WO2011073036A1 - Procédé de réglage de paramètres de fonctionnement - Google Patents

Procédé de réglage de paramètres de fonctionnement Download PDF

Info

Publication number
WO2011073036A1
WO2011073036A1 PCT/EP2010/068748 EP2010068748W WO2011073036A1 WO 2011073036 A1 WO2011073036 A1 WO 2011073036A1 EP 2010068748 W EP2010068748 W EP 2010068748W WO 2011073036 A1 WO2011073036 A1 WO 2011073036A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameters
model
optimal parameters
target
weighting
Prior art date
Application number
PCT/EP2010/068748
Other languages
German (de)
English (en)
Inventor
Martin Johannaber
Maximilian Reger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN2010800573056A priority Critical patent/CN102713221A/zh
Priority to US13/510,058 priority patent/US20120296614A1/en
Priority to JP2012543588A priority patent/JP2013513757A/ja
Priority to EP10792876A priority patent/EP2513460A1/fr
Publication of WO2011073036A1 publication Critical patent/WO2011073036A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Definitions

  • the invention relates to a method for setting functional parameters of a control device and to such a control device, and to a method for calculating a model of optimal parameters.
  • Controllers are used to control injection systems for internal combustion engines in motor vehicles. With these it is intended to design control unit functions according to requirements, for example target values and / or evaluation criteria, of the manufacturer and of the end customer via functional parameters.
  • Target variables relate to a desired behavior of the motor vehicle, for example in terms of ride comfort and dynamics.
  • time constants, amplification factors and triggering thresholds serve as functional parameters for this purpose.
  • the injection pressure, the rail pressure, the exhaust gas recirculation and the valve position serve as the functional parameters or are derived therefrom.
  • the above-mentioned functions for a control unit offer the possibility of determining at least one parameter set via constants, characteristic curves and characteristic maps with fixed settings.
  • the complexity of the functions and thus the number of maps is constantly increasing.
  • function specialists know the influence of each parameter and can thus use the Design functions according to the requirements of the customer. The customer gets his desired compromise from a variety of optimal, possible compromises. Possible deviations from the requirements can be compensated by recursions.
  • the parameters for the ECU functions are determined according to the customer's requirements. In many areas, however, there are conflicting objectives when applying the functions, for which a compromise must be determined. It identifies a system tuning that is an optimal compromise between the competing targets as the goals can not be optimally achieved at the same time. At the same time, the compromise best suited to the project objectives must be found.
  • the corresponding function parameters are usually set permanently in the control unit.
  • a plurality of function parameters, characteristics or characteristic maps can be reduced to one or a few operating point-dependent weighting maps.
  • Operating points or operating variables are, for example, the selected gear, the speed and the load.
  • the application takes place as a specification of the target values / criteria or their weightings.
  • the user does not have to be a functional specialist in order to be able to implement the desired requirements for the system. He does not even have to know the function parameters.
  • the use of the model of optimal parameters with at least one weighting map in the control unit also makes it possible to set different settings. implement lungs or setups or configurations on differently designed and stored in the control unit weighting maps, without having to duplicate the basic identifiable fields of the control unit functions.
  • weighting maps can be stored either for a consumption-optimal or a performance-optimal design.
  • the invention enables an application by direct specification of objective targets and / or criteria to a function in the control unit. In doing so, it is taken into account that due to the constant increase in the complexity of software structures, the technical requirements and the effort in the application both internally and also at the customer increase.
  • the invention typically results in that an application is possible by setting target variables.
  • the concentration serves a task or requirement and not the functional parameters.
  • the complexity can therefore be reduced for the user.
  • no functional specialist is required to reconcile functional parameters.
  • a systematic approach can be carried out with objective evaluation of the settings.
  • recursion to adapt the requirement are less expensive.
  • the invention further makes it possible to control a system with several competing destinations by continuously shifting the weights of destinations.
  • the model of optimal parameters results in the fact that the system always has optimal function parameters available in the control unit.
  • a control loop can be closed, which regulates as a possible control variable the behavior of the system with respect to several competing targets.
  • a complex, nonlinear multi-variable system can be regulated to target variables depending on the mode of operation.
  • the shift of the weighting is done regularly via a manipulated variable.
  • the control loop is closed via the model of optimal parameters.
  • typically only function parameters are set which represent an optimal solution of the present goal compromise.
  • a complex system of target compromises can be optimally controlled and regulated.
  • An external control loop merely changes weighting criteria and thus alters the compromise between different target criteria. This is done via the model of optimal parameters, which changes the different parameters of the control units so that the system can always be optimally operated with respect to the target criteria.
  • control parameters of the engine control functions are adjusted continuously during operation via the model of optimal parameters, for example.
  • Figure 1 shows a schematic representation of a possible embodiment of the method for setting functional parameters.
  • FIG. 2 shows a control with a model of optimal parameters and a control loop.
  • FIG. 3 shows a control with a model of optimum parameters for motor control.
  • FIG. 1 clarifies the procedure in the presented method for setting functional parameters.
  • an available in the control unit model of optimal parameters P-P ⁇ to P n is provided with weighting maps for the target variables Zi to Z n and / or criteria Ki to K n .
  • a first step 10 with a system or a model 12 over all necessary operating points BP n with an optimizer 14, an additional target optimization on all necessary target variables and / or criteria (arrows 16) with the available function parameters (arrows 18) is performed.
  • the results obtained from the optimization then contain for each operating point the optimized function parameters for all compromises of the target quantities and / or criteria (second step 20).
  • an operating point-dependent model of optimal parameters 32 can then be created in a third step 30. This can be done in the form of maps, multi-dimensional data models or lists of optimal parameters.
  • the inputs of the model are the operating points and the target values and / or criteria or their weighting and thus the weighting of the target variables / criteria GZ-i / GK- ⁇ to GZ n / GK n (arrows 34) themselves and their outputs are the matching optimal parameters Piopt to Pnopt (arrows 36).
  • the desired weighting of the target variables can be specified via an operating point-dependent characteristic field, which outputs the optimal parameters as inputs of the model of optimal parameters 32 even in this operating point and is then available in the control unit function.
  • the weighting map can z. B. contain a field or an array of weights of all the target variables and / or criteria for each operating point, then there may be one to two operating point dependent weighting maps 40 before. Furthermore, a weighting map per target size can be used. Then there are n operating point dependent function maps 42.
  • More than two operating points may result in more than one weighting map of the function.
  • the sum of the weights gives normalized 1.
  • the weights of the target variables can be adjusted. This results in optimal function parameters, without possibly knowing the function parameters.
  • the weights can z. B. also continuously changed via one or more sliders 44 as a human-machine interface and so the desired vote can be set. It is also conceivable to generate different variants by means of several weighting characteristics of the target variables.
  • the switching between the voting or weighting maps can be done by a state machine in the ECU software or by the driver himself (knob, slider, menu in the display).
  • the design of the function can be simplified by reducing a plurality of function parameters, characteristics or maps to one or a few weighting maps for the user.
  • the model contains all the optimal parameters of all compromises of the target variables and / or criteria at all necessary operating points. It is also possible to omit the function characteristics / maps.
  • the model of optimal parameters with weighting map can be calculated outside the control unit software and the settings can thus be transmitted to the test carrier via a tool or a tool with an interface to the control unit.
  • the results of the tuning are then available directly in the control unit or must be transferred to the control unit after the vote via the tool. This has the advantage that the control unit software does not have to be changed.
  • FIG. 2 illustrates different possibilities for regulating the system with respect to a plurality of target variables using the model of optimal parameters and a control loop.
  • the model of optimal parameters (MoP) and the controller of a control unit function are upstream.
  • a target / actual based on measured variables Z 1 to Z nist (arrows 52) a target / actual
  • Comparison (block 54) with specifications Z 1so n to Z nso n (arrows 56) performed and the Control deviation ei to e n determined (arrows 58).
  • a desired behavior of the system can be predefined via the desired / actual comparison 52 and adjusted via a controller 60.
  • controller functions 68 to generate signals Si to S n (arrows 70) which are input to a system 72.
  • the system outputs the quantities Z 1 to Z nist , which in turn are the measured quantities (arrows 52).
  • the target / actual comparison 54 is not performed directly with the measured variables, but it is calculated from these target variables or criteria (block 102). These targets must clearly describe the behavior of the system.
  • the objective functions may not only depend on the instantaneous value of the measurands, but also the mode of operation and system behavior in the past may be taken into account.
  • the system behavior can be regulated to the desired value of the target function via the controller 60 and the model of optimum parameters 64.
  • a third case 120 the outputs of the system 72 are not measured, but are calculated via a model 122 to determine these quantities.
  • the model 122 is used, which maps the system behavior with the control device parameters and system input variables and thus supplies virtual measured values.
  • Control unit functions are regulated to lower pollutant emissions or less consumption. If the vehicle is operated, for example, with a load profile that is favorable for low emissions, the ECU parameters can be further regulated in the direction of low consumption and vice versa. This regulation requires that the competing aims of consumption and pollutant Emissions can either be measured directly or calculated with sufficient accuracy via a model in the control unit.
  • the approach can be transferred to many other functions in the engine control unit. In addition, it is similarly transferable to controls and regulations in other areas.
  • the method requires the integration of a model of optimal parameters and the associated control of the weighting in the control unit.
  • the method can be used as an extension of the engine control unit software for any functions and transferred outside the control of internal combustion engine on other systems.
  • FIG. 3 shows a schematic representation of a control unit 200, in this case an engine control unit, with which a motor 202 is controlled.
  • Control unit 200 is provided with a weighting map 204, a model of optimal parameters 206, and functions 208. Furthermore, a model for raw emissions 210, a model for a catalyst 212 and a controller 214 are provided.
  • the weighting is specified. From this optimal parameters from the model of optimal parameters 206 are determined. With these parameters, the functions 208 provide signals for the control of the motor 202. In principle, it is possible to carry out a control on the basis of output variables measured directly on the motor 202. If these output quantities can not be determined without further ado, it is possible to input the determined optimal parameters, for example, into the model for raw emissions 210 and the model 212 for the catalyst and to calculate the desired output values by calculation. The variables determined in this way are then input quantities of the controller 214, which acts on the weighting characteristic field 204, in particular when individual thresholds are exceeded, even for certain variables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Feedback Control In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un procédé de réglage de paramètres de fonctionnement d'un appareil de commande pour un véhicule à moteur, selon lequel au moins une grandeur cible est allouée dans une matrice de pondération (40), les grandeurs cibles représentant un comportement du véhicule à moteur, des paramètres (32) optimaux pour un modèle étant alloués dans la matrice de pondération (40), de sorte que des grandeurs cibles allouées peuvent être affectées à un ensemble de paramètres optimaux qui peuvent être réglés comme étant les paramètres de fonctionnement.
PCT/EP2010/068748 2009-12-17 2010-12-02 Procédé de réglage de paramètres de fonctionnement WO2011073036A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800573056A CN102713221A (zh) 2009-12-17 2010-12-02 用于设定功能参数的方法
US13/510,058 US20120296614A1 (en) 2009-12-17 2010-12-02 Method for setting function parameters
JP2012543588A JP2013513757A (ja) 2009-12-17 2010-12-02 機能パラメータを設定する方法
EP10792876A EP2513460A1 (fr) 2009-12-17 2010-12-02 Procédé de réglage de paramètres de fonctionnement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009054902A DE102009054902A1 (de) 2009-12-17 2009-12-17 Verfahren zum Einstellen von Funktionsparametern
DE102009054902.1 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011073036A1 true WO2011073036A1 (fr) 2011-06-23

Family

ID=43568115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/068748 WO2011073036A1 (fr) 2009-12-17 2010-12-02 Procédé de réglage de paramètres de fonctionnement

Country Status (6)

Country Link
US (1) US20120296614A1 (fr)
EP (1) EP2513460A1 (fr)
JP (1) JP2013513757A (fr)
CN (1) CN102713221A (fr)
DE (1) DE102009054902A1 (fr)
WO (1) WO2011073036A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518676B1 (de) * 2016-05-17 2018-02-15 Avl List Gmbh Verfahren zur Kalibrierung eines technischen Systems
DE102017211209A1 (de) * 2017-06-30 2019-01-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Einstellen mindestens eines Parameters eines Aktorregelungssystems, Aktorregelungssystem und Datensatz
US11687071B2 (en) * 2021-08-19 2023-06-27 Garrett Transportation I Inc. Methods of health degradation estimation and fault isolation for system health monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10101311A1 (de) * 2001-01-12 2002-08-01 Bosch Gmbh Robert Fahrzeugsteuergerät sowie Steuerungsverfahren
DE10253809A1 (de) * 2002-11-18 2004-05-27 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Kraftfahrzeuges
DE102005037465A1 (de) * 2005-08-09 2007-02-22 Robert Bosch Gmbh Vorrichtung zur Steuerung von technischen Vorgängen und Verfahren zur Erstellung von Daten zur Steuerung von technischen Vorgängen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158345A (ja) * 1982-03-15 1983-09-20 Nippon Denso Co Ltd エンジン制御方法
US5769051A (en) * 1996-05-29 1998-06-23 Bayron; Harry Data input interface for power and speed controller
DE19963213A1 (de) * 1999-12-28 2001-07-12 Bosch Gmbh Robert Verfahren zur Steuerung/Regelung eines Prozesses in einem Kraftfahrzeug und Vorrichtung zur Durchführung des Verfahrens
DE10149477A1 (de) * 2001-10-08 2003-04-17 Bosch Gmbh Robert Verfahren und Vorrichtung sowie Computerprogramm zur Steuerung eines Verbrennungsmotors
DE10160480A1 (de) * 2001-12-08 2003-06-26 Bosch Gmbh Robert Verfahren und Einrichtung zur koordinierten Steuerung mechanischer, elektrischer und thermischer Leistungsflüsse in einem Kraftfahrzeug
JP3928721B2 (ja) * 2003-01-23 2007-06-13 アイシン・エィ・ダブリュ株式会社 車両用ナビゲーション装置
DE102004026583B3 (de) * 2004-05-28 2005-11-24 Robert Bosch Gmbh Verfahren zur Optimierung von Kennfeldern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10101311A1 (de) * 2001-01-12 2002-08-01 Bosch Gmbh Robert Fahrzeugsteuergerät sowie Steuerungsverfahren
DE10253809A1 (de) * 2002-11-18 2004-05-27 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Kraftfahrzeuges
DE102005037465A1 (de) * 2005-08-09 2007-02-22 Robert Bosch Gmbh Vorrichtung zur Steuerung von technischen Vorgängen und Verfahren zur Erstellung von Daten zur Steuerung von technischen Vorgängen

Also Published As

Publication number Publication date
JP2013513757A (ja) 2013-04-22
CN102713221A (zh) 2012-10-03
DE102009054902A1 (de) 2011-06-22
EP2513460A1 (fr) 2012-10-24
US20120296614A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
DE102018123818B4 (de) Linearisierter modellbasierter mpc-antriebsstrang
EP1896709B1 (fr) Procédé et dispositif de commande d'un moteur a combustion interne
DE112010004861T5 (de) Fahrzeugsteuersystem und Fahrzeugsteuerverfahren
DE102020106880A1 (de) Verfahren und Vorrichtung zum Kalibrieren eines Steuer- und Regelvorrichtungssystems zur Steuer- und Regelung eines Betriebszustandes
DE102019125974A1 (de) System und Verfahren zur Kalibrierung einer Steuervorrichtung zur Steuerung einer Leerlaufdrehzahl
DE102015200560A1 (de) Verfahren und Vorrichtung zum Betreiben eines Hybridantriebssystems
EP1705356A2 (fr) Procédé et dispositif de commande d'un moteur à combustion interne
EP2513460A1 (fr) Procédé de réglage de paramètres de fonctionnement
DE102008006327A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102012003581B3 (de) Leerlaufregler und Verfahren zum Betrieb von Brennkraftmaschinen
DE3416812A1 (de) Verfahren zur regelung von prozessgroessen in motorfahrzeugen
WO2011082908A1 (fr) Procédé de détermination de paramètres fonctionnels pour un appareil de commande
DE102012018222B4 (de) Verfahren und Regelsystem zur elektronischen Regelung der Drehzahl wenigstens eines Antriebsmotors eines Kraftfahrzeugs
AT522168A4 (de) Verfahren und Vorrichtung zum Kontrollieren von Pedalen eines Fahrzeugs
WO2009100788A1 (fr) Procédé et dispositif pour faire fonctionner un système d’entraînement hybride
DE10148973A1 (de) Verfahren und Vorrichtung zum Ermitteln der Einspritzmenge vorzugsweise für direkteinspritzende Dieselmotoren
DE102009055939A1 (de) Elektromechanische Lenkung und Verfahren zur Steuerung einer elektromechanischen Lenkung
DE102012200032A1 (de) Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren
DE102008054405A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102007050775A1 (de) Kraftfahrzeugsteuerungssystem
DE102009027517A1 (de) Verfahren zur Adaption einer Steuerungsfunktion in einem Steuergerät
DE102007007632A1 (de) Verfahren zum Steuern eines Gangwechsels in einem Kraftfahrzeug mittels eines elektronischen Getriebesteuergeräts
DE102007035097B4 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit
DE102007006341A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen
DE102019126069B4 (de) System und Verfahren zur Kalibrierung einer Steuer- und Regelvorrichtung zur Einspritzdruckregelung bei einem Verbrennungsmotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057305.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010792876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3465/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012543588

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13510058

Country of ref document: US