等の冷媒で急冷して粉末化するアトマイズ法等により、製造することができる。 The said electrically conductive paste can be obtained by mix | blending and knead | mixing various additives, such as resin, such as an epoxy resin, and its hardening | curing agent, for example with copper powder. The copper powder used at this time is a wet reduction method in which a copper salt-containing solution or the like is precipitated by a reducing agent, a vapor phase reduction method in which the copper salt is heated and vaporized and reduced in the gas phase, or a molten copper base. It can be manufactured by an atomizing method or the like in which gold is rapidly cooled with a refrigerant such as an inert gas or water to be powdered.
上述したような銅粉の製造方法のうち、アトマイズ法は、一般的に広く利用されている湿式還元法に比べて、得られる銅粉中の不純物の残留濃度を小さくすることができると共に、得られる銅粉の粒子の表面から内部に至る細孔を少なくすることができるという利点を有している。このため、アトマイズ法により製造された銅粉は、導電性ペーストの導電材料に使用した場合、ペースト硬化時のガス発生量を少なくできると共に、酸化の進行を大幅に抑制できるという利点を有している。 Among the methods for producing copper powder as described above, the atomizing method can reduce the residual concentration of impurities in the obtained copper powder as compared with a wet reduction method that is generally widely used. There is an advantage that pores extending from the surface to the inside of the copper powder particles can be reduced. For this reason, the copper powder produced by the atomization method has the advantage that, when used as a conductive material of a conductive paste, the amount of gas generated during paste curing can be reduced and the progress of oxidation can be greatly suppressed. Yes.
しかし、銅粉は、その導電性の高さゆえ、導電性ペーストの導電材料に好適であるが、粒度が微細になるにつれ、耐酸化性に劣ることとなり、それを改善するために粒子表面を耐酸化性のある銀でコートする(特許文献1)、無機酸化物でコートする(特許文献2)等の方策が採られていた。 However, copper powder is suitable for the conductive material of the conductive paste because of its high conductivity, but as the particle size becomes finer, it becomes inferior in oxidation resistance. Measures such as coating with silver having oxidation resistance (Patent Document 1) and coating with inorganic oxide (Patent Document 2) have been taken.
昨今は導電性ペースト等による回路形成に際して、より微細化が求められ、必然的に導電性ペースト用に用いられる導電粉の粒度も微細化が求められている。それと同時に、ペースト特性の安定性、信頼性を確保する上で、形状や粒度のバラツキが小さく、かつ導電性を損なわないものでなければならない。そして耐酸化性改善のみ捉えれば、特許文献1ないし2等の技術で対応が可能となった。
In recent years, when forming a circuit using a conductive paste or the like, further miniaturization is required, and inevitably, the particle size of the conductive powder used for the conductive paste is also required to be miniaturized. At the same time, in order to ensure the stability and reliability of the paste characteristics, the shape and particle size must be small and the conductivity should not be impaired. If only the oxidation resistance improvement is grasped, it is possible to cope with the techniques of
しかし、特許文献1ないし2等の技術では、被覆技術に依存するため、銅以外の導電性を損なう成分を多く要すこととなるのみならず、芯材である銅粉粒子からの剥離の問題が生じる。また、形状や粒度のバラツキを小さくする上でも、構成する粒子が一様に均質であり、なおかつ低含有酸素濃度であることが望まれているが、かかる銅粉については未だ満足のゆくものは見出されていない。
However, in the techniques of
本発明は、粒度微細ながら耐酸化性、導電性のバランス共に損なわない銅粉、さらには形状や粒度のバラツキが小さく、低含有酸素濃度である導電性ペースト用銅粉及び導電性ペーストを提供することを目的とする。 The present invention provides a copper powder that does not impair the balance between oxidation resistance and conductivity while being fine in particle size, and further has a small variation in shape and particle size and a low oxygen concentration, and a copper powder for conductive paste and a conductive paste. For the purpose.
本発明者等は、上記課題を解決するために鋭意検討した結果、銅粉の粒子内部に特定量のSiを含有させると、上記課題が解決することを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by containing a specific amount of Si inside the copper powder particles, thereby completing the present invention.
すなわち、本発明の導電性ペースト用銅粉は、粒子内部にCu(銅)と、Si(ケイ素)を0.1atm%〜10atm%と、P(りん)を0.01atm%〜0.3atm%と、不可避不純物とからなり、Si/P(atm比)が4〜200であり、含有酸素濃度が30ppm〜2500ppmであることを特徴とする。 That is, the copper powder for conductive paste of the present invention has Cu (copper), Si (silicon) in the range of 0.1 atm% to 10 atm% , and P (phosphorus) in the range of 0.01 atm% to 0.3 atm%. And Si / P (atm ratio) is 4 to 200, and the oxygen concentration is 30 ppm to 2500 ppm .
また、粒子内部にAgを0.1atm%〜10atm%含有していてもよい。 Moreover, you may contain 0.1atm% -10atm% of Ag inside particle | grains.
そして、アトマイズ法により製造されたものであることが好ましい。 And it is preferable that it was manufactured by the atomizing method.
