WO2011074266A1 - 光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法 - Google Patents
光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法 Download PDFInfo
- Publication number
- WO2011074266A1 WO2011074266A1 PCT/JP2010/007308 JP2010007308W WO2011074266A1 WO 2011074266 A1 WO2011074266 A1 WO 2011074266A1 JP 2010007308 W JP2010007308 W JP 2010007308W WO 2011074266 A1 WO2011074266 A1 WO 2011074266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recording medium
- distance
- optical recording
- recording
- inter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24038—Multiple laminated recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/12—Heads, e.g. forming of the optical beam spot or modulation of the optical beam
- G11B7/135—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
- G11B7/1387—Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
Definitions
- the present invention relates to an optical recording medium in which information is recorded or reproduced by light emitted from an optical system including a solid immersion lens, such as an optical disk or an optical card, an information recording apparatus for recording information on the optical recording medium, and the optical recording
- the present invention relates to an information reproducing apparatus for reproducing information from a medium, an information recording method for recording information on the optical recording medium, an information reproducing method for reproducing information from the optical recording medium, and a method for manufacturing the optical recording medium.
- optical discs such as CDs, DVDs, and BDs (Blu-ray discs) have been widely used as media for recording various information including video and audio.
- information is recorded or reproduced by irradiating the optical recording medium with light. Therefore, the recording density of information depends on the size of the light spot that converges on the optical recording medium. Therefore, the capacity of the optical recording medium can be increased by reducing the light spot irradiated by the optical pickup.
- the size of the light spot is proportional to the numerical aperture of the objective lens and inversely proportional to the wavelength of the light to be irradiated.
- the wavelength of light to be used may be further shortened or the numerical aperture of the objective lens may be further increased.
- the distance between the optical recording medium and the objective lens is sufficiently large compared to the wavelength, and the light incident on the objective lens has a numerical aperture exceeding 1, Since the light is totally reflected from the lens exit surface, the recording density cannot be increased.
- NA the numerical aperture of the objective lens exceeds 1.
- NA the numerical aperture of the objective lens
- the totally reflected light oozes out as evanescent light from the emission end face, and the near-field optical recording / reproducing method allows the evanescent light to propagate to the optical recording medium. Therefore, by maintaining the air gap between the exit end face of the objective lens and the surface of the optical recording medium shorter than the attenuation distance of the evanescent light, light having a numerical aperture exceeding 1 is transmitted from the objective lens to the optical recording medium. ing.
- the distance between the SIL and the optical disk is sufficiently shorter than the wavelength, and it is necessary to keep the distance of about 25 nm even when light having a wavelength of 405 nm is used.
- the SIL or the optical disc is inclined at such a narrow interval, the end of the SIL and the optical disc collide with each other, and the error allowed for the inclination becomes very small.
- FIG. 19 is a diagram showing a configuration of a conventional objective lens unit 10 described in Patent Document 1.
- the objective lens unit 10 includes a diaphragm lens 10a and a SIL 10b.
- SIL 10b a portion where the light beam at the tip does not pass is formed in a taper shape or a step shape, and the tip diameter is reduced.
- the SIL 10b and the optical disk are relatively inclined, the SIL 10b and the optical disk are less likely to collide with each other, and the margin for the inclination can be made larger than in the past.
- the SIL and the optical disk do not collide when the relative angle ⁇ satisfies the following formula (1). .
- the diameter Da may be reduced.
- the diameter Da in order to prevent the SIL and the optical disc from colliding even if the distance (gap) g is 25 nm and the relative angle ⁇ is 0.05 degrees, the diameter Da needs to be smaller than 57 ⁇ m.
- the present invention has been made to solve the above-described problem, and can provide an optical recording medium, an information recording apparatus, and information that can converge light on a recording surface on the back side without being kicked by an end of a solid immersion lens. It is an object of the present invention to provide a reproducing apparatus, an information recording method, an information reproducing method, and an optical recording medium manufacturing method.
- An optical recording medium is an optical recording medium in which information is recorded or reproduced by light emitted from an optical system including a solid immersion lens, and the optical recording medium is an incident side of the light.
- N is an integer equal to or greater than 2
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the solid immersion lens When the opening diameter of the opening facing the optical recording medium is D, the thickness d N from the light incident side surface of the optical recording medium to the innermost Nth recording surface is d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ , the thickness d N , the light incident side surface of the optical recording medium, and the light incident side surface of the optical recording medium closest to the light and interplanar distance t 1 between the first recording surface, the i (2 ⁇ i
- the interplanar distance t i between the recording surface and the (i-1) of the recording surface of an N integer) satisfy t 1 ⁇
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens is D
- the light incident surface of the optical recording medium The thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other even if the necessary tolerance is given to the relative inclination between the optical recording medium having a plurality of recording surfaces and the solid immersion lens. Therefore, the gap between the optical recording medium through which light can propagate and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- FIG. 4 is a conceptual diagram illustrating a configuration of an optical recording medium in which a distance between a first recording surface and a second recording surface is the same as a distance between a second recording surface and a third recording surface. . Configuration of an optical recording medium in which the distance between the light incident surface of the optical recording medium and the first recording surface is the same as the distance between the second recording surface and the third recording surface.
- FIG. 2 It is a figure which shows the structure of the information recording / reproducing apparatus in Embodiment 3 of this invention. It is a perspective view which shows the structure of the computer in Embodiment 4 of this invention. It is a perspective view which shows the structure of the optical disk recorder in Embodiment 5 of this invention. It is a figure which shows the structure of the conventional objective-lens part.
- FIG. 1 is a diagram showing a configuration of an optical pickup according to Embodiment 1 of the present invention.
- the optical pickup includes a semiconductor laser 101, a condenser lens 103, a beam splitter 104, an objective lens optical system 105, a beam splitter 201, a quarter wavelength plate 202, a detection lens 203, a photodetector 204, and a detection lens 205. And a light detector 206.
- the semiconductor laser 101 emits a light beam 102 having a wavelength of 405 nm and linearly polarized light.
- the light beam 102 becomes substantially parallel light by the condenser lens 103, passes through the beam splitter 104 and the beam splitter 201, and enters the quarter wavelength plate 202.
- the quarter wavelength plate 202 converts linearly polarized light into circularly polarized light.
- the light beam 102 that has passed through the quarter-wave plate 202 enters the objective lens optical system 105.
- the objective lens optical system 105 includes an aperture lens 105a and a SIL (solid immersion lens) 105b.
- the air gap existing between the exit end face of the SIL 105b and the surface of the optical recording medium 106 facing the exit end face is shorter than the evanescent attenuation length. Thereby, light propagation by evanescent light is performed.
- the light beam reflected and diffracted by the optical recording medium 106 is returned to substantially parallel light again by the objective lens optical system 105, passes through the quarter-wave plate 202, and then partially passes by the beam splitter 201 and the beam splitter 104. Light is reflected.
- the light beam reflected by the beam splitter 104 is converted into convergent light by the detection lens 203 and received by the photodetector 204.
- the detection lens 203 provides astigmatism to the light beam at the same time as conversion to convergent light.
- the photodetector 204 has a light receiving unit divided into four parts (not shown), converts the received light into an electric signal, and detects a focus signal by an astigmatism method. Further, the photodetector 204 detects the tracking signal by a push-pull method. Further, an RF signal is generated based on the sum signal of the amounts of light received by the respective light receiving portions of the photodetector 204.
- the light beam reflected by the beam splitter 201 is converted into convergent light by the detection lens 205 and received by the photodetector 206.
- the photodetector 206 generates and outputs a gap signal for detecting an air gap interval between the SIL 105b and the optical recording medium 106.
- FIG. 2 is a schematic diagram showing the relationship between the light emitted from the tip of the SIL 105b and each recording surface of the optical recording medium 106 of the first embodiment.
- the distance between the tip of the SIL 105b and the optical recording medium 106 is maintained at, for example, about 25 nm, which is the distance through which light efficiently propagates as evanescent light.
- the optical recording medium 106 has three recording layers.
- the optical recording medium 106 has a first recording surface L1, a second recording surface L2, and a third recording surface L3 in order from the surface on the light incident side.
- the distances from the surface to the recording surfaces L1 to L3 are d 1 to d 3 , respectively.
- NA n ⁇ sin ⁇ (2)
- FIG. 2 shows a state where the light beam 102 propagated from the SIL 105b is converged on the third recording surface L3.
- the beam diameter D3 at the end surface of the SIL 105b is expressed by the following equation (3).
- Equation (4) the angle ⁇ of the outermost ray of the light beam that converges on the recording surface is expressed by Equation (4) below. Note that asin is an inverse function of sin.
- the distance between the SIL 105b and the optical recording medium 106 is kept at a very short distance of about 25 nm, it is necessary to keep the relative inclination between the SIL 105b and the optical recording medium 106 small.
- the allowable inclination depends on the size (diameter) Da of the end face of the SIL 105b.
- the diameter Da of the SIL 105b may be reduced.
- the diameter Da is too small, the light beam cannot reach the innermost third recording surface L3 with a predetermined numerical aperture. For this reason, in the example of FIG. 2, the diameter Da needs to satisfy
- the distance d N from the surface to the innermost recording surface satisfies the following formula (7).
- the diameter Da of the end face of the SIL 105b is about 41 ⁇ m.
- the refractive index n of the substrate is 2.0 and the numerical aperture NA is 1.80
- the angle ⁇ is 64.1 degrees
- the distance d N (d 3 in FIG. 2) needs to be 10 ⁇ m or less. is there.
- the SIL and the optical recording medium can be provided even if a necessary tolerance is given to the relative inclination between the SIL and the optical recording medium.
- the recording surface can be disposed at the back while maintaining a gap between the SIL and the optical recording medium capable of efficiently transmitting light without colliding with each other. Therefore, a multilayer optical recording medium having a plurality of recording surfaces can be realized, and the recording capacity per optical recording medium can be increased.
- the end portion of the end face of the SIL105b is likely such lack in chipping acceptable, also, since it is necessary to consider the shift of the center of the end face of the machining error and the optical axis and SIL105b, as the distance d N
- the thickness is 10 ⁇ m or less.
- the inter-plane distance is proportional to the depth of focus of the converged light spot, it is inversely proportional to NA 2 and proportional to the wavelength.
- NA 1.70 or more
- the wavelength of light is 415 nm or less
- the minimum value of the inter-surface distance between recording surfaces on which information is recorded is about 1.8 ⁇ m.
- the inter-surface distance may be set to the minimum value t-min or more.
- the inter-surface distance between two adjacent recording surfaces is not less than a first predetermined value determined according to the numerical aperture NA and the wavelength of light.
- NA the numerical aperture
- the wavelength is around 405 nm (wavelength is 415 nm or less)
- the first predetermined value is about 1.8 ⁇ m.
- FIG. 3 shows an optical recording medium in which the inter-surface distance between the first recording surface and the second recording surface is the same as the inter-surface distance between the second recording surface and the third recording surface. It is a conceptual diagram which shows the structure of. As shown in FIG. 3, the optical recording medium has a first recording surface L1, a second recording surface L2, and a third recording surface. The first recording surface L1 interplanar distance t 2 between the second recording surface L2 is the same as the distance t 3 between the surfaces between the second recording surface L2 and the third recording surface L3 . The light beam is converged on the third recording surface L3.
- the optical path length of the optical path that is reflected only once at the innermost third recording surface L3 is once for each of the second recording surface L2, the first recording surface L1, and the second recording surface L2. It becomes the same as the optical path length of the reflected optical path.
- the light beam reflected three times interferes as stray light with respect to the light beam reflected once. If the distance between adjacent recording surfaces changes due to thickness variations between adjacent recording surfaces, the phase of interference changes, so that the intensity of the obtained light beam changes and becomes noise in the reproduction signal.
- FIG. 4 shows the distance between the surface of the optical recording medium on which light is incident and the first recording surface, and the distance between the second recording surface and the third recording surface. It is a conceptual diagram which shows the structure of the optical recording medium which is the same.
- the optical recording medium has a first recording surface L1, a second recording surface L2, and a third recording surface.
- the inter-surface distance t 1 between the light incident surface of the optical recording medium and the first recording surface L 1 is the inter-surface distance t between the second recording surface L 2 and the third recording surface L 3. Same as 3 .
- the light beam is converged on the third recording surface L3.
- the optical path length of the optical path that is reflected only once on the third recording surface L3 is reflected once on each of the second recording surface L2, the surface, and the first recording surface L1. It becomes the same as the optical path length of the optical path.
- the noise component of the reproduction signal increases due to interference as in FIG. For this reason, it is necessary to make the distance between the recording surfaces including the surface different from each other.
- the light reflected three times interferes with the light reflected once.
- the stray light is about 1/100 the intensity of the original light beam in terms of the amount of light.
- the range in which such interference occurs is also inversely proportional to NA 2 and determined in proportion to the wavelength.
- the optical path length difference needs to be 0.2 ⁇ m or more.
- the distance between the surfaces includes variations during manufacturing. For this reason, it is necessary to determine the surface interval so that the optical path difference becomes 0.2 ⁇ m or more even when the variation at the time of manufacture is taken into consideration.
- the difference in the inter-surface distance between the recording surfaces is a second predetermined value determined in accordance with the variation in the distance between the one surface, the variation in the distance between the other surfaces, the numerical aperture NA, and the wavelength of the light. It is preferable that it is more than the sum. Thereby, it is possible to suppress interference between the light beam reflected a plurality of times on the other recording surface and the light beam reflected on the original recording surface.
- the second predetermined value is preferably about 0.2 ⁇ m.
- the variation in the inter-surface distance will be described in more detail.
- the actual inter-surface distance has a width from 1.8 ⁇ m to 2.3 ⁇ m depending on the location. That is, it is assumed that an error in the range of ⁇ 0.2 ⁇ m to +0.3 ⁇ m is included in the inter-plane distance.
- the variation in the inter-surface distance is 0.3 ⁇ m which is the maximum absolute value of the manufacturing error.
- the numerical aperture NA is 1.80
- the refractive index n is 2.0
- the variations e1, e2 and e3 of the inter-surface distances t 1 , t 2 and t 3 are as follows.
- the inter-surface distance t 1 is set to 1.0 ⁇ m, which is a smaller value than both the inter-surface distance t 2 and the inter-surface distance t 3 .
- FIG. 5 is a diagram showing a first comparative example of the optical recording medium in the first embodiment.
- the optical recording medium of the first comparative example has three recording surfaces.
- the inter-surface distance t 1 is larger than the inter-surface distance t 2 .
- the inter-surface distance t 1 is set to 2.6 ⁇ m, which is the minimum value.
- the interplanar distance t 2 is assumed to be the minimum possible value of the interplanar spacing t 2 1.8 .mu.m.
- the inter-surface distance t 1 is preferably set to a value smaller than both the inter-surface distance t 2 and the inter-surface distance t 3 . Since one surface of the layer (cover layer) between the surface and the first recording surface L1 is not an information recording surface, there is no signal crosstalk from the other recording surface. Therefore, the inter-surface distance t 1 can take a small value. Therefore, when the interplanar distance t 1 to a minimum, it is possible to reduce the length of the whole of the interlayer distance, i.e. from the surface to the deepest recording surface.
- ⁇ ′ asin ((2 ⁇ g) / Da) (8)
- the refractive index n of the substrate is 2.0, and the numerical aperture NA is 1.80.
- the distance d 3 between the surface and the third recording surface L3 is a 7.8 .mu.m
- the relational expression of Formula (7) the diameter Da of the end face of SIL105b is The minimum size can be about 32 ⁇ m.
- the gap interval g is 25 nm
- the inclination angle ⁇ ′ is about 0.09 degrees according to the above equation (8).
- the distance d 3 between the surface and the third recording surface L3 is a 6.0 .mu.m
- the size can be about 25 ⁇ m.
- the gap interval g is 25 nm
- the inclination angle ⁇ ′ is about 0.12 degrees from the above equation (8).
- the inter-surface distance t 1 is preferably smaller than both the inter-surface distance t 2 and the inter-surface distance t 3 . Accordingly, the whole of the interlayer distance, i.e. it is possible to reduce the distance d 3 to the innermost recording surface from the surface, it can be utilized in diameter Da is smaller SIL105b end face. As a result, the tilt angle ⁇ ′ of the SIL 105b at which the SIL 105b and the surface of the optical recording medium 106 do not collide can be increased. Therefore, tilt control for preventing collision between the SIL 105b and the surface of the optical recording medium 106 becomes easier.
- FIG. 6 is a diagram showing a second example of the optical recording medium in the first embodiment.
- the optical recording medium of the second embodiment has three recording surfaces.
- the diameter Da of the end surface of the SIL 105b is 40 ⁇ m
- the numerical aperture NA is 1.80
- the refractive index n is 2.0
- the beam diameter D3 at the end surface of the SIL 105b is 25 ⁇ m.
- the inter-surface distance t 1 is set to a value smaller than both the inter-surface distance t 2 and the inter-surface distance t 3 .
- t 1 1.0 ⁇ m as in the first embodiment described above.
- the inter-surface distance t 2 needs to be 1.8 ⁇ m or more, and the difference between the inter-surface distance t 2 and the inter-surface distance t 1 needs to be 0.8 ⁇ m or more. Therefore, in the second embodiment, the inter-surface distance t 2 is 2.0 ⁇ m.
- interplanar distance t 3 it is necessary not less than 1.8 .mu.m, and the difference and interplanar distance t 3 of the inter-plane distance t 3 and interplanar distance t 1 and the interplanar distance t 2 Any difference needs to be 0.8 ⁇ m or more. Therefore, in the second embodiment, a surface distance t 3 shall be 3.0 ⁇ m which is the minimum value.
- the distance d 3 from the surface to the innermost third recording surface L3 is the same.
- the difference is the values of the inter-surface distance t 2 and the inter-surface distance t 3 .
- t 2 3.0 ⁇ m
- t 3 2.0 ⁇ m
- t 2 > t 3 3.0 ⁇ m
- t 2 ⁇ t 3 3.0 ⁇ m
- the distance d 2 in the first embodiment is larger than the distance d 2 in the second embodiment.
- the inter-surface distance t 2 may be larger than the inter-surface distance t 3 .
- the recording surface farther from the incident light surface of the optical recording medium than the first recording surface L1 excluding the innermost recording surface can be separated from the incident light surface of the optical recording medium. For this reason, it is possible to reduce the influence of the loss of the light beam due to surface dust or surface defects.
- FIG. 7 is a diagram showing a third example of the optical recording medium in the first embodiment.
- the optical recording medium of the third embodiment has two recording surfaces.
