WO2011072774A1 - Sicherungseinrichtung für einen zünder eines geschosses - Google Patents

Sicherungseinrichtung für einen zünder eines geschosses Download PDF

Info

Publication number
WO2011072774A1
WO2011072774A1 PCT/EP2010/006743 EP2010006743W WO2011072774A1 WO 2011072774 A1 WO2011072774 A1 WO 2011072774A1 EP 2010006743 W EP2010006743 W EP 2010006743W WO 2011072774 A1 WO2011072774 A1 WO 2011072774A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
acceleration
projectile
output
roll
Prior art date
Application number
PCT/EP2010/006743
Other languages
English (en)
French (fr)
Inventor
Karl Kautzsch
Siegfried Lauble
Robert HÜTTNER
Andreas Schellhorn
Original Assignee
Junghans Microtec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junghans Microtec Gmbh filed Critical Junghans Microtec Gmbh
Priority to US13/503,098 priority Critical patent/US8820241B2/en
Priority to AU2010333399A priority patent/AU2010333399B2/en
Priority to SG2012033155A priority patent/SG180714A1/en
Priority to EP10784255.1A priority patent/EP2513594B1/de
Priority to CA2779026A priority patent/CA2779026C/en
Priority to ES10784255.1T priority patent/ES2620179T3/es
Publication of WO2011072774A1 publication Critical patent/WO2011072774A1/de
Priority to IL219389A priority patent/IL219389A/en
Priority to ZA2012/05215A priority patent/ZA201205215B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/18Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved
    • F42C15/184Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved using a slidable carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/24Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/40Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically

Definitions

  • the invention relates to a safety device for an igniter of a projectile, which has an ignition device for igniting the igniter, comprising a safety device with a process means for securing an ignition process of the ignition device.
  • a safety device for an igniter is used to prevent inadvertent activation of a main charge of a projectile, but an activation of the main charge after a release should be possible.
  • the safety device is part of a detonator for igniting the main charge, which may be provided with a detonating chain of two or more ignition means.
  • the first ignition means is first activated, z.
  • B. a tap-sensitive Minidetonator that is pierced by a piercing needle. Explosive energy of the first ignition means is transmitted by a corresponding arrangement of the first two ignition means to the second ignition means, which may be designed as a booster. This can transfer its explosive energy to an initial charge or main charge.
  • Previous detonators especially simple projectiles, such as mortar shells, have as a first securing means a Vorstecker and second securing means on a device which detects the launch shock.
  • the disadvantage of this securing means is that before loading the mortar shell, the Vorstecker must be pulled manually. Relatively often it happens that the pulling of the Vorsteckers is forgotten and the mortar shell becomes a dud.
  • a safety device of the type mentioned above in which the safety device contains a sensor unit which is prepared to output a release signal at a predetermined acceleration state, wherein the process means is prepared in response to the presence of the release signal, a control signal for unlocking output the fuse unit.
  • a fuse for a projectile of a projectile which has a detonation chain for igniting the igniter and an interrupting means for interrupting the ignition chain
  • the safety device comprises a sensor unit which is prepared, in an accelerated state in the detonator, which is at least a predetermined acceleration value below the acceleration due to gravity, to output a release signal, and a processing means which is prepared to output a control signal for releasing the interruption means in response to the presence of the release signal.
  • the weightlessness or a state of low severity, ie low acceleration can be used.
  • This parameter is independent of a launch parameter and can be used with it, eg. B. in connection with the use of a launch parameter, a high security against unwanted ignition can be achieved.
  • a ballistic flight is characterized by a substantially weightless state of the projectile
  • the sensing of the weightless state or a state of low acceleration may be used as a release parameter. If a predetermined acceleration state is registered in the igniter or detonator by an acceleration sensor, which, for example, is far below the acceleration due to gravity, then it can be deduced that the flight phase is present and the interrupting means can be released.
  • the invention is particularly suitable for ballistic missiles, such as missiles, in particular mortar shells, missiles with a non-powered flight phase, bombs and the like.
  • Ballistic missiles fly through a trajectory that is approximately characterized by a parabolic parabola and in which the missile is in a weightless state, apart from the deceleration acceleration due to air resistance.
  • the ignition device may contain a priming charge. In particular, it may be part of or contain a detonating chain for igniting the detonator.
  • the fuse unit serves to secure the ignition process, in particular against inadvertent release of the igniter.
  • the securing unit may comprise mechanical securing means, for. B. an interruption means for breaking the ignition chain.
  • the interrupting means can serve for receiving and / or deflecting the ignition energy of an ignition means, so that ignition of the further ignition means is reliably prevented by ignition energy of the first ignition means.
  • the interrupting means may be a barrier, a means for extinguishing two firing means, or any other means for preventing or interrupting firing by the firing chain.
  • the interruption means may comprise a plurality of securing means which unlock a barrier and advantageously have to be activated independently of one another.
  • the ignition device comprises a firing chain with a primer for igniting the igniter and the fuse unit comprises an interrupting means for interrupting the ignition chain.
  • the acceleration state may be the instantaneous acceleration of the sensor unit and / or the igniter.
  • the specified acceleration state is in particular an acceleration state in the igniter. It is at least below a specified acceleration value below the acceleration due to gravity, that is to say below a limiting value which is below the acceleration due to gravity, and may be any value below the gravitational acceleration or gravitational acceleration which is approximately 9.81 m / s 2 .
  • An acceleration range below the acceleration due to gravity is also possible, for example between 0 m / s 2 and 5 m / s 2 .
  • the predetermined acceleration state in the longitudinal direction or flight direction of the projectile is below 5 m / s 2 , it is expediently below this value in all three spatial directions, in particular the overall acceleration is below this value.
  • the specified acceleration state or limit value or acceleration value can be determined by a corresponding setting in the securing device, for example, the sensor unit and / or the process means, or be deposited in another unit.
  • the sensor unit expediently contains an acceleration sensor which may be prepared to compensate for the instantaneous acceleration, e.g. B. in the igniter to measure.
  • the acceleration may be measured due to a force acting on the acceleration sensor as a result of gravity and / or as a result of a change in the speed of the sensor as it moves through the space.
  • the sensor unit can measure the acceleration state as one-dimensional acceleration. Expediently, the acceleration state is measured multidimensionally, in particular three-dimensionally.
  • the sensor unit is designed so that a release process begins when the acceleration state falls below the limit.
  • the release process may begin by one or more signals that are output below the limit as the acceleration falls.
  • the release process results in the enable signal, but may not until further conditions exist, e.g. the acceleration state is below the threshold for a predetermined period of time or it is aborted, e.g. if the acceleration state rises too fast again above the limit value.
  • the process means is prepared to check the presence of the enable signal and, depending on its presence, to output the control signal for unlocking.
  • a preparation can be provided by a corresponding control program, the sequence of which-for example in conjunction with the input signals from the acceleration sensor-effects such a control.
  • the control signal is expediently an electrical signal on a data line which can trigger a release in conjunction with a corresponding arming device.
  • the enable signal is expediently also an electrical signal which is transmitted to the process agent via a data line.
  • the sensor unit is prepared for measuring three directional accelerations in three mutually orthogonal spatial directions.
  • a total acceleration or an acceleration state in the igniter can be calculated in a simple manner from the three direction accelerations.
  • the release signal occurs only when each of the three directional accelerations is at least one fixed acceleration value below the acceleration due to gravity.
  • the sensor unit may comprise a logical AND link, which is only fulfilled when each directional acceleration is at least by the respective predetermined acceleration value below the gravitational acceleration.
  • the specified acceleration value in the direction of flight be different than the specified value in the two other directions which are expediently orthogonal thereto. Whether the specified acceleration value in the direction of flight is chosen to be greater or smaller than the specified value in the other two directions can be made dependent on the missile or on mission data. If the missile is possibly subject to major imbalance or vibration during flight, it is advantageous to increase the values perpendicular to the direction of flight to ensure detente during the flight despite the disturbances. If the missile is very fast, it also experiences a relatively large negative acceleration due to the air resistance, during which it is permanently decelerated, even during the ballistic flight, which in itself is not heavy. In this case, the value in the direction of flight can be selected to be larger, so that the release signal can already take place if the acceleration state in the direction of flight is still somewhat greater.
  • a further advantageous embodiment of the invention provides that the specified acceleration state is below the gravitational acceleration by at least one specified acceleration value and the processing means is prepared to monitor the acceleration value in the direction of flight and to detect an absolute minimum in the course of the acceleration value.
  • the absolute minimum indicates the lowest air resistance during the flight and thus the achievement of the vertex of the trajectory of the projectile. If the presence of this absolute minimum is used as the arming criterion which must be present for the output of the control signal, in particular simultaneously with the presence of the enable signal, the control signal is not carried out until the projectile has passed the vertex of its path. This allows a high Vorrohr be ensured. Accordingly, the process means checks for the presence of the minimum before it outputs the control signal.
  • a simple check of the acceleration state to a value below the limit value, ie at least the specified acceleration value under acceleration due to gravity, can be achieved with a comparator with which the acceleration value or limit value can be set.
  • a signal of an acceleration sensor can be compared with a preset value and a corresponding release signal can be output if the specified signal value is exceeded or fallen short of.
  • the securing device advantageously comprises a time element for specifying a time interval, wherein the processing means expediently outputs the control signal only when the release signal is present during the time interval, in particular is present uninterrupted.
  • the time element may be part of the sensor unit, part of the process means or separately.
  • a particularly inexpensive circuit can be achieved if the time element is prepared to block the enable signal of the sensor unit during the time interval.
  • the time element can be made particularly inexpensive and reliable.
  • the time interval is greater than one second, so that a free fall must be longer than 5 m in order to use the enable signal to generate the control signal can. If the time interval is greater than two seconds, an unlocking case must be more than 19.62 m.
  • a further advantageous embodiment of the invention is based on the following considerations.
  • a low-power condition of the igniter can be detected during the flight of the projectile.
  • the low-energy state can be characterized by an acceleration state in which the total acceleration of the igniter is below the limit value.
  • a state "flight" can be distinguished from the state "ground” to generate the control signal as a release criterion, in particular as a further arming criterion according to a first arming criterion.
  • Projectiles usually spin around their longitudinal axis during a flight, even if they are fired without a spin.
  • a usual roll rate is up to 2 Revolutions per second, whereby modern ammunition for flight stabilization by a tail unit during flight is brought up to 20 revolutions per second.
  • the sensor unit is not located exactly in the axis of rotation of the projectile during flight, it is subject to a centrifugal force of the projectile in the air, which acts as a lateral acceleration and is measured by the sensor unit accordingly.
  • the sensor unit can be mounted sufficiently accurately in the longitudinal axis of the projectile, since manufacturing tolerances can be kept low.
  • the geometric longitudinal axis of the projectile is usually not in the axis of rotation of the projectile, ie the axis about which the projectile rolls during the flight.
  • the deviation can result from an asymmetrical loading of the projectile with other components and above all disintegration agents, which draw the center of gravity of the projectile from the geometric longitudinal axis.
  • Such imbalance can lead to disturbing transverse acceleration values of the sensor unit at high roll rates, which reduce the reliability of outputting a control signal for the purpose of arming.
  • the sensor unit has a roll sensor which is prepared to detect a roll of the projectile and to output a roll signal in the event of a rolling movement of the projectile, then the roll can be recognized and processed as additional information, e.g. from the process means for outputting the control signal for unlocking.
  • the process means is prepared to output the control signal for unlocking in dependence on the presence of the roll signal.
  • the rolling of the bullet is to be distinguished from a spin of bullets. While a twist is usually above 100 Hz, rolling is already below 100 Hz. In the following, a rotation between 1 Hz and 50 Hz, in particular between 2 Hz and 25 Hz, is defined as a roll and above 50 Hz as a twist.
  • the roll sensor detects a twist-free rolling of the projectile and outputs the roll signal even in a swirl-free state of the projectile.
  • the state "flight" can be clearly recognized from this
  • the predetermined property is expediently selected such that it indicates the state "flight”. with predetermined sufficient safety characterized.
  • the process means is prepared to check both the enable signal and the roll signal on their presence and output in the presence of at least one of the two signals, the control signal for unlocking.
  • a logical OR circuit of the two signals can be used, which indicates whether one or the other signal is present.
  • the control signal can also be output if both signals are present simultaneously.
  • the sensor unit of the projectile may experience a lateral acceleration due to an imbalance of the projectile, however, the longitudinal acceleration is small in any case. It is only determined by the delay due to air resistance. It is therefore advantageous for the state "flight" recognized by the roll signal to be verified by a query of the longitudinal acceleration, that is to say the acceleration of the fuze in the direction of flight or in the direction of its longitudinal axis or in the axial direction. to check, in the presence of the roll signal, whether the acceleration of the projectile in the axial direction is below a predetermined value and to output the control signal for unlocking only if the value is undershot.
  • the roll sensor is expediently an acceleration sensor, which is arranged in particular outside the geometric longitudinal axis of the projectile. If this experiences a permanent acceleration, ie beyond a predetermined period of time, above the acceleration of gravity, or more generally: above a predetermined value, this is an indication of the presence of the condition "flight.”
  • the roll signal can be output to the process means a magnetic field sensor conceivable that senses the earth's magnetic field and recognizes the roles and thus the state "flight" based on the relative rotation of the earth's magnetic field. Also advantageous is a gyroscope or a revolution counter.
  • the processing means is prepared to distinguish a free rolling of the projectile from a rolling of the projectile on a substrate on the basis of signals, in particular signals from the sensor unit such a distinction can be made on the basis of measurements of the lateral acceleration over time, in a free-rolling these are constant, possibly even zero or near zero, whereas bottom roll is characterized by alternating lateral acceleration values in the orthogonal transverse directions.
  • the signals are therefore expediently signals which were obtained from the measurement of the lateral acceleration of the projectile or of the detonator.
  • a corresponding acceleration sensor is present, in particular as part of the sensor unit.
  • the sensor unit has a floor roll sensor which is prepared to detect a floor roll of the projectile on a substrate and to output a floor roll signal in the event of floor rolls.
  • the floor rolling may be a rolling movement with a lateral acceleration of the projectile which is in a predetermined relationship with the rolling movement.
  • the process means is prepared to suppress the output of the control signal for unlocking the interruption means in the presence of the ground roll signal. Underpressure is also understood to mean that the control signal will not output, regardless of whether it has already been generated in a signal pre-stage.
  • the bottom roll sensor may be part of the sensor unit or may be configured separately.
  • the invention is also directed to an igniter of a projectile having a safety device as described.
  • the invention relates to a method for releasing a fuse of a projectile, the ignition device for igniting the igniter and a safety device having a fuse unit containing a processing means for securing an ignition of the ignition device.
  • a sensor unit output a release signal in the case of a defined acceleration state, and a control signal for unlocking the security unit be output as a function of the presence of the release signal.
  • the invention relates to a method for releasing a fuse of a projectile, which has a detonating chain for igniting the igniter and an interrupting means for interrupting the detonating chain.
  • an acceleration state in the igniter is detected by means of a sensor unit after the acceleration state has fallen below the acceleration due to gravity by at least one specified acceleration value Release signal is output and in dependence on the presence of the enable signal, the interruption means is unlocked.
  • Fig. 2 is a circuit diagram of a safety device of a detonator
  • Fig. 3 is a circuit diagram of an alternative securing device of a
  • Fig. 1 shows an operating scheme of a safety device 2 of a fuze 4 (Fig. 2) of a projectile.
  • a launch of the projectile is detected by a first securing means 6, for example a double-bolt system.
  • a timer set in motion, which ensures a Vorrohrschreib.
  • a third securing means 10 which may be a sensor unit for measuring an acceleration state, detects a low-acceleration flight condition and outputs a corresponding signal. This is given together with an action of the timer on an AND logic 12, which can be realized mechanically or electronically. An action can be done mechanically, z. B. by a mechanical release, or an electrical signal.
  • the operation of the AND logic 12 is switched to a further AND logic 14, which also acts on a third securing means 16, z. B. another time element.
  • the AND logic 14 acts on a means 18 for focusing the igniter 4, so that, for example, a force element is unlocked.
  • a fire signal 20 which must coincide with a sharp state of the igniter 4 by the means 18 - according to the further AND logic 22 - an ignition 24 of the igniter 4 is effected.
  • the securing device 2 from FIG. 1 is shown in FIG. 2 on the basis of a circuit diagram. It is housed in the igniter 4, which comprises a detonating chain with two ignition means 26, 28, wherein the ignition means 26 ignites the ignition means 28 with an ignition energy.
  • the igniter 4 may include an interrupting means 30, e.g. B. in the form of a movable barrier, which can be swung out by a mechanism 32 from the ignition chain, so that the ignition means 26 can ignite to the ignition means 28.
  • the mechanism 32 is controlled by a processing means 34 via a signal line 36, on which the processing means 34 sends a control signal for releasing the interruption means 30 to the mechanism 32, which converts the control signal into a mechanical movement for leading out of the interruption means 30 from the firing chain.
  • securing means 6, 8, 16 the ignition of the igniter and the fuse of the ignition process is described concretely in the illustrated embodiment, but the invention is not limited to these specific means. Rather, it is just as possible to use more or less and / or other securing means and to dispense with the ignition chain and in particular the interruption means and to use a different ignition and in particular interruption. In particular, an electronically controlled ignition and / or a purely electronic interruption of an ignition process is conceivable.
  • the process means 34 is connected to a sensor unit 38, which is an acceleration sensor unit. It is designed as a low-g sensor unit, which detects an acceleration state in which the amount of the total acceleration, z. B. in igniter 4, below the acceleration due to gravity, that is below the g-value of about 9.81 m / s 2 . Conveniently, it is therefore an acceleration sensor that responds to a total acceleration whose magnitude is below the acceleration due to gravity.
  • the sensor unit 38 comprises a sensor 40 with three outputs 42, 44, 46, each with a filter 48, three comparators 50, 52, 54, a time element 56 with an ohmic resistor 58 and a capacitor 60 and a comparator 62.
  • An output stage 64 which may be part of the processing means 34 is designed to output a release signal.
  • the securing device 2 comprises a self-test unit 66 with a controller 68.
  • the senor 40 which is a three-axis acceleration sensor, measures the acceleration in three orthogonal spatial directions, namely in the direction of flight of the projectile, ie parallel to its longitudinal axis, and in two transverse directions perpendicular to each other and perpendicular to the direction of flight. As a result of its measurement, it outputs an output signal for each spatial direction which is in a known relation to the acceleration of the sensor 40 in the corresponding spatial direction.
  • the three signals are output on the three outputs 42, 44, 46, wherein the sensor 40 is mounted in the fuse or igniter 4 so that on the output 42, the signal is applied, the acceleration of the igniter 4 and the securing device 2 indicates in the direction of flight of the projectile.
  • On the other two outputs 44, 46 are the two signals that correspond to the acceleration of the sensor 40 in the transverse directions.
  • the three signals are filtered by one of the filters 48, which is a low-pass filter.
  • This filter 48 filters the high-frequency component of the signal above z. B. 100 Hz out.
  • the filtered signals are applied to the three comparators 50, 52, 54. At their inputs is thus in each case the corresponding signal and in each case a comparison signal v ⁇ v 2 , v 3 , wherein the comparators 50, 52, 54 compare the signals respectively.
  • the comparison signals v ⁇ v 2 , v 3 in this case form threshold values.
  • the output signal of the comparator 50 is located on a z. B. negative or low voltage value in relation to ground or another reference potential value. If the signal from the filter 48 exceeds the comparison signal v 1 (for example, the output signal of the comparator 50 is a positive or a higher voltage.
  • the signals from the outputs 42, 44, 46 correspond to the respective acceleration of the sensor 40 in a spatial direction, the sensor 40 outputs the signals inverted. The higher the acceleration in one direction, the lower the signal at the corresponding output 44, 44, 46.
  • the comparison signals v ⁇ v 2 , v 3 thus form limit or threshold values, wherein when the signals exceed the above Comparison signals ⁇ ⁇ v 2 , v 3 - ie with a decrease in the accelerations below the threshold values - the respective output signal of the comparators 50, 52, 54 from z. B. negative in a z. B. transferred positive potential.
  • the comparison signals v ⁇ v 2 , v 3 form threshold values which correspond to acceleration limit values in each case in one spatial direction. Falls below the acceleration in one
  • the limit the signal rises on the output 42 via the comparison signal v 1 and the output voltage of the comparator 50 is positive.
  • the limits are each below the set value by a specified value
  • the signal on the output line 70 is negative, since it is held negative by the other two comparators 50, 52, 54. If the outputs of two comparators 50, 52, 54 are positive, a voltage source 72 ensures that the signal on the output line 70 is also negative or at a corresponding electrical potential. Only when all three outputs of
  • Comparators 50, 52, 54 are positive, so the signal on the output line 70 is positive.
  • the positive signal reaches the time element 56, which is implemented by the resistor 58 and the capacitor 60 so that the positive signal on the
  • Output line 70 is blocked for a predetermined period of time, so that it does not reach the line 74.
  • the duration may, for example, be a few seconds, e.g. B. 1 - be 5 seconds. Only after this period of time is the capacitor 60 charged and the signal is present on the line 74. As a result, the potential on the line 74 is higher than the comparison signal v 4 at the comparator 62
  • Comparator 62 changes from z. B. negative to positive potential and thereby generates a release signal to the output stage 64, the release signal in the same or changed form to the process means 34 passes in two outputs, once as a positive signal and in addition to safety as a negative signal.
  • the processing means 34 In the presence of the enable signal, the processing means 34 generates the control signal for driving the mechanism 32 and releasing the interruption means 30 or the ignition chain.
  • the release signal is passed on directly to the mechanism 32 or the interruption means 30 for releasing the ignition chain.
  • the output stage 64 already outputs the control signal without the process means 34 being necessary for this purpose.
  • the output stage 64 can be understood here as a process agent itself.
  • the process means 34 is also connected directly to the output 42 of the sensor 40 and thereby monitors the acceleration value of the sensor 40 in the direction of flight.
  • the monitoring is directed to an absolute minimum in the course of this acceleration value, expediently only the frequency part z.
  • B a Fourier spectrum of the signal on the output 42 with a frequency in the range greater than one second for evaluation to the absolute minimum.
  • the flying through of the vertex of the trajectory is detected, and in another embodiment, the presence of this minimum is used as a further safety criterion for generating the control signal on the signal line 36.
  • the enable signal from the output stage 64 is present and the minimum has not yet been detected, then no control signal is given to the mechanism 32. Only when the minimum has been detected and at the same time the release signal from the output stage 64 over a period which is greater than a predetermined limit, in the range of 1-5 seconds, the process means 34 was present, the control signal is switched to the signal line 36.
  • the fuse unit 2 can be checked.
  • a switch 76 is closed by the controller 68 and the potential on the line 74 permanently z. B. held negative potential.
  • the command for such a self-test is generated by the processing means 34, which responds, for example, to a command from an operator.
  • the controller 68 outputs a corresponding signal to the sensor 40 due to which the potentials on the outputs 42, 44, 46 are increased by a predetermined value, corresponding to a very low acceleration.
  • the corresponding values are used by the self-test unit 66 for Control tapped, evaluated and the result is communicated to the controller 68. Although this generates the positive signal on the output line 70 and optionally propagates it via the time element 56, the closed switch 76 ensures that the comparator 62 does not generate an enable signal.
  • the controller 68 outputs an additional blocking signal to the output stage 64.
  • FIG. 3 shows a further embodiment in which the sensor unit 38 shown in FIG. 2 is extended by a roll sensor 78 and a floor roll sensor 80.
  • the representation of the self-test unit 66 and the controller 68 of the sensor unit 38 has been dispensed with, it being understood that both units can be present. All components shown are part of the igniter 4, which is also indicated in Fig. 3.
  • the sensor unit 38 as shown in Fig. 3 comprises a roll sensor 78, a bottom roll sensor 80 and a low-g sensor 82, which has already been described to Fig. 2 and is the same as described for Fig. 2.
  • the low-g sensor 82 is opposed by the roll sensor 78. Both sensors 82, 78 generate their signal independently and deliver it to output stage 64, with both the low-g signal that low-g sensor 82 supplies to output stage 64 and the roll signal, that of roll sensor 78 to the output stage 64 which can trigger the control signal to enable the interruption means 30.
  • the roll sensor 78 comprises a sensor 84, in this embodiment a single-axis gyroscope, which detects a rolling movement of the igniter 4 about its roll axis. Equally well an acceleration sensor is possible, which is arranged outside the longitudinal axis of the projectile.
  • the signal from the sensor 84 is filtered by a filter 86, which is a low-pass filter for filtering noise, and given to a comparator 88.
  • the resulting signal is applied to a comparator 92 via a time element 90, which has the same structure as the time element 56 given, which outputs the roll signal.
  • the time element 90 and the comparator 92 are used by the bottom roll sensor 80 and are shown as part of the bottom roll sensor 80, they can just as well be components of the roll sensor 78.
  • the sensor 84 When the projectile or the igniter 4 rolls, the sensor 84 generates a signal which corresponds to the rolling rate, that is to say the rotational speed of the igniter 4 about the rolling or longitudinal axis of the igniter 4 or projectile. The signal grows with increasing roll rate.
  • the signal is compared by the comparator 88 with a comparison signal v 5 .
  • the comparator 88 When the signal rises above the comparison signal v 5 , the comparator 88 outputs a positive signal, or the signal of the comparator 88 changes from a negative or a low value to a positive or higher value.
  • the comparison signal v 5 is chosen so that the roll signal only becomes positive at a fixed roll rate, for example 2 Hz. Below this fixed roll rate, the lateral acceleration acting as a disturbance acceleration is the sensor
  • Duration which may be in the range of 1 - 5 seconds, for example, is present uninterrupted. Only when this is the case, the roll signal penetrates to the comparator 92 is there - released analogously to the comparator 62 and given to the output stage 64.
  • the low g signal of the low sensor 82 and the roll signal of the roll sensor 78 are treated equivalently in the output stage 64. If one of the two signals is present, the output stage 64 and the processing means 34 react as described for FIG. 2 and the control signal for unlocking the interruption means 30 is output. The low-g signal and the roll signal are therefore in an OR
  • the control signal can thus be triggered simultaneously even when both signals are present, which is usually the case, that is to say with a small imbalance of the projectile.
  • a triggering of the control signal for unlocking the interruption means 30 is to be avoided at all costs, when the projectile is rolled on the ground and
  • the roll sensor 78 can not distinguish whether the rolling motion is due to smooth rolling on the ground or rolling in free flight, and therefore gives the roll signal even when rolling on the ground Floor off.
  • the sensor unit 38 is equipped with the floor roll sensor 80, which detects rolling of the floor on the floor.
  • the ground roll sensor 80 uses an input signal from an output of the sensor unit 20, namely a signal of the output 44 or 46 or both outputs 44, 46, which represent the lateral acceleration.
  • the two sensors of the sensor unit 40 which measure the transverse accelerations, output an alternating signal, since they measure the gravitational acceleration downward. Since the sensor unit 40, at least its two sensors that measure the lateral acceleration, in the geometric
  • Axis of the projectile is arranged, the speed of the rolling effect almost not on the amplitude of the alternating signal, since the sensor unit 40 measures no centrifugal force.
  • the alternating signal is filtered by a filter 94, which is a high-pass filter, so that only high-frequency components of the alternating signal above a predetermined frequency, for example 2 Hz, pass through the filter. In this way, only a bottom roll above the predetermined frequency is detected.
  • the alternating signal is converted into a simply smoothed DC voltage signal, which is now applied to the comparator 98.
  • Rolling of the projectile on a ground causes at the entrance of the filter 94 an alternating signal with the roll frequency and the amplitude, which corresponds to approximately 1 g.
  • the frequency information is at least substantially eliminated because the AC signal is converted into a DC voltage.
  • the magnitude of the DC signal corresponds to the total acceleration value of approximately 1 g and is therefore independent of the type of rolling. With no floor rolls or one
  • Ground roles below the predetermined frequency is no signal at the comparator 98, except for noise that can be caused, for example, by shaking the bullet. Interference resulting from transverse movements of the projectile below a predetermined acceleration, z. B. below 0.5 g, are blocked by the comparator 98.
  • the roll sensor 78 When the projectile rolls over a ground, the roll sensor 78 outputs a positive roll signal.
  • the comparator 98 outputs a ground roll signal indicative of ground roll.
  • the ground roll signal is a negative signal, which dubles the roll signal of the roll sensor 78, so that no sufficiently positive signal can be present at the comparator 92. The release of the roll sensor 78 is thus blocked by the bottom roll sensor 80.
  • the output signal of the comparator 50 which indicates an acceleration in the direction of flight, is applied to the roll signal. This signal also plays over the roll signal. If, for example, a roll signal, that is to say a positive signal, is output, the longitudinal acceleration of the fuze 4 is not below the limit, this is a sign that the projectile is not in free flight. Accordingly, the signal of the comparator 50 is zero or negative and dubbing the positive roll signal so that it can not trigger the control signal for unlocking the interruption means.
  • roll sensor 78 and bottom roll sensor 80 can also be subjected to a self-test, as described for FIG. 1.
  • the switch 96 is closed and the sensor 84 is controlled by the processing means 34 or the controller 68, so that the roll sensor outputs the roll signal and at the same time and / or offset in time, the bottom roll sensor 80, the ground roll signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Air Bags (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Toys (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

Die Erfindung geht aus von einer Sicherungseinrichtung (2) für einen Zünder (4) eines Geschosses, das eine Zündeinrichtung zum Zünden des Zünders (4) aufweist, umfassend eine Sicherungseinheit mit einem Prozessmittel (34) zum Sichern eines Zündvorgangs der Zündeinrichtung. Es wird vorgeschlagen, dass die Sicherungseinheit eine Sensoreinheit (38) enthält, die dazu vorbereitet ist, bei einem festgelegten Beschleunigungszustand ein Freigabesignal auszugeben, wobei das Prozessmittel (34) dazu vorbereitet ist, in Abhängigkeit vom Vorliegen des Freigabesignals ein Steuersignal zum Entsichern der Sicherungseinheit auszugeben. Hierdurch kann ein beschleunigungsarmer Zustand des Fluges des Geschosses erkannt und als Entsicherungsparameter genutzt werden.

Description

Sicherungseinrichtung für einen Zünder eines Geschosses
Die Erfindung betrifft eine Sicherungseinrichtung für einen Zünder eines Geschosses, das eine Zündeinrichtung zum Zünden des Zünders aufweist, umfassend eine Sicherungseinheit mit einem Prozessmittel zum Sichern eines Zündvorgangs der Zündeinrichtung.
Eine Sicherungseinrichtung für einen Zünder dient dazu, eine unabsichtliche Aktivierung einer Hauptladung eines Geschosses zu verhindern, wobei jedoch eine Aktivierung der Hauptladung nach einer Entsicherung möglich sein soll. Die Sicherungseinrichtung ist hierfür Bestandteil eines Zünders zum Zünden der Hauptladung, der mit einer Zündkette aus zwei oder mehr Zündmitteln versehen sein kann. Zum Zünden der Hauptladung wird zunächst das erste Zündmittel aktiviert, z. B. ein anstichempfindlicher Minidetonator, der von einer Anstichnadel angestochen wird. Explosionsenergie des ersten Zündmittels wird durch eine entsprechende Anordnung der ersten beiden Zündmittel auf das zweite Zündmittel übertragen, der als Zündverstärker ausgeführt sein kann. Dieser kann seine Explosionsenergie auf eine Ausgangsladung oder Hauptladung übertragen.
Bisherige Zünder, vor allem einfacher Geschosse, wie Mörsergranaten, weisen als ein erstes Sicherungsmittel einen Vorstecker und als zweites Sicherungsmittel eine Vorrichtung auf, welche den Abschussschock detektiert. Der Nachteil dieser Sicherungsmittel besteht darin, dass vor dem Laden der Mörsergranate der Vorstecker manuell gezogen werden muss. Relativ häufig kommt es vor, dass das Ziehen des Vorsteckers vergessen wird und die Mörsergranate zu einem Blindgänger wird.
Es ist eine Aufgabe der vorliegenden Erfindung, eine Sicherungseinrichtung für einen Zünder eines Geschosses anzugeben, die einen von einem Abschussparameter unabhängigen physikalischen Entsicherungsparameter zur Entriegelung des Sicherungsmittels nutzt, ohne dass ein Vorstecker gezogen werden muss. Diese Aufgabe wird durch eine Sicherungseinrichtung der eingangs genannten Art gelöst, bei der die Sicherungseinheit eine Sensoreinheit enthält, die dazu vorbereitet ist, bei einem festgelegten Beschleunigungszustand ein Freigabesignal auszugeben, wobei das Prozessmittel dazu vorbereitet ist, in Abhängigkeit vom Vorliegen des Freigabesignals ein Steuersignal zum Entsichern der Sicherungseinheit auszugeben. Die Aufgabe wird außerdem und insbesondere durch eine Sicherungseinrichtung für einen Zünder eines Geschosses gelöst, die eine Zündkette zum Zünden des Zünders und ein Unterbrechungsmittel zum Unterbrechen der Zündkette aufweist, wobei die Sicherungseinrichtung eine Sensoreinheit umfasst, die dazu vorbereitet ist, bei einem Beschleunigungszustand im Zünder, der um zumindest einen festgelegten Beschleunigungswert unter der Erdbeschleunigung liegt, ein Freigabesignal auszugeben, und ein Prozessmittel, das dazu vorbereitet ist, in Abhängigkeit vom Vorliegen des Freigabesignals ein Steuersignal zum Entsichern des Unterbrechungsmittels auszugeben.
Zur Entsicherung des Zünders kann die Schwerelosigkeit bzw. ein Zustand geringer Schwere, also geringer Beschleunigung genutzt werden. Dieser Parameter ist von einem Abschussparameter unabhängig und mit ihm kann, z. B. in Verbindung mit der Verwendung eines Abschussparameters, eine hohe Sicherheit gegen ungewolltes Zünden erreicht werden.
Da ein ballistischer Flug durch einen im Wesentlichen schwerelosen Zustand des Geschosses gekennzeichnet ist, kann das Sensieren des schwerelosen Zustands bzw. eines Zustands mit einer geringen Beschleunigung als Entsicherungsparameter verwendet werden. Wird durch einen Beschleunigungssensor ein vorbestimmter Beschleunigungszustand im Zünder oder des Zünders registriert, der beispielsweise weit unterhalb der Erdbeschleunigung liegt, so kann daraus auf das Vorliegen der Flugphase geschlossen werden und das Unterbrechungsmittel kann entsichert werden.
Die Erfindung ist besonders geeignet für ballistische Flugkörper, wie Geschosse, insbesondere Mörsergranaten, Raketen mit einer antriebslosen Flugphase, Bomben und dergleichen. Ballistische Flugkörper durchfliegen eine Flugbahn, die annähernd durch eine Flugparabel gekennzeichnet ist und in der der Flugkörper - einmal abgesehen von der Verzögerungsbeschleunigung durch Luftwiderstand - in einem schwerelosen Zustand ist. Die Zündeinrichtung kann eine Zündladung enthalten. Insbesondere kann sie Teil einer Zündkette zum Zünden des Zünders sein oder diese enthalten. Die Sicherungseinheit dient zum Sichern des Zündvorgangs, insbesondere gegen eine unbeabsichtigte Entsicherung des Zünders. Sie kann rein elektronisch ausgeführt sein, beispielsweise indem sie Signale von Sensoren, die physikalische Parameter messen, verarbeitet und bei Vorliegen eines vorbestimmten Signalzustands, bzw. eines entsprechenden physikalischen Zustands des Zünders, eine Entsicherung durch Ausgabe eines Steuersignals einleitet. In einer anderen Ausführungsform oder zusätzlich zur beschriebenen elektronischen Variante kann die Sicherungseinheit mechanische Sicherungsmittel umfassen, z. B. ein Unterbrechungsmittel zum Unterbrechen der Zündkette. Das Unterbrechungsmittel kann zum Aufnehmen und/oder Umlenken von Zündenergie eines Zündmittels dienen, so dass ein Zünden des weiteren Zündmittels durch Zündenergie des ersten Zündmittels zuverlässig unterbunden ist. Das Unterbrechungsmittel kann eine Barriere sein, ein Mittel zum Außerfluchtsetzen zweier Zündmittel oder ein anderes beliebiges Mittel zum Verhindern oder Unterbrechen eines Zündvorgangs durch die Zündkette. Das Unterbrechungsmittel kann mehrere Sicherungsmittel umfassen, die eine Barriere entriegeln und vorteilhafterweise voneinander unabhängig aktiviert werden müssen.
In einer vorteilhaften Ausführungsform der Erfindung umfasst die Zündeinrichtung eine Zündkette mit einer Zündladung zum Zünden des Zünders und die Sicherungseinheit umfasst ein Unterbrechungsmittel zum Unterbrechen der Zündkette. Hierdurch kann ein Zündvorgang auf einfache Weise mechanisch gesichert werden.
Der Beschleunigungszustand kann die momentane Beschleunigung der Sensoreinheit und/oder des Zünders sein. Der festgelegte Beschleunigungszustand ist insbesondere ein Beschleunigungszustand im Zünder. Er liegt um zumindest einen festgelegten Beschleunigungswert unter der Erdbeschleunigung, also unter einem Grenzwert, der unterhalb der Gravitationsbeschleunigung liegt, und kann jeder Wert unterhalb der Gravitationsbeschleunigung bzw. der Erdbeschleunigung sein, die in etwa bei 9,81 m/s2 liegt. Auch ein Beschleunigungsbereich unter der Erdbeschleunigung ist möglich, z.B. zwischen 0 m/s2 und 5 m/s2. Vorteilhafterweise liegt der festgelegte Beschleunigungszustand in Längsrichtung bzw. Flugrichtung des Geschosses unter 5 m/s2, zweckmäßigerweise liegt er in allen drei Raumrichtungen unter diesem Wert, insbesondere liegt die Gesamtbeschleunigung unter diesem Wert. Der festgelegte Beschleunigungszustand bzw. Grenzwert oder Beschleunigungswert kann durch eine entsprechende Einstellung in der Sicherungseinrichtung, z.B. der Sensoreinheit und/oder dem Prozessmittel, oder in einer anderen Einheit hinterlegt sein.
Die Sensoreinheit enthält zweckmäßigerweise einen Beschleunigungssensor, der dazu vorbereitet sein kann, die momentan vorliegende Beschleunigung, z. B. im Zünder, zu messen. Die Beschleunigung kann aufgrund einer Kraft gemessen werden, die als Resultat der Gravitation auf den Beschleunigungssensor wirkt und/oder die als Ergebnis einer Änderung der Geschwindigkeit des Sensors bei seiner Bewegung durch den Raum erfolgt. Die Sensoreinheit kann den Beschleunigungszustand als eindimensionale Beschleunigung messen. Zweckmäßigerweise wird der Beschleunigungszustand mehrdimensional gemessen, insbesondere dreidimensional.
Zweckmäßigerweise ist die Sensoreinheit so ausgeführt, dass ein Freigabeprozess beginnt, sobald der Beschleunigungszustand unter den Grenzwert fällt. Der Freigabeprozess kann durch ein oder mehrere Signale beginnen, die bei Absinken der Beschleunigung unter den Grenzwert ausgegeben werden. Der Freigabeprozess führt zum Freigabesignal, jedoch möglicherweise erst, wenn weitere Bedingungen vorliegen, z.B. der Beschleunigungszustand über eine vorbestimmte Zeitdauer unter dem Grenzwert liegt, oder er wird abgebrochen, z.B. wenn der Beschleunigungszustand zu schnell wieder über den Grenzwert ansteigt.
Das Prozessmittel ist dazu vorbereitet, das Vorliegen des Freigabesignals zu prüfen und in Abhängigkeit von dessen Vorliegen das Steuersignal zum Entsichern auszugeben. Eine solche Vorbereitung kann durch ein entsprechendes Steuerprogramm vorliegen, dessen Ablauf - beispielsweise in Verbindung mit den Eingangssignalen aus dem Beschleunigungssensor - eine solche Steuerung bewirkt. Das Steuersignal ist zweckmäßigerweise ein elektrisches Signal auf einer Datenleitung, das in Verbindung mit einer entsprechenden Entsicherungsvorrichtung ein Entsichern triggern kann. Auch das Freigabesignal ist zweckmäßigerweise ein elektrisches Signal, das über eine Datenleitung an das Prozessmittel übergeben wird.
In einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Sensoreinheit zum Messen von drei Richtungsbeschleunigungen in drei zueinander orthogonalen Raumrichtungen vorbereitet. Hierdurch kann eine Gesamtbeschleunigung bzw. ein Beschleunigungszustand im Zünder in einfacher Weise aus den drei Richtungsbeschleunigungen errechnet werden. Vorteilhafterweise erfolgt das Freigabesignal erst, wenn jede der drei Richtungsbeschleunigungen zumindest um jeweils einen festgelegten Beschleunigungswert unter der Erdbeschleunigung liegt. Hierzu kann beispielsweise die Sensoreinheit eine logische Und-Verknüpfung umfassen, die erst erfüllt ist, wenn jede Richtungsbeschleunigung zumindest um jeweils den festgelegten Beschleunigungswert unter der Gravitationsbeschleunigung liegt.
Weiter wird vorgeschlagen, dass der festgelegte Beschleunigungswert in Flugrichtung anders ist, als der festgelegte Wert in die beiden anderen dazu zweckmäßigerweise orthogonalen Richtungen. Ob der festgelegte Beschleunigungswert in Flugrichtung größer oder kleiner als der festgelegte Wert in die beiden anderen Richtungen gewählt wird, kann vom Flugkörper oder von Missionsdaten abhängig gemacht werden. Ist der Flugkörper gegebenenfalls einer größeren Unwucht oder einem Vibrieren während des Flugs ausgesetzt, so ist es vorteilhaft, die Werte senkrecht zur Flugrichtung größer zu wählen, um ein Entsichern während des Flugs trotz der Störungen zu gewährleisten. Ist der Flugkörper sehr schnell, so erfährt er auch während des an sich schwerlosen ballistischen Flugs eine relativ große negative Beschleunigung durch den Luftwiderstand, durch den er permanent verzögert wird. In diesem Fall kann der Wert in Flugrichtung größer gewählt werden, damit das Freigabesignal bereits erfolgen kann, wenn der Beschleunigungszustand in Flugrichtung noch etwas größer ist.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass der festgelegte Beschleunigungszustand um zumindest einen festgelegten Beschleunigungswert unter der Erdbeschleunigung liegt und das Prozessmittel dazu vorbereitet ist, den Beschleunigungswert in Flugrichtung zu überwachen und ein absolutes Minimum im Verlauf des Beschleunigungswerts zu erkennen. Das absolute Minimum deutet auf den geringsten Luftwiderstand während des Flugs und mithin auf das Erreichen des Scheitelpunkts der Flugbahn des Geschosses hin. Wird das Vorliegen dieses absoluten Minimums als Entsicherungskriterium verwendet, das zur Ausgabe des Steuersignals vorliegen muss, insbesondere zeitgleich mit dem Vorliegen des Freigabesignals, erfolgt das Steuersignal erst, nachdem das Geschoss den Scheitelpunkt seiner Bahn passiert hat. Hierdurch kann eine hohe Vorrohrsicherheit gewährleistet werden. Entsprechend prüft das Prozessmittel das Vorliegen des Minimums bevor es das Steuersignal ausgibt.
Eine einfache Prüfung des Beschleunigungszustands auf einen Wert betragsmäßig unterhalb des Grenzwerts, also um zumindest den festgelegten Beschleunigungswert unter der Erdbeschleunigung, kann mit einem Komparator erreicht werden, mit dem der Beschleunigungswert bzw. Grenzwert einstellbar ist. So kann ein Signal eines Beschleunigungssensors mit einem voreingestellten Wert verglichen und bei einem Über- oder Unterschreiten des festgelegten Signalwerts ein entsprechendes Freigabesignal ausgegeben werden.
Zum Erhöhen der Sicherheit ist es vorteilhaft, wenn ein kurzfristiges und unbeabsichtigtes Herunterfallen des Geschosses nicht zu einem Entsichern der Sicherungseinrichtung führt, sondern das Freigabesignal erst dann als solches weiter verwendet wird, wenn der schwerelose bzw. schwerearme Zustand eine festgelegte Zeitspanne vorliegt. Hierfür umfasst die Sicherungseinrichtung vorteilhafterweise ein Zeitelement zur Vorgabe eines Zeitintervalls, wobei das Prozessmittel zweckmäßigerweise das Steuersignal erst dann ausgibt, wenn das Freigabesignal während des Zeitintervalls vorliegt, insbesondere ununterbrochen vorliegt.
Das Zeitelement kann Teil der Sensoreinheit, Teil des Prozessmittels oder separat ausgeführt sein. Eine besonders preisgünstige Schaltung kann erreicht werden, wenn das Zeitelement dazu vorbereitet ist, das Freigabesignal der Sensoreinheit während des Zeitintervalls zu blockieren. Durch ein RC-Glied und einen Potentialauswerter im RC-Glied kann das Zeitelement besonders preisgünstig und zuverlässig hergestellt werden. Zweckmäßigerweise ist das Zeitintervall größer als eine Sekunde, damit ein freier Fall länger als 5 m betragen muss, um das Freigabesignal zum Erzeugen des Steuersignals verwenden zu können. Ist das Zeitintervall größer als zwei Sekunden, muss ein entsichernder Fall mehr als rund 19,62 m betragen.
Einer weiteren vorteilhaften Ausführungsform der Erfindung liegen folgende Überlegungen zugrunde. Bei Einsatz eines Drei-Achsen-Beschleunigungssensors kann ein kräftearmer Zustand des Zünders während des Flugs des Geschosses erkannt werden. Der kräftearme Zustand kann durch einen Beschleunigungszustand charakterisiert sein, bei dem die Gesamtbeschleunigung des Zünders unterhalb des Grenzwerts liegt. Auf diese Weise kann ein Zustand „Flug" vom Zustand „Boden" unterschieden werden, um das Steuersignal als Entsicherungskriterium zu erzeugen, insbesondere als weiteres Entsicherungskriterium nach einem ersten Entsicherungskriterium.
Geschosse drehen sich während eines Flugs in der Regel um ihre Längsachse, auch dann, wenn sie ohne Drall verschossen werden. Eine übliche Rollrate liegt bei bis zu 2 Umdrehungen pro Sekunde, wobei moderne Munition zur Flugstabilisierung durch ein Leitwerk während des Flugs auf bis zu 20 Umdrehungen pro Sekunde gebracht wird. Liegt die Sensoreinheit während des Flugs nicht exakt in der Rotationsachse des Geschosses, so unterliegt sie bei einem Rollen des Geschosses in der Luft einer Zentrifugalkraft, die sich als Querbeschleunigung auswirkt und entsprechend von der Sensoreinheit gemessen wird.
Mechanisch kann die Sensoreinheit ausreichend genau in der Längsachse des Geschosses montiert werden, da Fertigungstoleranzen gering gehalten werden können. Die geometrische Längsachse des Geschosses liegt jedoch in der Regel nicht in der Rotationsachse des Geschosses, also der Achse, um die das Geschoss während des Flugs rollt. Die Abweichung kann sich aus einer unsymmetrischen Beladung des Geschosses mit anderen Komponenten und vor allem Sprengmittel ergeben, die den Gewichtsschwerpunkt des Geschosses aus der geometrischen Längsachse ziehen. Eine solche Unwucht kann bei hohen Rollraten zu störenden Quer-Beschleunigungswerten der Sensoreinheit führen, die die Zuverlässigkeit des Ausgebens eines Steuersignals zur Entsicherung herabsetzen.
Weist die Sensoreinheit einen Rollsensor auf, der dazu vorbereitet ist, ein Rollen des Geschosses zu erkennen und bei Vorliegen einer Rollbewegung des Geschosses ein Rollsignal auszugeben, so kann das Rollen erkannt und als Zusatzinformation verarbeitet werden, z.B. vom Prozessmittel zur Ausgabe des Steuersignals zum Entsichern. Zweckmäßigerweise ist das Prozessmittel dazu vorbereitet, das Steuersignal zum Entsichern in Abhängigkeit vom Vorliegen des Rollsignals auszugeben.
Das Rollen des Geschosses ist von einem Drall von Geschossen zu unterscheiden. Während ein Drall üblicherweise bei über 100 Hz liegt, liegt ein Rollen bereits bei unter 100 Hz vor. Im Folgenden wird eine Rotation zwischen 1 Hz und 50 Hz, insbesondere zwischen 2 Hz und 25 Hz, als Rollen und oberhalb von 50 Hz als Drall definiert. Der Rollsensor erkennt ein drallfreies Rollen des Geschosses und gibt das Rollsignal auch in einem drallfreien Zustand des Geschosses aus.
Wird ein Rollen des Geschosses, also eine Rollbewegung des Geschosses in der Luft, erkannt, das eine vorbestimmte Eigenschaft erfüllt, so kann hieraus eindeutig der Zustand„Flug" erkannt werden. Die vorbestimmte Eigenschaft ist zweckmäßigerweise so gewählt, dass sie den Zustand „Flug" mit vorbestimmt ausreichender Sicherheit charakterisiert. Mit dem Rollsignal liegt somit neben dem Freigabesignal ein weiteres Signal vor, das als Auslöser zur EntSicherung verwendet werden kann. Entsprechend ist es vorteilhaft, wenn das Prozessmittel dazu vorbereitet ist, sowohl das Freigabesignal als auch das Rollsignal auf deren Vorliegen zu überprüfen und bei Vorliegen von zumindest einem der beiden Signale das Steuersignal zum Entsichern auszugeben. Zur Ausgabe des Steuersignals zur Entsicherung kann eine logische Oder-Schaltung der beiden Signale verwendet werden, die angibt, ob das eine oder andere Signal vorliegt. Das Steuersignal kann auch ausgegeben werden, wenn beide Signale gleichzeitig vorliegen.
Im Flug erfährt die Sensoreinheit des Geschosses zwar gegebenenfalls eine Querbeschleunigung aufgrund einer Unwucht des Geschosses, jedoch ist die Längsbeschleunigung in jedem Fall klein. Sie ist nur durch die Verzögerung durch den Luftwiderstand vorgegeben. Es ist daher vorteilhaft, wenn der durch das Rollsignal erkannte Zustand „Flug" durch eine Abfrage der Längsbeschleunigung, also der Beschleunigung des Zünders in Flugrichtung bzw. in Richtung seiner Längsachse bzw. in Axialrichtung, verifiziert wird. Zweckmäßigerweise ist das Prozessmittel daher dazu vorbereitet, bei Vorliegen des Rollsignals zu überprüfen, ob die Beschleunigung des Geschosses in Axialrichtung unter einem vorbestimmten Wert liegt und das Steuersignal zum Entsichern nur dann auszugeben, wenn der Wert unterschritten ist.
Der Rollsensor ist zweckmäßigerweise ein Beschleunigungssensor, der insbesondere außerhalb der geometrischen Längsachse des Geschosses angeordnet ist. Erfährt dieser eine dauerhafte Beschleunigung, also über einen vorbestimmten Zeitabschnitt hinaus, über der Erdbeschleunigung, oder allgemeiner: Über einem vorbestimmten Wert, so ist dies ein Zeichen für das Vorliegen des Zustands„Flug". Das Rollsignal kann an das Prozessmittel ausgegeben werden. Alternativ ist ein Magnetfeldsensor denkbar, der das Erdmagnetfeld sensiert und anhand der relativen Rotation des Erdmagnetfelds das Rollen und damit den Zustand„Flug" erkennt. Ebenfalls vorteilhaft ist ein Gyroskop oder ein Umdrehungszähler.
Zur Erhöhung der Sicherheit bei der Erkennung des Zustands„Flug" ist es vorteilhaft, wenn das Prozessmittel dazu vorbereitet ist, anhand von Signalen, insbesondere anhand von Signalen der Sensoreinheit, ein Freiflugrollen des Geschosses von einem Rollen des Geschosses auf einem Untergrund zu unterscheiden. Eine solche Unterscheidung kann auf der Grundlage von Messungen der Querbeschleunigung über die Zeit geschehen. Bei einem Freiflugrollen sind diese konstant, ggf. sogar Null oder nahe Null, wohingegen ein Bodenrollen durch alternierende Querbeschleunigungswerte in den orthogonalen Querrichtungen gekennzeichnet ist. Die Signale sind daher zweckmäßigerweise Signale, die aus der Messung der Querbeschleunigung des Geschosses oder des Zünders gewonnen wurden. Hierzu ist ein entsprechender Beschleunigungssensor vorhanden, insbesondere als Teil der Sensoreinheit.
Liegt ein Bodenrollen vor, so ist die Ausgabe eines Steuersignals zum Entsichern des Unterbrechungsmittels zweckmäßigerweise zu vermeiden. Hierzu ist es vorteilhaft, wenn die Sensoreinheit einen Bodenrollsensor aufweist, der dazu vorbereitet ist, ein Bodenrollen des Geschosses auf einem Untergrund zu erkennen und bei einem Bodenrollen ein Bodenrollsignal auszugeben. Das Bodenrollen kann eine Rollbewegung mit einer Querbeschleunigung des Geschosses sein, die mit der Rollbewegung in einem vorbestimmten Zusammenhang steht. Zweckmäßigerweise ist das Prozessmittel dazu vorbereitet, die Ausgabe des Steuersignals zum Entsichern des Unterbrechungsmittels bei Vorliegen des Bodenrollsignals zu unterdrücken. Unter einem Unterdrücken wird auch verstanden, dass das Steuersignal nicht ausgeben wird, unabhängig davon, ob es in einer Signalvorstufe bereits erzeugt wurde. Der Bodenrollsensor kann ein Teil der Sensoreinheit oder separat ausgeführt sein.
Die Erfindung ist außerdem auf einen Zünder eines Geschosses gerichtet, der eine wie beschriebene Sicherungseinrichtung aufweist.
Außerdem betrifft die Erfindung ein Verfahren zum Entsichern eines Zünders eines Geschosses, das Zündeinrichtung zum Zünden des Zünders und eine Sicherungseinrichtung mit einer Sicherungseinheit aufweist, die ein Prozessmittel zum Sichern eines Zündvorgangs der Zündeinrichtung enthält. Erfindungsgemäß wird vorgeschlagen, dass eine Sensoreinheit bei einem festgelegten Beschleunigungszustand ein Freigabesignal ausgibt und in Abhängigkeit vom Vorliegen des Freigabesignals ein Steuersignal zum Entsichern der Sicherungseinheit ausgegeben wird. Insbesondere betrifft die Erfindung ein Verfahren zum Entsichern eines Zünders eines Geschosses, das eine Zündkette zum Zünden des Zünders und ein Unterbrechungsmittel zum Unterbrechen der Zündkette aufweist. Erfindungsgemäß wird vorgeschlagen, dass mittels einer Sensoreinheit ein Beschleunigungszustand im Zünder erfasst wird, nachdem der Beschleunigungszustand um zumindest einen festgelegten Beschleunigungswert unter die Erdbeschleunigung gefallen ist, ein Freigabesignal ausgegeben wird und in Abhängigkeit vom Vorliegen des Freigabesignals das Unterbrechungsmittel entsichert wird.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung und die Beschreibung enthalten zahlreiche Merkmale in Kombination, die der Fachmann zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen wird.
Es zeigen:
Fig. 1 eine Übersichtsdarstellung einer Sicherungseinrichtung,
Fig. 2 eine Schaltungsdarstellung einer Sicherungseinrichtung eines Zünders und
Fig. 3 eine Schaltungsdarstellung einer alternativen Sicherungseinrichtung eines
Zünders.
Fig. 1 zeigt ein Wirkschema einer Sicherungseinrichtung 2 eines Zünders 4 (Fig. 2) eines Geschosses. Ein Abschuss des Geschosses wird durch ein erstes Sicherungsmittel 6, z.B. ein Doppelbolzensystem, erkannt. Durch dessen EntSicherung wird ein weiteres Sicherungsmittel 8, in diesem Ausführungsbeispiel ein Zeitglied, in Gang gesetzt, das eine Vorrohrsicherheit gewährleistet. Ein drittes Sicherungsmittel 10, das eine Sensoreinheit zum Messen eines Beschleunigungszustands sein kann, erkennt einen beschleunigungsarmen Flugzustand und gibt ein entsprechendes Signal aus. Dieses wird zusammen mit einem Wirken des Zeitglieds auf eine UND-Logik 12 gegeben, die mechanisch oder elektronisch realisiert sein kann. Ein Wirken kann mechanisch erfolgen, z. B. durch eine mechanische Freigabe, oder ein elektrisches Signal sein. Das Wirken der UND-Logik 12 wird auf eine weitere UND-Logik 14 geschaltet, auf die auch ein drittes Sicherungsmittel 16 wirkt, z. B. ein weiteres Zeitelement. Die UND-Logik 14 wirkt auf ein Mittel 18 zum Scharfstellen des Zünders 4, so dass beispielsweise ein Kraftelement entsichert ist. Durch ein Feuersignal 20, das mit einem scharf gestellten Zustand des Zünders 4 durch das Mittel 18 zusammenfallen muss - entsprechend der weiteren UND-Logik 22 - wird ein Zünden 24 des Zünders 4 bewirkt. Die Sicherungseinrichtung 2 aus Fig. 1 ist in Fig. 2 anhand einer Schaltbilddarstellung gezeigt. Sie ist im Zünder 4 beherbergt, der eine Zündkette mit zwei Zündmitteln 26, 28 umfasst, wobei das Zündmittel 26 mit einer Zündenergie das Zündmittel 28 zündet. Zum Unterbrechen der Zündkette kann der Zünder 4 ein Unterbrechungsmittel 30 umfassen, z. B. in Form einer beweglichen Barriere, die durch eine Mechanik 32 aus der Zündkette herausgeschwenkt werden kann, sodass das Zündmittel 26 auf das Zündmittel 28 überzünden kann. Die Mechanik 32 wird von einem Prozessmittel 34 über eine Signalleitung 36 angesteuert, auf der das Prozessmittel 34 ein Steuersignal zum Entsichern des Unterbrechungsmittels 30 an die Mechanik 32 sendet, die das Steuersignal in eine mechanische Bewegung zum Herausführen des Unterbrechungsmittels 30 aus der Zündkette umsetzt.
Die Art der Sicherungsmittel 6, 8, 16, der Zündung des Zünders und der Sicherung des Zündvorgangs ist im dargestellten Ausführungsbeispiel zwar konkret beschrieben, jedoch ist die Erfindung nicht auf diese konkreten Mittel beschränkt. Vielmehr ist es eben so gut möglich, mehr oder weniger und/oder andere Sicherungsmittel einzusetzen und auf die Zündkette und insbesondere das Unterbrechungsmittel zu verzichten und eine andere Zündung und insbesondere Unterbrechung einzusetzen. Denkbar ist insbesondere eine elektronisch gesteuerte Zündung und/oder eine rein elektronische Unterbrechung eines Zündvorgangs.
Das Prozessmittel 34 ist mit einer Sensoreinheit 38 verbunden, die eine Beschleunigungssensoreinheit ist. Sie ist als Nieder-g-Sensoreinheit ausgebildet, die einen Beschleunigungszustand erkennt, in der der Betrag der Gesamtbeschleunigung, z. B. im Zünder 4, unterhalb der Erdbeschleunigung liegt, also unter dem g-Wert von rund 9,81 m/s2. Zweckmäßigerweise handelt es sich also um einen Beschleunigungssensor, der auf eine Gesamtbeschleunigung reagiert, deren Betrag um einen festgelegten Wert unter der Erdbeschleunigung liegt. Die Sensoreinheit 38 umfasst einen Sensor 40 mit drei Ausgängen 42, 44, 46 mit jeweils einem Filter 48, drei Komparatoren 50, 52, 54, einem Zeitelement 56 mit einem ohmschen Widerstand 58 und einem Kondensator 60 sowie einem Komparator 62. Eine Ausgangsstufe 64, die Teil des Prozessmittels 34 sein kann, ist zum Ausgeben eines Freigabesignals ausgebildet. Weiter umfasst die Sicherungseinrichtung 2 eine Selbsttesteinheit 66 mit einer Steuerung 68.
Nicht dargestellt ist eine weitere Sicherungseinrichtung in Form eines Doppelbolzenssystems, das auf einen Abschuss des Geschosses hin auslöst und das Unterbrechungsmittel 30 kurz nach Abschuss freigibt. In diesem Zustand ist das Unterbrechungsmittel 30 weiterhin durch die Mechanik 32 blockiert, sodass die Zündkette weiterhin unterbrochen ist.
Während des Betriebs misst der Sensor 40, der ein Dreiachsenbeschleunigungssensor ist, die Beschleunigung in drei orthogonalen Raumrichtungen, nämlich in Flugrichtung des Geschosses, also parallel zu dessen Längsachse, und in zwei Querrichtungen, die senkrecht zueinander und senkrecht zur Flugrichtung stehen. Als Ergebnis seiner Messung gibt er für jede Raumrichtung ein Ausgangssignal aus, das in einer bekannten Relation zur Beschleunigung des Sensors 40 in die entsprechende Raumrichtung steht. Die drei Signale werden auf den drei Ausgängen 42, 44, 46 ausgegeben, wobei der Sensor 40 so in der Sicherungseinrichtung bzw. im Zünder 4 montiert ist, dass auf dem Ausgang 42 das Signal anliegt, das die Beschleunigung des Zünders 4 bzw. der Sicherungseinrichtung 2 in Flugrichtung des Geschosses angibt. Auf den beiden anderen Ausgängen 44, 46 liegen die beiden Signale an, die den Beschleunigen des Sensors 40 in den Querrichtungen entsprechen.
Die drei Signale werden durch jeweils einen der Filter 48 gefiltert, der ein Tiefpassfilter ist. Dieser Filter 48 filtert den hochfrequenten Anteil aus dem Signal oberhalb von z. B. 100 Hz heraus. Hierdurch werden das Rauschen und ein durch Vibration des Geschosses verursachtes Stören des Beschleunigungssignals zumindest weitgehend eliminiert. Die gefilterten Signale werden auf die drei Komparatoren 50, 52, 54 gegeben. An deren Eingängen liegt somit jeweils das entsprechende Signal und jeweils ein Vergleichssignal v^ v2, v3 an, wobei die Komparatoren 50, 52, 54 die Signale jeweils vergleichen. Die Vergleichssignale v^ v2, v3 bilden hierbei Schwellwerte. Bleibt beispielsweise das Eingangssignal des Komparators 50 vom Filter 48 im elektrischen Potential unterhalb des Vergleichssignals v^ so liegt das Ausgangssignal des Komparators 50 auf einem z. B. negativen oder tiefen Spannungswert in Relation zu Masse oder einem anderen Bezugs-Potentialwert. Überschreitet das Signal aus dem Filter 48 das Vergleichsignal v1 ( so ist das Ausgangssignal des Komparators 50 z. B. eine positive oder höhere Spannung.
Die Signale aus den Ausgängen 42, 44, 46 entsprechen der jeweiligen Beschleunigung des Sensors 40 in eine Raumrichtung, wobei der Sensor 40 die Signale invertiert ausgibt. Je höher die Beschleunigung in eine Richtung ist, desto geringer ist das Signal am entsprechenden Ausgang 44, 44, 46. Die Vergleichssignale v^ v2, v3 bilden somit Grenz- oder Schwellwerte, wobei bei Übersteigen der Signale über die Vergleichssignale ν^ v2, v3 - also bei einem Absinken der Beschleunigungen unter die Schwellwerte - das jeweilige Ausgangssignal der Komparatoren 50, 52, 54 vom z. B. negativen in ein z. B. positives Potential überführt. Auf diese Weise bilden die Vergleichssignale v^ v2, v3 Schwellwerte, die Beschleunigungsgrenzwerten in jeweils eine Raumrichtung entsprechen. Unterschreitet hierbei die Beschleunigung in eine
Raumrichtung, beispielsweise in Flugrichtung, den Grenzwert, so steigt das Signal auf dem Ausgang 42 über das Vergleichssignal v1 und die Ausgangsspannung des Komparators 50 ist positiv. Die Grenzwerte liegen jeweils um einen festgelegten Wert unter der
Erdbeschleunigung, sodass bei Unterschreiten der Beschleunigungen in allen drei Raumrichtungen unter ihre Grenzwerte auf jeden Fall ein Beschleunigungszustand vorliegt, der um einen festgelegten weiteren Wert unter der Erdbeschleunigung liegt. Liegt beispielsweise der Grenzwert in Flugrichtung bei 0,14 m/s2 und der Grenzwert für die beiden anderen Raumrichtungen jeweils bei 0,1 m/s2, so ist die
Gesamtbeschleunigung bei Vorliegen des Freigabesignals < 0,2 m/s2.
Durch die Parallelschaltung der Komparatoren 50, 52, 54 und die Spannungsquelle 72 wird eine UND-Schaltung gebildet. Hat nur einer der Komparatoren 50, 52, 54 ein positives Ausgangssignal, liegt also nur ein Beschleunigungswert unter dem
Grenzwert, so ist das Signal auf der Ausgangsleitung 70 negativ, da es durch die beiden anderen Komparatoren 50, 52, 54 negativ gehalten wird. Sind die Ausgänge zweier Komparatoren 50, 52, 54 positiv, so sorgt eine Spannungsquelle 72 dafür, dass das Signal auf der Ausgangsleitung 70 ebenfalls negativ oder auf einem entsprechenden elektrischen Potential liegt. Erst wenn alle drei Ausgänge der
Komparatoren 50, 52, 54 positiv sind, so ist auch das Signal auf der Ausgangsleitung 70 positiv.
Hierdurch erreicht das positive Signal das Zeitelement 56, das durch den Widerstand 58 und den Kondensator 60 so ausgeführt ist, dass das positive Signal auf der
Ausgangsleitung 70 während einer vorab festgelegten Zeitdauer blockiert wird, so dass es die Leitung 74 nicht erreicht. Die Zeitdauer kann beispielsweise einige Sekunden, z. B. 1 - 5 Sekunden betragen. Erst nach dieser Zeitdauer ist der Kondensator 60 aufgeladen und das Signal liegt auf der Leitung 74 an. Hierdurch ist das Potential auf der Leitung 74 höher als das Vergleichssignal v4 am Komparator 62. Der Ausgang des
Komparators 62 wechselt von z. B. negativem zu positivem Potential und erzeugt hierdurch ein Freigabesignal an die Ausgangsstufe 64, die das Freigabesignal in gleicher oder veränderter Form an das Prozessmittel 34 weitergibt und zwar in zwei Ausgängen, einmal als positives Signal und zusätzlich zur Sicherheit als negatives Signal.
Bei Vorliegen des Freigabesignals erzeugt das Prozessmittel 34 das Steuersignal zum Ansteuern der Mechanik 32 und Freigeben des Unterbrechungsmittels 30 bzw. der Zündkette. Alternativ ist es möglich, dass das Freigabesignal direkt an die Mechanik 32 bzw. das Unterbrechungsmittel 30 weitergegeben wird zum Freischalten der Zündkette. Alternativ ist es möglich, dass bereits die Ausgangsstufe 64 das Steuersignal ausgibt, ohne dass das Prozessmittel 34 hierzu nötig wäre. Die Ausgangsstufe 64 kann hierbei selbst als Prozessmittel verstanden werden.
Das Prozessmittel 34 ist außerdem direkt mit dem Ausgang 42 des Sensors 40 verbunden und überwacht hierdurch den Beschleunigungswert des Sensors 40 in Flugrichtung. Die Überwachung ist auf ein absolutes Minimum im Verlauf dieses Beschleunigungswerts gerichtet, wobei zweckmäßigerweise nur der Frequenzteil z. B. eines Fourierspektrums des Signals auf dem Ausgang 42 mit einer Frequenz im Bereich größer einer Sekunde zur Auswertung auf das absolute Minimum gelangen.
Mit dem Erkennen des Minimums wird das Durchfliegen des Scheitelpunkts der Geschossbahn erkannt, und in einem weiteren Ausführungsbeispiel wird das Vorliegen dieses Minimums als weiteres Sicherungskriterium zum Erzeugen des Steuersignals auf der Signalleitung 36 verwendet. Liegt somit nur das Freigabesignal aus der Ausgangsstufe 64 an und wurde das Minimum noch nicht erkannt, so wird kein Steuersignal an die Mechanik 32 gegeben. Erst wenn das Minimum erkannt wurde und zeitgleich das Freigabesignal aus der Ausgangsstufe 64 über eine Dauer, die größer ist als ein vorgegebener Grenzwert, im Bereich von 1 - 5 Sekunden liegen kann, am Prozessmittel 34 vorlag, wird das Steuersignal auf die Signalleitung 36 geschaltet.
Mit Hilfe der Selbsttesteinheit 66 kann die Sicherungseinheit 2 überprüft werden. Hierzu wird ein Schalter 76 durch die Steuerung 68 geschlossen und das Potential auf der Leitung 74 dauerhaft auf z. B. negativem Potential gehalten. Der Befehl für einen solchen Selbsttest wird vom Prozessmittel 34 erzeugt, das beispielsweise auf einen Befehl eines Bedieners reagiert. Die Steuerung 68 gibt ein entsprechendes Signal an den Sensor 40 aufgrund dessen die Potentiale auf den Ausgängen 42, 44, 46 um einen vorgegebenen Wert erhöht werden, entsprechend einer sehr niedrigen Beschleunigung. Die entsprechenden Werte werden von der Selbsttesteinheit 66 zur Kontrolle abgegriffen, ausgewertet und das Ergebnis wird der Steuerung 68 mitgeteilt. Hierdurch wird zwar das positive Signal auf der Ausgangsleitung 70 erzeugt und gegebenenfalls über das Zeitelement 56 hin weitergegeben, der geschlossene Schalter 76 sorgt jedoch dafür, dass der Komparator 62 kein Freigabesignal erzeugt. Zur Sicherheit gibt die Steuerung 68 ein zusätzliches blockierendes Signal auf die Ausgangsstufe 64.
Fig. 3 zeigt ein weiteres Ausführungsbeispiel, bei dem die in Fig. 2 dargestellte Sensoreinheit 38 um einen Rollsensor 78 und Bodenrollsensor 80 erweitert ist. Auf die Darstellung der Selbsttesteinheit 66 und der Steuerung 68 der Sensoreinheit 38 wurde der Übersichtlichkeit halber verzichtet, wobei beide Einheiten selbstverständlich vorhanden sein können. Alle dargestellten Komponenten sind Bestandteil des Zünders 4, der auch in Fig. 3 angedeutet ist.
Die nachfolgende Beschreibung beschränkt sich im Wesentlichen auf die Unterschiede zum in Fig. 2 dargestellten Ausführungsbeispiel, auf das bezüglich gleich bleibender Merkmale und Funktionen verwiesen wird. Im Wesentlichen gleich bleibende Bauteile sind grundsätzlich mit den gleichen Bezugszeichen beziffert und nicht erwähnte Merkmale sind in den folgenden Ausführungsbeispielen übernommen, ohne dass sie erneut beschrieben sind.
Die Sensoreinheit 38 wie sie in Fig. 3 angegeben ist, umfasst einen Rollsensor 78, einen Bodenrollsensor 80 und einen Nieder-g-Sensor 82, der bereits zu Fig. 2 beschrieben wurde und gleich ist, wie zu Fig. 2 beschrieben ist. Dem Nieder-g-Sensor 82 steht der Rollsensor 78 gleichwertig gegenüber. Beide Sensoren 82, 78 erzeugen ihr Signal unabhängig voneinander und liefern es an die Ausgangsstufe 64, wobei sowohl das Nieder-g-Signal, das der Nieder-g-Sensor 82 an die Ausgangsstufe 64 liefert, als auch das Rollsignal, das der Rollsensor 78 an die Ausgangsstufe 64 liefert, das Steuersignal zum Entsichern des Unterbrechungsmittels 30 auslösen, können.
Der Rollsensor 78 umfasst einen Sensor 84, in diesem Ausführungsbeispiel ein Einachsen-Gyroskop, der eine Rollbewegung des Zünders 4 um seine Rollachse erfasst. Ebenso gut ist ein Beschleunigungssensor möglich, der außerhalb der Längsachse des Geschosses angeordnet ist. Das Signal des Sensors 84 wird durch einen Filter 86 gefiltert, der ein Tiefpassfilter zum Ausfiltern von Störsignalen ist, und auf einen Komparator 88 gegeben. Das resultierende Signal wird über ein Zeitelement 90, das gleich aufgebaut ist, wie das Zeitelement 56, auf einen Komparator 92 gegeben, der das Rollsignal ausgibt. Das Zeitelement 90 und der Komparator 92 werden zwar vom Bodenrollsensor 80 mit verwendet und sind als Bestandteil des Bodenrollsensors 80 dargestellt, sie können jedoch eben so gut Bestandteile des Rollsensors 78 sein.
Bei einem Rollen des Geschosses bzw. des Zünders 4 erzeugt der Sensor 84 ein Signal, das der Rollrate entspricht, also der Umdrehungsgeschwindigkeit des Zünders 4 um die Roll- bzw. Längsachse des Zünders 4 oder Geschosses. Das Signal wächst mit steigender Rollrate an. Das Signal wird durch den Komparator 88 mit einem Vergleichssignal v5 verglichen. Wächst das Signal über das Vergleichssignal v5, so gibt der Komparator 88 ein positives Signal aus, oder das Signal des Komparators 88 wechselt von einem negativen oder niedrigen Wert auf einen positiven oder höheren Wert. Das Vergleichssignal v5 ist hierbei so gewählt, dass das Rollsignal erst bei einer festgelegten Rollrate, beispielsweise 2 Hz, positiv wird. Unter dieser festgelegten Rollrate ist die als Störbeschleunigung wirkende Querbeschleunigung, die der Sensor
40 durch eine Unwucht des Geschosses erfährt, so gering, dass ein durch die Unwucht verursachtes Ausbleiben des Nieder-g-Signals aus Gründen von festgelegten Fertigungstoleranzen des Geschosses ausgeschlossen werden kann. Durch das Zeitelement 90 wird abgeprüft, ob das Rollsignal länger als eine festgelegte
Zeitdauer, die beispielsweise im Bereich von 1 - 5 Sekunden liegen kann, ununterbrochen vorliegt. Erst wenn das der Fall ist, dringt das Rollsignal zum Komparator 92, wird dort - analog zum Komparator 62 freigeschaltet und zur Ausgangsstufe 64 gegeben.
Das Nieder-g-Signal des Niedern-Sensors 82 und das Rollsignal des Rollsensors 78 werden in der Ausgangsstufe 64 äquivalent behandelt. Liegt eines der beiden Signale vor, so reagiert die Ausgangsstufe 64 und das Prozessmittel 34 wie zu Fig. 2 beschrieben und das Steuersignal zum Entsichern des Unterbrechungsmittels 30 wird ausgegeben. Das Nieder-g-Signal und das Rollsignal sind daher in einer ODER-
Verknüpfung miteinander verschaltet, so dass das Vorliegen eines der beiden Signale überprüft wird. Das Steuersignal kann somit auch bei Vorliegen beider Signale gleichzeitig ausgelöst werden, was üblicherweise, also bei kleiner Unwucht des Geschosses, der Fall ist.
Ein Auslösen des Steuersignals zum Entsichern des Unterbrechungsmittels 30 soll unbedingt vermieden werden, wenn das Geschoss auf dem Boden gerollt wird und sich nicht im Zustand„Flug" befindet, also nicht frei fliegt. Der Rollsensor 78 kann jedoch nicht unterscheiden, ob die Rollbewegung durch ein gleichförmiges Rollen auf dem Boden oder ein Rollen im Freiflug zustande kommt. Er gibt daher das Rollsignal auch bei einem Rollen auf dem Boden aus.
Um eine solche ungewünschte EntSicherung zu verhindern, ist die Sensoreinheit 38 mit dem Bodenrollsensor 80 ausgerüstet, der ein Rollen des Geschosses auf dem Boden erkennt. Der Bodenrollsensor 80 bedient sich eines Eingangssignals aus einem Ausgang der Sensoreinheit 20, nämlich eines Signals des Ausgangs 44 oder 46 oder beider Ausgänge 44, 46, die die Querbeschleunigung wiedergeben.
Wird das Geschoss über den Boden gerollt, so geben die beiden Sensoren der Sensoreinheit 40, die die Querbeschleunigungen messen, ein Wechselsignal aus, da sie die Erdbeschleunigung nach unten messen. Da die Sensoreinheit 40, zumindest ihre beiden Sensoren, die die Querbeschleunigung messen, in der geometrischen
Achse des Geschosses angeordnet ist, wirkt sich die Geschwindigkeit des Rollens so gut wie nicht auf die Amplitude des Wechselsignals aus, da die Sensoreinheit 40 keine Fliehkraft misst. Das Wechselsignal wird durch einen Filter 94, der ein Hochpassfilter ist, so gefiltert, so dass nur hochfrequente Anteile des Wechselsignals über einer vorgegebenen Frequenz, beispielsweise 2 Hz, den Filter passieren. Auf diese Weise wird nur ein Bodenrollen oberhalb der vorgegebenen Frequenz erkannt.
Über einen Gleichrichtungsglätter 95 wird das Wechselsignal in ein einfach geglättetes Gleichspannungssignal umgewandelt, das nun am Komparator 98 anliegt. Ein Rollen des Geschosses auf einem Untergrund bewirkt am Eingang des Filters 94 ein Wechselsignal mit der Rollfrequenz und der Amplitude, die ungefähr 1 g entspricht.
Durch den Gleichrichtungsglätter 95 wird die Frequenzinformation zumindest im Wesentlichen eliminiert, da das Wechselsignal in eine Gleichspannung gewandelt wird. Bei Bodenrollen, beispielsweise auf einer ebenen Fläche, entspricht der Betrag des Gleichspannungssignals dem Gesamtbeschleunigungswert von ungefähr 1 g und ist daher unabhängig von der Art des Rollens. Bei keinem Bodenrollen oder einem
Bodenrollen unter der vorgegebenen Frequenz liegt kein Signal am Komparator 98 an, abgesehen von Störsignalen, die beispielsweise durch ein Rütteln des Geschosses hervorgerufen werden können. Störsignale, die aus Querbewegungen des Geschosses unterhalb einer vorbestimmten Beschleunigung resultieren, z. B. unter 0,5 g, werden durch den Komparator 98 geblockt. Bei einem Rollen des Geschosses über einen Untergrund gibt der Rollsensor 78 ein positives Rollsignal aus. Gleichzeitig gibt der Komparator 98 ein Bodenrollsignal aus, das das Bodenrollen anzeigt. Das Bodenrollsignal ist ein negatives Signal, das das Rollsignal des Rollsensors 78 überspielt, so dass kein ausreichend positives Signal am Komparator 92 anliegen kann. Die Freigabe des Rollsensors 78 wird so durch den Bodenrollsensor 80 geblockt.
Als zusätzliche Sicherheit ist das Ausgangssignal des Komparators 50, das eine Beschleunigung in Flugrichtung anzeigt, auf das Rollsignal aufgespielt. Auch dieses Signal überspielt das Rollsignal. Wird beispielsweise ein Rollsignal, also ein positives Signal, ausgegeben, die Längsbeschleunigung des Zünders 4 liegt jedoch nicht unter dem Grenzwert, so ist das ein Zeichen, dass sich das Geschoss nicht im Freiflug befindet. Entsprechend ist das Signal des Komparators 50 Null oder negativ und überspielt das positive Rollsignal, so dass dieses das Steuersignal zum Entsichern des Unterbrechungsmittels nicht auslösen kann.
Auch die Kombination aus Rollsensor 78 und Bodenrollsensor 80 kann einem Selbsttest unterzogen werden, wie zu Fig. 1 beschrieben ist. Hierfür wird der Schalter 96 geschlossen und der Sensor 84 wird durch das Prozessmittel 34 oder die Steuerung 68 angesteuert, so dass der Rollsensor das Rollsignal ausgibt und zeitgleich und/oder zeitversetzt der Bodenrollsensor 80 das Bodenrollsignal.
Sicherungseinrichtung Zünder
Sicherungsmittel
Sicherungsmittel
Sicherungsmittel
UND-Logik
UND-Logik
Sicherungsmittel
Mittel
Feuersignal
UND-Logik
Zünden
Zünd mittel
Zündmittel
Unterbrechungsmittel
Mechanik
Prozessmittel
Signalleitung
Sensoreinheit
Sensor
Ausgang
Ausgang
Ausgang
Filter
omparator
Komparator
Komparator
Zeitelement
Widerstand
Kondensator
Komparator
Ausgangsstufe
Selbsttesteinheit
Steuerung
Ausgangsleitung
Spannungsquelle 74 Leitung
76 Schalter
78 Rollsensor
80 Bodenrollsensor
82 Nieder-g-Sensor
84 Sensor
86 Filter
88 Komparator
90 Zeitelement
92 Komparator
94 Filter
95 Gleichrichtungsglätter
96 Schalter
98 Komparator

Claims

Patentansprüche
Sicherungseinrichtung (2) für einen Zünder (4) eines Geschosses, das eine Zündeinrichtung zum Zünden des Zünders (4) aufweist, umfassend eine Sicherungseinheit mit einem Prozessmittel (34) zum Sichern eines Zündvorgangs der Zündeinrichtung,
dadurch gekennzeichnet,
dass die Sicherungseinheit eine Sensoreinheit (38) enthält, die dazu vorbereitet ist, bei einem festgelegten Beschleunigungszustand, der unterhalb der Erdbeschleunigung liegt, ein Freigabesignal auszugeben, wobei das Prozessmittel (34) dazu vorbereitet ist, in Abhängigkeit vom Vorliegen des Freigabesignals ein Steuersignal zum Entsichern der Sicherungseinheit auszugeben.
Sicherungseinrichtung (2) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Sensoreinheit (38) zum Messen von drei Richtungsbeschleunigungen in drei zueinander orthogonalen Raumrichtungen vorbereitet ist und die Ausgabe des Freigabesignals zu einem Zeitpunkt erfolgt, an dem jede der drei Richtungsbeschleunigungen zumindest um jeweils einen festgelegten Beschleunigungswert unter der Erdbeschleunigung liegt.
Sicherungseinrichtung (2) nach Anspruch 2,
dadurch gekennzeichnet,
dass der festgelegte Beschleunigungswert in Flugrichtung des Geschosses anders ist, als der festgelegte Beschleunigungswert in die beiden anderen Richtungen.
Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der festgelegte Beschleunigungszustand um zumindest einen festgelegten Beschleunigungswert unter der Erdbeschleunigung liegt und die Sensoreinheit (38) zumindest einen Komparator (50, 52, 54) umfasst, mit dem der Beschleunigungswert einstellbar ist.
5. Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
gekennzeichnet
durch ein Zeitelement (56) zur Vorgabe eines Zeitintervalls, wobei das Prozessmittel (34) das Steuersignal erst ausgibt, wenn das Freigabesignal während des gesamten Zeitintervalls ununterbrochen vorgelegen hat.
6. Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Sensoreinheit (38) einen Rollsensor (78) aufweist, der dazu vorbereitet ist, ein Rollen des Geschosses zu erkennen und bei Vorliegen einer Rollbewegung ein Rollsignal auszugeben.
7. Sicherungseinrichtung (2) nach Anspruch 6,
dadurch gekennzeichnet,
dass das Prozessmittel (34) dazu vorbereitet ist, sowohl das Freigabesignal als auch das Rollsignal auf deren Vorliegen zu überprüfen und bei Vorliegen von zumindest einem der beiden Signale das Steuersignal zum Entsichern der Sicherungseinheit auszugeben.
8. Sicherungseinrichtung (2) nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
dass das Prozessmittel (34) dazu vorbereitet ist, bei Vorliegen des Rollsignals zu überprüfen, ob die Beschleunigung des Geschosses in Axialrichtung betragsmäßig unter einem vorbestimmten Wert liegt und das Steuersignal zum Entsichern nur dann auszugeben, wenn der Wert unterschritten ist.
9. Sicherungseinrichtung (2) nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet,
dass der Rollsensor (78) ein Beschleunigungssensor ist.
10. Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Prozessmittel (34) dazu vorbereitet ist, ein Freiflugrollen des Geschosses von einem Rollen des Geschosses auf einem Untergrund zu unterscheiden.
11. Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Sensoreinheit (38) einen Bodenrollsensor (82) aufweist, der dazu vorbereitet ist, ein Bodenrollen des Geschosses auf einem Untergrund zu erkennen und bei einem Bodenrollen ein Bodenrollsignal auszugeben.
2. Sicherungseinrichtung (2) nach Anspruch 11 ,
dadurch gekennzeichnet,
dass das Prozessmittel (34) dazu vorbereitet ist, die Ausgabe des Steuersignals zum Entsichern bei Vorliegen des Bodenrollsignals zu unterdrücken.
3. Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Sensoreinheit (38)
zum Messen von drei Richtungsbeschleunigungen in drei zueinander orthogonalen Raumrichtungen vorbereitet ist und die Ausgabe des Freigabesignals zu einem Zeitpunkt erfolgt, an dem jede der drei Richtungsbeschleunigungen zumindest um jeweils einen festgelegten Beschleunigungswert unter der Erdbeschleunigung liegt, und
zusätzlich einen Rollsensor (78) aufweist, der dazu vorbereitet ist, ein Rollen des Geschosses zu erkennen und bei Vorliegen einer Rollbewegung ein Rollsignal auszugeben und
zusätzlich einen Bodenrollsensor (82) aufweist, der dazu vorbereitet ist, ein Bodenrollen des Geschosses auf einem Untergrund zu erkennen und bei einem Bodenrollen ein Bodenrollsignal auszugeben
und das Prozessmittel (34) zu folgenden Schritten vorbereitet ist:
sowohl das Freigabesignal als auch das Rollsignal auf deren Vorliegen zu überprüfen und bei Vorliegen von zumindest einem der beiden Signale das Steuersignal zum Entsichern der Sicherungseinheit auszugeben, jedoch bei Vorliegen des Rollsignals zusätzlich zu überprüfen, ob die Beschleunigung des Geschosses in Axialrichtung betragsmäßig unter einem vorbestimmten Wert liegt und das Steuersignal zum Entsichern nur dann auszugeben, wenn der Wert unterschritten ist und
ein Freiflugrollen des Geschosses von einem Bodenrollen des Geschosses auf einem Untergrund zu unterscheiden und die Ausgabe des Steuersignals zum Entsichern bei Vorliegen des Bodenrollsignals zu unterdrücken.
4. Sicherungseinrichtung (2) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Zündeinrichtung eine Zündkette mit einer Zündladung zum Zünden des Zünders (4) und die Sicherungseinheit ein Unterbrechungsmittel (30) zum Unterbrechen der Zündkette aufweist. 15. Verfahren zum Entsichern eines Zünders (4) eines Geschosses, das
Zündeinrichtung zum Zünden des Zünders (4) und eine Sicherungseinrichtung (2) mit einer Sicherungseinheit aufweist, die eine Prozessmittel (34) zum Sichern eines Zündvorgangs der Zündeinrichtung enthält,
dadurch gekennzeichnet,
dass eine Sensoreinheit (38) bei einem festgelegten Beschleunigungszustand ein
Freigabesignal ausgibt und in Abhängigkeit vom Vorliegen des Freigabesignals ein Steuersignal zum Entsichern der Sicherungseinheit ausgegeben wird.
PCT/EP2010/006743 2009-12-17 2010-11-05 Sicherungseinrichtung für einen zünder eines geschosses WO2011072774A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/503,098 US8820241B2 (en) 2009-12-17 2010-11-05 Safety device for a fuze of a projectile
AU2010333399A AU2010333399B2 (en) 2009-12-17 2010-11-05 Safety device for a fuse of a projectile
SG2012033155A SG180714A1 (en) 2009-12-17 2010-11-05 Safety device for a fuse of a projectile
EP10784255.1A EP2513594B1 (de) 2009-12-17 2010-11-05 Sicherungseinrichtung für einen zünder eines geschosses
CA2779026A CA2779026C (en) 2009-12-17 2010-11-05 Safety device for a fuze of a projectile
ES10784255.1T ES2620179T3 (es) 2009-12-17 2010-11-05 Dispositivo de seguro para una espoleta de un proyectil
IL219389A IL219389A (en) 2009-12-17 2012-04-24 Safety device for missile fuse
ZA2012/05215A ZA201205215B (en) 2009-12-17 2012-07-13 Safety device for a fuse of a projectile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009058718.7 2009-12-17
DE102009058718A DE102009058718B4 (de) 2009-12-17 2009-12-17 Sicherungseinrichtung für einen Zünder eines Geschosses

Publications (1)

Publication Number Publication Date
WO2011072774A1 true WO2011072774A1 (de) 2011-06-23

Family

ID=43568201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/006743 WO2011072774A1 (de) 2009-12-17 2010-11-05 Sicherungseinrichtung für einen zünder eines geschosses

Country Status (11)

Country Link
US (1) US8820241B2 (de)
EP (1) EP2513594B1 (de)
KR (1) KR20120103643A (de)
AU (1) AU2010333399B2 (de)
CA (1) CA2779026C (de)
DE (1) DE102009058718B4 (de)
ES (1) ES2620179T3 (de)
IL (1) IL219389A (de)
SG (1) SG180714A1 (de)
WO (1) WO2011072774A1 (de)
ZA (1) ZA201205215B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012001219A1 (de) 2012-01-21 2013-07-25 Junghans Microtec Gmbh Geschosszünder, hierzu ausgebildetes Waffenrohr und Verfahren
DE102013000050B3 (de) * 2013-01-07 2014-01-30 Rheinmetall Waffe Munition Gmbh Selbstzerlegungsmechanimus für einen Zünder

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939083B1 (en) * 2012-07-03 2015-01-27 L3 Fuzing and Ordnance Systems Fuze safing system
US9500458B2 (en) * 2014-04-10 2016-11-22 Scicast International, Inc. Electronically activated hand grenade
IL249976B (en) 2017-01-08 2022-02-01 Israel Aerospace Ind Ltd Safety device
DE102017109627B4 (de) * 2017-05-04 2022-08-04 Rheinmetall Waffe Munition Gmbh Elektronische Sicherungsvorrichtung
GB2575989B (en) * 2018-07-30 2021-02-24 Thales Holdings Uk Plc A safety and arming unit for a munition
DE102018123935A1 (de) * 2018-09-27 2020-04-02 Rheinmetall Waffe Munition Gmbh Aufschlagzünder
US11073369B2 (en) * 2019-01-02 2021-07-27 Advanced Acoustic Concepts, LLC Electronic safe arm and fire device and method
SG11202112645YA (en) * 2019-06-01 2021-12-30 St Engineering Advanced Mat Engineering Pte Ltd Safe-and-arm fuzing method for a projectile
CN111457797A (zh) * 2020-02-26 2020-07-28 北京理工大学重庆创新中心 一种基于事件驱动架构的微引信安全控制系统及其方法
CN111288858A (zh) * 2020-04-07 2020-06-16 中国工程物理研究院总体工程研究所 炮弹侵彻高冲击过载测试装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332354A (en) * 1965-08-27 1967-07-25 Jr Lewis D Silvers Zero gravity sensing device
US4096802A (en) * 1976-11-26 1978-06-27 The United States Of America As Represented By The Secretary Of The Navy Motion-induced stimuli initiation system
DE3925000C1 (de) * 1989-07-28 1997-09-18 Honeywell Regelsysteme Gmbh Verfahren zur Vorgabe einer Geschoß-Laufzeit und Vorrichtung zur Durchführung dieses Verfahrens
DE69523637T2 (de) * 1994-02-21 2002-07-18 Saab Ab Verfahren zum Scharfmachen und Anordnung zum Durchführen dieses Verfahrens
US7191707B1 (en) * 2005-11-15 2007-03-20 Davis Russell J Spherical rolling explosive ordinance

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672302A (en) * 1970-04-27 1972-06-27 Us Army Electronic digital accelerometer, fuze, or safety and arming mechanism
US3750583A (en) * 1971-03-04 1973-08-07 Westinghouse Electric Corp Electronic fuze system
US3851531A (en) * 1971-03-04 1974-12-03 Westinghouse Electric Corp Electronic fuze system
DE3013462C2 (de) * 1980-04-05 1984-07-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Schaltungsanordnung für Sicherheitskreise
DE3311620C2 (de) * 1983-03-30 1985-06-20 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Verfahren zur Verzögerung der Zündkreisfreigabe
US5918308A (en) * 1997-05-05 1999-06-29 The United States Of America As Represented By The Secretary Of The Army Non-integrating method of deriving safe separation distance based on time
US6129022A (en) * 1998-08-28 2000-10-10 Royal Ordnance Plc Ammunition safety and arming unit
GB9818673D0 (en) * 1998-08-28 1999-09-15 Royal Ordnance Plc Ammunition safety and arming unit
US7370584B2 (en) * 2004-06-02 2008-05-13 Alliant Techsystems Inc. Second environment sensing in smart bombs
DE102007054777B3 (de) * 2007-11-16 2009-08-13 Junghans Microtec Gmbh Sicherungseinrichtung für einen Zünder
DE102007060567B4 (de) * 2007-12-15 2009-08-27 Junghans Microtec Gmbh Sicherungseinrichtung für einen Zünder eines Geschosses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332354A (en) * 1965-08-27 1967-07-25 Jr Lewis D Silvers Zero gravity sensing device
US4096802A (en) * 1976-11-26 1978-06-27 The United States Of America As Represented By The Secretary Of The Navy Motion-induced stimuli initiation system
DE3925000C1 (de) * 1989-07-28 1997-09-18 Honeywell Regelsysteme Gmbh Verfahren zur Vorgabe einer Geschoß-Laufzeit und Vorrichtung zur Durchführung dieses Verfahrens
DE69523637T2 (de) * 1994-02-21 2002-07-18 Saab Ab Verfahren zum Scharfmachen und Anordnung zum Durchführen dieses Verfahrens
US7191707B1 (en) * 2005-11-15 2007-03-20 Davis Russell J Spherical rolling explosive ordinance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012001219A1 (de) 2012-01-21 2013-07-25 Junghans Microtec Gmbh Geschosszünder, hierzu ausgebildetes Waffenrohr und Verfahren
DE102012001219B4 (de) * 2012-01-21 2014-07-31 Junghans Microtec Gmbh Geschosszünder, hierzu ausgebildetes Waffenrohr und Verfahren
DE102013000050B3 (de) * 2013-01-07 2014-01-30 Rheinmetall Waffe Munition Gmbh Selbstzerlegungsmechanimus für einen Zünder

Also Published As

Publication number Publication date
DE102009058718A1 (de) 2011-06-22
EP2513594A1 (de) 2012-10-24
AU2010333399A1 (en) 2012-06-07
SG180714A1 (en) 2012-07-30
CA2779026C (en) 2015-03-17
IL219389A0 (en) 2012-06-28
CA2779026A1 (en) 2011-06-23
US20120240805A1 (en) 2012-09-27
ES2620179T3 (es) 2017-06-27
US8820241B2 (en) 2014-09-02
DE102009058718B4 (de) 2011-12-08
KR20120103643A (ko) 2012-09-19
EP2513594B1 (de) 2017-01-04
ZA201205215B (en) 2013-03-27
IL219389A (en) 2016-06-30
AU2010333399B2 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
EP2513594B1 (de) Sicherungseinrichtung für einen zünder eines geschosses
DE102007054777B3 (de) Sicherungseinrichtung für einen Zünder
DE2210277A1 (de) Elektronisches Zündsystem
EP0158700B1 (de) Zünder für ein Tochtergeschoss
DE102007060567B4 (de) Sicherungseinrichtung für einen Zünder eines Geschosses
DE2907308C2 (de) Geschoß mit mindestens einem ausstoßbaren Tochtergeschoß
EP2921814B1 (de) Zündsystem für ein skalierbares wirksystem
DE3108659C2 (de) Sicherungsvorrichtung für Zünder von drallfreien bzw. drallarmen Geschossen
EP1178550A1 (de) Aktivierbare Batterie für einen elektronischen Artilleriezünder
EP0411258A2 (de) Zünder für ein Blombletgeschoss
DE69908793T2 (de) Elektrostatisches scharfstellungsgerät für einen explosiven flugkörper
EP0435083A2 (de) Einstellbarer Abstandshalter auf einem Hohlladungsgefechtskopf, umschaltbar für Tiefen- oder Seitenwirkung
EP0162335B1 (de) Zündsicherungseinrichtung
DE60124103T2 (de) Vorrichtung für eine mit einem näherungszünder ausgerüstete munitionseinheit
DE3543939C2 (de)
DE102008017437A1 (de) Treibkäfiggeschoss
DE3311620C2 (de) Verfahren zur Verzögerung der Zündkreisfreigabe
EP3584529B1 (de) Vorrichtung zur erzeugung eines entsicherungskriteriums, zünder und munition
DE3740966A1 (de) Pyrotechnischer zuender fuer geschosse, raketen, bomblets und minen
DE102012001219B4 (de) Geschosszünder, hierzu ausgebildetes Waffenrohr und Verfahren
EP0342399A1 (de) Blindgängereinsatz für einen Geschosszünder
DE4127023C2 (de) Treibladungsanzünder mit einem durch eine Feder vorgespannten Schlagbolzen
DE10040800A1 (de) Bombletzünder mit Selbstzerlegung
DE1259740B (de) Aufschlagzuender fuer Drallgeschosse
DE3704668C2 (de)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10784255

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010784255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010784255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503098

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2779026

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010333399

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010333399

Country of ref document: AU

Date of ref document: 20101105

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127015536

Country of ref document: KR

Kind code of ref document: A