また、240℃及び600℃での重量変化率(Tg(%))/比表面積(SSA)の差が1%/m2/cm3〜30%/m2/cm3であることが好ましい。
Further, it is preferable that the difference in weight change rate at 240 ° C. and 600 ℃ (Tg (%)) / specific surface area (SSA) is 1% / m 2 / cm 3 ~30% /
本発明の他の態様は、上記導電性ペースト用銅粉を含有する導電性ペーストにある。 Another aspect of the present invention resides in a conductive paste containing the copper powder for conductive paste.
本発明の導電性ペースト用銅粉は粒度微細ながら耐酸化性に優れ、かつ導電性のバランスも取れている。さらには形状や粒度のバラツキが小さく、低含有酸素濃度であるので、スクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等に極めて良好に適用することができる。 The copper powder for conductive paste of the present invention is excellent in oxidation resistance while being fine in particle size, and has a good balance of conductivity. Furthermore, since the variation in shape and particle size is small and the oxygen content is low, the conductive paste is used for conductive circuit formation by screen printing additive method and for various electrical contact members such as external electrodes of multilayer ceramic capacitors. It can be applied very well to materials and the like.
本発明による導電性ペースト用銅粉の実施の形態を説明するが、本発明は以下の実施の形態に限定されるものではない。 Although embodiment of the copper powder for electrically conductive paste by this invention is described, this invention is not limited to the following embodiment.
本発明に係る導電性ペースト用銅粉は、粒子内部にSiを0.1atm%〜10atm%含有することを特徴とする。 The copper powder for conductive paste according to the present invention is characterized in that Si is contained in the particles in an amount of 0.1 atm% to 10 atm%.
ここで重要なのは、単にSiを含有しているというのではなく、特定量を粒子内部に含有することにある。 What is important here is not to simply contain Si but to contain a specific amount inside the particles.
すなわち、上記特許文献に代表される、従来技術において多く開示されているSiO2等の各種化合物が芯材である銅粉粒子表面に被覆、あるいは付着した銅粉では、耐酸化性改善には効果はあるものの、本願が求める、粒度微細で、耐酸化性に加え、導電性のバランスも損なわない銅粉を得ることが出来ない。 In other words, copper powder in which various compounds such as SiO 2 , represented by the above-mentioned patent document, which are widely disclosed in the prior art, are coated on or attached to the surface of the copper powder particles as the core material is effective in improving oxidation resistance. However, it is impossible to obtain a copper powder which is fine in particle size and which does not impair the balance of conductivity in addition to oxidation resistance, as required by the present application.
なお、本発明に係る導電性ペースト用銅粉に含まれているSi成分は、粒子内部の金属相中に一様に分布しているのが好ましく、合金成分として粒子内部に存在するものと推測される。 In addition, it is preferable that the Si component contained in the copper powder for conductive paste according to the present invention is uniformly distributed in the metal phase inside the particle, and is assumed to exist inside the particle as an alloy component. Is done.
また、Siの含有量は0.1atm%〜10atm%であり、好ましくは0.5atm%〜5atm%であり、より好ましくは0.5atm%〜3atm%である。この含有量が0.1atm%未満では、本発明の求める効果が期待できない。また、10atm%を超える場合、導電性が損なわれるのみならず、添加に見合った効果が得られない。 Further, the Si content is 0.1 atm% to 10 atm%, preferably 0.5 atm% to 5 atm%, and more preferably 0.5 atm% to 3 atm%. If this content is less than 0.1 atm%, the effect sought by the present invention cannot be expected. On the other hand, if it exceeds 10 atm%, not only the conductivity is impaired, but also an effect commensurate with the addition cannot be obtained.
また、本発明に係る導電性ペースト用銅粉は、Siの他、粒子内部にP(りん)を好ましくは0.01atm%〜0.3atm%、より好ましくは0.02atm%〜0.1atm%含有すると良い。Si及びPが銅粉中に共存し、このような特定量の範囲にあれば、粒度微細、耐酸化性を有し、導電性を損なわないこともさることながら、さらに形状や粒度のバラツキが小さく、低含有酸素濃度である特徴が向上する。 In addition to Si, the copper powder for conductive paste according to the present invention preferably contains P (phosphorus) inside the particles, preferably 0.01 atm% to 0.3 atm%, more preferably 0.02 atm% to 0.1 atm%. It is good to contain. If Si and P coexist in the copper powder and are in such a specific amount range, there is further variation in shape and particle size while having fine particle size, oxidation resistance, and not impairing conductivity. Small and low oxygen content features are improved.
また、本発明に係る導電性ペースト用銅粉は、Si/P(atm比)が好ましくは4〜200、より好ましくは10〜100である。P/Siの比がこのような範囲であると、粒度微細、耐酸化性、高導電性、形状や粒度のバラツキが小、低含有酸素濃度であるという特徴のバランスが取りやすい。 Moreover, as for the copper powder for electrically conductive pastes which concerns on this invention, Si / P (atm ratio) becomes like this. Preferably it is 4-200, More preferably, it is 10-100. When the ratio of P / Si is within such a range, it is easy to balance the characteristics of fine particle size, oxidation resistance, high conductivity, small variations in shape and particle size, and low oxygen content.