- the optical recording medium 220 shown in FIG. 7 has a first recording surface L1 and a second recording surface L2. If the light beam aperture NA is 1.80 is converged, the distance d 2 from the surface to the second recording surface L2 satisfies Expression (9) below.
- face-to-face distance t 2 from the first recording surface L1 to the second recording surface L2 satisfies equation (10) below.
- inter-surface distance t 1 from the surface to the first recording surface L 1 the inter-surface distance t 2 from the first recording surface L 1 to the second recording surface L 2 , the variation e 1 of the inter-surface distance t 1 , and the surface variation between distances t 2 e2 may be determined to satisfy equation (11) below.
- FIG. 8 is a diagram showing a fourth example of the optical recording medium in the first embodiment.
- FIG. 9 is a diagram showing a second comparative example of the optical recording medium in the first embodiment.
- the inter-surface distance t 1 is smaller than the inter-surface distance t 2 .
- the inter-surface distance t 1 is 1.0 ⁇ m which is the maximum value.
- a surface distance t 2 is assumed to be the minimum possible value of the interplanar spacing t 2 1.8 .mu.m.
- the inter-surface distance t 1 is larger than the inter-surface distance t 2 .
- the inter-surface distance t 1 is set to 2.6 ⁇ m, which is the minimum value.
- the interplanar distance t 2 is assumed to be the minimum possible value of the interplanar spacing t 2 1.8 .mu.m.
- the inter-surface distance t 1 is preferably smaller than the inter-surface distance t 2 .
- a layer between the surface and the first recording surface L1 since one side is not a recording surface, there is no signal crosstalk from the other recording surface, it is possible to reduce the inter-surface distance t 1. Therefore, when the interplanar distance t 1 to a minimum, it is possible to reduce the length of the whole of the interlayer distance, i.e. from the surface to the deepest recording surface.
- the refractive index n of the substrate is 2.0, and the NA is 1.80.
- the distance d 2 between the surface and the second recording surface L2 is a 4.4 [mu] m
- the relational expression of Formula (9) the diameter Da of the end face of SIL105b is The minimum size can be about 18 ⁇ m.
- the gap interval g is 25 nm
- the inclination angle ⁇ ′ is about 0.16 degrees according to the above equation (8).
- the distance d 2 between the surface and the second recording surface L2 is a 2.8 .mu.m, the relational expression of Formula (9), the diameter Da of the end face of SIL105b a minimum
- the size can be about 12 ⁇ m.
- the gap interval g is 25 nm
- the inclination angle ⁇ ′ is about 0.25 degrees from the above equation (8).
- the inter-surface distance t 1 is smaller than the inter-surface distance t 2 as in the third embodiment or the fourth embodiment. Accordingly, the whole of the interlayer distance, i.e. it is possible to reduce the distance d 2 to the innermost recording surface from the surface, it can be utilized in diameter Da is smaller SIL105b end face. As a result, the tilt angle ⁇ ′ of the SIL 105b at which the SIL 105b and the surface of the optical recording medium 106 do not collide can be increased. Therefore, tilt control for preventing collision between the SIL 105b and the surface of the optical recording medium 106 becomes easier.
- FIG. 10 is a diagram showing a fifth example of the optical recording medium in the first embodiment.
- FIG. 11 is a diagram showing a sixth example of the optical recording medium in the first embodiment.
- FIG. 12 is a diagram showing a seventh example of the optical recording medium in the first embodiment.
- FIG. 13 is a diagram showing a third comparative example of the optical recording medium in the first embodiment.
- the optical recording medium 401 has a first recording surface L1, a second recording surface L2, a third recording surface L3, and a fourth recording surface L4.
- the light is converged on the fourth recording surface L4.
- the distance between adjacent recording surfaces is 1.8 ⁇ m or more. Need to be. For this reason, the inter-surface distance t 2 , the inter-surface distance t 3 and the inter-surface distance t 4 need to be 1.8 ⁇ m or more, respectively.
- the optical path difference needs to be 0.2 ⁇ m or more in consideration of the variation in the inter-surface distance.
- the diameter Da of the end face of the SIL 105b is 40 ⁇ m
- the numerical aperture NA is 1.80
- the refractive index n is 2.0
- the beam diameter D4 at the end face of the SIL 105b is 36 ⁇ m.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3, and the inter-surface distance t 4 .
- a surface distance t 2 is assumed to be the minimum possible value of the interplanar spacing t 2 1.8 .mu.m.
- interplanar distance t 4 it is necessary not less than 1.8 .mu.m, and the difference between the inter-plane distance t 4 and interplanar distance t 1, interplanar distance t 4 and the interplanar distance t 2
- a surface distance t 4 shall be 3.4 ⁇ m which is the minimum value.
- the inter-surface distance t 1 is larger than the inter-surface distance t 2 .
- the inter-surface distance t 1 is set to 2.6 ⁇ m which is the minimum value.
- the interplanar distance t 2 is assumed to be the minimum possible value of the interplanar spacing t 2 1.8 .mu.m.
- the interplanar distance t 3 shall be 3.4 ⁇ m which is the minimum value.
- interplanar distance t 4 it is necessary not less than 1.8 .mu.m, and the difference between the inter-plane distance t 4 and interplanar distance t 1, interplanar distance t 4 and the interplanar distance t 2
- the inter-surface distance t 4 is set to the minimum value of 4.2 ⁇ m.
- the tilt angle that is practically allowable is considered to be about 0.05 degrees
- the central gap interval is set to 25 nm
- the angle ⁇ ′ at which the SIL 105b and the surface of the optical recording medium 106 do not collide is 0.07 degrees.
- the diameter Da of the end surface of the SIL 105b is about 41 ⁇ m.
- the angle ⁇ between the outermost ray of the convergent light beam and the optical axis is 64.1 degrees.
- the distance d N from the surface to the innermost recording surface needs to be 10 ⁇ m or less from the relational expression of the above formula (7).
- the distance d4 from the surface to the fourth recording surface L4 is 12.0 ⁇ m, which is 10 ⁇ m or more.
- the beam diameter D4 at the end face of the SIL 105b is 50 ⁇ m, which is larger than the diameter Da of the end face of the SIL 105b.
- the light beam is kicked at the end of the SIL 105b.
- the distance d4 from the surface to the fourth recording surface L4 is 8.8 ⁇ m, which is 10 ⁇ m or less. Therefore, when information is recorded on or reproduced from the fourth recording surface L4, the light beam is not kicked at the end of the SIL 105b.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3 and the inter-surface distance t 4 as in the fifth embodiment. preferable.
- the entire interlayer distance that is, the distance from the surface to the innermost recording surface can be reduced. Therefore, even if the optical recording medium is a multilayer, the distance d N can satisfy the relational expression (7). That is, when information is recorded or reproduced on the innermost recording surface, the light beam can be prevented from being kicked at the end of the SIL 105b.
- the diameter Da of the end face of the SIL 105b is 40 ⁇ m
- the numerical aperture NA is 1.80
- the refractive index n is 2.0
- the beam diameter D4 at the end face of the SIL 105b is 36 ⁇ m.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3, and the inter-surface distance t 4 .
- the inter-surface distance t 1 is 1.0 ⁇ m, as in the fifth embodiment described above.
- the inter-surface distance t 2 needs to be 1.8 ⁇ m or more, and the difference between the inter-surface distance t 2 and the inter-surface distance t 1 needs to be 0.8 ⁇ m or more. Therefore, in the sixth embodiment, the inter-surface distance t 2 is 3.4 ⁇ m.
- interplanar distance t 3 it is necessary not less than 1.8 .mu.m, and the difference and interplanar distance t 3 of the inter-plane distance t 3 and interplanar distance t 1 and the interplanar distance t 2 Any difference needs to be 0.8 ⁇ m or more. Therefore, in the sixth embodiment, the inter-surface distance t 3 is 1.8 ⁇ m.
- interplanar distance t 4 it is necessary not less than 1.8 .mu.m, and the difference between the inter-plane distance t 4 and interplanar distance t 1, interplanar distance t 4 and the interplanar distance t 2
- the difference and the difference between the inter-surface distance t 4 and the inter-surface distance t 3 must be 0.8 ⁇ m or more. Therefore, in the sixth embodiment, the inter-surface distance t 4 is set to 2.6 ⁇ m.
- the distance d4 from the surface to the innermost fourth recording surface L4 is the same.
- the difference is the values of the inter-surface distance t 2 , the inter-surface distance t 3 and the inter-surface distance t 4 .
- t 2 3.4 ⁇ m
- t 3 1.8 ⁇ m
- t 4 2.6
- t 2 > t 4 3.4
- t 2 ⁇ t is 4.
- the distance d 2 in the sixth embodiment is larger than the distance d 2 in the fifth embodiment.
- the value of the distance d 3 of the sixth embodiment is greater than the value of the distance d 3 of the fifth embodiment.
- the inter-surface distance t 2 , the inter-surface distance t 3, and the inter-surface distance t 4 may be t 2 > t 3 and t 2 > t 4 .
- the distance d 3 from the surface to the third recording surface L3 can be increased.
- the recording surface farther from the incident light surface of the optical recording medium than the first recording surface L1 excluding the innermost recording surface can be separated from the incident light surface of the optical recording medium. For this reason, it is possible to reduce the influence of the loss of the light beam due to surface dust or surface defects.
- the diameter Da of the end face of the SIL 105b is 40 ⁇ m
- the numerical aperture NA is 1.80
- the refractive index n is 2.0
- the beam diameter D4 at the end face of the SIL 105b is 36 ⁇ m.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3, and the inter-surface distance t 4 .
- the inter-surface distance t 1 is 1.0 ⁇ m, as in the sixth embodiment described above.
- the interplanar distance t 2 is set to 3.4 .mu.m.
- interplanar distance t 3 it is necessary not less than 1.8 .mu.m, and the difference and interplanar distance t 3 of the inter-plane distance t 3 and interplanar distance t 1 and the interplanar distance t 2 Any difference needs to be 0.8 ⁇ m or more. Therefore, in the seventh embodiment, the inter-surface distance t 3 is set to 2.6 ⁇ m.
- interplanar distance t 4 it is necessary not less than 1.8 .mu.m, and the difference between the inter-plane distance t 4 and interplanar distance t 1, interplanar distance t 4 and the interplanar distance t 2
- the difference and the difference between the inter-surface distance t 4 and the inter-surface distance t 3 must be 0.8 ⁇ m or more. Therefore, in the seventh embodiment, the inter-surface distance t 4 is 1.8 ⁇ m.
- the distance d4 from the surface to the innermost fourth recording surface L4 is the same.
- the difference is the values of the inter-surface distance t 3 and the inter-surface distance t 4 .
- t 3 2.6 ⁇ m
- t 4 1.8
- t 3 > t 4 2.6
- t 3 ⁇ t 4 2.6
- the value of the distance d 3 in the seventh embodiment is larger than the value of the distance d 3 in the sixth embodiment.
- the inter-surface distance t 2 , the inter-surface distance t 3, and the inter-surface distance t 4 are t 2 > t 3 , t 2 > t 4 , and t 3 > t. It may be 4 . Accordingly, the distance d 3 from the surface to the third recording surface L3, can be further increased.
- the recording surface farther from the incident light surface of the optical recording medium than the second recording surface L2, excluding the innermost recording surface, can be separated from the incident light surface of the optical recording medium. For this reason, it is possible to reduce the influence of the loss of the light beam due to surface dust or surface defects.
- FIG. 14 is a diagram showing an eighth example of the optical recording medium in the first embodiment.
- the optical recording medium 501 has a first recording surface L1, a second recording surface L2, a third recording surface L3, a fourth recording surface L4, and a fifth recording surface L5.
- the distance between adjacent recording surfaces is 1.8 ⁇ m or more. Need to be. For this reason, the inter-surface distance t 2 , the inter-surface distance t 3 , the inter-surface distance t 4 and the inter-surface distance t 5 need to be 1.8 ⁇ m or more, respectively.
- the optical path difference needs to be 0.2 ⁇ m or more in consideration of the variation in the inter-surface distance.
- the eighth embodiment shown in FIG. 14 will be described.
- the diameter Da of the end face of the SIL 105b is 40 ⁇ m
- the numerical aperture NA is 1.80
- the refractive index n is 2.0.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 .
- the inter-surface distance t 1 is 0.4 ⁇ m.
- the inter-surface distance t 2 is larger than any of the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 .
- the inter-surface distance t 2 needs to be 1.8 ⁇ m or more, and the difference between the inter-surface distance t 2 and the inter-surface distance t 1 needs to be 0.4 ⁇ m or more.
- the interplanar distance t 2 is set to 3.0 [mu] m.
- the inter-surface distance t 3 is set to a value larger than both the inter-surface distance t 4 and the inter-surface distance t 5 .
- interplanar distance t 3 it is necessary not less than 1.8 .mu.m, and the difference and interplanar distance t 3 of the inter-plane distance t 3 and interplanar distance t 1 and the interplanar distance t 2 The difference needs to be 0.4 ⁇ m or more.
- the inter-surface distance t 3 is 2.6 ⁇ m.
- the inter-surface distance t 4 is larger than the inter-surface distance t 5 .
- interplanar distance t 4 it is necessary not less than 1.8 .mu.m, and the difference between the inter-plane distance t 4 and interplanar distance t 1, interplanar distance t 4 and the interplanar distance t 2
- the difference and the difference between the inter-surface distance t 4 and the inter-surface distance t 3 must be 0.4 ⁇ m or more.
- the inter-surface distance t 4 is 2.2 ⁇ m.
- the inter-surface distance t 5 is 1.8 ⁇ m.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 .
- the entire interlayer distance that is, the distance from the surface to the innermost recording surface can be reduced. Therefore, even if the optical recording medium is a multilayer, the distance d N can satisfy the relational expression (7). That is, when information is recorded or reproduced on the innermost recording surface, the light beam can be prevented from being kicked at the end of the SIL 105b.
- the inter-surface distance t 2 , the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 are t 2 > t 3 , t 2 > t 4 , and t 2 > t 5 . .
- the distance d 3 from the surface to the third recording surface L3 can be increased.
- the distance d4 from the surface to the fourth recording surface L4 can also be increased.
- the recording surface farther from the incident light surface of the optical recording medium than the first recording surface L1 excluding the innermost recording surface can be separated from the incident light surface of the optical recording medium. For this reason, it is possible to reduce the influence of the loss of the light beam due to surface dust or surface defects.
- the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 are t 3 > t 4 , t 3 > t 5 , and t 4 > t 5 . Accordingly, the distance d 3 from the surface to the third recording surface L3, can be further increased. Further, the distance d4 from the surface to the fourth recording surface L4 can be further increased.
- the recording surface farther from the incident light surface of the optical recording medium than the second recording surface L2, excluding the innermost recording surface, can be separated from the incident light surface of the optical recording medium. For this reason, it is possible to reduce the influence of the loss of the light beam due to surface dust or surface defects.
- optical recording media having two, three, four, and five recording surfaces have been described as specific examples.
- the present invention is not limited to this. It may be an optical recording medium having six or more recording surfaces.
- the optical recording medium 106 may have first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- the refractive index of the optical recording medium 106 is n
- the numerical aperture of the objective lens optical system 105 is NA
- the opening diameter of the opening on the side facing the optical recording medium 106 of the SIL 105b is D
- the optical recording medium The thickness d N from the light incident side surface to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the distance t i between the i-th (integer with 2 ⁇ i ⁇ N) recording surface and the (i ⁇ 1) -th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the light that can efficiently propagate without collision between the optical recording medium and the SIL can efficiently propagate without collision between the optical recording medium and the SIL.
- a gap between the recording medium and the SIL can be maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the SIL.
- the inter-surface distance t 1 can be a small value. For this reason, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, the distance from the surface to the innermost recording surface can be reduced.
- the optical recording medium may have three or more recording surfaces.
- the interplanar spacing t 2, between the face-to-face distance t j between the first j (3 ⁇ j ⁇ N is an integer) recording surface and the j-1 of the recording surface of, t j ⁇ t 2 may be satisfied.
- the recording surface farther from the light incident side surface of the optical recording medium than the first recording surface L1 excluding the innermost recording surface can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the optical recording medium may have four or more recording surfaces.
- the inter-surface distance t k ⁇ 1 between the recording surface and the recording surface may satisfy t k ⁇ t k ⁇ 1 .
- the recording surface farther from the light incident side surface of the optical recording medium than the second recording surface L2 excluding the innermost recording surface can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the interplanar distance t 1 may be smaller than the first predetermined value determined according to the wavelength of the numerical aperture and light.
- the entire interlayer distance that is, the distance from the surface to the innermost recording surface Can be reduced.
- face-to-face distance t i between the two recording surfaces the first may be more than a predetermined value determined depending on the wavelength of the numerical aperture NA and a light.
- the first predetermined value is 1.8 ⁇ m. Degree.
- the inter-surface distance t i and the inter-surface distance between the m-th (1 ⁇ m ⁇ N and i> m) recording surfaces and the (m ⁇ 1) -th recording surface is the difference from t m (t i ⁇ t m ), that is, the difference in the inter-surface distance between the recording surfaces, is the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , the numerical aperture NA and the light It may be greater than or equal to the sum of the second predetermined value determined in accordance with the wavelength of.
- the variation in distance between surfaces t i, the maximum value of the absolute values of acceptable manufacturing errors interplanar spacing t i, and the variation in distance between surfaces t m is acceptable surface distance t m manufacturing This is the maximum absolute value of the error.
- the second predetermined value is about 0.2 ⁇ m.
- the focus detection uses the astigmatism method as an example
- the tracking detection uses the push-pull method as an example.
- the present invention is not limited to these, and other detection methods are used. You may combine with.
- a photodetector for gap detection, a photodetector for focus detection, and a photodetector for tracking detection are individually provided, but gap detection, focus detection, and One photo detector that performs integrated tracking detection may be provided.
- the refractive index between the recording surfaces is uniformly set to n.
- the refractive index may be different between the recording surfaces and between the recording surface and the recording surface. Even in this case, the same effect can be obtained if the relationship between the optical distances obtained by converting the distance between the recording surfaces in consideration of the refractive index satisfies the relationship shown in the present embodiment.
- FIG. 15 is a flowchart for explaining an information recording method and an information reproducing method according to Embodiment 2 of the present invention.
- the information recording method and information reproducing method shown in FIG. 15 are performed using an information recording / reproducing apparatus described later.
- step S1 the light source (semiconductor laser 101) emits a light beam.
- step S2 the SIL 105b converges the light beam emitted from the light source onto the optical recording medium 106.
- step S3 information is recorded or reproduced on the optical recording medium by the converged light beam.
- the optical recording medium 106 has a plurality of recording surfaces
- the refractive index of the optical recording medium 106 is n
- the numerical aperture of the objective lens optical system 105 NA
- the diameter of the opening of the SIL 105b is Da.
- the thickness d N between the surface on which the beam is incident and the recording surface farthest from the surface on which the light beam is incident satisfies d N ⁇ Da / ⁇ 2 ⁇ tan (asin (NA / n)) ⁇ .
- the optical recording medium and the SIL are not affected even if a necessary tolerance is given to the relative inclination between the optical recording medium and the SIL.
- a gap between the optical recording medium and the SIL that can efficiently propagate light without colliding can be maintained, and the light can be converged on the recording surface on the back side without being scattered at the end of the SIL. Therefore, since a multilayer optical recording medium having a plurality of recording surfaces can be realized, the recording capacity per optical recording medium can be increased.
- information is recorded on an optical recording medium by light emitted from an optical system including a solid immersion lens.
- information is reproduced from the optical recording medium by the light emitted from the optical system including the solid immersion lens.
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- the refractive index of the optical recording medium 106 is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening facing the optical recording medium of the SIL is D
- the light incident side of the optical recording medium The thickness d N from the surface to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N and the inter-surface distance between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium are t 1 , i the distance between the surfaces t i between the (2 ⁇ i ⁇ N is an integer) recording surface recording surface of the i-1 of satisfies t 1 ⁇ t i ⁇ d N .
- the information recording method includes a first step of emitting light from a light source, and a method of recording information on the optical recording medium by converging the light emitted from the light source on the optical recording medium by a solid immersion lens. 2 steps.
- the information reproducing method includes a first step of emitting light from a light source, and the light emitted from the light source is converged on an optical recording medium by a solid immersion lens to reproduce information from the optical recording medium. And a second step.
- the light that can efficiently propagate without collision between the optical recording medium and the SIL can efficiently propagate without collision between the optical recording medium and the SIL.
- a gap between the recording medium and the SIL can be maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the SIL.
- the inter-surface distance t 1 can be set to a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, the distance from the light incident side surface of the optical recording medium to the innermost recording surface is set. Can be small.
- FIG. 16 is a diagram showing a configuration of an information recording / reproducing apparatus according to Embodiment 3 of the present invention.
- an optical recording medium 106 is mounted on a turntable 305, held by a clamper 306, and rotated by a motor 304.
- the optical pickup 302 shown in the first and second embodiments is transported by the driving device 301 to the position of the track on the optical recording medium 106 where desired information exists.
- the optical pickup 302 sends a focus signal, tracking signal, gap signal, and RF signal to the electric circuit 303 in accordance with the positional relationship with the optical recording medium 106.
- the electric circuit 303 sends a signal for driving an actuator that moves the objective lens optical system 105 to the optical pickup 302 in response to the focus signal, the tracking signal, and the gap signal. With this signal, the optical pickup 302 performs focus control, tracking control, and gap control on the optical recording medium 106, and reads, writes, or erases information.
- the optical recording medium 106 to be mounted is the optical recording medium described in Embodiment 1 having a recording surface for recording and reproduction by near-field light.
- the information recording / reproducing apparatus 307 according to the third embodiment uses the optical recording medium of the present invention, so that an allowable amount necessary for the relative inclination between the optical recording medium having a plurality of recording surfaces and the SIL is given.
- the gap between the optical recording medium and the SIL that can propagate light efficiently without colliding the optical recording medium and the SIL is maintained, and light is applied to the inner recording surface without being scattered at the end of the SIL. It can be converged. Therefore, since a multilayer optical recording medium having a plurality of recording surfaces can be realized, the recording capacity per optical recording medium can be increased.
- the information recording / reproducing apparatus 307 in the third embodiment records information on the optical recording medium 106 by light emitted from an optical system including a solid immersion lens.
- the information recording / reproducing apparatus 307 in the third embodiment reproduces information from the optical recording medium 106 by light emitted from an optical system including a solid immersion lens.
- the optical recording medium 106 has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- the refractive index of the optical recording medium 106 is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium 106 of the SIL is D
- the light of the optical recording medium 106 The thickness d N from the incident side surface to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the inter-surface distance t 1 between the light incident side surface of the optical recording medium 106 and the first recording surface closest to the light incident side surface of the optical recording medium 106 is the i th (2 ⁇ i ⁇
- the inter-surface distance t i between the (N) integer recording surface and the (i ⁇ 1) -th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the information recording / reproducing apparatus 307 includes a light source that emits light and an optical system that includes a solid immersion lens that converges the light emitted from the light source. Then, the information recording / reproducing apparatus 307 in Embodiment 3 records information on the optical recording medium 106 by emitting light from the light source and converging the light emitted from the light source with a solid immersion lens.
- the information recording / reproducing apparatus 307 in the third embodiment reproduces information from the optical recording medium 106 by emitting light from the light source and converging the light emitted from the light source with a solid immersion lens.
- the gap between the recording medium and the SIL can be maintained, and the light can be converged on the recording surface on the back side without being scattered at the end of the SIL.
- the inter-surface distance t 1 can be set to a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, the distance from the light incident side surface of the optical recording medium to the innermost recording surface is set. Can be small.
- the fourth embodiment is an embodiment of a computer provided with the information recording / reproducing apparatus 307 according to the third embodiment.
- FIG. 17 is a perspective view showing a configuration of a computer according to Embodiment 4 of the present invention.
- a computer 309 shown in FIG. 17 includes an information recording / reproducing device 307 according to the third embodiment, an input device 316 such as a keyboard 311 and a mouse 312 for inputting information, and information input from the input device 316 and information recording / reproducing.
- An arithmetic device 308 such as a CPU that performs an operation based on at least one of the information read from the device 307, information input by the input device 316, information reproduced by the information recording / reproducing device 307, and an arithmetic operation by the arithmetic device 308
- an output device 310 such as a cathode ray tube or a liquid crystal display device for displaying at least one of the obtained results.
- a computer 309 according to the fourth embodiment includes the information recording / reproducing device 307 according to the third embodiment, and stably stabilizes information on an optical recording medium having a recording surface for recording or reproducing information by near-field light. Therefore, it can be used for a wide range of purposes.
- the fifth embodiment is an embodiment of an optical disk recorder provided with the information recording / reproducing apparatus 307 according to the third embodiment.
- FIG. 18 is a perspective view showing the configuration of the optical disc recorder according to Embodiment 5 of the present invention.
- An optical disk recorder 315 shown in FIG. 18 includes an information recording / reproducing device 307 according to the third embodiment, a recording signal processing circuit 313 that converts an image signal into an information signal to be recorded on an optical recording medium by the information recording / reproducing device 307, and It has.
- the optical disc recorder 315 preferably has a reproduction signal processing circuit 314 that converts an information signal obtained from the information recording / reproducing device 307 into an image signal. According to this configuration, it is also possible to reproduce already recorded information. Further, the optical disk recorder 315 may include an output device 310 such as a cathode ray tube or a liquid crystal display device for displaying information.
- the optical disk recorder includes the information recording / reproducing apparatus 307 according to the third embodiment, and stably stabilizes information on an optical recording medium having a recording surface for recording or reproducing information by near-field light. Therefore, it can be used for a wide range of purposes.
- the sixth embodiment is an embodiment of the method for manufacturing an optical recording medium according to the first embodiment.
- the method for manufacturing an optical recording medium according to the sixth embodiment includes a step of preparing a substrate and a step of forming a plurality of recording surfaces on the substrate.
- the refractive index of the optical recording medium 106 is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens is D
- the light of the optical recording medium The thickness d N from the incident side surface to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium and i (2 ⁇ i ⁇ N).
- the inter-surface distance t i between the (integer) recording surface and the (i ⁇ 1) -th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the fifth recording surface L5 is formed on the substrate.
- a fourth intermediate layer is formed on the fifth recording surface L5.
- a fourth recording surface L4 is formed on the fourth intermediate layer. At this time, the surface distance between the fourth recording surface L4 and the fifth recording layer L5 is the t 5.
- a third intermediate layer is formed on the fourth recording surface L4.
- a third recording surface L3 is formed on the third intermediate layer. At this time, the surface distance between the third recording surface L3 and the fourth recording surface L4 is set to t 4.
- a second intermediate layer is formed on the third recording surface L3.
- the second recording surface L2 is formed on the second intermediate layer.
- the surface distance between the second recording surface L2 and the third recording surface L3 is set to t 3.
- a first intermediate layer is formed on the second recording surface L2.
- the first recording surface L1 is formed on the first intermediate layer.
- the surface distance between the first recording surface L1 and the second recording surface L2 is a t 2.
- a protective layer is formed on the first recording surface L1.
- the surface distance between the surface of the protective layer (the surface of the optical recording medium) and the first recording surface L1 is a t 1.
- the inter-surface distance t 1 is set to a value smaller than any of the inter-surface distance t 2 , the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 .
- the entire interlayer distance that is, the distance from the surface to the innermost recording surface can be reduced. Therefore, even when a multilayer, the thickness d N can satisfy the above relation. That is, when information is recorded on or reproduced from the innermost recording surface, light can be prevented from being kicked at the end of the SIL.
- the inter-surface distance t 2 , the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 satisfy t 2 > t 3 , t 2 > t 4 , and t 2 > t 5 . It is preferable. Thus, it is possible to increase the distance d 2 from the incident surface of the optical recording medium to the second recording surface L2. The distance d 3 from the incident surface of the optical recording medium to the third recording surface L3 can be increased. Furthermore, the distance d4 from the incident-side surface of the optical recording medium to the fourth recording surface L4 can also be increased.
- the recording surface farther from the light incident side surface of the optical recording medium than the first recording surface L1 excluding the innermost recording surface can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the inter-surface distance t 3 , the inter-surface distance t 4, and the inter-surface distance t 5 satisfy t 3 > t 4 and t 4 > t 5 . Accordingly, the distance d 3 from the incident surface of the optical recording medium to the third recording surface L3, can be further increased. Further, the distance d4 from the incident side surface of the optical recording medium to the fourth recording surface L4 can be further increased.
- the recording surface farther from the light incident side surface of the optical recording medium than the second recording surface L2 excluding the innermost recording surface can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- an optical recording medium having five recording surfaces is described as a specific example, but the present invention is not limited to this.
- the optical recording medium having two to four recording surfaces shown in the first embodiment may be used. Further, it may be an optical recording medium having six or more recording surfaces.
- An optical recording medium is an optical recording medium in which information is recorded or reproduced by light emitted from an optical system including a solid immersion lens, and the optical recording medium is an incident side of the light.
- N is an integer equal to or greater than 2
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the solid immersion lens When the opening diameter of the opening facing the optical recording medium is D, the thickness d N from the light incident side surface of the optical recording medium to the innermost Nth recording surface is d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ , the thickness d N , the light incident side surface of the optical recording medium, and the light incident side surface of the optical recording medium closest to the light and interplanar distance t 1 between the first recording surface, the i (2 ⁇ i
- the interplanar distance t i between the recording surface and the (i-1) of the recording surface of an N integer) satisfy t 1 ⁇
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens is D
- the light incident surface of the optical recording medium The thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other, and the light is efficiently emitted.
- the gap between the propagating optical recording medium and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- the inter-surface distance t 1 can be a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, from the light incident side surface of the optical recording medium to the innermost Nth recording surface The distance can be reduced.
- the optical recording medium has three or more recording surfaces, an inter-surface distance t 2 between the second recording surface and the first recording surface, and a jth (The inter-plane distance t j between the recording surface (3 ⁇ j ⁇ N) and the (j ⁇ 1) -th recording surface preferably satisfies t j ⁇ t 2 .
- the optical recording medium has three or more recording surfaces.
- the inter-surface distance t 2 between the second recording surface and the first recording surface, and the surface between the j-th (3 ⁇ j ⁇ N) recording surface and the j ⁇ 1-th recording surface The inter-distance t j satisfies t j ⁇ t 2 .
- the recording surface farther from the light incident side surface of the optical recording medium than the first recording surface, excluding the innermost recording surface, can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the optical recording medium has four or more recording surfaces, and is between a kth (4 ⁇ k ⁇ N) recording surface and a k ⁇ 1th recording surface.
- the inter-plane distance t k and the inter-plane distance t k ⁇ 1 between the (k ⁇ 1) th recording surface and the (k ⁇ 2) th recording surface preferably satisfy t k ⁇ t k ⁇ 1 .
- the optical recording medium has four or more recording surfaces.
- interplanar distance t k between the first k (4 ⁇ k ⁇ N is an integer) recording surface and the k-1 of the recording surface of the first k-1 of the recording surface and the recording surface of the k-2
- the inter-plane distance t k ⁇ 1 between t satisfies the relation of t k ⁇ t k ⁇ 1 .
- the recording surface farther from the light incident side surface of the optical recording medium than the second recording surface, excluding the innermost recording surface, can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the inter-surface distance t 1 is preferably smaller than a first predetermined value determined according to the numerical aperture and the wavelength of the light.
- the inter-surface distance t 1 is smaller than the first predetermined value determined in accordance with the numerical aperture and the wavelength of light, so that the entire interlayer distance, that is, from the light incident side surface of the optical recording medium.
- the distance to the innermost Nth recording surface can be reduced.
- the inter-surface distance t i is not less than a first predetermined value determined according to the numerical aperture and the wavelength of the light.
- the inter-surface distance t i is equal to or greater than a first predetermined value that is determined according to the numerical aperture and the wavelength of light, and therefore, of the i th recording surface and the i ⁇ 1 th recording surface. It is possible to avoid leakage of signals recorded on the other recording surface as crosstalk during reproduction of one recording surface. That is, noise included in the reproduction signal can be reduced.
- the numerical aperture is 1.7 or more, the wavelength is 415 nm or less, and the first predetermined value is 1.8 ⁇ m.
- the inter-surface distance t 1 can be made smaller than 1.8 ⁇ m.
- the face-to-face distance t i may be equal to or larger than 1.8 .mu.m.
- the inter-surface distance t i and the distance between the m-th (1 ⁇ m ⁇ N and integers i> m) recording surface and the (m ⁇ 1) -th recording surface the difference between the distance t m (t i -t m), the level distance t i and the variation of the variation of the level distance t m, a second determined depending on the wavelength of the said numerical aperture It is preferable that it is more than the sum with the predetermined value.
- the interplanar spacing t i, and interplanar distance t m between the m th recording surface and the m-1 of the recording surface of (1 ⁇ m ⁇ integer and i is an N> m)
- the difference (t i ⁇ t m ) is equal to or greater than the sum of the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , and the second predetermined value determined according to the numerical aperture and the wavelength of light. is there.
- the numerical aperture is 1.7 or more, the wavelength is 415 nm or less, and the second predetermined value is 0.2 ⁇ m.
- the difference between the inter-surface distance t i and the inter-surface distance t m (T i -t m ) can be made equal to or greater than the sum of the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , and 0.2 ⁇ m.
- An information recording apparatus is an information recording apparatus for recording information on an optical recording medium by light emitted from an optical system including a solid immersion lens, the light source emitting the light, And an optical system including the solid immersion lens for converging light emitted from a light source on the optical recording medium.
- the optical recording medium includes first to Nth (N is 2 or more) in order from the light incident side.
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the aperture diameter of the opening on the side of the solid immersion lens facing the optical recording medium is Assuming that D is the thickness d N from the light incident side surface of the optical recording medium to the innermost Nth recording surface, d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ Satisfying said thickness d N ;
- the inter-surface distance t i between the (N) integer recording surface and the (i ⁇ 1) -th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the light source emits light.
- the optical system includes a solid immersion lens that converges the light emitted from the light source onto the optical recording medium.
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- NA numerical aperture
- D the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens
- D the light incident surface of the optical recording medium
- the thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other, and light is efficiently emitted.
- the gap between the propagating optical recording medium and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- the inter-surface distance t 1 can be a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, from the light incident side surface of the optical recording medium to the innermost Nth recording surface The distance can be reduced.
- the optical recording medium has three or more recording surfaces, a distance t 2 between the second recording surface and the first recording surface, and a jth (The inter-plane distance t j between the recording surface (3 ⁇ j ⁇ N) and the (j ⁇ 1) -th recording surface preferably satisfies t j ⁇ t 2 .
- the optical recording medium has three or more recording surfaces.
- the inter-surface distance t 2 between the second recording surface and the first recording surface, and the surface between the j-th (3 ⁇ j ⁇ N) recording surface and the j ⁇ 1-th recording surface The inter-distance t j satisfies t j ⁇ t 2 .
- the recording surface farther from the light incident side surface of the optical recording medium than the first recording surface, excluding the innermost recording surface, can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the optical recording medium has four or more recording surfaces, and is between a kth (4 ⁇ k ⁇ N) recording surface and a (k ⁇ 1) th recording surface.
- the inter-plane distance t k and the inter-plane distance t k ⁇ 1 between the (k ⁇ 1) th recording surface and the (k ⁇ 2) th recording surface preferably satisfy t k ⁇ t k ⁇ 1 .
- the optical recording medium has four or more recording surfaces.
- interplanar distance t k between the first k (4 ⁇ k ⁇ N is an integer) recording surface and the k-1 of the recording surface of the first k-1 of the recording surface and the recording surface of the k-2
- the inter-plane distance t k ⁇ 1 between t satisfies the relation of t k ⁇ t k ⁇ 1 .
- the recording surface farther from the light incident side surface of the optical recording medium than the second recording surface, excluding the innermost recording surface, can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to dust on the surface or defects on the surface.
- the inter-surface distance t 1 is preferably smaller than a first predetermined value determined according to the numerical aperture and the wavelength of the light.
- the inter-surface distance t 1 is smaller than the first predetermined value determined in accordance with the numerical aperture and the wavelength of light, so that the entire interlayer distance, that is, from the light incident side surface of the optical recording medium.
- the distance to the innermost Nth recording surface can be reduced.
- the inter-surface distance t i is not less than a first predetermined value determined according to the numerical aperture and the wavelength of the light.
- the inter-surface distance t i is equal to or greater than a first predetermined value that is determined according to the numerical aperture and the wavelength of light, and therefore, of the i th recording surface and the i ⁇ 1 th recording surface. It is possible to avoid leakage of signals recorded on the other recording surface as crosstalk during reproduction of one recording surface. That is, noise included in the reproduction signal can be reduced.
- the numerical aperture is 1.7 or more, the wavelength is 415 nm or less, and the first predetermined value is 1.8 ⁇ m.
- the inter-surface distance t 1 can be made smaller than 1.8 ⁇ m.
- the face-to-face distance t i may be equal to or larger than 1.8 .mu.m.
- the inter-surface distance t i and the distance between the m-th (1 ⁇ m ⁇ N and integers i> m) recording surface and the (m ⁇ 1) -th recording surface the difference between the distance t m (t i -t m), the level distance t i and the variation of the variation of the level distance t m, a second determined depending on the wavelength of the said numerical aperture It is preferable that it is more than the sum with the predetermined value.
- the interplanar spacing t i, and interplanar distance t m between the m th recording surface and the m-1 of the recording surface of (1 ⁇ m ⁇ integer and i is an N> m)
- the difference (t i ⁇ t m ) is equal to or greater than the sum of the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , and the second predetermined value determined according to the numerical aperture and the wavelength of light. is there.
- the numerical aperture is 1.7 or more, the wavelength is 415 nm or less, and the second predetermined value is 0.2 ⁇ m.
- the difference between the inter-surface distance t i and the inter-surface distance t m (T i -t m ) can be made equal to or greater than the sum of the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , and 0.2 ⁇ m.
- An information reproducing apparatus is an information reproducing apparatus for reproducing information from an optical recording medium by light emitted from an optical system including a solid immersion lens, the light source emitting the light, And an optical system including the solid immersion lens for converging light emitted from a light source on the optical recording medium.
- the optical recording medium includes first to Nth (N is 2 or more) in order from the light incident side.
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the aperture diameter of the opening on the side of the solid immersion lens facing the optical recording medium is Assuming that D is the thickness d N from the light incident side surface of the optical recording medium to the innermost Nth recording surface, d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ And said thickness d N
- the inter-surface distance t i between the recording surface of ⁇ N and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the light source emits light.
- the optical system includes a solid immersion lens that converges the light emitted from the light source onto the optical recording medium.
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- N is an integer of 2 or more
- NA numerical aperture
- D the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens
- D the light incident surface of the optical recording medium
- the thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other, and light is efficiently emitted.
- the gap between the propagating optical recording medium and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- the inter-surface distance t 1 can be a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, from the light incident side surface of the optical recording medium to the innermost Nth recording surface The distance can be reduced.
- the optical recording medium has three or more recording surfaces, an inter-surface distance t 2 between the second recording surface and the first recording surface, and a jth (The inter-plane distance t j between the recording surface (3 ⁇ j ⁇ N) and the (j ⁇ 1) -th recording surface preferably satisfies t j ⁇ t 2 .
- the optical recording medium has three or more recording surfaces.
- the inter-surface distance t 2 between the second recording surface and the first recording surface, and the surface between the j-th (3 ⁇ j ⁇ N) recording surface and the j ⁇ 1-th recording surface The inter-distance t j satisfies t j ⁇ t 2 .
- the recording surface farther from the light incident side surface of the optical recording medium than the first recording surface, excluding the innermost recording surface, can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the optical recording medium has four or more recording surfaces, and is between a kth (4 ⁇ k ⁇ N) recording surface and a k ⁇ 1th recording surface.
- the inter-plane distance t k and the inter-plane distance t k ⁇ 1 between the (k ⁇ 1) th recording surface and the (k ⁇ 2) th recording surface preferably satisfy t k ⁇ t k ⁇ 1 .
- the optical recording medium has four or more recording surfaces.
- interplanar distance t k between the first k (4 ⁇ k ⁇ N is an integer) recording surface and the k-1 of the recording surface of the first k-1 of the recording surface and the recording surface of the k-2
- the inter-plane distance t k ⁇ 1 between t satisfies the relation of t k ⁇ t k ⁇ 1 .
- the recording surface farther from the light incident side surface of the optical recording medium than the second recording surface, excluding the innermost recording surface, can be separated from the light incident side surface of the optical recording medium. For this reason, it is possible to reduce the influence of light loss due to surface dust or surface defects.
- the inter-surface distance t 1 is preferably smaller than a first predetermined value determined according to the numerical aperture and the wavelength of the light.
- the inter-surface distance t 1 is smaller than the first predetermined value determined in accordance with the numerical aperture and the wavelength of light, so that the entire interlayer distance, that is, from the light incident side surface of the optical recording medium.
- the distance to the innermost Nth recording surface can be reduced.
- the inter-surface distance t i is equal to or more than a first predetermined value determined according to the numerical aperture and the wavelength of the light.
- the inter-surface distance t i is equal to or greater than a first predetermined value that is determined according to the numerical aperture and the wavelength of light, and therefore, of the i th recording surface and the i ⁇ 1 th recording surface. It is possible to avoid leakage of signals recorded on the other recording surface as crosstalk during reproduction of one recording surface. That is, noise included in the reproduction signal can be reduced.
- the numerical aperture is 1.7 or more, the wavelength is 415 nm or less, and the first predetermined value is 1.8 ⁇ m.
- the inter-surface distance t 1 can be made smaller than 1.8 ⁇ m.
- the face-to-face distance t i may be equal to or larger than 1.8 .mu.m.
- the distance between the surfaces t i and the distance between the mth (1 ⁇ m ⁇ N and i> m) recording surfaces and the (m ⁇ 1) th recording surface the difference between the distance t m (t i -t m), the level distance t i and the variation of the variation of the level distance t m, a second determined depending on the wavelength of the said numerical aperture It is preferable that it is more than the sum with the predetermined value.
- the interplanar spacing t i, and interplanar distance t m between the m th recording surface and the m-1 of the recording surface of (1 ⁇ m ⁇ integer and i is an N> m)
- the difference (t i ⁇ t m ) is equal to or greater than the sum of the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , and the second predetermined value determined according to the numerical aperture and the wavelength of light. is there.
- the numerical aperture is 1.7 or more, the wavelength is 415 nm or less, and the second predetermined value is 0.2 ⁇ m.
- the difference between the inter-surface distance t i and the inter-surface distance t m (T i -t m ) can be made equal to or greater than the sum of the variation in the inter-surface distance t i , the variation in the inter-surface distance t m , and 0.2 ⁇ m.
- An information recording method is an information recording method for recording information on an optical recording medium by light emitted from an optical system including a solid immersion lens, wherein the light is emitted from a light source. And a second step of converging light emitted from the light source onto the optical recording medium by the solid immersion lens and recording information on the optical recording medium, the optical recording medium comprising: Having the first to Nth (N is an integer of 2 or more) recording surfaces in order from the incident side, the refractive index of the optical recording medium is n, the numerical aperture of the optical system is NA, and the solid immersion
- N is an integer of 2 or more
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens is D
- the light incident surface of the optical recording medium The thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other, and light is efficiently emitted.
- the gap between the propagating optical recording medium and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- the inter-surface distance t 1 can be a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, from the light incident side surface of the optical recording medium to the innermost Nth recording surface The distance can be reduced.
- An information reproducing method is an information reproducing method for reproducing information from an optical recording medium by light emitted from an optical system including a solid immersion lens, and the first method emits the light from a light source. And a second step of converging the light emitted from the light source onto the optical recording medium by the solid immersion lens and reproducing information from the optical recording medium, the optical recording medium comprising: Having the first to Nth (N is an integer of 2 or more) recording surfaces in order from the incident side, the refractive index of the optical recording medium is n, the numerical aperture of the optical system is NA, and the solid immersion
- N is an integer of 2 or more
- the optical recording medium has first to Nth (N is an integer of 2 or more) recording surfaces in order from the light incident side.
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens is D
- the light incident surface of the optical recording medium The thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other, and light is efficiently emitted.
- the gap between the propagating optical recording medium and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- the inter-surface distance t 1 can be a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, from the light incident side surface of the optical recording medium to the innermost Nth recording surface The distance can be reduced.
- An optical recording medium manufacturing method is an optical recording medium manufacturing method in which information is recorded or reproduced by light emitted from an optical system including a solid immersion lens, and a substrate is prepared.
- N is an integer of 2 or more
- n is the refractive index of the optical system
- NA is the numerical aperture of the optical system
- D is the diameter of the opening of the solid immersion lens on the side facing the optical recording medium.
- a thickness d N from the surface to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ , and the thickness d N and the optical recording medium
- the light incident side surface and the light of the optical recording medium The distance t 1 between the first recording surface closest to the incident-side surface and the i-th (2 ⁇ i ⁇ N) recording surface and the i ⁇ 1th recording surface
- the inter-surface distance t i satisfies t 1 ⁇ t i ⁇ d N.
- the substrate is prepared, and the first to Nth (N is an integer of 2 or more) recording surfaces are formed on the substrate in the order closer to the light incident side.
- the refractive index of the optical recording medium is n
- the numerical aperture of the optical system is NA
- the opening diameter of the opening on the side facing the optical recording medium of the solid immersion lens is D
- the light incident surface of the optical recording medium The thickness d N from the innermost to the innermost Nth recording surface satisfies d N ⁇ D / ⁇ 2 tan (asin (NA / n)) ⁇ .
- the thickness d N the inter-surface distance t 1 between the light incident side surface of the optical recording medium and the first recording surface closest to the light incident side surface of the optical recording medium, and the i (2 The inter-surface distance t i between the recording surface of ⁇ i ⁇ N) and the i ⁇ 1th recording surface satisfies t 1 ⁇ t i ⁇ d N.
- the optical recording medium and the solid immersion lens do not collide with each other, and light is efficiently emitted.
- the gap between the propagating optical recording medium and the solid immersion lens is maintained, and the light can be converged on the recording surface on the back side without being kicked by the end of the solid immersion lens.
- the inter-surface distance t 1 can be a small value. Therefore, by setting the inter-surface distance t 1 to be smaller than the other inter-surface distances t i , the entire interlayer distance, that is, from the light incident side surface of the optical recording medium to the innermost Nth recording surface The distance can be reduced.
- An optical recording medium, an information recording apparatus, an information reproducing apparatus, an information recording method, an information reproducing method, and an optical recording medium manufacturing method include a plurality of recording surfaces using a solid immersion lens having a numerical aperture exceeding 1. It is possible to record or reproduce information stably on an optical recording medium having Therefore, it can be used for these application devices such as a large-capacity optical disk recorder or a computer memory device.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optical Head (AREA)
Abstract
ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法を提供する。 光記録媒体(106)は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、光記録媒体(106)の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズ(105b)の光記録媒体(106)と向き合う側の開口部の開口直径をDとすると、光記録媒体(106)の光の入射側表面から第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、厚さdNと、光記録媒体(106)の光の入射側表面と第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
Description
本発明は、光ディスク又は光カードなど、ソリッドイマージョンレンズを含む光学系から出射される光により情報が記録又は再生される光記録媒体、当該光記録媒体に情報を記録する情報記録装置、当該光記録媒体から情報を再生する情報再生装置、当該光記録媒体に情報を記録する情報記録方法、当該光記録媒体から情報を再生する情報再生方法及び当該光記録媒体の製造方法に関するものである。
従来、映像又は音声を初めとする各種の情報を記録する媒体として、CD、DVD又はBD(ブルーレイディスク)といった光ディスクが広く用いられている。このような光記録媒体を用いた光記録再生装置では、光記録媒体に光を照射することにより情報を記録又は再生する。そのため、情報の記録密度は、光記録媒体に収束する光スポットの大きさに依存する。従って、光記録媒体の大容量化は、光ピックアップにより照射される光スポットを小さくすることによって実現できる。この光スポットの大きさは、対物レンズの開口数に比例し、照射する光の波長に反比例する。そのため、より小さな光スポットを得るには、使用する光の波長を更に短くするか、あるいは、対物レンズの開口数を更に大きくすれば良い。しかし、これまで実用化されている光記録再生装置では、光記録媒体と対物レンズとの間が波長に比べて十分大きく離れており、対物レンズに入射する光は開口数が1を超えると、レンズ出射面で全反射するため、記録密度を上げることができなかった。
そこで、対物レンズの開口数(NA)が1を超える光記録再生方法として、ソリッドイマージョンレンズ(以下、SILとも言う)を用いた近接場光記録再生方法が開発されている。開口数NAは、媒質の屈折率をnとし、入射光の光軸に対する最大角度をθとしたとき、NA=n・sinθで定義される。通常、開口数が1を超えると臨界角以上になるため、この領域の光は、対物レンズの出射端面において全反射される。このとき、全反射する光は、出射端面からエバネッセント光としてしみ出しており、近接場光記録再生法は、このエバネッセント光を光記録媒体に伝搬できるようにしたものである。このため、対物レンズの出射端面と光記録媒体表面とのエアギャップを、エバネッセント光の減衰距離より短く維持することにより、開口数が1を越える範囲の光を対物レンズから光記録媒体に透過させている。
このようなSILを用いる光学系ではエバネッセント光で光を伝播するためSILと光ディスクとの間隔は波長より十分短く、波長405nmの光を使用しているときでも25nm程度の間隔に保つ必要がある。ところが、このような狭い間隔においてSIL又は光ディスクに傾きがあると、SILの端と光ディスクとが衝突してしまい、傾きに許容される誤差が非常に小さくなる。
従来、傾きによる衝突を回避するため、SILの先端の幅を小さくし、SILと光ディスクとが相対的に傾いてもSILの端が光ディスクと衝突しないようにする技術があった(例えば、特許文献1参照)。
図19は、特許文献1に記載された従来の対物レンズ部10の構成を示す図である。対物レンズ部10は、絞りレンズ10aとSIL10bとからなる。SIL10bは、先端の光ビームが通過しない部分をテーパー状又は階段状に形成し、先端の径を小さくしている。これにより、SIL10bと光ディスクとが相対的に傾いたときでもSIL10bと光ディスクとが衝突し難くなり、傾きに対するマージンを従来より大きくすることができる。SILから光ディスクまでの光ビーム中心での距離をgとし、SILの先端のフラット部の直径をDaとしたとき、相対角度θが下記の式(1)を満たす場合、SILと光ディスクとは衝突しない。
Da・(sinθ)/2<g・・・(1)
相対角度θができるだけ大きくても、式(1)を満たすようにするためには、直径Daを小さくすればよい。例えば、距離(ギャップ)gが25nmであり、相対角度θが0.05度であってもSILと光ディスクとが衝突しないようにするためには、直径Daは57μmより小さくする必要がある。
しかしながら、従来の構成では、SIL端面の径が小さいため、複数の記録面を有する光記録媒体において、光記録媒体の光の入射側表面と最奥の記録面との間の距離が大きい場合、最外周の光線がSILの端部でけられてしまい、所定の開口数が得られず、スポットが絞れないという課題を有している。
本発明は、上記の問題を解決するためになされたもので、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法を提供することを目的とするものである。
本発明の一局面に係る光記録媒体は、ソリッドイマージョンレンズを含む光学系から出射される光により情報が記録又は再生される光記録媒体であって、前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有している。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
本発明によれば、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
以下本発明の実施の形態について、図面を参照しながら説明する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
(実施の形態1)
図1は、本発明の実施の形態1における光ピックアップの構成を示す図である。
図1は、本発明の実施の形態1における光ピックアップの構成を示す図である。
図1において、光ピックアップは、半導体レーザ101、集光レンズ103、ビームスプリッタ104、対物レンズ光学系105、ビームスプリッタ201、1/4波長板202、検出レンズ203、光検出器204、検出レンズ205及び光検出器206を備える。
半導体レーザ101は、直線偏光で波長405nmの光ビーム102を出射する。光ビーム102は、集光レンズ103で略平行光となり、ビームスプリッタ104及びビームスプリッタ201を透過して、1/4波長板202に入射する。1/4波長板202は、直線偏光の光を円偏光に変換する。1/4波長板202を経た光ビーム102は、対物レンズ光学系105に入射する。対物レンズ光学系105は、絞りレンズ105aと、SIL(ソリッドイマージョンレンズ)105bとから成る。SIL105bの出射端面と、当該出射端面に対向する光記録媒体106の表面との間に存在するエアギャップは、エバネッセント減衰長さより短い。これにより、エバネッセント光による光伝播が行われる。
光記録媒体106により反射及び回折された光ビームは、対物レンズ光学系105で再び略平行光に戻され、1/4波長板202を経た後、ビームスプリッタ201及びビームスプリッタ104でそれぞれ一部の光が反射される。
ビームスプリッタ104で反射された光ビームは、検出レンズ203で収束光に変換され、光検出器204で受光される。検出レンズ203は、収束光へ変換すると同時に、光ビームに非点収差を与える。光検出器204は、図示しない4分割された受光部を持ち、受光された光を電気信号に変換し、非点収差法によりフォーカス信号を検出する。また、光検出器204は、プッシュプル法によりトラッキング信号を検出する。また、光検出器204の各受光部で受光された光量の和信号に基づいてRF信号が生成される。
ビームスプリッタ201で反射された光ビームは、検出レンズ205で収束光に変換され、光検出器206で受光される。光検出器206は、SIL105bと光記録媒体106とのエアギャップの間隔を検出するためのギャップ信号を生成して出力する。
図2は、SIL105bの先端部から出射する光と、第1の実施例の光記録媒体106の各記録面との関係を示す模式図である。SIL105bの先端部と光記録媒体106との間の距離は、エバネッセント光として光が効率よく伝播する距離である例えば25nm程度に保たれる。図2に示す例では、光記録媒体106は3つの記録層を持つ。光記録媒体106は、光ビームが入射する側の表面から近い順に、第1の記録面L1、第2の記録面L2及び第3の記録面L3を有する。表面から第1の記録面L1までの距離をt1とし、第1の記録面L1と第2の記録面L2との間の距離をt2とし、第2の記録面L2と第3の記録面L3との間の距離をt3とする。また、表面から各記録面L1~L3までの距離をそれぞれd1~d3とする。光記録媒体106の屈折率をnとし、収束する光ビームの最も外側の光線と光軸との間の角度をθとすると、開口数NAは、下記の式(2)で表される。
NA=n・sinθ・・・(2)
図2では、SIL105bから伝播した光ビーム102が第3の記録面L3に収束している状態を示している。第3の記録面L3に光ビームが所定の開口数で収束するとき、SIL105bの端面でのビーム径D3は、下記の式(3)で表される。
D3=2・d3・tan(θ)・・・(3)
式(1)の関係より、記録面に収束する光ビームの最も外側の光線の角度θは、下記の式(4)で表される。なお、asinはsinの逆関数である。
θ=asin(NA/n)・・・(4)
したがって、上記の式(3)は、下記の式(5)で表される。
D3=2・d3・tan(asin(NA/n))・・・(5)
SIL105bと光記録媒体106との間の間隔は、25nm程度の非常に短い距離に保たれるため、SIL105bと光記録媒体106との相対的な傾きも小さく抑える必要がある。許容される傾きは、SIL105bの端面の大きさ(直径)Daに依存する。許容される傾きを大きくするにはSIL105bの直径Daを小さくすればよい。しかし、直径Daが小さすぎると最奥層の第3の記録面L3に光ビームが所定の開口数で届かなくなってしまう。このため、図2の例では、直径Daは、下記の式(6)を満たす必要がある。
Da≧2・d3・tan(asin(NA/n))・・・(6)
直径Daが許容角度とギャップの平均間隔とに基づいて決まるとすると、表面から最奥の記録面までの距離dNは、下記の式(7)を満たす。
dN≦Da/{2・tan(asin(NA/n))}・・・(7)
現実的に許容される傾きを0.05度程度と考え、中央のギャップ間隔が25nmである場合に衝突を起こさない角度を0.07度とすると、SIL105bの端面の直径Daは41μm程度となる。基材の屈折率nを2.0とし、開口数NAを1.80とすると、角度θは64.1度とし、距離dN(図2の場合はd3)は10μm以下とする必要がある。
このように最奥の記録面までの距離dN(d3)が設定されることにより、SILと光記録媒体との相対的な傾きに必要な許容量を与えても、SILと光記録媒体とが衝突することなく、効率的に光が伝播できるSILと光記録媒体との間のギャップを保ち、記録面を奥に配置することができる。このため、複数の記録面を持つ多層の光記録媒体を実現することができ、光記録媒体1枚当たりの記録容量を増加させることができる。
実際には、SIL105bの端面の端部はチッピング等で欠ける可能性等があり、また、加工誤差及び光軸とSIL105bの端面の中心とのずれを考慮する必要があるため、距離dNとして許容される厚さは、10μm以下となる。
また、光記録媒体に複数の記録面を配置するためには、複数の記録面の面間距離に制約を設ける必要がある。
まず、情報が記録される記録面同士が近すぎると、一方の記録面を再生している際に他方の記録面に記録された信号がクロストークとして漏れこんでしまい、ノイズとなる。これを避けるため、面間距離を所定の値以上にする必要がある。面間距離は、収束される光スポットの焦点深度に比例するため、NA2に反比例し、波長に比例する。NAが1.70以上であり、光の波長が415nm以下である場合、情報が記録される記録面に挟まれる面間距離の最小値は、1.8μm程度となる。面間距離の最小値t-min[μm]は、波長をλ[μm]として、t-min=12.5・λ/NA2と表される。面間距離は、この最小値t-min以上とすれば良い。
すなわち、隣接する2つの記録面の間の面間距離は、開口数NAと光の波長とに応じて決まる第1の所定値以上とすることが好ましい。これにより、一方の記録面を再生している際に他方の記録面に記録された信号がクロストークとして漏れこむことを避けることができる。すなわち、再生信号に含まれるノイズを低減することができる。なお、例えば、NAが1.80前後(NAが1.70以上)であり、かつ、波長が405nm前後(波長が415nm以下)である場合、第1の所定値は1.8μm程度である。
次に、3面以上の記録面を有し、少なくとも2つの面間距離が同じである光記録媒体において、光が収束している記録面とは異なる他の記録面からの迷光について説明する。
図3は、第1の記録面と第2の記録面との間の面間距離と、第2の記録面と第3の記録面との間の面間距離とが同じである光記録媒体の構成を示す概念図である。図3に示すように、光記録媒体は、第1の記録面L1、第2の記録面L2及び第3の記録面を有している。第1の記録面L1と第2の記録面L2との間の面間距離t2は、第2の記録面L2と第3の記録面L3との間の面間距離t3と同じである。光ビームは、第3の記録面L3に収束している。
この場合、最奥の第3の記録面L3で1回だけ反射する光路の光路長は、第2の記録面L2、第1の記録面L1及び第2の記録面L2のそれぞれで1回ずつ反射する光路の光路長と同じになる。このとき、1回反射した光ビームに対して3回反射した光ビームが迷光として干渉する。隣接する記録面の間の厚みのばらつき等により、隣接する記録面の間の距離が変化すると、干渉する位相が変化するので、得られる光ビームの強度が変化し、再生信号のノイズとなる。
更に、3面以上の記録面を有する光記録媒体において、面間距離t2と面間距離t3とを異ならせた場合について説明する。
図4は、光記録媒体の光が入射する側の表面と第1の記録面との間の面間距離と、第2の記録面と第3の記録面との間の面間距離とが同じである光記録媒体の構成を示す概念図である。図4に示すように、光記録媒体は、第1の記録面L1、第2の記録面L2及び第3の記録面を有している。光記録媒体の光が入射する側の表面と第1の記録面L1との間の面間距離t1は、第2の記録面L2と第3の記録面L3との間の面間距離t3と同じである。光ビームは、第3の記録面L3に収束している。
表面での反射を考えた場合、第3の記録面L3で1回だけ反射する光路の光路長は、第2の記録面L2、表面及び第1の記録面L1のそれぞれで1回ずつ反射する光路の光路長と同じになる。このとき、図3と同じように干渉により再生信号のノイズ成分が増加してしまう。このため、表面を含めて、各記録面の間の面間距離は互いに異なる厚さにする必要がある。このような反射では、1回反射した光に3回反射した光が干渉する。迷光は、光量的には本来の光ビームの100分の1程度の強さである。このような干渉が起きる範囲もNA2に反比例し、波長に比例して決まる。NAが1.70以上であり、波長が415nm以下である場合、光路長の差は0.2μm以上にする必要がある。実際には、各面間距離には製造時のばらつきが含まれる。このため、製造時のばらつきを考えても、光路差が0.2μm以上になるように、面間隔を決める必要がある。
すなわち、各記録面の間の面間距離の差は、一方の面間距離のばらつきと、他方の面間距離のばらつきと、開口数NAと光の波長とに応じて決まる第2の所定値との和以上であることが好ましい。これにより、他の記録面で複数回反射した光線と、本来の記録面で反射した光線との干渉を抑えることができる。なお、例えば、NAが1.80前後(NAが1.70以上)である場合、第2の所定値は0.2μm程度であることが好ましい。
ここで、面間距離のばらつきについて、より詳細に説明する。例えば、ある面間距離を2.0μmに設定して記録面を作成した時に、実際の面間距離が、場所により1.8μmから2.3μmまでの幅があったとする。すなわち、-0.2μmから+0.3μmの範囲の誤差が面間距離に含まれていたとする。このとき、面間距離のばらつきとは、この製造誤差の絶対値の最大値である0.3μmとなる。
これらの条件を満たすような光記録媒体について、図2を用いて具体的な構成例を挙げて説明する。図2に示す第1の実施例において、開口数NAを1.80とし、屈折率nを2.0とし、面間距離t1、t2及びt3のそれぞれのばらつきe1、e2及びe3を、e1=e2=e3=0.3μmとする。表面と第1の記録面L1との間の層は、情報が記録される記録面が片側にしかない。そのため、面間距離t1は、面間距離t2及び面間距離t3のいずれよりも小さい値である1.0μmとする。
面間距離の差は、最低でも0.3+0.3+0.2=0.8μmにする必要がある。他の面間距離t2及びt3は、最小でも1.8μmにする必要がある。t3=2.0μmとすれば、情報が記録される記録面に挟まれる面間距離の最小値1.8μmより大きくすることができ、面間距離の差の関係も満たす。面間距離t2も同様に、面間距離の差の関係を満たすため、t2=3.0μmとする。このように各面間距離を決めた場合、表面と第3の記録面L3との間の距離d3は、d3=t1+t2+t3=1.0+3.0+2.0=6.0μmとなる。これは、上記の式(7)の関係を満たしており、第3の記録面L3に情報を記録又は再生する際に、光ビームがSIL105bの端部でけられることはない。
ここで、3つの記録面を有する光記録媒体の第1の比較例について説明する。図5は、本実施の形態1における光記録媒体の第1の比較例を示す図である。第1の比較例の光記録媒体は、3つの記録面を有する。
第1の比較例では、面間距離t1は、面間距離t2よりも大きい値とする。面間距離t2は、1.8μm以上とする必要がある。したがって、面間距離t1の最小値は、1.8+0.8=2.6μmとなる。第1の比較例では、面間距離t1は、最小値である2.6μmとする。また、第1の比較例では、面間距離t2は、面間距離t2の取り得る最小値である1.8μmとする。ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差が、いずれも0.8μm以上である必要がある。したがって、面間距離t3の最小値は、t1+0.8=2.6+0.8=3.4μmとなる。第1の比較例では、面間距離t3は、最小値である3.4μmとする。
以上の第1の比較例では、最も奥の記録面L3までの距離d3は、d3=t1+t2+t3=2.6+1.8+3.4=7.8μmとなる。
以上のように、図2に示す第1の実施例のほうが、図5に示す第1の比較例よりも、表面から最も奥の第3の記録面L3までの距離d3の値を小さくすることができる。すなわち、第1の実施例のように、面間距離t1は、面間距離t2及び面間距離t3のいずれよりも小さい値とすることが好ましい。表面と第1の記録面L1との間の層(カバー層)は、一方の面が情報記録面ではないので、他の記録面からの信号クロストークが無い。そのため、面間距離t1は、小さい値をとることができる。このため、面間距離t1を最小にすることで、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。
この効果について、より詳細に説明する。
SIL105bの端面の中央と光記録媒体106の表面とのギャップ間隔をgとし、SIL105bの端面の直径をDaとしたとき、SIL105bと光記録媒体106の表面とが衝突を起こさないSIL105bの傾き角度θ’は、下記の式(8)で表される。
θ’=asin((2・g)/Da)・・・(8)
ここで、基材の屈折率nを2.0とし、開口数NAを1.80とする。このとき、第1の比較例では、表面と第3の記録面L3との間の距離d3は7.8μmであるので、式(7)の関係式から、SIL105bの端面の直径Daは、最小の大きさとして、32μm程度とすることができる。このとき、ギャップ間隔gが25nmであるとすると、上記の式(8)より、傾き角度θ’は、0.09度程度となる。
一方、第1の実施例では、表面と第3の記録面L3との間の距離d3は6.0μmであるので、式(7)の関係式から、SIL105bの端面の直径Daは、最小の大きさとして、25μm程度とすることができる。このとき、ギャップ間隔gが25nmであるとすると、上記の式(8)より、傾き角度θ’は、0.12度程度となる。
以上、第1の実施例のように、面間距離t1は、面間距離t2及び面間距離t3のいずれよりも小さい値とすることが好ましい。これにより、全体の層間距離、すなわち表面から最も奥の記録面までの距離d3を小さくすることができ、端面の直径Daが小さいSIL105bを利用できる。これにより、SIL105bと光記録媒体106の表面とが衝突しないSIL105bの傾き角度θ’を大きく取ることができる。したがって、SIL105bと光記録媒体106の表面との衝突を防ぐためのチルト制御が、より容易になる。
更に、面間距離t1を除く、他の面間距離の関係は、t2>t3とする。これにより、最も奥の記録面を除く、第1の記録面L1よりも光記録媒体のビーム光の入射側表面から遠い記録面を、光記録媒体のビーム光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光ビームの欠落等の影響を小さくすることができる。
これについて、より詳細に説明する。
図6は、本実施の形態1における光記録媒体の第2の実施例を示す図である。第2の実施例の光記録媒体は、3つの記録面を有する。第2の実施例において、SIL105bの端面の直径Daは、40μmであり、開口数NAは、1.80であり、屈折率nは、2.0であり、SIL105bの端面でのビーム径D3は、25μmである。
第2の実施例では、面間距離t1は、面間距離t2及び面間距離t3のいずれよりも小さい値とする。第2の実施例では、上述した第1の実施例と同じく、t1=1.0μmとする。ここで、面間距離t2は、1.8μm以上である必要があり、かつ、面間距離t2と面間距離t1との差は、0.8μm以上である必要がある。そこで、第2の実施例では、面間距離t2は、2.0μmとする。ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差は、いずれも0.8μm以上である必要がある。そこで、第2の実施例では、面間距離t3は、最小値である3.0μmとする。
第2の実施例では、表面から最も奥の第3の記録面L3までの距離d3は、d3=t1+t2+t3=1.0+2.0+3.0=6.0μmとなる。
以上の第2の実施例と上述した第1の実施例とを比較すると、表面から最も奥の第3の記録面L3までの距離d3は、どちらも同じである。異なるのは、面間距離t2及び面間距離t3の値である。第1の実施例では、t2=3.0μmであり、t3=2.0μmであり、t2>t3である。これに対して、第2の実施例では、t2=2.0μmであり、t3=3.0μmであり、t2<t3である。
ここで、第2の実施例では、表面から第2の記録面L2までの距離d2は、d2=t1+t2=1.0+2.0=3.0μmである。一方、第1の実施例では、表面から第2の記録面L2までの距離d2は、d2=t1+t2=1.0+3.0=4.0μmである。
このように、第1の実施例の距離d2の値は、第2の実施例の距離d2の値よりも大きくなる。
第1の実施例のように、面間距離t2は、面間距離t3よりも大きくしても良い。これにより、表面から第2の記録面L2までの距離d2を大きくすることができる。
すなわち、最も奥の記録面を除く、第1の記録面L1よりも光記録媒体のビーム光の入射側表面から遠い記録面を、光記録媒体のビーム光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光ビームの欠落等の影響を小さくすることができる。
このように記録面の面間距離を決めることにより、複数の記録面を持つ光記録媒体であっても、他の記録面からの信号クロストークや、他の記録面で複数回反射した迷光による干渉を低減することができ、安定して情報を記録又は再生することができる。
次に、2つの記録面を有する光記録媒体について説明する。図7は、本実施の形態1における光記録媒体の第3の実施例を示す図である。第3の実施例の光記録媒体は、2つの記録面を有する。図7に示す光記録媒体220は、第1の記録面L1と第2の記録面L2とを持つ。開口数NAが1.80である光ビームが収束される場合、表面から第2の記録面L2までの距離d2は、下記の式(9)を満たす。
d2≦Da/{2・tan(asin(NA/n))}・・・(9)
また、第1の記録面L1から第2の記録面L2までの面間距離t2は、下記の式(10)を満たす。
t2>1.8μm・・・(10)
さらに、表面から第1の記録面L1までの面間距離t1、第1の記録面L1から第2の記録面L2までの面間距離t2、面間距離t1のばらつきe1、及び面間距離t2のばらつきe2は、下記の式(11)を満たすように決めればよい。
|t2-t1|≧e1+e2+0.2μm・・・(11)
例えば、e1=e2=0.3μmとし、t1=1.5μmとし、t2=2.5μmとすれば、d2=4.0μmとなる。したがって、Da=40μm、n=2.0及びNA=1.80としても、上記の式(9)を十分満たす。すなわち、他の記録面からの信号クロストークや、他の記録面で複数回反射した迷光による干渉の影響を低減するための条件を満たすことができる。
次に、2つの記録面を有する光記録媒体の別の実施例について説明する。図8は、本実施の形態1における光記録媒体の第4の実施例を示す図である。また、図9は、本実施の形態1における光記録媒体の第2の比較例を示す図である。
まず、図8に示す第4の実施例について説明する。第4の実施例では、面間距離t1は、面間距離t2よりも小さい値とする。面間距離t2は、1.8μm以上とする必要がある。したがって、面間距離t1は、1.8-0.8=1.0μm以下となる。第4の実施例では、面間距離t1は、最大値である1.0μmとする。また、第4の実施例では、面間距離t2は、面間距離t2の取り得る最小値である1.8μmとする。
以上、第4の実施例では、表面から最も奥の第2の記録面L2までの距離d2は、d2=t1+t2=1.0+1.8=2.8μmとなる。
次に、図9に示す第2の比較例について説明する。第2の比較例では、面間距離t1は、面間距離t2よりも大きい値とする。面間距離t2は、1.8μm以上とする必要がある。したがって、面間距離t1の最小値は、1.8+0.8=2.6μmとなる。第2の比較例では、面間距離t1は、最小値である2.6μmとする。また、第2の比較例では、面間距離t2は、面間距離t2の取り得る最小値である1.8μmとする。
以上、第2の比較例では、表面から最も奥の第2の記録面L2までの距離d2は、d2=t1+t2=2.6+1.8=4.4μmとなる。
以上のように、第4の実施例のほうが、第2の比較例よりも、表面から最も奥の第2の記録面L2までの距離d2の値を小さくできる。すなわち、第4の実施例のように、面間距離t1は、面間距離t2よりも小さい値とすることが好ましい。表面と第1の記録面L1との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さくすることができる。このため、面間距離t1を最小にすることで、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。
この効果について、より詳細に説明する。
SIL105bの端面の中央と光記録媒体220の表面とのギャップ間隔をgとし、SIL105bの端面の直径をDaとしたとき、SIL105bと光記録媒体106の表面とが衝突しないSIL105bの傾き角度θ’は、上述の式(8)により得られる。
ここで、基材の屈折率nを2.0とし、NAを1.80とする。このとき、第2の比較例では、表面と第2の記録面L2との間の距離d2は4.4μmであるので、式(9)の関係式から、SIL105bの端面の直径Daは、最小の大きさとして、18μm程度とすることができる。このとき、ギャップ間隔gが25nmであるとすると、上述の式(8)より、傾き角度θ’は、0.16度程度となる。
一方、第4の実施例では、表面と第2の記録面L2との間の距離d2は2.8μmであるので、式(9)の関係式から、SIL105bの端面の直径Daは、最小の大きさとして、12μm程度とすることができる。このとき、ギャップ間隔gが25nmであるとすると、上述の式(8)より、傾き角度θ’は、0.25度程度となる。
以上のように、第3の実施例又は第4の実施例のように、面間距離t1は、面間距離t2よりも小さい値とすることが好ましい。これにより、全体の層間距離、すなわち表面から最も奥の記録面までの距離d2を小さくすることができ、端面の直径Daが小さいSIL105bを利用できる。これにより、SIL105bと光記録媒体106の表面とが衝突しないSIL105bの傾き角度θ’を大きく取ることができる。したがって、SIL105bと光記録媒体106の表面との衝突を防ぐためのチルト制御が、より容易になる。
次に、4つの記録面を有する光記録媒体について説明する。
4つの記録面を有する光記録媒体について、下記に3つの実施例を示す。図10は、本実施の形態1における光記録媒体の第5の実施例を示す図である。また、図11は、本実施の形態1における光記録媒体の第6の実施例を示す図である。また、図12は、本実施の形態1における光記録媒体の第7の実施例を示す図である。また、図13は、本実施の形態1における光記録媒体の第3の比較例を示す図である。
図10~図13において、光記録媒体401は、第1の記録面L1と、第2の記録面L2と、第3の記録面L3と、第4の記録面L4とを有する。また、図10~図13において、第4の記録面L4に光が収束している。
まず、上述したクロストークの漏れこみを回避するためには、NAが1.80前後(NAが1.70以上)である場合、隣接する記録面の間の面間距離は、1.8μm以上である必要がある。このため、面間距離t2、面間距離t3及び面間距離t4は、それぞれ1.8μm以上とする必要がある。
また、上述した干渉の影響を回避するためには、面間距離のばらつきを考えても、光路差が0.2μm以上である必要がある。面間距離t1、面間距離t2、面間距離t3及び面間距離t4のそれぞれのばらつきe1、e2、e3及びe4は、e1=e2=e3=e4=0.3μmとする。このとき、各面間距離t1、t2、t3及びt4のそれぞれの差は、いずれも0.3+0.3+0.2=0.8μm以上にする必要がある。
以上の条件を踏まえて、第5の実施例、第6の実施例、第7の実施例及び第3の比較例について説明する。
まず、図10に示す第5の実施例について説明する。第5の実施例において、SIL105bの端面の直径Daは、40μmであり、開口数NAは、1.80であり、屈折率nは、2.0であり、SIL105bの端面でのビーム径D4は、36μmである。
第5の実施例では、面間距離t1は、面間距離t2、面間距離t3及び面間距離t4のいずれよりも小さい値とする。面間距離t2、面間距離t3及び面間距離t4は、いずれも1.8μm以上とする必要がある。したがって、面間距離t1は、1.8-0.8=1.0μm以下となる。第5の実施例では、面間距離t1は、最大値である1.0μmとする。
また、第5の実施例では、面間距離t2は、面間距離t2の取り得る最小値である1.8μmとする。ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差は、いずれも0.8μm以上である必要がある。したがって、面間距離t3の最小値は、t2+0.8=1.8+0.8=2.6μmとなる。第5の実施例では、面間距離t3は、最小値である2.6μmとする。
ここで、面間距離t4は、1.8μm以上である必要があり、かつ、面間距離t4と面間距離t1との差、面間距離t4と面間距離t2との差及び面間距離t4と面間距離t3との差は、いずれも0.8μm以上である必要がある。したがって、面間距離t4の最小値は、t3+0.8=2.6+0.8=3.4μmとなる。第5の実施例では、面間距離t4は、最小値である3.4μmとする。
以上、第5の実施例では、表面から最も奥の第4の記録面L4までの距離d4は、d4=t1+t2+t3+t4=1.0+1.8+2.6+3.4=8.8μmとなる。
次に、図13に示す第3の比較例について説明する。第3の比較例では、面間距離t1は、面間距離t2よりも大きい値とする。面間距離t2は、1.8μm以上とする必要がある。したがって、面間距離t1の最小値は、1.8+0.8=2.6μmとなる。第3の比較例では、面間距離t1は、最小値である2.6μmとする。
また、第3の比較例では、面間距離t2は、面間距離t2の取り得る最小値である1.8μmとする。ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差は、いずれも0.8μm以上である必要がある。したがって、面間距離t3の最小値は、t1+0.8=2.6+0.8=3.4μmとなる。第3の比較例では、面間距離t3は、最小値である3.4μmとする。
ここで、面間距離t4は、1.8μm以上である必要があり、かつ、面間距離t4と面間距離t1との差、面間距離t4と面間距離t2との差及び面間距離t4と面間距離t3との差は、いずれも0.8μm以上である必要がある。したがって、面間距離t4の最小値は、t3+0.8=3.4+0.8=4.2μmとなる。第3の比較例では、面間距離t4は、最小値である4.2μmとする。
以上、第3の比較例では、表面から最も奥の第4の記録面L4までの距離d4は、d4=t1+t2+t3+t4=2.6+1.8+3.4+4.2=12.0μmとなる。
上述したように、現実的に許容される傾き角度を0.05度程度と考え、中央のギャップ間隔を25nmとし、SIL105bと光記録媒体106の表面とが衝突しない角度θ’を0.07度とすると、SIL105bの端面の直径Daは41μm程度となる。基材の屈折率nを2.0とし、開口数NAを1.80とすると、収束する光ビームの最も外側の光線と光軸との間の角度θは64.1度である。このとき、上記の式(7)の関係式から、表面から最奥の記録面までの距離dNは、10μm以下とする必要がある。
しかし、第3の比較例では、表面から第4の記録面L4までの距離d4は12.0μmであり、10μm以上となってしまう。このとき、SIL105bの端面でのビーム径D4は、50μmとなり、SIL105bの端面の直径Daよりも大きくなる。これでは、第4の記録面L4に情報を記録又は再生する際に、光ビームがSIL105bの端部で蹴られてしまう。
これに対して、上記の第5の実施例では、表面から第4の記録面L4までの距離d4は8.8μmであり、10μm以下である。したがって、第4の記録面L4に情報を記録又は再生する際に、光ビームがSIL105bの端部で蹴られることはない。
以上のように、上記の第5の実施例のように、面間距離t1は、面間距離t2、面間距離t3及び面間距離t4のいずれよりも小さい値とすることが好ましい。これにより、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。したがって、光記録媒体が多層である場合であっても、距離dNは、式(7)の関係式を満たすことができる。すなわち、最も奥の記録面に情報を記録又は再生する際に、光ビームがSIL105bの端部で蹴られることを防ぐことができる。
次に、図11に示す第6の実施例について説明する。第6の実施例において、SIL105bの端面の直径Daは、40μmであり、開口数NAは、1.80であり、屈折率nは、2.0であり、SIL105bの端面でのビーム径D4は、36μmである。
第6の実施例では、面間距離t1は、面間距離t2、面間距離t3及び面間距離t4のいずれよりも小さい値とする。第6の実施例では、上述した第5の実施例と同じく、面間距離t1は1.0μmとする。
ここで、面間距離t2は、1.8μm以上である必要があり、かつ、面間距離t2と面間距離t1との差は、0.8μm以上である必要がある。そこで、第6の実施例では、面間距離t2は、3.4μmとする。ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差は、いずれも0.8μm以上である必要がある。そこで、第6の実施例では、面間距離t3は、1.8μmとする。ここで、面間距離t4は、1.8μm以上である必要があり、かつ、面間距離t4と面間距離t1との差、面間距離t4と面間距離t2との差、及び面間距離t4と面間距離t3との差は、いずれも0.8μm以上である必要がある。そこで、第6の実施例では、面間距離t4は、2.6μmとする。
以上、第6の実施例では、表面から最も奥の第4の記録面L4までの距離d4は、d4=t1+t2+t3+t4=1.0+3.4+1.8+2.6=8.8μmとなる。
以上、第6の実施例と、上述した第5の実施例とを比較すると、表面から最も奥の第4の記録面L4までの距離d4は、どちらも同じである。異なるのは、面間距離t2、面間距離t3及び面間距離t4の値である。第6の実施例では、t2=3.4μmであり、t3=1.8μmであり、t4=2.6であり、t2>t3、かつ、t2>t4である。これに対して、第5の実施例では、t2=1.8μmであり、t3=2.6μmであり、t4=3.4であり、t2<t3、かつ、t2<t4である。
ここで、第5の実施例では、表面から第2の記録面L2までの距離d2は、d2=t1+t2=1.0+1.8=2.8μmである。また、表面から第3の記録面L3までの距離d3は、d3=t1+t2+t3=1.0+1.8+2.6=5.4μmである。
一方、第6の実施例では、表面から第2の記録面L2までの距離d2は、d2=t1+t2=1.0+3.4=4.4μmである。また、表面から第3の記録面L3までの距離d3は、d3=t1+t2+t3=1.0+3.4+1.8=6.2μmである。
このように、第6の実施例の距離d2の値は、第5の実施例の距離d2の値よりも大きくなる。同様に、第6の実施例の距離d3の値は、第5の実施例の距離d3の値よりも大きくなる。
第6の実施例のように、面間距離t2、面間距離t3及び面間距離t4は、t2>t3、かつ、t2>t4としても良い。これにより、表面から第2の記録面L2までの距離d2を大きくすることができる。また、表面から第3の記録面L3までの距離d3も大きくすることができる。
すなわち、最も奥の記録面を除く、第1の記録面L1よりも光記録媒体のビーム光の入射側表面から遠い記録面を、光記録媒体のビーム光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光ビームの欠落等の影響を小さくすることができる。
次に、図12に示す第7の実施例について説明する。第7の実施例において、SIL105bの端面の直径Daは、40μmであり、開口数NAは、1.80であり、屈折率nは、2.0であり、SIL105bの端面でのビーム径D4は、36μmである。
第7の実施例では、面間距離t1は、面間距離t2、面間距離t3及び面間距離t4のいずれよりも小さい値とする。第7の実施例では、上述した第6の実施例と同じく、面間距離t1は1.0μmとする。また、第7の実施例では、上述した第6の実施例と同じく、面間距離t2は3.4μmとする。
ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差は、いずれも0.8μm以上である必要がある。そこで、第7の実施例では、面間距離t3は、2.6μmとする。ここで、面間距離t4は、1.8μm以上である必要があり、かつ、面間距離t4と面間距離t1との差、面間距離t4と面間距離t2との差、及び面間距離t4と面間距離t3との差は、いずれも0.8μm以上である必要がある。そこで、第7の実施例では、面間距離t4は、1.8μmとする。
以上、第7の実施例では、表面から最も奥の第4の記録面L4までの距離d4は、d4=t1+t2+t3+t4=1.0+3.4+2.6+1.8=8.8μmとなる。
以上、第7の実施例と上述した第6の実施例とを比較すると、表面から最も奥の第4の記録面L4までの距離d4は、どちらも同じである。異なるのは、面間距離t3及び面間距離t4の値である。第7の実施例では、t3=2.6μmであり、t4=1.8であり、t3>t4である。これに対して、第6の実施例では、t3=1.8μmであり、t4=2.6であり、t3<t4である。
ここで、第6の実施例では、表面から第3の記録面L3までの距離d3は、d3=t1+t2+t3=1.0+3.4+1.8=6.2μmである。
一方、第7の実施例では、表面から第3の記録面L3までの距離d3は、d3=t1+t2+t3=1.0+3.4+2.6=7.0μmである。
このように、第7の実施例の距離d3の値は、第6の実施例の距離d3の値よりも大きくなる。
以上、第7の実施例のように、面間距離t2、面間距離t3及び面間距離t4は、t2>t3、かつ、t2>t4、かつ、t3>t4としても良い。これにより、表面から第3の記録面L3までの距離d3を、さらに大きくすることができる。
すなわち、最も奥の記録面を除く、第2の記録面L2よりも光記録媒体のビーム光の入射側表面から遠い記録面を、光記録媒体のビーム光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光ビームの欠落等の影響を小さくすることができる。
次に、5つの記録面を有する光記録媒体について説明する。図14は、本実施の形態1における光記録媒体の第8の実施例を示す図である。
光記録媒体501は、第1の記録面L1と、第2の記録面L2と、第3の記録面L3と、第4の記録面L4と、第5の記録面L5とを有する。
まず、上述したクロストークの漏れこみを回避するためには、NAが1.80前後(NAが1.70以上)である場合、隣接する記録面の間の面間距離は、1.8μm以上である必要がある。このため、面間距離t2、面間距離t3、面間距離t4及び面間距離t5は、それぞれ1.8μm以上とする必要がある。
また、上述した干渉の影響を回避するためには、面間距離のばらつきを考えても、光路差が0.2μm以上である必要がある。面間距離t1、面間距離t2、面間距離t3、面間距離t4及び面間距離t5のそれぞれのばらつきe1、e2、e3、e4及びe5は、e1=e2=e3=e4=e5=0.1μmとする。このとき、各面間距離t1、t2、t3、t4及びt5のそれぞれの差は、いずれも0.1+0.1+0.2=0.4μm以上にする必要がある。
以上の条件を踏まえて、図14に示す第8の実施例について説明する。第8の実施例において、SIL105bの端面の直径Daは、40μmであり、開口数NAは、1.80であり、屈折率nは、2.0である。
第8の実施例では、面間距離t1は、面間距離t2、面間距離t3、面間距離t4及び面間距離t5のいずれよりも小さい値とする。第8の実施例では、面間距離t1は0.4μmとする。
また、第8の実施例では、面間距離t2は、面間距離t3、面間距離t4及び面間距離t5のいずれよりも大きい値とする。ここで、面間距離t2は、1.8μm以上である必要があり、かつ、面間距離t2と面間距離t1との差は、0.4μm以上である必要がある。第8の実施例では、面間距離t2は3.0μmとする。
また、第8の実施例では、面間距離t3は、面間距離t4及び面間距離t5のいずれよりも大きい値とする。ここで、面間距離t3は、1.8μm以上である必要があり、かつ、面間距離t3と面間距離t1との差及び面間距離t3と面間距離t2との差は、0.4μm以上である必要がある。第8の実施例では、面間距離t3は2.6μmとする。
また、第8の実施例では、面間距離t4は、面間距離t5よりも大きい値とする。ここで、面間距離t4は、1.8μm以上である必要があり、かつ、面間距離t4と面間距離t1との差、面間距離t4と面間距離t2との差、及び面間距離t4と面間距離t3との差は、0.4μm以上である必要がある。第8の実施例では、面間距離t4は2.2μmとする。
また、面間距離t4は、1.8μm以上である必要があり、かつ、面間距離t5と面間距離t1との差、面間距離t5と面間距離t2との差、面間距離t5と面間距離t3との差、及び面間距離t5と面間距離t4との差は、0.4μm以上である必要がある。第8の実施例では、面間距離t5は1.8μmとする。
第8の実施例では、表面から最も奥の第5の記録面L5までの距離d5は、d5=t1+t2+t3+t4+t5=0.4+3.0+2.6+2.2+1.8=10μmとなる。
以上のように、面間距離t1は、面間距離t2、面間距離t3、面間距離t4及び面間距離t5のいずれよりも小さい値としている。これにより、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。したがって、光記録媒体が多層である場合であっても、距離dNは、式(7)の関係式を満たすことができる。すなわち、最も奥の記録面に情報を記録又は再生する際に、光ビームがSIL105bの端部で蹴られることを防ぐことができる。
また、面間距離t2、面間距離t3、面間距離t4及び面間距離t5は、t2>t3、かつ、t2>t4、かつ、t2>t5としている。これにより、表面から第2の記録面L2までの距離d2を大きくすることができる。また、表面から第3の記録面L3までの距離d3も大きくすることができる。また、表面から第4の記録面L4までの距離d4も大きくすることができる。
すなわち、最も奥の記録面を除く、第1の記録面L1よりも光記録媒体のビーム光の入射側表面から遠い記録面を、光記録媒体のビーム光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光ビームの欠落等の影響を小さくすることができる。
さらにまた、面間距離t3、面間距離t4及び面間距離t5は、t3>t4、t3>t5、かつ、t4>t5としている。これにより、表面から第3の記録面L3までの距離d3を、さらに大きくすることができる。また、表面から第4の記録面L4までの距離d4を、さらに大きくすることができる。
すなわち、最も奥の記録面を除く、第2の記録面L2よりも光記録媒体のビーム光の入射側表面から遠い記録面を、光記録媒体のビーム光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光ビームの欠落等の影響を小さくすることができる。
なお、本実施の形態1においては、具体例として、2面、3面、4面及び5面の記録面を有する光記録媒体についてそれぞれ説明したが、本発明はこれに限られるものではない。6つ以上の記録面を有する光記録媒体であっても良い。
以下に、本実施形態の構成をまとめる。
本実施の形態において、光記録媒体106は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有しても良い。このとき、光記録媒体106の屈折率をnとし、対物レンズ光学系105の開口数をNAとし、SIL105bの光記録媒体106と向き合う側の開口部の開口直径をDとすると、光記録媒体の光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。
このとき、厚さdNと、光記録媒体106の光の入射側表面と光記録媒体106の光の入射側表面に最も近い第1の記録面L1との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離をtiとは、t1<ti<dNを満たす。
これにより、複数の記録面を有する光記録媒体とSILとの相対的な傾きに必要な許容量を与えても、光記録媒体とSILとが衝突することなく、効率的に光が伝播できる光記録媒体とSILとの間のギャップを保ち、SILの端部で蹴られることなく奥側の記録面に光を収束させることができる。
さらに、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。
さらに、本実施の形態1において、光記録媒体は、3以上の記録面を有していても良い。このとき、光記録媒体のビーム光の入射側表面に最も近い第1の記録面L1の次に光記録媒体のビーム光の入射側表面に近い第2の記録面L2と第1の記録面L1との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たしても良い。
これにより、最も奥の記録面を除く、第1の記録面L1よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
さらに、本実施の形態1において、光記録媒体は、4以上の記録面を有していても良い。このとき、第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たしても良い。
これにより、最も奥の記録面を除く、第2の記録面L2よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
さらに、面間距離t1は、開口数と光の波長とに応じて決まる第1の所定値よりも小さくてもよい。
これにより、面間距離t1を、開口数と光の波長とに応じて決まる第1の所定値よりも小さく設定することで、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。
さらに、本実施の形態1において、2つの記録面の間の面間距離tiは、開口数NAと光の波長とに応じて決まる第1の所定値以上であっても良い。
なお、例えば、開口数NAが1.80前後(開口数NAが1.70以上)であり、かつ、波長が405nm前後(波長が415nm以下)である場合、第1の所定値は1.8μm程度である。
これにより、第iの記録面と第i-1の記録面とのうちの一方の記録面を再生している際に他方の記録面に記録された信号がクロストークとして漏れこむことを避けることができる。すなわち、再生信号に含まれるノイズを低減することができる。
さらに、本実施の形態1において、面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)、すなわち各記録面の間の面間距離の差は、面間距離tiのばらつきと、面間距離tmのばらつきと、開口数NAと光の波長とに応じて決まる第2の所定値との和以上であっても良い。面間距離tiのばらつきとは、面間距離tiの許容される製造誤差の絶対値の最大値であり、面間距離tmのばらつきとは、面間距離tmの許容される製造誤差の絶対値の最大値である。
なお、例えば、NAが1.80前後(NAが1.70以上)であり、かつ、波長が405nm前後(波長が415nm以下)である場合、第2の所定値は0.2μm程度である。
これにより、他の記録面で複数回反射した光と、本来記録又は再生すべき記録面で反射した光との干渉を抑えることができる。
なお、本実施の形態1において、フォーカス検出は非点収差法を例とし、トラッキング検出はプッシュプル法を例として示しているが、本発明はこれらに限定されるものではなく、他の検出方式と組み合わせても良い。更に、本実施の形態1では、ギャップ検出のための光検出器、フォーカス検出のための光検出器及びトラッキング検出のための光検出器をそれぞれ個別に設けているが、ギャップ検出、フォーカス検出及びトラッキング検出を統合して行う1つの光検出器を設けても良い。
なお、本実施の形態では各記録面の間の屈折率を一律にnとしているが、各記録面間及び表面と記録面との間で異なる屈折率を持ってもよい。その場合でも各記録面間の距離を屈折率を考慮して換算した光学的距離の関係が本実施の形態に示した関係を満たせば、同様の効果を得ることができる。
(実施の形態2)
次に、本発明の実施の形態2の光記録媒体の情報記録方法及び情報再生方法について述べる。図15は、本発明の実施の形態2における情報記録方法及び情報再生方法を説明するためのフローチャートである。なお、図15に示す情報記録方法及び情報再生方法は、後述する情報記録再生装置を用いて行われる。
次に、本発明の実施の形態2の光記録媒体の情報記録方法及び情報再生方法について述べる。図15は、本発明の実施の形態2における情報記録方法及び情報再生方法を説明するためのフローチャートである。なお、図15に示す情報記録方法及び情報再生方法は、後述する情報記録再生装置を用いて行われる。
まず、ステップS1において、光源(半導体レーザ101)は、光ビームを出射する。次に、ステップS2において、SIL105bは、光源から出射された光ビームを光記録媒体106に収束させる。次に、ステップS3において、収束された光ビームにより、光記録媒体に情報が記録又は再生される。この時、光記録媒体106は複数の記録面を持ち、光記録媒体106の屈折率をnとし、対物レンズ光学系105の開口数をNAとし、SIL105bの開口部の直径をDaとすると、光ビームが入射する表面と、光ビームが入射する表面から最も遠い記録面との間の厚さdNは、dN≦Da/{2・tan(asin(NA/n))}を満たす。
厚さdNが上記の条件を満たすとき、実施の形態1でも説明したように、光記録媒体とSILとの相対的な傾きに必要な許容量を与えても、光記録媒体とSILとが衝突することなく、効率的に光が伝播できる光記録媒体とSILとの間のギャップを保ち、SILの端部でけられることなく奥側の記録面に光を収束させることができる。したがって、複数の記録面を持つ多層光記録媒体を実現することができるため、光記録媒体1枚当たりの記録容量を増加させることができる。
以下に、本実施形態2のより詳細な構成を示す。
本実施の形態2における情報記録方法は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体に情報を記録する。
また、本実施の形態2における情報再生方法は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体から情報を再生する。
ここで、光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有する。このとき、光記録媒体106の屈折率をnとし、光学系の開口数をNAとし、SILの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。このとき、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離をt1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離をtiとは、t1<ti<dNを満たす。
本実施の形態2における情報記録方法は、光源から光を出射する第1のステップと、光源から出射された光をソリッドイマージョンレンズで光記録媒体に収束させ、光記録媒体に情報を記録する第2のステップとを含む。
また、本実施の形態2における情報再生方法は、光源から光を出射する第1のステップと、光源から出射された光をソリッドイマージョンレンズで光記録媒体に収束させ、光記録媒体から情報を再生する第2のするステップとを含む。
これにより、複数の記録面を有する光記録媒体とSILとの相対的な傾きに必要な許容量を与えても、光記録媒体とSILとが衝突することなく、効率的に光が伝播できる光記録媒体とSILとの間のギャップを保ち、SILの端部で蹴られることなく奥側の記録面に光を収束させることができる。
さらに、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が情報記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の記録面までの距離を小さくすることができる。
(実施の形態3)
図16は、本発明の実施の形態3における情報記録再生装置の構成を示す図である。図16において、光記録媒体106は、ターンテーブル305に搭載され、クランパー306により保持され、モータ304によって回転される。第1及び第2の実施形態に示した光ピックアップ302は、光記録媒体106の所望の情報の存在するトラックの位置まで、駆動装置301によって移送される。
図16は、本発明の実施の形態3における情報記録再生装置の構成を示す図である。図16において、光記録媒体106は、ターンテーブル305に搭載され、クランパー306により保持され、モータ304によって回転される。第1及び第2の実施形態に示した光ピックアップ302は、光記録媒体106の所望の情報の存在するトラックの位置まで、駆動装置301によって移送される。
光ピックアップ302は、光記録媒体106との位置関係に対応して、フォーカス信号、トラッキング信号、ギャップ信号及びRF信号を電気回路303へ送る。電気回路303は、フォーカス信号、トラッキング信号及びギャップ信号に対応して、光ピックアップ302へ、対物レンズ光学系105を移動させるアクチュエータを駆動させるための信号を送る。この信号によって、光ピックアップ302は、光記録媒体106に対してフォーカス制御、トラッキング制御及びギャップ制御を行い、情報の読み出し、書き込み又は消去を行う。
以上の説明において、搭載する光記録媒体106は、近接場光により記録再生のための記録面を有する実施の形態1で述べた光記録媒体である。本実施の形態3の情報記録再生装置307は、本発明の光記録媒体を用いることにより、複数の記録面を有する光記録媒体とSILとの相対的な傾きに必要な許容量を与えても、光記録媒体とSILとが衝突することなく、効率的に光が伝播できる光記録媒体とSILとの間のギャップを保ち、SILの端部でけられることなく奥側の記録面に光を収束させることができる。したがって、複数の記録面を持つ多層光記録媒体を実現することができるため、光記録媒体1枚当たりの記録容量を増加させることができる。
以下に、本実施形態3のより詳細な構成を示す。
本実施の形態3における情報記録再生装置307は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体106に情報を記録する。
また、本実施の形態3における情報記録再生装置307は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体106から情報を再生する。
ここで、光記録媒体106は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有する。このとき、光記録媒体106の屈折率をnとし、光学系の開口数をNAとし、SILの光記録媒体106と向き合う側の開口部の開口直径をDとすると、光記録媒体106の光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。このとき、光記録媒体106の光の入射側表面と光記録媒体106の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
本実施の形態3における情報記録再生装置307は、光を出射する光源と、光源から出射された光を収束するソリッドイマージョンレンズを含む光学系とを備えている。そして、本実施の形態3における情報記録再生装置307は、光源から光を出射し、光源から出射された光をソリッドイマージョンレンズで収束させることにより、光記録媒体106に情報を記録する。
また、本実施の形態3における情報記録再生装置307は、光源から光を出射し、光源から出射された光をソリッドイマージョンレンズで収束させることにより、光記録媒体106から情報を再生する。
これにより、複数の記録面を有する光記録媒体とSILとの相対的な傾きに必要な許容量を与えても、光記録媒体とSILとが衝突することなく、効率的に光が伝播できる光記録媒体とSILとの間のギャップを保ち、SILの端部でけられることなく奥側の記録面に光を収束させることができる。
さらに、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が情報記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の記録面までの距離を小さくすることができる。
(第4の実施形態)
本実施の形態4は、実施の形態3に係る情報記録再生装置307を具備したコンピュータの実施の形態である。図17は、本発明の実施の形態4におけるコンピュータの構成を示す斜視図である。図17に示すコンピュータ309は、実施形態3に係る情報記録再生装置307と、情報を入力するためのキーボード311及びマウス312などの入力装置316と、入力装置316から入力された情報及び情報記録再生装置307から読み出した情報の少なくとも何れかに基づいて演算を行うCPUなどの演算装置308と、入力装置316によって入力された情報、情報記録再生装置307によって再生された情報、及び演算装置308によって演算された結果の少なくともいずれかを表示するブラウン管又は液晶表示装置などの出力装置310とを備えている。
本実施の形態4は、実施の形態3に係る情報記録再生装置307を具備したコンピュータの実施の形態である。図17は、本発明の実施の形態4におけるコンピュータの構成を示す斜視図である。図17に示すコンピュータ309は、実施形態3に係る情報記録再生装置307と、情報を入力するためのキーボード311及びマウス312などの入力装置316と、入力装置316から入力された情報及び情報記録再生装置307から読み出した情報の少なくとも何れかに基づいて演算を行うCPUなどの演算装置308と、入力装置316によって入力された情報、情報記録再生装置307によって再生された情報、及び演算装置308によって演算された結果の少なくともいずれかを表示するブラウン管又は液晶表示装置などの出力装置310とを備えている。
本実施の形態4に係るコンピュータ309は、実施形態3に係る情報記録再生装置307を具備しており、近接場光により情報を記録又は再生するための記録面を持つ光記録媒体に情報を安定に記録又は再生することができるので、広い用途に使用できる。
(第5の実施形態)
本実施の形態5は、実施の形態3に係る情報記録再生装置307を具備した光ディスクレコーダの実施の形態である。図18は、本発明の実施の形態5における光ディスクレコーダの構成を示す斜視図である。図18に示す光ディスクレコーダ315は、実施形態3に係る情報記録再生装置307と、画像信号を、情報記録再生装置307によって光記録媒体へ記録するための情報信号に変換する記録信号処理回路313とを備えている。
本実施の形態5は、実施の形態3に係る情報記録再生装置307を具備した光ディスクレコーダの実施の形態である。図18は、本発明の実施の形態5における光ディスクレコーダの構成を示す斜視図である。図18に示す光ディスクレコーダ315は、実施形態3に係る情報記録再生装置307と、画像信号を、情報記録再生装置307によって光記録媒体へ記録するための情報信号に変換する記録信号処理回路313とを備えている。
なお、光ディスクレコーダ315は、情報記録再生装置307から得られる情報信号を画像信号に変換する再生信号処理回路314を有することが望ましい。この構成によれば、既に記録した情報を再生することも可能となる。更に、光ディスクレコーダ315は、情報を表示するブラウン管又は液晶表示装置などの出力装置310を備えてもよい。
本実施の形態5に係る光ディスクレコーダは、実施形態3に係る情報記録再生装置307を具備しており、近接場光により情報を記録又は再生するための記録面を持つ光記録媒体に情報を安定に記録又は再生することができるので、広い用途に使用できる。
(第6の実施形態)
本実施の形態6は、実施形態1に係る光記録媒体の製造方法の実施の形態である。
本実施の形態6は、実施形態1に係る光記録媒体の製造方法の実施の形態である。
本実施の形態6の光記録媒体の製造方法は、基板を用意するステップと、基板上に複数の記録面を形成するステップとを含む。
より具体的には、本実施の形態6の光記録媒体の製造方法は、基板を用意する第1のステップと、基板上に、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を形成する第2のステップとを含む。このとき、光記録媒体106の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
具体例として、5つの記録面を有する光記録媒体の製造方法について説明する。
まず、基板の上に、第5の記録面L5が形成される。次に、第5の記録面L5の上に、第4の中間層が形成される。次に、第4の中間層の上に、第4の記録面L4が形成される。このとき、第4の記録面L4と第5の記録面L5との間の面間距離はt5とする。
次に、第4の記録面L4の上に、第3の中間層が形成される。次に、第3の中間層の上に、第3の記録面L3が形成される。このとき、第3の記録面L3と第4の記録面L4との間の面間距離はt4とする。
次に、第3の記録面L3の上に、第2の中間層が形成される。次に、第2の中間層の上に、第2の記録面L2が形成される。このとき、第2の記録面L2と第3の記録面L3との間の面間距離はt3とする。
次に、第2の記録面L2の上に、第1の中間層が形成される。次に、第1の中間層の上に、第1の記録面L1が形成される。このとき、第1の記録面L1と第2の記録面L2との間の面間距離はt2とする。
次に、第1の記録面L1の上に、保護層が形成される。このとき、保護層の表面(光記録媒体の表面)と第1の記録面L1との間の面間距離はt1とする。
ここで、面間距離t1は、面間距離t2、面間距離t3、面間距離t4及び面間距離t5のいずれよりも小さい値とする。これにより、全体の層間距離、すなわち表面から最も奥の記録面までの距離を小さくすることができる。したがって、多層となった場合でも、厚さdNは上記の関係式を満たすことができる。すなわち、最も奥の記録面に情報を記録又は再生する際に、光がSILの端部で蹴られることを防ぐことができる。
また、面間距離t2、面間距離t3、面間距離t4及び面間距離t5は、t2>t3、かつ、t2>t4、かつ、t2>t5を満たすことが好ましい。これにより、光記録媒体の入射側表面から第2の記録面L2までの距離d2を大きくすることができる。また、光記録媒体の入射側表面から第3の記録面L3までの距離d3も大きくすることができる。さらに、光記録媒体の入射側表面から第4の記録面L4までの距離d4も大きくすることができる。
すなわち、最も奥の記録面を除く、第1の記録面L1よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
さらに、面間距離t3、面間距離t4及び面間距離t5は、t3>t4、かつ、t4>t5を満たすことが好ましい。これにより、光記録媒体の入射側表面から第3の記録面L3までの距離d3を、さらに大きくすることができる。また、光記録媒体の入射側表面から第4の記録面L4までの距離d4を、さらに大きくすることができる。
すなわち、最も奥の記録面を除く、第2の記録面L2よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
なお、本実施の形態6においては、具体例として、5つの記録面を有する光記録媒体について説明しているが、本発明はこれに限られるものではない。実施形態1において示した2つ~4つの記録面を有する光記録媒体であっても良い。また、6つ以上の記録面を有する光記録媒体であっても良い。
なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
本発明の一局面に係る光記録媒体は、ソリッドイマージョンレンズを含む光学系から出射される光により情報が記録又は再生される光記録媒体であって、前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有している。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
したがって、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
また、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
また、上記の光記録媒体において、前記光記録媒体は、3以上の記録面を有し、第2の記録面と前記第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たすことが好ましい。
この構成によれば、光記録媒体は、3以上の記録面を有している。第2の記録面と第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たす。
したがって、最も奥の記録面を除く、第1の記録面よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
また、上記の光記録媒体において、前記光記録媒体は、4以上の記録面を有し、第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たすことが好ましい。
この構成によれば、光記録媒体は、4以上の記録面を有している。第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たす。
したがって、最も奥の記録面を除く、第2の記録面よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
また、上記の光記録媒体において、前記面間距離t1は、前記開口数と前記光の波長とに応じて決まる第1の所定値よりも小さいことが好ましい。
この構成によれば、面間距離t1は、開口数と光の波長とに応じて決まる第1の所定値よりも小さいので、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
また、上記の光記録媒体において、前記面間距離tiは、前記開口数と前記光の波長とに応じて決まる第1の所定値以上であることが好ましい。
この構成によれば、面間距離tiは、開口数と光の波長とに応じて決まる第1の所定値以上であるので、第iの記録面と第i-1の記録面とのうちの一方の記録面を再生している際に他方の記録面に記録された信号がクロストークとして漏れこむことを避けることができる。すなわち、再生信号に含まれるノイズを低減することができる。
また、上記の光記録媒体において、前記開口数は1.7以上であり、前記波長は415nm以下であり、前記第1の所定値は1.8μmであることが好ましい。
この構成によれば、開口数は1.7以上であり、波長は415nm以下であり、第1の所定値は1.8μmであるので、面間距離t1を1.8μmより小さくすることができ、面間距離tiを1.8μm以上とすることができる。
また、上記の光記録媒体において、前記面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、前記面間距離tiのばらつきと、前記面間距離tmのばらつきと、前記開口数と前記光の波長とに応じて決まる第2の所定値との和以上であることが好ましい。
この構成によれば、面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、面間距離tiのばらつきと、面間距離tmのばらつきと、開口数と光の波長とに応じて決まる第2の所定値との和以上である。
したがって、他の記録面で複数回反射した光と、本来記録又は再生すべき記録面で反射した光との干渉を抑えることができる。
また、上記の光記録媒体において、前記開口数は1.7以上であり、前記波長は415nm以下であり、前記第2の所定値は0.2μmであることが好ましい。
この構成によれば、開口数は1.7以上であり、波長は415nm以下であり、第2の所定値は0.2μmであるので、面間距離tiと面間距離tmとの差(ti-tm)を、面間距離tiのばらつきと、面間距離tmのばらつきと、0.2μmとの和以上とすることができる。
本発明の他の局面に係る情報記録装置は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体に情報を記録する情報記録装置であって、前記光を出射する光源と、前記光源から出射された光を前記光記録媒体に収束する前記ソリッドイマージョンレンズを含む光学系とを備え、前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、光源は、光を出射する。光学系は、光源から出射された光を光記録媒体に収束するソリッドイマージョンレンズを含む。光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有している。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
したがって、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
また、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
また、上記の情報記録装置において、前記光記録媒体は、3以上の記録面を有し、第2の記録面と前記第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たすことが好ましい。
この構成によれば、光記録媒体は、3以上の記録面を有している。第2の記録面と第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たす。
したがって、最も奥の記録面を除く、第1の記録面よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
また、上記の情報記録装置において、前記光記録媒体は、4以上の記録面を有し、第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たすことが好ましい。
この構成によれば、光記録媒体は、4以上の記録面を有している。第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たす。
したがって、最も奥の記録面を除く、第2の記録面よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
また、上記の情報記録装置において、前記面間距離t1は、前記開口数と前記光の波長とに応じて決まる第1の所定値よりも小さいことが好ましい。
この構成によれば、面間距離t1は、開口数と光の波長とに応じて決まる第1の所定値よりも小さいので、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
また、上記の情報記録装置において、前記面間距離tiは、前記開口数と前記光の波長とに応じて決まる第1の所定値以上であることが好ましい。
この構成によれば、面間距離tiは、開口数と光の波長とに応じて決まる第1の所定値以上であるので、第iの記録面と第i-1の記録面とのうちの一方の記録面を再生している際に他方の記録面に記録された信号がクロストークとして漏れこむことを避けることができる。すなわち、再生信号に含まれるノイズを低減することができる。
また、上記の情報記録装置において、前記開口数は1.7以上であり、前記波長は415nm以下であり、前記第1の所定値は1.8μmであることが好ましい。
この構成によれば、開口数は1.7以上であり、波長は415nm以下であり、第1の所定値は1.8μmであるので、面間距離t1を1.8μmより小さくすることができ、面間距離tiを1.8μm以上とすることができる。
また、上記の情報記録装置において、前記面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、前記面間距離tiのばらつきと、前記面間距離tmのばらつきと、前記開口数と前記光の波長とに応じて決まる第2の所定値との和以上であることが好ましい。
この構成によれば、面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、面間距離tiのばらつきと、面間距離tmのばらつきと、開口数と光の波長とに応じて決まる第2の所定値との和以上である。
したがって、他の記録面で複数回反射した光と、本来記録又は再生すべき記録面で反射した光との干渉を抑えることができる。
また、上記の情報記録装置において、前記開口数は1.7以上であり、前記波長は415nm以下であり、前記第2の所定値は0.2μmであることが好ましい。
この構成によれば、開口数は1.7以上であり、波長は415nm以下であり、第2の所定値は0.2μmであるので、面間距離tiと面間距離tmとの差(ti-tm)を、面間距離tiのばらつきと、面間距離tmのばらつきと、0.2μmとの和以上とすることができる。
本発明の他の局面に係る情報再生装置は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体から情報を再生する情報再生装置であって、前記光を出射する光源と、前記光源から出射された光を前記光記録媒体に収束する前記ソリッドイマージョンレンズを含む光学系とを備え、前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、光源は、光を出射する。光学系は、光源から出射された光を光記録媒体に収束するソリッドイマージョンレンズを含む。光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有している。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
したがって、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
また、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
また、上記の情報再生装置において、前記光記録媒体は、3以上の記録面を有し、第2の記録面と前記第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たすことが好ましい。
この構成によれば、光記録媒体は、3以上の記録面を有している。第2の記録面と第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、tj<t2を満たす。
したがって、最も奥の記録面を除く、第1の記録面よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
また、上記の情報再生装置において、前記光記録媒体は、4以上の記録面を有し、第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たすことが好ましい。
この構成によれば、光記録媒体は、4以上の記録面を有している。第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、tk<tk-1を満たす。
したがって、最も奥の記録面を除く、第2の記録面よりも光記録媒体の光の入射側表面から遠い記録面を、光記録媒体の光の入射側表面から離すことができる。このため、表面のゴミ又は表面の欠陥等による光の欠落等の影響を小さくすることができる。
また、上記の情報再生装置において、前記面間距離t1は、前記開口数と前記光の波長とに応じて決まる第1の所定値よりも小さいことが好ましい。
この構成によれば、面間距離t1は、開口数と光の波長とに応じて決まる第1の所定値よりも小さいので、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
また、上記の情報再生装置において、前記面間距離tiは、前記開口数と前記光の波長とに応じて決まる第1の所定値以上であることが好ましい。
この構成によれば、面間距離tiは、開口数と光の波長とに応じて決まる第1の所定値以上であるので、第iの記録面と第i-1の記録面とのうちの一方の記録面を再生している際に他方の記録面に記録された信号がクロストークとして漏れこむことを避けることができる。すなわち、再生信号に含まれるノイズを低減することができる。
また、上記の情報再生装置において、前記開口数は1.7以上であり、前記波長は415nm以下であり、前記第1の所定値は1.8μmであることが好ましい。
この構成によれば、開口数は1.7以上であり、波長は415nm以下であり、第1の所定値は1.8μmであるので、面間距離t1を1.8μmより小さくすることができ、面間距離tiを1.8μm以上とすることができる。
また、上記の情報再生装置において、前記面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、前記面間距離tiのばらつきと、前記面間距離tmのばらつきと、前記開口数と前記光の波長とに応じて決まる第2の所定値との和以上であることが好ましい。
この構成によれば、面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、面間距離tiのばらつきと、面間距離tmのばらつきと、開口数と光の波長とに応じて決まる第2の所定値との和以上である。
したがって、他の記録面で複数回反射した光と、本来記録又は再生すべき記録面で反射した光との干渉を抑えることができる。
また、上記の情報再生装置において、前記開口数は1.7以上であり、前記波長は415nm以下であり、前記第2の所定値は0.2μmであることが好ましい。
この構成によれば、開口数は1.7以上であり、波長は415nm以下であり、第2の所定値は0.2μmであるので、面間距離tiと面間距離tmとの差(ti-tm)を、面間距離tiのばらつきと、面間距離tmのばらつきと、0.2μmとの和以上とすることができる。
本発明の他の局面に係る情報記録方法は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体に情報を記録する情報記録方法であって、光源から前記光を出射する第1のステップと、前記光源から出射された光を前記ソリッドイマージョンレンズで前記光記録媒体に収束させ、前記光記録媒体に情報を記録する第2のステップとを含み、前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、第1のステップにおいて、光源から光が出射される。第2のステップにおいて、光源から出射された光をソリッドイマージョンレンズで光記録媒体に収束させ、光記録媒体に情報が記録される。光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有している。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
したがって、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
また、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
本発明の他の局面に係る情報再生方法は、ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体から情報を再生する情報再生方法であって、光源から前記光を出射する第1のステップと、前記光源から出射された光を前記ソリッドイマージョンレンズで前記光記録媒体に収束させ、前記光記録媒体から情報を再生する第2のステップとを含み、前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、第1のステップにおいて、光源から光が出射される。第2のステップにおいて、光源から出射された光をソリッドイマージョンレンズで光記録媒体に収束させ、光記録媒体から情報が再生される。光記録媒体は、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有している。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
したがって、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
また、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
本発明の他の局面に係る光記録媒体の製造方法は、ソリッドイマージョンレンズを含む光学系から出射される光により情報が記録又は再生される光記録媒体の製造方法であって、基板を用意する第1のステップと、前記基板上に、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を形成する第2のステップとを含み、前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たし、前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
この構成によれば、基板が用意され、基板上に、光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面が形成される。光記録媒体の屈折率をnとし、光学系の開口数をNAとし、ソリッドイマージョンレンズの光記録媒体と向き合う側の開口部の開口直径をDとすると、光記録媒体の前記光の入射側表面から最奥の第Nの記録面までの厚さdNは、dN≦D/{2tan(asin(NA/n))}を満たす。また、厚さdNと、光記録媒体の光の入射側表面と光記録媒体の光の入射側表面に最も近い第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、t1<ti<dNを満たす。
したがって、複数の記録面を有する光記録媒体とソリッドイマージョンレンズとの相対的な傾きに必要な許容量を与えても、光記録媒体とソリッドイマージョンレンズとが衝突することなく、効率的に光が伝播できる光記録媒体とソリッドイマージョンレンズとの間のギャップを保ち、ソリッドイマージョンレンズの端部で蹴られることなく奥側の記録面に光を収束させることができる。
また、光記録媒体の光の入射側表面と第1の記録面との間の層は、一方の面が記録面ではないので、他の記録面からの信号クロストークが無く、面間距離t1を小さい値にすることができる。このため、面間距離t1を、他の面間距離tiよりも小さく設定することで、全体の層間距離、すなわち光記録媒体の光の入射側表面から最も奥の第Nの記録面までの距離を小さくすることができる。
なお、発明を実施するための形態の項においてなされた具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
本発明に係る光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法は、開口数が1を超えるようなソリッドイマージョンレンズを使って複数の記録面を有する光記録媒体に安定して情報を記録又は再生することが可能になる。よって、これらの応用機器である大容量の光ディスクレコーダ又はコンピュータ用メモリ装置などに利用することができる。
Claims (27)
- ソリッドイマージョンレンズを含む光学系から出射される光により情報が記録又は再生される光記録媒体であって、
前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、
前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、
dN≦D/{2tan(asin(NA/n))}
を満たし、
前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、
t1<ti<dN
を満たすことを特徴とする光記録媒体。 - 前記光記録媒体は、3以上の記録面を有し、
第2の記録面と前記第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、
tj<t2
を満たすことを特徴とする請求項1記載の光記録媒体。 - 前記光記録媒体は、4以上の記録面を有し、
第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、
tk<tk-1
を満たすことを特徴とする請求項1又は2記載の光記録媒体。 - 前記面間距離t1は、前記開口数と前記光の波長とに応じて決まる第1の所定値よりも小さいことを特徴とする請求項1~3のいずれかに記載の光記録媒体。
- 前記面間距離tiは、前記開口数と前記光の波長とに応じて決まる第1の所定値以上であることを特徴とする請求項1~4のいずれかに記載の光記録媒体。
- 前記開口数は1.7以上であり、
前記波長は415nm以下であり、
前記第1の所定値は1.8μmであることを特徴とする請求項4又は5記載の光記録媒体。 - 前記面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、前記面間距離tiのばらつきと、前記面間距離tmのばらつきと、前記開口数と前記光の波長とに応じて決まる第2の所定値との和以上であることを特徴とする請求項1~6のいずれかに記載の光記録媒体。
- 前記開口数は1.7以上であり、
前記波長は415nm以下であり、
前記第2の所定値は0.2μmであることを特徴とする請求項7記載の光記録媒体。 - ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体に情報を記録する情報記録装置であって、
前記光を出射する光源と、
前記光源から出射された光を前記光記録媒体に収束する前記ソリッドイマージョンレンズを含む光学系とを備え、
前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、
前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、
dN≦D/{2tan(asin(NA/n))}
を満たし、
前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、
t1<ti<dN
を満たすことを特徴とする情報記録装置。 - 前記光記録媒体は、3以上の記録面を有し、
第2の記録面と前記第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、
tj<t2
を満たすことを特徴とする請求項9に記載の情報記録装置。 - 前記光記録媒体は、4以上の記録面を有し、
第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、
tk<tk-1
を満たすことを特徴とする請求項9又は10記載の情報記録装置。 - 前記面間距離t1は、前記開口数と前記光の波長とに応じて決まる第1の所定値よりも小さいことを特徴とする請求項9~11のいずれかに記載の情報記録装置。
- 前記面間距離tiは、前記開口数と前記光の波長とに応じて決まる第1の所定値以上であることを特徴とする請求項9~12のいずれかに記載の情報記録装置。
- 前記開口数は1.7以上であり、
前記波長は415nm以下であり、
前記第1の所定値は1.8μmであることを特徴とする請求項12又は13記載の情報記録装置。 - 前記面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、前記面間距離tiのばらつきと、前記面間距離tmのばらつきと、前記開口数と前記光の波長とに応じて決まる第2の所定値との和以上であることを特徴とする請求項9~14のいずれかに記載の情報記録装置。
- 前記開口数は1.7以上であり、
前記波長は415nm以下であり、
前記第2の所定値は0.2μmであることを特徴とする請求項15記載の情報記録装置。 - ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体から情報を再生する情報再生装置であって、
前記光を出射する光源と、
前記光源から出射された光を前記光記録媒体に収束する前記ソリッドイマージョンレンズを含む光学系とを備え、
前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、
前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、
dN≦D/{2tan(asin(NA/n))}
を満たし、
前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、
t1<ti<dN
を満たすことを特徴とする情報再生装置。 - 前記光記録媒体は、3以上の記録面を有し、
第2の記録面と前記第1の記録面との間の面間距離t2と、第j(3≦j≦Nである整数)の記録面と第j-1の記録面との間の面間距離tjとは、
tj<t2
を満たすことを特徴とする請求項17記載の情報再生装置。 - 前記光記録媒体は、4以上の記録面を有し、
第k(4≦k≦Nである整数)の記録面と第k-1の記録面との間の面間距離tkと、第k-1の記録面と第k-2の記録面との間の面間距離tk-1とは、
tk<tk-1
を満たすことを特徴とする請求項17又は18記載の情報再生装置。 - 前記面間距離t1は、前記開口数と前記光の波長とに応じて決まる第1の所定値よりも小さいことを特徴とする請求項17~19のいずれかに記載の情報再生装置。
- 前記面間距離tiは、前記開口数と前記光の波長とに応じて決まる第1の所定値以上であることを特徴とする請求項17~20のいずれかに記載の情報再生装置。
- 前記開口数は1.7以上であり、
前記波長は415nm以下であり、
前記第1の所定値は1.8μmであることを特徴とする請求項20又は21記載の情報再生装置。 - 前記面間距離tiと、第m(1≦m<Nである整数かつi>m)の記録面と第m-1の記録面との間の面間距離tmとの差(ti-tm)は、前記面間距離tiのばらつきと、前記面間距離tmのばらつきと、前記開口数と前記光の波長とに応じて決まる第2の所定値との和以上であることを特徴とする請求項17~22のいずれかに記載の情報再生装置。
- 前記開口数は1.7以上であり、
前記波長は415nm以下であり、
前記第2の所定値は0.2μmであることを特徴とする請求項23記載の情報再生装置。 - ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体に情報を記録する情報記録方法であって、
光源から前記光を出射する第1のステップと、
前記光源から出射された光を前記ソリッドイマージョンレンズで前記光記録媒体に収束させ、前記光記録媒体に情報を記録する第2のステップとを含み、
前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、
前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、
dN≦D/{2tan(asin(NA/n))}
を満たし、
前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、
t1<ti<dN
を満たすことを特徴とする情報記録方法。 - ソリッドイマージョンレンズを含む光学系から出射される光により光記録媒体から情報を再生する情報再生方法であって、
光源から前記光を出射する第1のステップと、
前記光源から出射された光を前記ソリッドイマージョンレンズで前記光記録媒体に収束させ、前記光記録媒体から情報を再生する第2のステップとを含み、
前記光記録媒体は、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を有し、
前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、
dN≦D/{2tan(asin(NA/n))}
を満たし、
前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、
t1<ti<dN
を満たすことを特徴とする情報再生方法。 - ソリッドイマージョンレンズを含む光学系から出射される光により情報が記録又は再生される光記録媒体の製造方法であって、
基板を用意する第1のステップと、
前記基板上に、前記光の入射側に近い順に第1から第N(Nは2以上の整数)の記録面を形成する第2のステップとを含み、
前記光記録媒体の屈折率をnとし、前記光学系の開口数をNAとし、前記ソリッドイマージョンレンズの前記光記録媒体と向き合う側の開口部の開口直径をDとすると、前記光記録媒体の前記光の入射側表面から最奥の前記第Nの記録面までの厚さdNは、
dN≦D/{2tan(asin(NA/n))}
を満たし、
前記厚さdNと、前記光記録媒体の前記光の入射側表面と前記光記録媒体の前記光の入射側表面に最も近い前記第1の記録面との間の面間距離t1と、第i(2≦i≦Nである整数)の記録面と第i-1の記録面との間の面間距離tiとは、
t1<ti<dN
を満たすことを特徴とする光記録媒体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-286625 | 2009-12-17 | ||
JP2009286625 | 2009-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074266A1 true WO2011074266A1 (ja) | 2011-06-23 |
Family
ID=44167036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/007308 WO2011074266A1 (ja) | 2009-12-17 | 2010-12-16 | 光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011074266A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203825A (ja) * | 1989-12-29 | 1991-09-05 | Fujitsu Ltd | 非対称型両面光ディスクとその製造方法および該光ディスクを使用する光ディスク装置 |
JPH09288846A (ja) * | 1996-04-19 | 1997-11-04 | Nec Corp | 情報記録媒体及びその再生方法 |
JP2005209284A (ja) * | 2004-01-22 | 2005-08-04 | Nippon Signal Co Ltd:The | 情報記憶媒体及び情報記憶装置 |
JP2005302262A (ja) * | 2004-04-14 | 2005-10-27 | Sae Magnetics (Hk) Ltd | 高密度磁気記録用スライダ、ディスクドライブおよびスライダの形成方法 |
WO2007081079A1 (en) * | 2006-01-10 | 2007-07-19 | Lg Electronics Inc. | An apparatus for reproducing and/or recording and recording medium |
WO2008015974A1 (fr) * | 2006-08-01 | 2008-02-07 | Panasonic Corporation | Support d'enregistrement optique et dispositif de reproduction |
WO2008096680A1 (ja) * | 2007-02-09 | 2008-08-14 | Panasonic Corporation | 情報記録媒体およびその製造方法、スパッタリングターゲットならびに成膜装置 |
-
2010
- 2010-12-16 WO PCT/JP2010/007308 patent/WO2011074266A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203825A (ja) * | 1989-12-29 | 1991-09-05 | Fujitsu Ltd | 非対称型両面光ディスクとその製造方法および該光ディスクを使用する光ディスク装置 |
JPH09288846A (ja) * | 1996-04-19 | 1997-11-04 | Nec Corp | 情報記録媒体及びその再生方法 |
JP2005209284A (ja) * | 2004-01-22 | 2005-08-04 | Nippon Signal Co Ltd:The | 情報記憶媒体及び情報記憶装置 |
JP2005302262A (ja) * | 2004-04-14 | 2005-10-27 | Sae Magnetics (Hk) Ltd | 高密度磁気記録用スライダ、ディスクドライブおよびスライダの形成方法 |
WO2007081079A1 (en) * | 2006-01-10 | 2007-07-19 | Lg Electronics Inc. | An apparatus for reproducing and/or recording and recording medium |
WO2008015974A1 (fr) * | 2006-08-01 | 2008-02-07 | Panasonic Corporation | Support d'enregistrement optique et dispositif de reproduction |
WO2008096680A1 (ja) * | 2007-02-09 | 2008-08-14 | Panasonic Corporation | 情報記録媒体およびその製造方法、スパッタリングターゲットならびに成膜装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8395980B2 (en) | Optical head device, optical information device, and information processing device | |
CN101015008B (zh) | 光记录介质、光记录介质的信息记录/再生方法及信息记录/再生装置 | |
US7583580B2 (en) | Optical recording medium as well as optical recording and reproduction method | |
RU2503069C2 (ru) | Оптический носитель записи и оптическое информационное устройство | |
US20070171778A1 (en) | Optical recording/reproducing apparatus, optical pickup, and tracking error detecting method | |
JP4268764B2 (ja) | 情報記録装置 | |
US8409686B2 (en) | Optical recording medium and method for manufacturing the same | |
JP2008181638A (ja) | カップリング光学系、光学素子及び光ピックアップ装置 | |
US8483034B2 (en) | Optical pickup, inclination angle detection method, optical information device and information processing device | |
US8036093B2 (en) | Optical head device and recording/reproduction device | |
JP2000048397A (ja) | 光ピックアップ | |
TWI556231B (zh) | 自一全像光碟讀取資料之方法及系統 | |
WO2011074266A1 (ja) | 光記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法及び光記録媒体の製造方法 | |
JP3919276B2 (ja) | 光ヘッドおよび光ディスク装置 | |
WO2011024345A1 (ja) | 光記録媒体の製造方法、光記録媒体、光情報装置及び情報再生方法 | |
US8483031B2 (en) | Optical head device, optical information device and information processing device | |
US8462596B2 (en) | Optical pickup device and optical disc device | |
EP0786766A2 (en) | Optical pickup device and reproducing apparatus for optical recording medium | |
EP1056075A1 (en) | Optical pick-up apparatus and correction lens for use in the apparatus | |
WO2011111381A1 (ja) | 光ピックアップ、光情報記録再生装置、コンピュータ装置及び光ディスクレコーダ | |
CN113412518A (zh) | 光盘、其制造方法、光信息装置以及信息处理方法 | |
US8130621B2 (en) | Optical head device and optical disk playback system | |
US20080239933A1 (en) | Writable optical information recording medium, apparatus for reproducing the same, and method of determining the same | |
KR20100030894A (ko) | 틸트 제어 방법 및 장치 | |
JP2012069176A (ja) | 光ディスク |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837297 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10837297 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |