WO2011072567A1 - 一种资源配置方法和设备 - Google Patents

一种资源配置方法和设备 Download PDF

Info

Publication number
WO2011072567A1
WO2011072567A1 PCT/CN2010/079160 CN2010079160W WO2011072567A1 WO 2011072567 A1 WO2011072567 A1 WO 2011072567A1 CN 2010079160 W CN2010079160 W CN 2010079160W WO 2011072567 A1 WO2011072567 A1 WO 2011072567A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
resource configuration
radio frequency
carrier
resource
Prior art date
Application number
PCT/CN2010/079160
Other languages
English (en)
French (fr)
Inventor
冯淑兰
刘劲楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011072567A1 publication Critical patent/WO2011072567A1/zh
Priority to US13/486,805 priority Critical patent/US8594038B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource configuration method and device. Background technique
  • IMT-ADVANCED Advanced International Mobile Telecommunications
  • the plurality of carriers may be continuous or non-continuous, and may be in one band or different bands.
  • the maximum transmission bandwidth is 20 MHz.
  • multiple consecutive or non-contiguous carriers of 20 MHz or less can be aggregated together and used for one system. .
  • FIG. 1 is a schematic structural diagram of a transceiver in the case of multi-carrier aggregation.
  • MIMO Multiple Input Multiple Output
  • one transmitting antenna or receiving antenna can correspond to multiple RF chains, and each RF chain corresponds to one carrier or multiple carriers.
  • the baseband The signal needs to be processed through a series of processes on the RF chain and combined to be transmitted by the transmitting antenna.
  • the signal received by the receiving antenna needs to be split into multiple RF chains through a splitter, and each RF chain corresponds to one carrier. Frequency conversion, and then processed into a baseband signal.
  • MIMO technology will be widely adopted in future communication systems, that is, multiple antennas are used at the transmitting end and the receiving end.
  • 2 is a schematic structural diagram of a MIMO transceiver under single carrier conditions.
  • the baseband signal can be sent over multiple antennas after processing Going out, or receiving signals through multiple antennas and processing to obtain a baseband signal.
  • both carrier aggregation technology and MIMO technology may be used at the same time.
  • the prior art proposes a communication system, so that in the application scenario of multiple antennas and carrier aggregation, all components are used for all component carriers, but This setup will consume more resources. Summary of the invention
  • the embodiment of the invention provides a resource configuration method and device.
  • a resource configuration method including:
  • each resource configuration manner includes The number of component carriers configured for the user equipment, and the frequency chain used by each component carrier;
  • the resource configuration mode with the least number of radio frequency links is selected from the resource configuration manners in which the data capacity is sufficient for the service, and the resource configuration mode with the least number of radio frequency links is used.
  • the user equipment configuration constitutes a carrier and a radio frequency chain used for each component carrier.
  • a resource configuration device including:
  • a configuration mode obtaining unit configured to acquire a capability of the user equipment, and obtain a plurality of resource configuration manners according to the capability of the user equipment, where the capability of the user equipment includes the number of antennas of the user equipment and the number of radio frequency chains corresponding to each antenna.
  • Each resource configuration manner includes a component carrier configured for the user equipment, and a radio frequency chain used by each component carrier;
  • a service requirement judging unit configured to obtain, from the plurality of resource configuration manners, a resource configuration manner that the data bearer quantity satisfies a service requirement
  • a first configuration execution unit configured to: when the power of the user equipment needs to be saved, from the data
  • the resource configuration mode that meets the service requirements is selected by using the resource configuration mode with the least number of radio frequency links, and configuring the component carrier and the radio frequency used by each component carrier for the user equipment according to the resource configuration mode with the least number of radio frequency links. chain.
  • FIG. 1 is a schematic structural diagram of a transceiver in the case of multi-carrier aggregation
  • FIG. 2 is a schematic structural diagram of a MIMO transceiver under single carrier conditions
  • FIG. 3 is a schematic diagram of a resource configuration method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a resource configuration device according to an embodiment of the present invention. detailed description
  • FIG. 3 is a schematic diagram of a resource configuration method according to an embodiment of the present invention, where the method includes:
  • the capability of the user equipment is obtained, and the resource configuration manner is obtained according to the capability of the user equipment, where the capability of the user equipment includes the number of antennas of the user equipment and the number of radio frequency links corresponding to each antenna, and each resource configuration is performed.
  • the method includes a component carrier configured for the user equipment, and a radio frequency chain used by each component carrier;
  • a resource configuration manner in which the data capacity can meet the service requirement is obtained, and when the user equipment power needs to be saved, the resource configuration mode with the least number of radio frequency chains is selected from the resource configuration manner in which the data bearer capacity can meet the service requirement.
  • the resource is configured for the user equipment, so that the user equipment can complete the communication service by using the minimum number of radio frequency chains, thereby reducing the used RF chain resources and saving the power of the user equipment.
  • the method may further include: when the bandwidth resource needs to be saved, selecting, by using a resource configuration manner that the data bearer quantity meets a service requirement, a resource configuration mode that uses a minimum number of carrier carriers, and adopting a minimum number of component carriers according to the method.
  • the resource allocation manner is configured for the user equipment to configure a carrier wave and a radio frequency chain used by each component carrier.
  • the bandwidth saving resource can be achieved because the resource configuration method with the smallest number of carriers is adopted.
  • the resource configuration method may be dynamically and semi-statically configured to perform resource configuration.
  • the resource configuration method may be implemented by a base station (eNodeB) or a user equipment (UE, User Equipment). After the base station completes the resource configuration, the resource configuration result may be passed through the user equipment, and the resource configuration result includes allocating several component carriers for the user, and the number of antennas used by each component carrier.
  • resources may be configured in an initial configuration manner, and the initial configuration manner may be multiple.
  • an RF chain can be configured for the user equipment to save power of the user equipment. Multiple RF chains can also be configured for the user equipment, so that different RF chains serve different component carriers to speed up users.
  • each antenna may be divided into a transmitting antenna or a receiving antenna, and correspondingly, the radio frequency chain may also be divided into a transmitting RF chain or a receiving RF chain.
  • the capabilities of the user equipment may include: the number of transmitting antennas and the number of transmitting radio chains corresponding to each transmitting antenna, and the number of receiving antennas and the receiving corresponding to each receiving antenna. The number of RF chains.
  • Each component carrier can use one or more antennas, but one component carrier does not. It will occupy two RF chains of one antenna at the same time. Therefore, the number of RF chains used by each component carrier indicates the number of antennas used by the component carrier. Usually, one RF chain is only used to transmit one carrier, but in some cases, one RF chain can also be used to transmit multiple carriers. In practical applications, the base station can configure the transmit carrier of the user equipment and the number of antennas used by each transmit carrier, and the received carrier of the user equipment and the number of antennas used by each received carrier.
  • the base station may also configure only the transmitting carrier of the user equipment and the number of antennas used by each transmitting carrier, and the user equipment determines the number of receiving carriers and the number of antennas used by each receiving carrier.
  • the base station may also configure only the transmitting carrier of the user equipment, the number of antennas used by each transmitting carrier, and the number of receiving carriers. The user equipment determines the number of antennas used by each receiving carrier.
  • the capability of the user equipment may further include: a maximum transmission or reception bandwidth supported by each radio frequency chain, or a maximum transmission or reception power supported by each radio frequency chain.
  • the base station can obtain the capability of the user equipment by acquiring the radio frequency capability parameter of the user equipment. Obtaining the radio frequency capability parameter of the user equipment is similar to the parameter that the base station obtains other capabilities of the user equipment.
  • the user equipment can store its own radio frequency capability parameter internally, and report its radio frequency capability to the base station during initial access.
  • the serving base station may also notify the target base station of the radio frequency capability of its subordinate user equipment through signaling between the base stations.
  • the radio capability of the user equipment can be stored in a specific node, such as an MME (Mobility Management Entity). After the user equipment accesses the base station, the base station can obtain the radio frequency capability of the user equipment by accessing the MME. .
  • the radio frequency capability parameter of the user equipment may be bundled with the other capability parameters of the user equipment and sent to the base station.
  • the manner in which the base station obtains the radio frequency capability parameter of the user equipment may be similar to the other capability parameters of the user equipment, which is not specifically limited in this embodiment.
  • is the amount of data that can be carried when the carrier is transmitted/the number of transmitting antennas is .
  • the transmission capability may be different for different transmit antenna modes.
  • One calculation method can be as follows:
  • is the maximum bandwidth of the transmitting carrier / allocated to the terminal
  • - 5 is the number of receiving antennas of the base station, indicating - ⁇ unit matrix
  • H is the complex matrix of s x
  • the element of matrix H is represented from the terminal j
  • the total transmit power, N., is the transmit carrier/noise power
  • ⁇ U ⁇ HH is the determinant of the matrix / w + HH.
  • the total number of transmitted carriers configured is less than or equal to the total number of transmitted RF chains, that is, r x ⁇ ⁇ .;
  • the number of transmit antennas for transmitting carriers/configuration is less than or equal to the total number of transmit antennas of the terminal, that is, ⁇ N. If you need to save the terminal as much as possible For electric energy, the number of RF chains to be used by the terminal needs to be the smallest, then it can be found to satisfy ?, > ?, and the smallest combination is 3 ⁇ 4 S C& ⁇ , which is the number of transmitting RF chains of the first transmission carrier.
  • If 0 means that the carrier is not configured/is the working carrier of the terminal, that is to say, the carrier is closed for the terminal at this time. Obtained in the above combination, .. ⁇ ⁇ & ⁇ configured for each transmission carrier number that the number of RF chains may be transmitted RF chains terminal for use at a minimum meet business needs. If the interference between the carriers needs to be reduced and the bandwidth resources are saved, the number of carriers used by the terminal may be minimized when the resources are configured, and then the combination that satisfies > and the smallest, S Ca ⁇ , where
  • the number of transmission carriers configured by using the above combination configuration can meet the service requirement and minimize the number of configured transmission carriers.
  • the working carrier of the terminal and the multi-antenna mode adopted by each carrier may be dynamically configured, or the working carrier of the terminal and the multi-antenna mode adopted by each carrier may be semi-statically configured.
  • the configuration may also be performed in a dynamic and semi-static combination manner, such as semi-statically configuring the working carrier of the terminal, and dynamically configuring the antenna mode used by each carrier.
  • the update rate of each configuration is fast, for example, 2ms update
  • the base station generally uses the layer 1 layer 2 control signaling to notify the terminal of the update
  • the semi-static configuration the update rate of each configuration is slow, for example
  • the base station generally notifies the terminal of the update using layer 3 control signaling. That is to say, the update speed of the dynamic configuration is greater than the update speed of the semi-static configuration, and the two are a relative concept, and those skilled in the art can set the update speed differently according to actual application requirements.
  • the terminal When the terminal is initially powered on, the terminal may adopt a certain initial configuration, and the initial configuration may be a fixed setting, so that the initial configuration adopted by the terminal each time is the same; the initial configuration may also be selected by the terminal independently; the terminal may also store the last shutdown.
  • the previous configuration is used as the initial configuration of the next power-on, which is not limited in this embodiment.
  • different values can be set based on different actual application requirements. If based on terminal power saving considerations, only one receiving RF chain can be set at boot time; if based on terminal fast access considerations, multiple receiving RF chains can be set separately. Serving different receiving carriers to speed up the initial measurement process; if based on terminal power saving and receiving performance considerations, it is also possible to set each antenna to open an RF chain, and the receiving RF chains of the respective antennas receive the same carrier.
  • the initial setting of the transmitting RF chain is preferentially to open only one RF chain of one antenna; if the initial access signal can be With MIMO technology, single-antenna single-frequency chain transmission can be selected based on UE power saving and current channel state considerations, or multiple antennas and each antenna can be selected. One RF chain is used, and all transmit RF chains use the same transmit carrier.
  • the terminal performs initial access whether to select single antenna or multiple antennas, it is mainly necessary to consider the power saving requirement of the UE and the current channel state.
  • the terminal may use multiple carriers to simultaneously transmit uplink signals, and set each transmit RF chain to serve different transmit carriers.
  • a method for configuring a receiving carrier and a receiving radio frequency chain is similar to the method for configuring a transmitting carrier and transmitting a radio frequency chain, which is not described in this embodiment.
  • the sending resource and the receiving resource of the terminal may be configured separately, and the configuration may be completed by the base station and notified to the terminal, or may be performed by the terminal.
  • the configuration of the transmitting carrier and the receiving carrier may not be isolated.
  • the configurable transmitting carrier is a subset of the receiving carrier, that is, the configured transmitting carrier is part of the receiving carrier; or the receiving carrier may be configured as a subset of the transmitting carrier. This embodiment does not limit this.
  • resource configuration may be performed according to specific requirements, for example, the number of radio frequency chains may be minimized, or the number of carriers may be the minimum, or the transmission and reception power may be the lowest, and the carrier and radio frequency chain of the terminal device may be flexibly configured.
  • the terminal can be opened with a minimum of RF chains for power saving purposes.
  • all antennas are required for each carrier, and there is a waste of resources. For example, suppose the peak spectral efficiency at a single antenna is 7.5 bps/Hz, the peak spectral efficiency at 2 antennas is 15 bps/Hz, and the bandwidth per carrier is 20 MHz.
  • Each RF chain can support 15 MHz of data. If the service rate of the terminal is 700 MHz, according to the prior art, each carrier uses all the antennas, and the terminal needs to adopt 3 carriers, each carrier has 2 antenna ports, and a total of 6 RF chains. According to the configuration method used in the embodiment of the present invention, only three carriers need to be configured, and two carriers adopt two antennas, one carrier adopts a single antenna, and a total of five radio frequency chains can meet service requirements, thereby saving the radio frequency chain.
  • the current wireless environment may be comprehensively considered, and the wireless environment may include a service rate required by the terminal, a channel state of the base station to the terminal, a maximum transmit power of the base station, and a frequency resource allocation of the base station.
  • Situation terminal Information such as the maximum transmit power margin and the interference of each carrier of the base station.
  • the user equipment referred to in the embodiments of the present invention may be any form of terminal, database, base station, access point, and the like. If the main body of the resource configuration is not the same as the user equipment, the user equipment needs to be reported to the main body of the configuration resource. If the main body of the resource configuration is the user equipment itself, the user equipment can configure the user equipment without reporting the user equipment. ability.
  • FIG. 4 is a schematic diagram of a resource configuration device according to an embodiment of the present invention.
  • the device includes: a configuration mode obtaining unit 41, configured to acquire a capability of a user equipment, and obtain multiple resource configuration manners according to the capability of the user equipment,
  • the capability of the user equipment includes the number of antennas of the user equipment and the number of radio frequency chains corresponding to each antenna, and each resource configuration manner includes a component carrier number configured for the user equipment, and a radio frequency chain used by each component carrier.
  • the service requirement judging unit 42 is configured to obtain, from the plurality of resource configuration manners, a resource allocation manner that satisfies a service requirement in a data carrying manner;
  • the first configuration execution unit 43 is configured to: when the power consumption of the user equipment needs to be saved, select a resource configuration manner that uses the least number of radio frequency links, and adopts a radio frequency according to the resource configuration manner that meets a service requirement.
  • the resource configuration mode with the least number of links is configured to configure the user equipment to form a carrier and a radio frequency chain used by each component carrier.
  • the user equipment selects a resource configuration mode with the least number of radio frequency links to allocate resources from a resource configuration manner in which the data capacity meets the service requirement, and the beneficial effect of saving power can be achieved.
  • the device may further include: a second configuration execution unit, configured to: when a resource resource needs to be saved, select a resource configuration mode that uses a minimum number of carriers from a resource configuration manner in which the data capacity meets a service requirement,
  • the user equipment is configured with a component carrier and a radio frequency chain used by each component carrier according to the resource configuration mode with the smallest number of component carriers.
  • the device may be a base station or the user equipment.
  • the device may further include: a notification unit, configured to notify the user equipment of the result of the resource configuration.
  • the device may further include: an initial configuration unit, configured to configure the initial configuration mode when the user equipment is initially powered on.
  • the initial configuration manner includes: configuring a radio frequency chain for the user equipment; or configuring multiple radio frequency chains for the user equipment, and configuring different radio frequency chains to serve different component carriers; or configuring each antenna to be turned on.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种资源配置方法和 i殳备
本申请要求于 2009 年 12 月 14 日提交中国专利局、 申请号为 200910188871.X、发明名称为 "一种资源配置方法和设备"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及一种资源配置方法和设备。 背景技术
随着无线业务的飞速发展,对传输速率的要求也越来越高, 高级国际移动 通信( IMT- ADVANCED )设定了最大传输速率为 lGbits/s的目标, 为了实现 如此高的传输速率, 业界提出了多载波聚合的技术,也就是采用多个载波同时 服务于一个终端。 所述多个载波可以是连续的或非连续的, 可以是在一个波段 的或不同的波段。 例如在 3GPP LTE ( Long Term Evolution, 长期演进) 系统 中, 最大传输带宽为 20MHz, 为了支持 1GHz的传输, 可以多个连续或者非 连续的小于等于 20MHz的载波汇聚在一起, 同时为一个系统所采用。 如果聚 合的载波间距比较大, 则聚合的多个载波不能够共用同一个射频链, 例如在 LTE-A ( LTE-advanced, LTE 的演进) 中, 如果将中心频率分别位于 2.5GHz 和 3.5GHz的 2波段聚合在一起, 每个载波要有各自的射频链。 图 1为一种多 载波聚合情况下收发机的结构示意图。 在不采用 MIMO ( Multiple input multiple output, 多输入多输出)技术的情况下, 1根发送天线或接收天线可对 应多个射频链, 每个射频链对应一个载波或多个载波, 此时, 基带信号需要在 射频链上经过一系列处理并经过合路才能被发送天线发送出去,而接收天线接 收到的信号需要经过分路器分路到多个射频链,每个射频链对应一个载波进行 下变频, 再经过处理转化为基带信号。 为提高系统容量, 未来的通信系统中将 普遍采用 MIMO技术, 即在发送端和接收端采用多个天线。 图 2为单载波条 件下 MIMO收发机的结构示意图。 基带信号经过处理后可在多个天线上发送 出去, 或者, 通过多个天线接收信号并经过处理得到基带信号。 由于在未来无线通信系统中, 可能同时采用载波聚合技术和 MIMO技术, 现有技术提出了一种通信系统,使得在多天线、载波聚合的应用场景下每个组 成载波都使用所有的天线, 但这样的设置方式会消耗较多的资源。 发明内容
本发明实施例提供一种资源配置方法和设备。
根据本发明的一实施例, 提供一种资源配置方法, 包括:
获取用户设备的能力, 根据所述用户设备的能力得到多种资源配置方式, 所述用户设备的能力包括用户设备的天线数和每个天线对应的射频链数,所述 每种资源配置方式包括为所述用户设备配置的组成载波数、每个组成载波所采 用的射频链情况;
从所述多种资源配置方式中获取数据承载量满足业务需求的资源配置方 式;
当需要节省所述用户设备的电能时,从所述数据承载量满足业务需求的资 源配置方式中选择采用射频链数最少的资源配置方式,按照所述采用射频链数 最少的资源配置方式为所述用户设备配置组成载波及每个组成载波所采用的 射频链。
根据本发明的又一实施例, 提供一种资源配置设备, 包括:
配置方式获得单元, 用于获取用户设备的能力,根据所述用户设备的能力 得到多种资源配置方式,所述用户设备的能力包括用户设备的天线数和每个天 线对应的射频链数,所述每种资源配置方式包括为所述用户设备配置的组成载 波数、 每个组成载波所采用的射频链情况;
业务需求判断单元,用于从所述多种资源配置方式中获取数据承载量满足 业务需求的资源配置方式;
第一配置执行单元, 用于当需要节省所述用户设备的电能时,从所述数据 承载量满足业务需求的资源配置方式中选择采用射频链数最少的资源配置方 式,按照所述采用射频链数最少的资源配置方式为所述用户设备配置组成载波 及每个组成载波所采用的射频链。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为一种多载波聚合情况下收发机的结构示意图;
图 2为单载波条件下 MIMO收发机的结构示意图;
图 3为本发明的实施例提供的一种资源配置方法的示意图;
图 4为本发明实施例提供的一种资源配置设备的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 3为本发明的实施例提供的一种资源配置方法的示意图, 该方法包括:
S31 : 获取用户设备的能力, 根据所述用户设备的能力得到多种资源配置 方式, 所述用户设备的能力包括用户设备的天线数和每个天线对应的射频链 数, 所述每种资源配置方式包括为所述用户设备配置的组成载波数、每个组成 载波所采用的射频链情况;
S32: 从所述多种资源配置方式中获取数据承载量满足业务需求的资源配 置方式;
S33: 当需要节省所述用户设备的电能时, 从所述数据承载量满足业务需 求的资源配置方式中选择采用射频链数最少的资源配置方式,按照所述采用射 频链数最少的资源配置方式为所述用户设备配置组成载波及每个组成载波所 采用的射频链。
本实施例获取数据承载量能够满足业务需求的资源配置方式,并在需要节 省用户设备电能时,从所述数据承载量能够满足业务需求的资源配置方式中选 择使用射频链数最少的资源配置方式为用户设备配置资源,使得用户设备采用 最少的射频链数即可完成通信业务,从而减少所采用的射频链资源, 并节省所 述用户设备的电能。
进一步地, 所述方法还可包括: 当需要节省带宽资源时, 从所述数据承载 量满足业务需求的资源配置方式中选择采用组成载波数最少的资源配置方式, 按照所述采用组成载波数最少的资源配置方式为所述用户设备配置组成载波 及每个组成载波所采用的射频链。 由于采用了组成载波数最少的资源配置方 式, 可以达到节省带宽资源的效果。
进一步地, 可以动态和半静态的采用所述资源配置方法进行资源的配置。 所述资源配置方法可以由基站( eNodeB )或用户设备( UE, User Equipment ) 完成。 当基站完成所述资源配置后, 可将资源配置结果通过所述用户设备, 所 述的资源配置结果包括为用户分配了几个组成载波,以及每个组成载波所采用 的天线数。进一步地, 当用户设备初始开机时,可采用初始配置方式配置资源, 所述初始配置方式可以有多种。在一种初始配置方式中, 可为所述用户设备配 置一个射频链, 以节省用户设备电能; 也可为用户设备配置多个射频链, 使不 同射频链服务于不同的组成载波, 以加快用户设备初始接入的速度; 还可配置 每个天线都打开一个射频链,使打开的射频链服务于同一组成载波。在本实施 例中, 所述天线可分为发送天线或接收天线, 相应地, 所述射频链也可分为发 送射频链或接收射频链。 例如, 所述用户设备的能力可包括: 发送天线数和每 个发送天线对应的发送射频链数,以及接收天线数和每个接收天线对应的接收 射频链数。 在实际应用中, 存在多种资源配置方式, 在每种配置方式中, 可以 为用户设备配置多个组成载波, 每个组成载波可使用一个或多个天线的射频 链,但 1个组成载波不会同时占用一个天线的 2条射频链,故每个组成载波所 采用的射频链数即表示该组成载波采用的天线数。通常情况下, 一条射频链只 用于传输一个载波, 但在一些情况下, 一条射频链也可以用于传输多个载波。 在实际应用中,基站可配置用户设备的发送载波和每个发送载波所采用的天线 数、 以及用户设备的接收载波和每个接收载波所采用的天线数。 当然, 基站也 可以仅配置用户设备的发送载波和每个发送载波所采用的天线数,由用户设备 自行确定其接收载波数和每个接收载波所采用的天线数。或者,基站也可以仅 配置用户设备的发送载波、 每个发送载波所采用的天线数、 以及接收载波数, 由用户设备自行确定其每个接收载波所采用的天线数。
进一步地, 所述用户设备的能力还可包括: 每条射频链所支持的最大发送 或接收带宽,或者每条射频链所支持的最大发送或接收功率。在一种实际应用 中,基站可通过获取用户设备的射频能力参数来得到用户设备的能力。 获取用 户设备的射频能力参数方式类似于基站获得用户设备其他能力的参数,例如用 户设备可在内部存储自己的射频能力参数,在初始接入的时候向基站上报自己 的射频能力。 在执行切换的时候, 服务基站也可通过基站间的信令, 将其下属 用户设备的射频能力通知目标基站。或者, 用户设备的射频能力可被存贮在一 个特定的节点, 例如 MME ( Mobility Management Entity, 移动管理实体) 中, 在用户设备接入到基站后, 基站可通过访问 MME获得用户设备的射频能力。 用户设备的射频能力参数也可以和用户设备的其他能力参数捆绑在一起发送 给基站,基站获取用户设备射频能力参数的方式可以与其获取用户设备其他能 力参数相类似, 本实施例不做具体限定。
为便于理解, 下面以发送端为例进行具体说明。 在下面的说明中, 用户设 备将简称为终端(Terminal )。假设终端有 N¾根发送天线, 第·个发送天线有 个发送射频链, 其中·=1 ΝΤχ , 终端的业务速率需求为^, ^: 为配置的 总发送载波数, 为配置的发送载波 /的发送射频链数, 由于 1个发送载波不会 占据同一天线的多个射频链, 因此 也就是发送载波 /的发送天线数。 ^为发 送载波 /在发送天线数为 时所能够承载的数据量。 在实际应用中, 对于不同 的发送天线模式, 发送能力也可能不同。 一种 的计算方法可以如下:
R,
Figure imgf000008_0001
ΗΗΗ) , 其中, ^为发送载波 /分配给终端的最大带宽, —5为基站的接收天线数, 表示 — ^单位矩阵, H是 sx 的复矩阵, 矩阵 H的元素 表示从终端第 j根发送天线到基站的第 i根接收天线的信道衰落 系数, i= l N^ , j=l、 ..、 S, , H"表示 H的共轭转置矩阵, γι= , 为发送载波 /的总发送功率, N。,,为发送载波 /的噪声功率, ^ U ^HH 为矩阵 /w + HH 的行列式。 对于上述 计算公式, 在 =0时, =0。 在 进行资源配置时, 配置的总发送载波数要小于等于总发送射频链数, 即 rx≤∑ .; 为发送载波 /配置的发送天线数则小于等于终端的发送天线总数, 即 ≤N 。 如果需要尽量节省终端的电能, 需要使终端使用射频链数目最小, 则可寻找满足 ?,> ?„, 且 最小的组合 ¾ SC&}, 为第 /个发送载波的 发送射频链数。 如果 =0表示不配置该载波 /为终端的工作载波, 也就是说此 时该载波 /对于终端是关闭的。 采用获得的上述组合 ,..Λ^&}配置每个发送载 波的射频链数可在满足业务需求的条件下使终端使用的发送射频链数目最小。 如果需要降低载波间的干扰并节省带宽资源,可在资源配置时使终端采用的载 波数最少, 则可寻找满足 > , 且 ,最小的组合 , SCa}, 其中,
/-1 /-1 ' ' ' 表示载波 /是否配置为终端的工作载波。如果 = 0表示不配置载波 /为终端的工 作载波,此时 = 0;如果 〉0表示配置载波 /为终端的工作载波,此时 = 1。 采用获得的上述组合 配置发送载波数可满足业务需求并使配置的发 送载波数最少。
在实际应用中,可以动态配置终端的工作载波和每个载波所采用的多天线 模式, 也可以半静态的配置终端的工作载波和每个载波所采用的多天线模式。 还可以采用动态与半静态结合的方式进行所述配置,例如半静态配置终端的工 作载波, 动态配置每个载波所采用的天线模式。 在动态配置时, 每次配置的更 新速率快, 例如 2ms更新一次, 基站一般使用层 1层 2控制信令将所述更新通知 终端; 在半静态配置时, 每次配置的更新速率慢, 例如大于 100ms更新一次, 基站此时一般使用层 3控制信令将所述更新通知终端。 也就是说, 动态配置的 更新速度要大于半静态配置的更新速度,二者是一个相对的概念, 本领域技术 人员能够根据实际应用需求对更新速度进行不同的设置。
终端在初始开机时, 可以采用一定的初始配置,所述初始配置可以是固定 的设置,使终端每次开机采用的初始配置相同; 初始配置也可以由终端自主选 择; 终端也可存储上一次关机前的配置作为下一次开机的初始配置, 本实施例 对此不进行限定。 在初始配置时可以基于不同的实际应用需求设置不同的值, 如果基于终端节电考虑, 可以在开机时设置只有一个接收射频链; 如果基于终 端快速接入考虑, 可以设置多个接收射频链分别服务于不同的接收载波, 以加 快初始测量过程; 如果基于终端节电和接收性能考虑,还可以设置每个天线都 打开一个射频链, 各个天线的接收射频链接收同一载波。
如果终端在初始接入时, 发送的初始接入信号不采用 MIMO技术, 例如不 采用空时编码, 则发送射频链的初始设置优先为只打开一个天线的一个射频 链; 如果初始接入信号可以采用 MIMO技术, 则可以基于 UE的节电和当前的 信道状态考虑, 选择单天线的单射频链发送, 或者选择多天线、 每个天线各采 用一个射频链、且所有的发送射频链采用相同的发送载波。在终端进行初始接 入时, 是选择单天线还是多天线, 主要需考虑 UE的节电需要和当前的信道状 态。如果当前信道状态较好,则可以采用单天线发送;如果当前信道质量较差, 则可以采用多天线发送。 为了加快初始接入过程, 终端可采用多个载波同时发 送上行信号, 并设置每个发送射频链服务于不同的发送载波。
本领域技术人员能够理解,配置接收载波和接收射频链的方法类似于配置 发送载波及发送射频链的方法, 本实施例对此不再赘述。 在实际应用中, 终端 的发送资源和接收资源可以分别进行配置,可以由基站完成配置并将所述配置 通知终端, 也可由终端自行进行所述配置。发送载波和接收载波的配置也可以 不是孤立的, 例如可配置发送载波是接收载波的子集, 即配置发送载波是接收 载波中的部分载波; 或者也可配置接收载波是发送载波的子集, 本实施例对此 不做限定。
采用本发明实施例所述的技术方案, 可以根据特定的需求进行资源配置, 例如可使射频链数目最少, 或载波数目最少, 或发送、 接收功率最低, 灵活的 配置终端设备的载波和射频链,采用尽量少的资源满足终端的服务需求。例如, 可使终端打开最少的射频链, 从而实现节电的目的。 现有技术中, 每个载波都 需要所有的天线, 存在资源浪费的情况。 举例来说, 假设单天线时的峰值频谱 效率为 7.5bps/Hz, 2天线时的峰值频谱效率为 15bps/Hz, 每个载波带宽为 20MHz,每个射频链可以支持 15MHz的数据。如果终端的业务速率为 700MHz, 按照现有技术, 每个载波都使用所有的天线, 需要终端采用 3个载波, 每个载 波有 2个天线口, 共 6个射频链。 按照本发明实施例采用的配置方法, 只需要配 置 3个载波, 其中 2个载波采用 2天线, 1个载波采用单天线, 共 5个射频链即可 满足业务需求,从而能够节省射频链。基站在根据特定的需求进行资源配置时, 可综合考虑当前的无线环境, 所述无线环境可包括终端所要求的业务速率、基 站到终端的信道状态、基站的最大发射功率、基站的频率资源分配情况、 终端 的最大发射功率余量、 基站各个载波的干扰情况等信息。
本领域技术人员能够理解, 本发明实施例所指的用户设备, 可以是任何形 式的终端、 数据库、 基站、 接入点等。 如果资源配置的主体与用户设备不是同 一设备, 则需要将用户设备的能力报告给配置资源的主体; 如果资源配置的主 体是用户设备本身,则用户设备可自行进行配置,不需要上报用户设备的能力。
与之前方法实施例相应地, 本发明实施例提供一种资源配置设备的实施 例。 图 4为本发明实施例提供的一种资源配置设备的示意图, 所述设备包括: 配置方式获得单元 41, 用于获取用户设备的能力, 根据所述用户设备的 能力得到多种资源配置方式,所述用户设备的能力包括用户设备的天线数和每 个天线对应的射频链数,所述每种资源配置方式包括为所述用户设备配置的组 成载波数、 每个组成载波所采用的射频链情况;
业务需求判断单元 42, 用于从所述多种资源配置方式中获取数据承载量 满足业务需求的资源配置方式;
第一配置执行单元 43, 用于当需要节省所述用户设备的电能时, 从所述 数据承载量满足业务需求的资源配置方式中选择采用射频链数最少的资源配 置方式,按照所述采用射频链数最少的资源配置方式为所述用户设备配置组成 载波及每个组成载波所采用的射频链。 所述用户设备从数据承载量满足业务需求的资源配置方式中选择采用射 频链数最少的资源配置方式来进行资源配置, 能够达到节省电能的有益效果。 进一步地, 所述设备还可包括: 第二配置执行单元, 用于当需要节省带宽资源 时,从所述数据承载量满足业务需求的资源配置方式中选择采用组成载波数最 少的资源配置方式,按照所述采用组成载波数最少的资源配置方式为所述用户 设备配置组成载波及每个组成载波所采用的射频链。所述设备可以是基站或所 述用户设备。 当所述设备是基站时, 该设备内还可包括: 通知单元, 用于将资 源配置的结果通知所述用户设备。 当所述设备是所述用户设备时, 该设备内还 可包括: 初始配置单元, 用于当用户设备初始开机时, 采用初始配置方式配置 资源, 所述初始配置方式包括: 为所述用户设备配置一个射频链; 或者, 为用 户设备配置多个射频链, 并配置不同射频链服务于不同的组成载波; 或者, 配 置每个天线都打开一个射频链, 使打开的射频链服务于同一组成载波。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开 的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。本领域普 况下可以互相结合形成新的实施例。

Claims

权 利 要 求
1、 一种资源配置方法, 其特征在于, 包括:
获取用户设备的能力, 根据所述用户设备的能力得到多种资源配置方式, 所述用户设备的能力包括用户设备的天线数和每个天线对应的射频链数,所述 每种资源配置方式包括为所述用户设备配置的组成载波数与每个组成载波所 采用的射频链情况;
从所述多种资源配置方式中获取至少一种数据承载量满足业务需求的资 源配置方式;
当需要节省所述用户设备的电能时,从所述至少一种数据承载量满足业务 需求的资源配置方式中选择采用射频链数最少的资源配置方式,按照所述采用 射频链数最少的资源配置方式为所述用户设备配置组成载波及每个组成载波 所采用的射频链。
2、 如权利要求 1所述的方法, 其特征在于, 还包括:
当需要节省带宽资源时,从所述至少一种数据承载量满足业务需求的资源 配置方式中选择采用组成载波数最少的资源配置方式,按照所述采用组成载波 数最少的资源配置方式为所述用户设备配置组成载波及每个组成载波所采用 的射频链。
3、 如权利要求 1所述的方法, 其特征在于, 还包括:
基站在完成所述资源配置方法后, 将资源配置的结果通知所述用户设备。
4、 如权利要求 1所述的方法, 其特征在于, 还包括:
当用户设备初始开机时, 采用初始配置方式配置资源, 所述初始配置方式 包括: 为所述用户设备配置一个射频链; 或者, 为用户设备配置多个射频链, 并配置不同射频链服务于不同的组成载波; 或者, 配置每个天线都打开一个射 频链, 使打开的射频链服务于同一组成载波。
5、 如权利要求 1 _ 4任一项所述的方法, 其特征在于, 动态和半静态的采 用所述资源配置方法进行资源配置。
6、 一种资源配置设备, 其特征在于, 包括:
配置方式获得单元, 用于获取用户设备的能力,根据所述用户设备的能力 得到多种资源配置方式,所述用户设备的能力包括用户设备的天线数和每个天 线对应的射频链数,所述每种资源配置方式包括为所述用户设备配置的组成载 波数、 每个组成载波所采用的射频链情况;
业务需求判断单元,用于从所述多种资源配置方式中获取至少一种数据承 载量满足业务需求的资源配置方式;
第一配置执行单元, 用于当需要节省所述用户设备的电能时,从所述至少 一种数据承载量满足业务需求的资源配置方式中选择采用射频链数最少的资 源配置方式,按照所述采用射频链数最少的资源配置方式为所述用户设备配置 组成载波及每个组成载波所采用的射频链。
7、 如权利要求 6所述的设备, 其特征在于, 还包括:
第二配置执行单元, 用于当需要节省带宽资源时,从所述至少一种数据承 载量满足业务需求的资源配置方式中选择采用组成载波数最少的资源配置方 式,按照所述采用组成载波数最少的资源配置方式为所述用户设备配置组成载 波及每个组成载波所采用的射频链。
8、 如权利要求 6或 7所述的设备, 其特征在于, 所述设备是基站或所述 用户设备。
9、 如权利要求 8所述的设备, 其特征在于, 当所述设备是基站时, 还包 括: 通知单元, 用于将资源配置的结果通知所述用户设备。
10、 如权利要求 8所述的设备, 其特征在于, 当所述设备是所述用户设备 时, 还包括: 初始配置单元, 用于当用户设备初始开机时, 采用初始配置方式 配置资源, 所述初始配置方式包括: 为所述用户设备配置一个射频链; 或者, 为用户设备配置多个射频链,并配置不同射频链服务于不同的组成载波;或者, 配置每个天线都打开一个射频链, 使打开的射频链服务于同一组成载波。
PCT/CN2010/079160 2009-12-14 2010-11-26 一种资源配置方法和设备 WO2011072567A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/486,805 US8594038B2 (en) 2009-12-14 2012-06-01 Resource configuration method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910188871.X 2009-12-14
CN200910188871.XA CN102098784B (zh) 2009-12-14 2009-12-14 一种资源配置方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/486,805 Continuation US8594038B2 (en) 2009-12-14 2012-06-01 Resource configuration method and device

Publications (1)

Publication Number Publication Date
WO2011072567A1 true WO2011072567A1 (zh) 2011-06-23

Family

ID=44131593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079160 WO2011072567A1 (zh) 2009-12-14 2010-11-26 一种资源配置方法和设备

Country Status (3)

Country Link
US (1) US8594038B2 (zh)
CN (1) CN102098784B (zh)
WO (1) WO2011072567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242784A1 (en) * 2012-03-15 2013-09-19 Broadcom Corporation Reducing Complexity and Power Consumption in Cellular Networks with Carrier Aggregation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891464B2 (en) 2011-09-19 2014-11-18 Redline Innovations Group, Inc. Architecture, devices and methods for supporting multiple channels in a wireless system
US9867194B2 (en) * 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
EP2757730B1 (en) * 2013-01-16 2015-11-18 Sony Mobile Communications AB Power efficient control of uplink carrier usage by mobile terminal
CN103974340B (zh) * 2013-01-31 2018-05-18 华为技术有限公司 调整网络配置的方法及装置
WO2015140772A1 (en) * 2014-03-21 2015-09-24 Telefonaktiebolaget L M Ericsson (Publ) Adapting carrier aggregation configurations for user equipment
US20160198411A1 (en) * 2015-01-06 2016-07-07 Marvell World Trade Ltd. Network-assisted power consumption reduction in a wireless communication terminal
CN105322980B (zh) * 2015-02-04 2018-05-11 维沃移动通信有限公司 异频带载波聚合信号发送和接收方法及其装置
CN105007582B (zh) * 2015-05-25 2018-03-16 北京工业大学 基于pomdp的受控无线网络系统动态资源分配方法
US10314043B2 (en) * 2015-07-20 2019-06-04 Zte Wistron Telecom Ab Mobile terminal and method for data transmission by multiple simultaneous radio access technologies
CN105554824B (zh) * 2015-11-28 2018-05-29 广东欧珀移动通信有限公司 一种射频链路控制的方法及装置
CN105468415B (zh) * 2015-11-28 2018-06-29 广东欧珀移动通信有限公司 一种射频链路控制的方法及装置
CN108633046B (zh) * 2017-03-24 2023-08-22 华为技术有限公司 传输信号的方法和装置
CN110720235B (zh) * 2017-10-31 2021-01-15 Oppo广东移动通信有限公司 上报射频能力的方法、终端设备和网络设备
US10873952B2 (en) * 2017-11-30 2020-12-22 Google Llc LTE resource allocation
WO2019153237A1 (zh) * 2018-02-09 2019-08-15 Oppo广东移动通信有限公司 配置同步载波的方法、设备及计算机存储介质
CN114339725A (zh) * 2019-06-04 2022-04-12 华为技术有限公司 射频能力配置方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732698A (zh) * 2002-11-07 2006-02-08 艾达普蒂斯公司 在多载波通信系统中用于自适应载波分配和功率控制的方法和装置
US20070099584A1 (en) * 2005-10-27 2007-05-03 Samsung Electronics Co., Ltd. Methods of antenna selection for downlink MIMO-OFDM transmission over spatial correlated channels
CN101405957A (zh) * 2006-03-23 2009-04-08 三菱电机株式会社 多输入多输出无线通信网络中选择天线的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7603081B2 (en) * 2001-09-14 2009-10-13 Atc Technologies, Llc Radiotelephones and operating methods that use a single radio frequency chain and a single baseband processor for space-based and terrestrial communications
US7006810B1 (en) 2002-12-19 2006-02-28 At&T Corp. Method of selecting receive antennas for MIMO systems
US7327983B2 (en) 2004-06-25 2008-02-05 Mitsubishi Electric Research Laboratories, Inc. RF-based antenna selection in MIMO systems
US8483200B2 (en) * 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
CN101005343A (zh) * 2006-01-20 2007-07-25 华为技术有限公司 一种多载波信道资源的分配方法及系统
US20080080446A1 (en) * 2006-09-28 2008-04-03 Mediatek Inc. Systems and methods for power management in a multiple input multiple output (mimo) wireless local area network (wlan)
US8428168B1 (en) * 2008-02-25 2013-04-23 Marvell International Ltd. Implicit MIMO antenna selection
US8032093B1 (en) * 2008-05-28 2011-10-04 Triquint Semiconductor, Inc. Power detection arrangement with harmonic suppressor
US8243649B2 (en) * 2008-11-26 2012-08-14 Mitsubishi Electric Research Laboratories, Inc. Method for transmitting packets in relay networks
US8140024B2 (en) * 2009-06-29 2012-03-20 Nec Laboratories America, Inc. Fast convergence to optimal beam patterns

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732698A (zh) * 2002-11-07 2006-02-08 艾达普蒂斯公司 在多载波通信系统中用于自适应载波分配和功率控制的方法和装置
US20070099584A1 (en) * 2005-10-27 2007-05-03 Samsung Electronics Co., Ltd. Methods of antenna selection for downlink MIMO-OFDM transmission over spatial correlated channels
CN101405957A (zh) * 2006-03-23 2009-04-08 三菱电机株式会社 多输入多输出无线通信网络中选择天线的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242784A1 (en) * 2012-03-15 2013-09-19 Broadcom Corporation Reducing Complexity and Power Consumption in Cellular Networks with Carrier Aggregation
US9532237B2 (en) * 2012-03-15 2016-12-27 Broadcom Corporation Reducing complexity and power consumption in cellular networks with carrier aggregation

Also Published As

Publication number Publication date
CN102098784B (zh) 2014-06-04
CN102098784A (zh) 2011-06-15
US20120243455A1 (en) 2012-09-27
US8594038B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
WO2011072567A1 (zh) 一种资源配置方法和设备
US20220294505A1 (en) Multi-site mimo communications system with hybrid beamforming in l1-split architecture
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN103329458B (zh) 在移动通信系统中的ue能力报告方法和装置
KR102525739B1 (ko) 무선 통신 시스템에서 랭크 관련 정보를 결정하는 방법 및 장치
WO2019157995A1 (zh) 传输数据的方法和装置以及通信设备
EP3537808B1 (en) Communication method, network device, and terminal device
US11159221B2 (en) UE transmission schemes with subband precoding and TPMI re-interpretation
WO2022001226A1 (zh) 探测参考信号srs传输方法及通信装置
WO2019154259A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
JP7429242B2 (ja) 測定管理方法及び装置、通信デバイス
US11381288B2 (en) Communication method, network device, and terminal device
WO2019137299A1 (zh) 通信的方法和通信设备
TW202126088A (zh) 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告
WO2022253049A1 (zh) 一种下行调度方法及装置
US8355747B1 (en) Enhanced coverage and throughput using multiple wireless technologies
TW202002554A (zh) 無線通訊方法、網路設備和終端設備
WO2021223599A1 (zh) 一种上行数据传输方法及装置
WO2022257646A1 (zh) 一种通信方法及装置
Luo et al. 4G AND BEYOND IN AUSTRALIA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837004

Country of ref document: EP

Kind code of ref document: A1