また、本発明に係る導電性ペースト用銅粉は、粒子内部にAgを好ましくは0.1atm%〜10atm%、より好ましくは0.3atm%〜5atm%、最も好ましくは0.5atm%〜3atm%含有するとよい。このような特定量の範囲であれば、導電性ペースト用銅粉の耐酸化を維持したまま、より導電性を向上させることができ、かつコストも抑えられる。 Moreover, the copper powder for conductive paste according to the present invention preferably has an Ag content of 0.1 atm% to 10 atm%, more preferably 0.3 atm% to 5 atm%, and most preferably 0.5 atm% to 3 atm%. It is good to contain. If it is the range of such a specific amount, while maintaining the oxidation resistance of the copper powder for electrically conductive paste, electroconductivity can be improved more and cost can also be suppressed.
そして、Si、Ag、及びP何れも含む場合、粒度微細ながら形状や粒度のバラツキが小さく、飛躍的に耐酸化性に優れていることに加え、より導電性に優れた導電性ペースト用銅粉となる。 And when Si, Ag, and P are included, the copper powder for conductive paste is more excellent in conductivity, in addition to being excellent in oxidation resistance in addition to small variation in shape and particle size despite being fine in particle size. It becomes.
また、本発明に係る導電性ペースト用銅粉は、湿式還元法で得られるものであってもそれなりの効果を期待できるが、粒子形状が均整で、導電ペーストとして用いられる際にガス発生が少ない等の利点を考慮すると、アトマイズ法により製造されたものであると好ましい。 Further, the copper powder for conductive paste according to the present invention can be expected to have a certain effect even if it is obtained by a wet reduction method, but the particle shape is uniform and less gas is generated when used as a conductive paste. In view of the advantages such as the above, it is preferable to be manufactured by the atomizing method.
アトマイズ法については、ガスアトマイズ法と水アトマイズ法があるが、粒子形状の均整化を図るならばガスアトマイズ法を、粒子の微細化を図るならば水アトマイズ法を選択すれば良い。また、アトマイズ法の内、高圧アトマイズ法により製造されたものであると好ましい。このような高圧アトマイズ法により得られた銅粉は、粒子がより均整、あるいはより微細であり、好ましい。ちなみに、高圧アトマイズ法とは、水アトマイズ法においては、50MPa〜150MPa程度の水圧力でアトマイズする方法であり、ガスアトマイズ法においては、1.5MPa〜3MPa程度のガス圧力でアトマイズする方法である。 As the atomization method, there are a gas atomization method and a water atomization method. The gas atomization method may be selected if the particle shape is to be uniformed, and the water atomization method may be selected if the particles are miniaturized. Moreover, it is preferable that it is what was manufactured by the high pressure atomizing method among the atomizing methods. The copper powder obtained by such a high-pressure atomizing method is preferable because the particles are more uniform or finer. Incidentally, the high pressure atomizing method is a method of atomizing with a water pressure of about 50 MPa to 150 MPa in the water atomizing method, and a method of atomizing with a gas pressure of about 1.5 MPa to 3 MPa in the gas atomizing method.
また、本発明に係る導電性ペースト用銅粉は、熱重量・示差熱分析装置による240℃及び600℃での重量変化率(Tg(%))/比表面積(SSA)の差(以下、Δ(TG/SSA)と称す)が好ましくは1%/m2/cm3〜30%/m2/cm3、より好ましくは1%/m2/cm3〜25%/m2/cm3であることが好ましい。
Further, the copper powder for conductive paste according to the present invention has a difference in weight change rate (Tg (%)) / specific surface area (SSA) at 240 ° C. and 600 ° C. (hereinafter referred to as ΔSA) by a thermogravimetric / differential thermal analyzer. (Referred to as (TG / SSA)) is preferably 1% / m 2 / cm 3 to 30% / m 2 / cm 3 , more preferably 1% / m 2 /
このΔ(TG/SSA)という特性値によれば、銅粉の耐酸化性をみることができる。また、240℃〜600℃という温度領域は、例えば、セラミックコンデンサの外部電極焼成用導電ペースト等、主な導電性ペースト使用の際の加熱温度領域であり、この領域で耐酸化性を有することは非常に重要である。このΔ(TG/SSA)が上記の好ましい範囲であると、耐酸化性が十分発揮され、高導電性を確保するにも好適である。 According to this characteristic value Δ (TG / SSA), the oxidation resistance of the copper powder can be observed. The temperature range of 240 ° C. to 600 ° C. is a heating temperature range when using a main conductive paste such as a conductive paste for firing an external electrode of a ceramic capacitor, and has oxidation resistance in this region. Very important. When Δ (TG / SSA) is in the above preferred range, the oxidation resistance is sufficiently exhibited, and it is suitable for ensuring high conductivity.
また、本発明に係る導電性ペースト用銅粉は、さらにNi、Al、Ti、Fe、Co、Cr、Mg、Mn、Mo、W、Ta、In、Zr、Nb、B、Ge、Sn、Zn、Bi等のうちの少なくとも一種以上の元素成分を加えることにより、融点を低下させて焼結性を向上させること等をはじめとする、導電性ペーストに求められる諸特性向上効果を上げることができる。これら元素の銅に対する添加量は、添加する元素の種類に応じた導電特性やその他の各種特性等から適宜設定されるが、通常、0.001質量%〜2質量%程度である。 In addition, the copper powder for conductive paste according to the present invention further includes Ni, Al, Ti, Fe, Co, Cr, Mg, Mn, Mo, W, Ta, In, Zr, Nb, B, Ge, Sn, Zn By adding at least one elemental component of Bi, etc., it is possible to improve various properties required for the conductive paste, such as lowering the melting point and improving the sinterability. . The amount of these elements added to copper is appropriately set based on the conductive characteristics and other various characteristics depending on the type of element to be added, but is usually about 0.001% by mass to 2% by mass.
また、本発明に係る導電性ペースト用銅粉は、その形状が、粒状をなしていると好ましく、特に、球状をなしているとさらに好ましい。ここで、粒状とは、アスペクト比(平均長径を平均短径で除した値)が1〜1.25程度で揃っている形状をいい、アスペクト比が1〜1.1程度で揃っている形状を特に球状という。なお、形状が揃っていない状態は、不定形状という。このような粒状をなす銅粉は、相互のからみが少なくなり、導電性ペーストの導電材料等に使用した場合、ペースト中での分散性が向上するので、非常に好ましい。 Moreover, the copper powder for conductive paste according to the present invention preferably has a granular shape, and more preferably has a spherical shape. Here, granular means a shape in which the aspect ratio (value obtained by dividing the average major axis by the average minor axis) is about 1 to 1.25, and the aspect ratio is about 1 to 1.1. Is called spherical. A state where the shapes are not aligned is called an indefinite shape. Such a granular copper powder is very preferable because it causes less mutual entanglement and improves dispersibility in the paste when used as a conductive material for a conductive paste.
また、本発明に係る導電性ペースト用銅粉は、例えばレーザ回折散乱式粒度分布測定装置等により測定可能な、体積累積粒径D50及び標準偏差値SDとから求められる変動係数(SD/D50)が0.2〜0.6であると、粒度分布のバラツキが少なく、導電性ペーストの導電材料等に使用した場合のペースト中での分散性を向上させることができるので、非常に好ましい。 The conductive paste of copper powder according to the present invention, for example, can be measured by a laser diffraction scattering particle size distribution measuring apparatus or the like, variation coefficient determined from the volume cumulative particle diameter D 50 and the standard deviation SD (SD / D 50 ) of 0.2 to 0.6 is very preferable because there is little variation in the particle size distribution and the dispersibility of the conductive paste in the paste when used as a conductive material can be improved. .
また、本発明に係る導電性ペースト用銅粉は、個数平均粒径を0.5μm〜50μmにすることにより、微細な前記導体回路形成用の導電性ペーストの導電材料等に好適なものとなる。 In addition, the copper powder for conductive paste according to the present invention is suitable for a conductive material of a fine conductive paste for forming a conductive circuit by setting the number average particle size to 0.5 μm to 50 μm. .
また、本発明に係る導電性ペースト用銅粉は、含有酸素濃度を30ppm〜2500ppmとすることにより、導電性を確実に確保することができ、導電性ペーストの導電材料等に好適なものとなる。 Moreover, the copper powder for electrically conductive pastes which concerns on this invention can ensure electrical conductivity reliably by making content oxygen concentration into 30 ppm-2500 ppm, and will become a suitable thing for the electrically conductive material of an electrically conductive paste, etc. .
次に、本発明に係る導電性ペースト用銅粉の好ましい具体的な製造方法について説明する。 Next, the preferable specific manufacturing method of the copper powder for electrically conductive paste which concerns on this invention is demonstrated.
本発明の導電性ペースト用銅粉は、溶融した銅にSi成分を母合金、又は化合物等の形態で、所定量添加した後、所定のアトマイズ法により粉体化することにより製造可能である。 The copper powder for conductive paste of the present invention can be produced by adding a predetermined amount of Si component to molten copper in the form of a mother alloy or a compound and then pulverizing it by a predetermined atomizing method.
上記製造方法によれば、粒度微細ながら耐酸化性、導電性のバランス共に損なわない銅粉、さらには形状や粒度のバラツキが小さく、低含有酸素濃度である銅粉を製造することができる。 According to the said manufacturing method, the copper powder which does not impair both oxidation resistance and electroconductivity balance with fine particle size, and also the copper powder which is small in the variation of a shape and a particle size and is a low content oxygen concentration can be manufactured.
この理由は定かではないが、溶融した銅または銅合金に添加したSiが、導電性を損なわない程度で、生成銅粉粒子中の酸素を捉えて酸化を抑制するものと推測される。 The reason for this is not clear, but it is presumed that Si added to the molten copper or copper alloy captures oxygen in the produced copper powder particles and suppresses the oxidation to such an extent that the conductivity is not impaired.
さらに、Si成分に加え、P成分が加わると、アトマイズ時の溶湯の表面張力を小さくすることができ、粒子形状の均整化や溶湯中の脱酸素化が有効に行えるものと推測される。P成分の添加は、Si成分と同様、溶融した銅にP成分を母合金、又は化合物の形態で、所定量添加すれば良い。 Furthermore, when the P component is added in addition to the Si component, the surface tension of the molten metal during atomization can be reduced, and it is presumed that the particle shape can be leveled and the deoxygenation in the molten metal can be effectively performed. As with the Si component, the P component may be added in a predetermined amount in the form of a mother alloy or a compound to the molten copper.
また、Si成分に加え、Ag成分を含有させるとことにより、銅粉の耐酸化性を確保しつつ、更に導電性を向上させることができる。 Moreover, by including an Ag component in addition to the Si component, the conductivity can be further improved while ensuring the oxidation resistance of the copper powder.
また、上記製造方法においては、先に説明した理由から、高圧アトマイズ法を採用することが好ましい。ただし、ガスアトマイズ法に比して、水アトマイズ法では銅以外の添加成分の含有歩留まりが低い場合があるので、目的とする銅粉中の正味量に対し、Siの場合、1〜10倍量、Pの場合、1〜100倍量、Agの場合、1〜10倍量を添加する必要がある。 Moreover, in the said manufacturing method, it is preferable to employ | adopt a high pressure atomizing method from the reason demonstrated previously. However, since the yield of additive components other than copper may be low in the water atomization method as compared to the gas atomization method, the amount of Si in the case of Si is 1 to 10 times the amount of the net amount in the target copper powder, In the case of P, 1 to 100 times the amount, and in the case of Ag, 1 to 10 times the amount needs to be added.
また、上記製造方法においては、アトマイズした後、還元処理しても良い。この還元処理により、酸化の進行しやすい銅粉の表面の酸素濃度をさらに低減することができる。ここで、上記還元処理は、作業性の観点から、ガスによる還元が好ましい。この還元処理用ガスは、特に限定されることはないが、例えば、水素ガス、アンモニアガス、ブタンガス等を挙げることができる。 Moreover, in the said manufacturing method, after atomizing, you may reduce | restore. By this reduction treatment, it is possible to further reduce the oxygen concentration on the surface of the copper powder that is easily oxidized. Here, the reduction treatment is preferably gas reduction from the viewpoint of workability. The reducing gas is not particularly limited, and examples thereof include hydrogen gas, ammonia gas, and butane gas.
さらに、上記還元処理は、150℃〜300℃の温度で行うと好ましく、特に、170℃〜210℃の温度で行うとより好ましい。なぜなら、上記温度が150℃未満であると、還元速度が遅くなってしまい、処理効果を充分に発現することができず、上記温度が300℃を超えると、銅粉の凝集や焼結を引き起こしてしまうおそれがあり、上記温度が170℃〜210℃であると、酸素濃度の効率のよい低減化を図りながらも、銅粉の凝集や焼結を確実に抑制することができるからである。 Furthermore, the reduction treatment is preferably performed at a temperature of 150 ° C. to 300 ° C., and more preferably performed at a temperature of 170 ° C. to 210 ° C. This is because if the temperature is less than 150 ° C., the reduction rate becomes slow, and the treatment effect cannot be sufficiently exhibited, and if the temperature exceeds 300 ° C., it causes aggregation and sintering of copper powder. This is because when the temperature is 170 ° C. to 210 ° C., aggregation and sintering of copper powder can be reliably suppressed while efficiently reducing the oxygen concentration.
また、上記製造方法においては、粉体化した後、分級すると好ましい。この分級は、目的とする粒度が中心となるように、適切な分級装置を用いて、得られた銅粉から粗粉や微粉を分離することにより容易に実施することができる。ここで、先に説明した変動係数(SD/D50)が0.2〜0.6となるように分級することが望ましい。 Moreover, in the said manufacturing method, it is preferable to classify after pulverizing. This classification can be easily carried out by separating coarse powder and fine powder from the obtained copper powder using an appropriate classifier so that the target particle size is the center. Here, it is desirable to classify so that the coefficient of variation (SD / D 50 ) described above is 0.2 to 0.6.
以上説明したような銅粉に、例えば、エポキシ樹脂等の樹脂及びその硬化剤等の各種添加剤を配合して混練するなどして製造した本発明の導電性ペースト用銅粉を含有した導電性ペーストは、当該銅粉が、粒度微細ながら耐酸化性、導電性のバランスが取れており、形状のバラツキが少なく、かつ含有酸素濃度が低いので、スクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストの導電材料等に極めて良好に適用することができる。 Conductivity containing the copper powder for the conductive paste of the present invention produced by mixing and kneading various additives such as a resin such as an epoxy resin and its curing agent with the copper powder as described above, for example. Since the copper powder is fine in particle size, the paste has a good balance between oxidation resistance and electrical conductivity, has little variation in shape, and has a low oxygen concentration. The present invention can be applied extremely well to conductive materials of conductive pastes for various electrical contact members such as external electrodes of ceramic capacitors.
その他、本発明の導電性ペースト用銅粉は、積層セラミックコンデンサの内部電極、インダクタやレジスター等のチップ部品、単板コンデンサー電極、タンタルコンデンサー電極、樹脂多層基板、セラミック(LTCC)多層基板、フレキブルプリント基板(FPC)、アンテナスイッチモジュール、PAモジュールや高周波アクティブフィルター等のモジュール、PDP前面板及び背面板やPDPカラーフィルター用電磁遮蔽フィルム、結晶型太陽電池表面電極及び背面引き出し電極、導電性接着剤、EMIシールド、RF−ID、及びPCキーボード等のメンブレンスイッチ、異方性導電膜(ACF/ACP)等にも使用可能である。 In addition, the copper powder for conductive paste of the present invention is used for internal electrodes of multilayer ceramic capacitors, chip components such as inductors and resistors, single plate capacitor electrodes, tantalum capacitor electrodes, resin multilayer substrates, ceramic (LTCC) multilayer substrates, flexible Printed circuit boards (FPC), antenna switch modules, modules such as PA modules and high-frequency active filters, PDP front and back plates, electromagnetic shielding films for PDP color filters, crystalline solar cell surface electrodes and rear lead electrodes, conductive adhesives It can also be used for EMI shield, RF-ID, membrane switch such as PC keyboard, anisotropic conductive film (ACF / ACP) and the like.
以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
(実施例1)
ガスアトマイズ装置(日新技研(株)製、NEVA−GP2型)のチャンバ及び原料溶解室内を窒素ガスで充填した後、溶解室内にあるカーボン坩堝で原料を加熱溶解して溶融物とした(電気銅を溶解した溶湯中に、金属ケイ素(日本金属化学工業(株)製NIKSIL)を1.77g添加して、800gの溶湯とし、充分に攪拌混合)。その後、溶湯を口径φ1.5mmのノズルから1250℃、3.0MPaで噴霧して、ケイ素を粒子内部に含む銅粉を得た。しかる後、53μmテストシーブで篩い、篩下品を最終的な銅粉とした。得られた銅粉の特徴を表2に示す。
Hereinafter, the present invention will be further described in detail based on the following examples and comparative examples.
Example 1
After filling the gas atomizing device (manufactured by Nisshin Giken Co., Ltd., NEVA-GP2 type) with nitrogen gas, the raw material is heated and melted in a carbon crucible in the melting chamber to obtain a molten material (electric copper 1.77 g of metallic silicon (NIKSIL manufactured by Nippon Metal Chemical Co., Ltd.) was added to the molten metal in which the molten metal was dissolved to obtain 800 g of molten metal, which was sufficiently stirred and mixed. Thereafter, the molten metal was sprayed from a nozzle having a diameter of φ1.5 mm at 1250 ° C. and 3.0 MPa to obtain copper powder containing silicon inside the particles. Thereafter, it was sieved with a 53 μm test sieve, and the product under the sieve was made the final copper powder. Table 2 shows the characteristics of the obtained copper powder.
(実施例2〜4)
金属ケイ素添加量を表1に示すように変更した以外は実施例1と同様の操作を行って、銅粉を得た。
(Examples 2 to 4)
Except having changed metal silicon addition amount as shown in Table 1, operation similar to Example 1 was performed and copper powder was obtained.
(実施例5〜11)
金属ケイ素に加え、銅−リン母合金(リン品位15質量%)も表1に示すように添加した以外は実施例1と同様の操作を行って、銅粉を得た。
(Examples 5 to 11)
In addition to metal silicon, a copper-phosphorus mother alloy (
(実施例12および13)
金属ケイ素や銅−リン母合金以外に、電気銀を表1に示すように添加した以外は実施例1と同様の操作を行って、銅粉を得た。
(Examples 12 and 13)
Except for adding metallic silver as shown in Table 1 in addition to metallic silicon and copper-phosphorus mother alloy, the same operation as in Example 1 was performed to obtain copper powder.
(比較例1〜4)
金属ケイ素および/または銅−リン母合金の添加量を表1に示すように添加した以外は実施例1と同様の操作を行って、銅粉を得た。
(Comparative Examples 1-4)
A copper powder was obtained in the same manner as in Example 1 except that the addition amount of metal silicon and / or copper-phosphorus mother alloy was added as shown in Table 1.
実施例および比較例で得られた銅粉に関して、以下に示す方法で諸特性を評価した。その結果を表2〜4、ならびに図1〜4に示す。 With respect to the copper powder obtained in the examples and comparative examples, various properties were evaluated by the following methods. The results are shown in Tables 2 to 4 and FIGS.
(1)ケイ素、リン含有量
試料を酸で溶解し、ICPにて分析した。
(2)酸素濃度
酸素・窒素分析装置(堀場製作所株式会社製「EMGA−520(型番)」)により分析した。その結果を表2に示す。なお、経時的な耐酸化性劣化を評価するために、山陽精工製のSK−8000を用いてAir流量8L/分でそれぞれ10℃/分で200℃まで昇温し、その後1時間保持した試料の酸素濃度も測定した。その結果を表3に示す。
(1) Content of silicon and phosphorus Samples were dissolved with acid and analyzed by ICP.
(2) Oxygen concentration The oxygen concentration was analyzed by an oxygen / nitrogen analyzer (“EMGA-520 (model number)” manufactured by Horiba, Ltd.). The results are shown in Table 2. In addition, in order to evaluate the oxidation resistance deterioration with time, a sample was heated to 200 ° C. at 10 ° C./min with an Air flow rate of 8 L / min using SK-8000 manufactured by Sanyo Seiko, and then held for 1 hour. The oxygen concentration of was also measured. The results are shown in Table 3.
(3)Δ(TG/SSA)
40℃〜600℃でのTg(%)を示差熱熱重量同時測定装置(TG/DTA)(SII製、TG/DTA6300高温型)(昇温速度:10℃/分、Air流量:200mL/分)で測定し、240℃〜600℃での重量変化率の差を求めた。一方、比表面積は粒度測定装置(日機装製、マイクロトラックMT−3000型)で測定した粒度分布から求め、両者の数値から算術的に求めた。温度に対応する実施例1〜13及び比較例1〜4のTG/SSAを図1、図2及び図5に示す。また、実施例1〜13及び比較例2〜4のTG/SSAを比較例1の純銅粉のTG/SSA(図中[Tg(%)/SSA]Cuと記載)で除した結果を図3、図4及び図6に示す。
(3) Δ (TG / SSA)
Tg (%) at 40 ° C. to 600 ° C. Differential thermogravimetric simultaneous measurement apparatus (TG / DTA) (SII, TG / DTA6300 high temperature type) (heating rate: 10 ° C./min, Air flow rate: 200 mL / min ) And the difference in weight change rate at 240 ° C. to 600 ° C. was determined. On the other hand, the specific surface area was obtained from the particle size distribution measured with a particle size measuring device (manufactured by Nikkiso Co., Ltd., Microtrac MT-3000 type), and was calculated arithmetically from both numerical values. TG / SSA of Examples 1 to 13 and Comparative Examples 1 to 4 corresponding to the temperature are shown in FIGS. Moreover, the result of dividing TG / SSA of Examples 1 to 13 and Comparative Examples 2 to 4 by TG / SSA of pure copper powder of Comparative Example 1 (described as [Tg (%) / SSA] Cu in the figure) is shown in FIG. 4 and FIG.
(4)粒子形状
走査型電子顕微鏡にて観察した。
(5)D50、SD、SD/D50
試料(0.2g)を純水(100ml)中に入れて超音波を照射して(3分間)分散させた後、粒度分布測定装置(日機装株式会社製「マイクロトラック(商品名)FRA(型番)」)により、体積累積粒径D50及び標準偏差値SD並びに変動係数(SD/D50)をそれぞれ求めた。
(4) Particle shape It observed with the scanning electron microscope.
(5) D 50 , SD, SD / D 50
A sample (0.2 g) is placed in pure water (100 ml) and irradiated with ultrasonic waves (for 3 minutes) to disperse, and then a particle size distribution analyzer (“Microtrack (trade name) FRA (model number) manufactured by Nikkiso Co., Ltd.” by) "), it was determined cumulative volume particle diameter D 50 and the standard deviation value SD as well as coefficient of variation (SD / D 50), respectively.
(6)粉体抵抗
試料15gを筒状容器に入れプレス圧40×106Pa(408kgf/cm2)で圧縮成形した測定サンプルを形成し、ロレスタAP及びロレスタPD−41型(いずれも三菱化学(株)社製)により測定を行った。
(6) Powder resistance Samples of 15 g were put into a cylindrical container and a measurement sample compression-molded at a press pressure of 40 × 10 6 Pa (408 kgf / cm 2 ) was formed. Loresta AP and Loresta PD-41 type (both Mitsubishi Chemical) (Made by Co., Ltd.).
図1〜6に示すように、実施例の銅粉は、ケイ素を含有しない、あるいはケイ素及びリンを含有しない比較例と比較して耐酸化性に優れ、特に240〜600℃の温度領域において優れていることが分かった。 As shown in FIGS. 1 to 6, the copper powders of the examples are superior in oxidation resistance as compared with comparative examples not containing silicon or containing silicon and phosphorus, particularly in the temperature range of 240 to 600 ° C. I found out.
また、表3に示すように、実施例の銅粉は、酸化し易い環境下に長時間保持した場合、比較例の銅粉と比較して、経時的な耐酸化性が顕著に優れていた。 In addition, as shown in Table 3, when the copper powder of the example was kept for a long time in an environment that is easily oxidized, the oxidation resistance over time was remarkably superior to the copper powder of the comparative example. .
また、表4に示すように、実施例の銅粉は、比較例の銅粉と比較して、体積抵抗率にあまり変化がみられず、良好な導電性を有していることが確認された。 In addition, as shown in Table 4, it was confirmed that the copper powder of the example did not change much in volume resistivity as compared with the copper powder of the comparative example and had good conductivity. It was.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330319A JP5405814B2 (en) | 2007-12-28 | 2008-12-25 | Copper powder for conductive paste and conductive paste |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007339927 | 2007-12-28 | ||
JP2007339927 | 2007-12-28 | ||
JP2008148575 | 2008-06-05 | ||
JP2008148575 | 2008-06-05 | ||
JP2008330319A JP5405814B2 (en) | 2007-12-28 | 2008-12-25 | Copper powder for conductive paste and conductive paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010013726A JP2010013726A (en) | 2010-01-21 |
JP5405814B2 true JP5405814B2 (en) | 2014-02-05 |
Family
ID=40824358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008330319A Active JP5405814B2 (en) | 2007-12-28 | 2008-12-25 | Copper powder for conductive paste and conductive paste |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5405814B2 (en) |
KR (1) | KR20100096111A (en) |
CN (1) | CN101896629A (en) |
TW (1) | TWI442984B (en) |
WO (1) | WO2009084645A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010004852A1 (en) * | 2008-07-11 | 2011-12-22 | 三井金属鉱業株式会社 | Copper powder for conductive paste and conductive paste |
JP2010196105A (en) * | 2009-02-24 | 2010-09-09 | Mitsui Mining & Smelting Co Ltd | Copper powder for electroconductive paste, and electroconductive paste |
JP5355478B2 (en) * | 2010-04-07 | 2013-11-27 | 株式会社フジクラ | Flexible printed circuit board and manufacturing method thereof |
JP5932638B2 (en) * | 2010-05-19 | 2016-06-08 | 三井金属鉱業株式会社 | Copper powder for conductive paste and conductive paste |
JP5844091B2 (en) * | 2011-08-26 | 2016-01-13 | 横浜ゴム株式会社 | Conductive composition, solar battery cell and solar battery module |
KR20130066929A (en) | 2011-12-13 | 2013-06-21 | 한국전자통신연구원 | Pattern forming composition and pattern forming method using the same |
JP5598739B2 (en) | 2012-05-18 | 2014-10-01 | 株式会社マテリアル・コンセプト | Conductive paste |
CN103831431A (en) * | 2012-11-26 | 2014-06-04 | 苏州钻石金属粉有限公司 | Method for preparing conductive copper powder |
JP6030186B1 (en) * | 2015-05-13 | 2016-11-24 | 株式会社ダイヘン | Copper alloy powder, manufacturing method of layered object, and layered object |
WO2018079304A1 (en) | 2016-10-25 | 2018-05-03 | 株式会社ダイヘン | Copper alloy powder, laminate molding production method, and laminate molding |
RU2654220C1 (en) * | 2017-03-21 | 2018-05-17 | Общество с ограниченной ответственностью "Биогенезис" (ООО "Биогенезис") | Method for processing an organic waste by larvae of the fly hermetia illucens obtaining animal protein and biohumus |
KR101907783B1 (en) | 2017-04-27 | 2018-10-15 | 세종대학교산학협력단 | Cu-Si COLOR ALLOYS |
DE102017111942A1 (en) * | 2017-05-31 | 2018-12-06 | Epcos Ag | Hybrid power supply circuit, use of a hybrid power supply circuit and method of making a hybrid power supply circuit |
US11667991B2 (en) | 2017-06-21 | 2023-06-06 | Fukuda Metal Foil & Powder Co., Ltd. | Lamination shaping copper powder and laminated and shaped product |
CN110578070B (en) * | 2019-10-30 | 2021-04-13 | 吉林大学 | Method for improving oxidation resistance of copper by using authigenic non-metallic oxide composite film |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58104970A (en) * | 1981-12-16 | 1983-06-22 | Matsushita Electric Ind Co Ltd | Electrically conductive paint |
JP2643520B2 (en) * | 1990-02-23 | 1997-08-20 | 旭化成工業株式会社 | Silver-containing alloy powder and conductive paste using the powder |
JPH0541108A (en) * | 1991-08-07 | 1993-02-19 | Tokin Corp | Electric conductor material |
JPH0773730A (en) * | 1993-06-29 | 1995-03-17 | Asahi Chem Ind Co Ltd | Conductive powder |
JPH07166273A (en) * | 1993-12-15 | 1995-06-27 | Sumitomo Metal Mining Co Ltd | Powder metallurgical product of injection molded copper |
KR100877115B1 (en) * | 2001-04-27 | 2009-01-07 | 도와 홀딩스 가부시끼가이샤 | Copper powder for electroconductive paste excellent in resistance to oxidation and method for preparation thereof |
JP4128424B2 (en) * | 2002-10-28 | 2008-07-30 | Dowaエレクトロニクス株式会社 | Method for producing copper powder for conductive pastes with excellent oxidation resistance and sinterability |
JP3984534B2 (en) * | 2002-11-19 | 2007-10-03 | 三井金属鉱業株式会社 | Copper powder for conductive paste and method for producing the same |
-
2008
- 2008-12-25 JP JP2008330319A patent/JP5405814B2/en active Active
- 2008-12-26 TW TW097150817A patent/TWI442984B/en active
- 2008-12-26 WO PCT/JP2008/073766 patent/WO2009084645A1/en active Application Filing
- 2008-12-26 CN CN2008801208122A patent/CN101896629A/en active Pending
- 2008-12-26 KR KR1020107011382A patent/KR20100096111A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
CN101896629A (en) | 2010-11-24 |
TWI442984B (en) | 2014-07-01 |
JP2010013726A (en) | 2010-01-21 |
KR20100096111A (en) | 2010-09-01 |
WO2009084645A1 (en) | 2009-07-09 |
TW200940213A (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5405814B2 (en) | Copper powder for conductive paste and conductive paste | |
JP5155743B2 (en) | Copper powder for conductive paste and conductive paste | |
JP2010013730A (en) | Copper powder for conductive paste, and conductive paste | |
JP2010196105A (en) | Copper powder for electroconductive paste, and electroconductive paste | |
JP5937730B2 (en) | Method for producing copper powder | |
JP2011006740A (en) | Copper powder for conductive paste, and conductive paste | |
JPWO2010004852A1 (en) | Copper powder for conductive paste and conductive paste | |
JP5576199B2 (en) | Copper powder for conductive paste and conductive paste | |
JP5932638B2 (en) | Copper powder for conductive paste and conductive paste | |
JP7272834B2 (en) | Silver powder and its manufacturing method | |
KR20200062263A (en) | Silver powder and its manufacturing method | |
JP2012067327A (en) | Copper powder for conductive paste, and conductive paste | |
JP2010037653A (en) | Copper powder for conductive paste, and conductive paste | |
JP2011026631A (en) | Copper powder, conductive paste, and conductive connection structure | |
JP6899275B2 (en) | Silver alloy powder and its manufacturing method | |
JP2011006739A (en) | Copper powder for conductive paste, and conductive paste | |
JP2020196928A (en) | Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method | |
KR20120021704A (en) | Copper powder for conductive paste and conductive paste | |
TW201209850A (en) | Copper powder for conductive paste and conductive paste | |
JPWO2020158685A1 (en) | Sn particles, a conductive composition using the Sn particles, and a method for producing Sn particles. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5405814 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |