WO2011071261A2 - 황화아연 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법 - Google Patents

황화아연 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법 Download PDF

Info

Publication number
WO2011071261A2
WO2011071261A2 PCT/KR2010/008414 KR2010008414W WO2011071261A2 WO 2011071261 A2 WO2011071261 A2 WO 2011071261A2 KR 2010008414 W KR2010008414 W KR 2010008414W WO 2011071261 A2 WO2011071261 A2 WO 2011071261A2
Authority
WO
WIPO (PCT)
Prior art keywords
zinc sulfide
zinc
antibacterial
weight
masterbatch
Prior art date
Application number
PCT/KR2010/008414
Other languages
English (en)
French (fr)
Other versions
WO2011071261A3 (ko
Inventor
강희덕
장래영
Original Assignee
주식회사 아이즌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이즌 filed Critical 주식회사 아이즌
Publication of WO2011071261A2 publication Critical patent/WO2011071261A2/ko
Publication of WO2011071261A3 publication Critical patent/WO2011071261A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/02Sulfur; Selenium; Tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/22Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients stabilising the active ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the present invention relates to a zinc sulfide nanoparticle composition having a thiol protective surface for producing a thermoplastic resin article having antibacterial and antifungal activity, and a thermoplastic masterbatch comprising the same.
  • Bactericidal activity is somewhat inferior Guanidine series Emission 1,1'-hexamethylenebis [5- (4-chlorophenyl) biguanide] Mixing Breakdown of cell surface structure by quaternary ammonium High bactericidal activity against bacteria, less effective against fungi Glycol Emission 2-bromo-2-nitro-1, 3-propanediol Mixing Sterilization by Formaldehyde Generation Use for products other than clothing
  • Phenolic Emission 0-phenylphenol, sodium 0-phenylphenoxide Mixing Cell Wall and Enzyme Inhibition Used as a fruit preservative Organosilicon Quaternary Ammonium Fixed type 3- (trimethoxysilyl) propyldimethyloctadecylammonium chloride Dipping method Cell wall destruction by cations Toxicity weak but strong sterilization effect
  • the antibacterial and antifungal treatment agents mostly contain cations, which cause the metabolism to be killed by disrupting or destroying the cell membranes of the anionic bacteria or by spreading into cells.
  • antibacterial and antifungal treatment agents are largely classified into a release form and a fixed form. Among them, the antibacterial and antifungal treatment agents are slowly released and have a mechanism of killing the bacteria around them. Examples thereof include inorganic compounds, organometallic compounds, amide compounds, amphoteric surfactants, and guanidine compounds.
  • Non-release or defensive types which are the mechanisms by which bacteria die when they come into contact with antibacterial and antifungal agents while being fixed by adsorption or chemical bonding to the substrate.
  • Representative examples thereof include organosilicon quaternary ammonium compounds.
  • release antibacterial and antifungal treatment agents have a disadvantage in that the release concentration is gradually decreased by continuous release, the antibacterial and antifungal powers gradually decrease, whereas the organosilicon quaternary ammonium salts, which are fixed antibacterial and antifungal treatment agents, are used. It is considered that it is not suitable because the resistance and the harmfulness of organic antifungal agents may be a medical problem. Many commercial antibacterial and antifungal agents are also known.
  • thermoplastic matrix based articles cannot be introduced into the thermoplastic matrix because it cannot withstand the formation temperature of the thermoplastic matrix and can be converted at or interact with the thermoplastic matrix at a temperature of 200-280 ° C. Therefore, there is still a need for new and inexpensive antibacterial and antifungal agents that are easy to use in thermoplastic matrix based articles.
  • metal-based components such as quaternary ammonium-based silver, copper or zinc and organic-based components such as triclosan and pyrithione are commonly known.
  • the present invention seeks to provide a zinc sulfide nanoparticulate composition applicable to a wide range of polymer resins having excellent antifungal and antibacterial properties.
  • the present invention seeks to improve the problems of coloring, discoloration and aggregation, and to provide a polymer resin masterbatch excellent in antibacterial and antifungal effects.
  • the present invention provides a zinc sulfide nanoparticle composition having antibacterial and antifungal properties, comprising a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, and having a thiol protective surface.
  • the composition preferably comprises 1 to 50% by weight of zinc metal compound, 0.05 to 1.5% by weight of sulfur-containing compound, 1 to 10% by weight of reducing agent and 0.1 to 10% by weight of stabilizer.
  • the present invention also provides an antifungal masterbatch in which the zinc sulfide nanoparticle composition is introduced into a thermoplastic polymer resin matrix.
  • the zinc metal compound is at least one selected from zinc chloride, zinc nitrate, zinc acetate, zinc sulfate, and zinc hydroxide.
  • the sulfur-containing compound is a sulfur compound having a molecular weight of 48 ⁇ 180.
  • the sulfur-containing compound is mercaptoacetic acid, mercaptopropionic acid, thiodipropionic acid, mepcaptosuccinic acid, mepcaptoethanol, thiodiethylene glycol, thioglycolic acid, aminoethyl mercaptan, thiodiethylamine, thiourethane, 1 type selected from the group consisting of thiocarboxylic acid, thiourea, thiophenol, thioformamide, methyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, allyl mercaptan, benzyl mercaptan, salts and derivatives thereof That's it.
  • the reducing agent is a water soluble amine.
  • the reducing agent is an alkalol amine such as monoalkanolamine, dialkanolamine, or trialkanolamine; At least one selected from the group consisting of ethylenetriamine, m-hexylamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, dimethylamine, triethanolamine, hydroxylamine sulfate and EDTA salt.
  • alkalol amine such as monoalkanolamine, dialkanolamine, or trialkanolamine
  • the stabilizer is one or more selected from the group consisting of sulfite, sodium bisulfite, potassium hydrogen sulfite, ammonium bisulfite, sodium pyrosulfite and sodium sulfite.
  • the zinc sulfide nano fine particles having a thiol protective surface and the thermoplastic resin matrix is placed in a blender, the temperature is raised to 50 ⁇ 55 °C zinc sulfide nano fine particles having a thiol protective surface in the thermoplastic matrix for 0.5 to 1 hour It provides a method for producing an antifungal masterbatch comprising the step of reducing precipitation and completely removing the water and kneading and extruding in an extruder.
  • the thermoplastic resin is polyethylene, polypropylene, polystyrene, vinyl chloride resin, ABS (Acrylonitrile butadiene styrene), POM (Polyacetal), PMMA (Poly (methyl methacrylate)), PF (phenol resin), UF (Urea-formaldehyde), MF (Melamine formaldehyde), PET (polyethylene terephthalate), EP (epoxy resin), PUR (polyurethane), AS (SAN resin), PA (Polyamid) and PC (Polycarbonate) may be one or more selected from the group consisting of.
  • thermoplastic resin is nylon fiber, polyethylene terephthalide fiber, polyacrylonitrile fiber, polyvinyl alcohol fiber, polyethylene fiber, polypropylene fiber, polyester fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber and polytetrafluoroethylene It may be at least one selected from the group consisting of fibers.
  • the present invention comprises a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, characterized in that it comprises 5 to 15% by weight of zinc sulfide nanoparticle composition of antibacterial and antifungal properties characterized by having a thiol protective surface. It provides a masterbatch for film.
  • the present invention comprises a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, characterized in that it comprises 5 to 15% by weight of zinc sulfide nanoparticle composition of antibacterial and antifungal properties characterized by having a thiol protective surface.
  • the present invention comprises a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, characterized in that it comprises 5 to 15% by weight of zinc sulfide nanoparticle composition of antibacterial and antifungal properties characterized by having a thiol protective surface.
  • a masterbatch for the sheet is provided.
  • the present invention comprises a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, characterized in that it comprises 5 to 15% by weight of zinc sulfide nanoparticle composition of antibacterial and antifungal properties characterized by having a thiol protective surface. It provides a masterbatch for the blow (blow).
  • the present invention comprises a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, characterized in that it comprises 5 to 15% by weight of zinc sulfide nanoparticle composition of antibacterial and antifungal properties characterized by having a thiol protective surface. It provides a masterbatch for extrusion.
  • the present invention comprises a zinc metal compound, a sulfur-containing compound, a reducing agent and a stabilizer, characterized in that it comprises 5 to 15% by weight of zinc sulfide nanoparticle composition of antibacterial and antifungal properties characterized by having a thiol protective surface. It provides a master batch for the laminate.
  • the zinc sulfide nanoparticle composition of the present invention and the masterbatch including the same improve the problems such as coloration, discoloration, aggregation, antibacterial and antifungal effect of the conventional antibacterial and antifungal agents, and have excellent antifungal effect.
  • the antibacterial and antifungal masterbatch of the present invention is excellent in manufacturing cost competitiveness.
  • masterbatches having antifungal and antibacterial functions are applicable to a wide range of synthetic resin fields.
  • 1 is a flowchart of a manufacturing process of the zinc sulfide nanoparticle composition-containing masterbatch of the present invention.
  • Fig. 2 shows the results of evaluating the freshness retention of the vinyl bag containing the zinc sulfide nanoparticle composition of the present invention.
  • the present invention provides zinc sulfide nanoparticle compositions comprising a zinc metal salt, a low molecular weight sulfur compound, a reducing agent and a stabilizer, and having a thiol protective surface which exhibits antibacterial and antifungal properties, Provide bacterial and antifungal masterbatches.
  • the zinc sulfide nanoparticle composition of the present invention comprises 1 zinc metal compound 2 sulfur-containing compound 3 stabilizer 4 reducing agent.
  • the composition is present in the colloidal form of zinc nano-particles, characterized in that having a low molecular weight thiol-based sulfur compound as a protective colloid on the particle surface. Therefore, for the production of the zinc sulfide nanoparticle composition of the present invention, it is essential to reduce the zinc metal compound in the presence of a sulfur-containing compound.
  • the zinc metal compound includes a zinc metal acid and a zinc metal salt, and may be used without particular limitation as long as it is a soluble compound that provides zinc ions.
  • sulfates, nitrates, acetates, water soluble halide inorganic salts of zinc, and one or more compounds may be used to provide zinc ions.
  • zinc sulfate hepta hydrate Zinc sulfate, Heptahydrate, ZnSO 4 ⁇ 7H 2 O
  • Zinc sulfate, Heptahydrate, ZnSO 4 ⁇ 7H 2 O is preferable in terms of ease of purchase and price.
  • the zinc metal compound is preferably 1 to 50% by weight of the total composition. If the content exceeds 50% by weight, the stability of the solution is lowered, and sediment is generated during long-term storage. If the content is less than 1% by weight, it is difficult to secure sufficient antibacterial and antifungal properties.
  • the sulfur-containing compound a low molecular weight sulfur compound is used.
  • the low molecular weight sulfur compound has a molecular weight of 48 to 180 specifically, for example, mercaptoacetic acid (molecular weight: 92), mercaptopropionic acid (molecular weight: 106), thiodipropionic acid (molecular weight: 178), mepcaptosuccinic acid (Molecular weight: 150), mecapcaptoethanol (molecular weight: 78), thiodiethylene glycol (molecular weight: 122), thioglycolic acid (molecular weight: 150), aminoethyl mercaptan (molecular weight: 77), thiodiethylamine (molecular weight) : 120), thiourethane (molecular weight: 105), thiocarboxylic acid (molecular weight: 110), thiourea (molecular weight: 76), thiophenol (molecular weight: 110), thioform
  • the sulfur-containing compound is preferably used in a proportion of 0.05 to 1.5% by weight based on the whole composition.
  • the low molecular weight sulfur compound can have a good effect as a protective colloid in a small proportion.
  • the reduction reaction of the zinc metal compound is carried out in the absence of a low molecular weight sulfur compound, the formed colloidal metal particles are immediately precipitated, after which the surface of the colloidal metal particles is not completely protected even if the sulfur compound is added. Remains. Therefore, it is essential to reduce the metal compound in the presence of a sulfur compound.
  • a sulfite compound as said stabilizer, Especially, a sulfurous acid or its alkali metal salt, an alkali earth metal salt, an ammonium salt, etc. are mentioned. Specifically, there are sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, ammonium bisulfite, sodium pyro sulfite, sodium sulfite and the like. Most sulfurous acid compounds have a reducing power and thus act as a secondary reducing agent.
  • the sulfite compound in the zinc sulfide nanoparticle composition having a thiol protective surface is preferably 1 to 10% by weight. If it is less than 1 weight%, the effect as a stabilizer will not be expressed, and even if it exceeds 10 weight%, the effect will be saturated and there is no merit.
  • alkali metal borohydride salts such as sodium borohydride, hydrazine compounds, formaldehyde, and the like are used.
  • the present invention uses at least one water-soluble amine as the reducing agent.
  • water-soluble amines include alkalol amines such as monoalkanolamine, dialkanolamine, and trialkanolamine; Ethylenetriamine, m-hexylamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, dimethylamine, triethanolamine, hydroxylamine sulfate, EDTA salt and the like can be used. Ethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine are preferred, and ethylenediamine is most preferred.
  • alkalol amines such as monoalkanolamine, dialkanolamine, and trialkanolamine
  • Water-soluble amines are used in the range of 0.1 to 10% by weight in the total composition. If it is less than 0.1 weight%, the effect of amine addition will not fully be exhibited, and if it exceeds 10 weight%, the stability of a reducing agent composition may fall and it is unpreferable. The range of 2-10 weight% is more preferable.
  • the precipitation temperature of the zinc sulfide nanoparticles having a thiol protective surface in the thermoplastic resin matrix can be lowered to 55 ° C. or lower and the precipitation rate can be increased.
  • the adhesion with the thermoplastic resin matrix can be improved and the liquid stability can be significantly increased.
  • the metal compound can be reduced at a reaction temperature of about 20-70 ° C. without heating or special light irradiation.
  • the zinc sulfide nanoparticle composition of the present invention can be used by being included in any natural or synthetic polymer resin, mixtures or combinations thereof, in papers, natural fibers, coating solutions, dyeing materials, printing ink solutions. That is, the antibacterial and antifungal effect can be seen by including in the resin composition of various uses.
  • the present invention provides a method of introducing and using the zinc sulfide nanoparticle composition into a thermoplastic resin, and such a thermoplastic resin.
  • the nanoparticulate composition is put into a masterbatch process of the thermoplastic resin.
  • the composition is added 5-15% of the total weight of the masterbatch. If the amount is less than 5% by weight, satisfactory antifungal effects cannot be achieved, and if it is more than 15% by weight, there is a concern that other physical properties of the thermoplastic resin may be affected.
  • a master batch is produced by stirring.
  • thermoplastic resin matrix that can be used in the present invention is not particularly limited, but specific examples include polyethylene (low density polyethylene resin (LDPE), ultra low density polyethylene resin (LLDPE), high density polyethylene (HDPE), ethylene-vinylacetate resin ( EVA), copolymers thereof, etc.-agricultural films, coatings, bags, buckets, bins, bottom sheets); Polypropylene (HOMO PP, RANDOM PP, copolymers thereof-boxes, containers, pharmaceutical containers, packaging films, pipes, artificial leather); Polystyrene (HIPS, GPPS, SAN-Cup, tableware, toothbrush, office supplies, milk carafe, yoghurt jar, etc.); Vinyl chloride resins (hard films, conduits, hoses, artificial leather, food containers, packaging containers); Transparent or general ABS (TV, stationery, bumpers, toys, sports equipment, automotive interior materials, etc.); POM (polyacetal); PMMA (acrylic-lens, cover, aircraft article, TV filter
  • the present invention can be used for various fibers from nylon to nonwovens.
  • nylon fiber polyethylene terephthalide fiber, polyacrylonitrile fiber, polyvinyl alcohol fiber, polyethylene fiber, polypropylene fiber, polyester fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polytetrafluoroethylene fiber And the like can be given.
  • the present invention is not limited to the polymer resins described above, and may be used in any natural or synthetic polymer resin, mixtures or combinations thereof.
  • the antifungal and antibacterial masterbatches of the present invention can be applied to a wide range of applications.
  • the present invention provides a masterbatch for film, an injection masterbatch, a sheet masterbatch, a brow masterbatch, an extrusion masterbatch, a laminate masterbatch or a urethane masterbatch.
  • Articles containing zinc sulfide nanoparticles having a thiol protective surface of the present invention have proven to have high antibacterial and antifungal properties.
  • Zinc sulfide nanoparticle compositions having a thiol protective surface are easily dispersed in the thermoplastic resin matrix to enable uniform distribution in the thermoplastic resin matrix.
  • the zinc sulfide nanoparticles of the present invention do not aggregate in the thermoplastic resin matrix.
  • zinc sulfide nanoparticles having a thiol protective surface have the advantage of withstanding the formation temperature of the thermoplastic resin matrix. Therefore, zinc sulfide nanoparticles having a thiol protective surface are not denatured or modified at this temperature.
  • zinc sulfide nanoparticles having a thiol protective surface are inert and do not react with the thermoplastic matrix, so that unlike conventional antibacterial and antifungal agents such as zinc oxide (ZnO) or silver (Ag), It does not cause deterioration, coloring or sulfiding problems.
  • Zinc sulfide nanoparticles also have the advantage of being an excellent delustrant. Therefore, zinc sulfide nanoparticles having a thiol protective surface are not only easy to be introduced into a polymer matrix such as a thermoplastic resin matrix but also have excellent properties in terms of use.
  • thermoplastic resin masterbatch including the nanoparticulate composition of the present invention antibacterial and antifungal active sources are released on the surface of the thermoplastic resin by diffusion and migration of zinc sulfide nanoparticles having a thiol protective surface to prevent bacteria and fungi. Contact with the containing environment.
  • antifungal and antibacterial activity lasts longer.
  • zinc sulfide nanoparticle composition having a thiol protective surface
  • zinc sulfate heptahydrate as a zinc metal compound
  • mercapto acetic acid as a protective precursor precursor
  • sulfur compound ethylene diamine as a reducing agent
  • sodium hydrogen sulfite as a stabilizer
  • composition II Zinc Sulfate Heptahydrate 30wt% 50 wt% Mercapto acetic acid 0.5wt% 0.5wt% Ethylene diamine 1.2wt% 2.0wt% Sodium hydrogen sulfite 3.2wt% 3.2wt% Distilled water up to 100wt% up to 100wt%
  • the temperature of the blender is raised to 80 ° C. to sufficiently remove moisture, and zinc sulfide nanoparticles are reduced and precipitated in the resin.
  • Zinc sulfide nano-particles ABS composite material was obtained in pellet form by the same method as in Example 1 except that ABS resin was used instead of acrylic resin.
  • Zinc sulfide nanoparticle epoxy composites were obtained in pellet form in the same manner as in Example 1 except for using an epoxy resin instead of an acrylic resin.
  • Zinc sulfide nano fine particles acrylic composite material was obtained in the form of pellets in the same manner as in Example 1, except that 10 kg of the zinc sulfide nano fine particles composition II solution was used. At this time, the content of the zinc sulfide nanoparticles was 16,500 ppm.
  • Zinc sulfide nano-particles ABS composite material was obtained in pellet form by the same method as in Example 4 except for using ABS resin instead of acrylic resin.
  • test bacteria E. coli, Escherichia coli ATCC 8739
  • test bacterial solution was measured 35 ⁇ 1 °C, RH 90 ⁇ 5% for 24 hours after the culture bacteria. The results are shown in Table 3 below.
  • Example 1 Example 2
  • Example 3 Example 4
  • Inoculation bacteria concentration (CFU / mL) 2.7 ⁇ 10 5 2.7 ⁇ 10 5 2.7 ⁇ 10 5 2.7 ⁇ 10 5 2.7 ⁇ 10 5
  • Growth value (F) 1.7 1.7 1.7 1.7 1.7 1.7 M a 2.7 ⁇ 10 5 2.7 ⁇ 10 5 2.7 ⁇ 10 5 2.7 ⁇ 10 5 M b 1.5 ⁇ 10 7 1.5 ⁇ 10 7 1.5 ⁇ 10 7 1.5 ⁇ 10 7 1.5 ⁇ 10 7 1.5 ⁇ 10 7 M c
  • 1.0 ⁇ 10 6 4.5 ⁇ 10 4 ⁇ 10 ⁇ 10 ⁇ 10 Antibacterial Activity (S)-Reduction (%) (1.2) 93.2 (2.5) 99.7 (6.2) 99.9 (6.2) 99.9 (6.2) 99.9 (6.2) 99.9
  • Antibacterial activity value log (M b / M c ) reduction rate (%): [(M b -M c ) / M b ] ⁇ 100
  • M a Average number of viable bacteria immediately after inoculation of test bacteria of standard sample (3 samples)
  • M b Average number of viable cells after incubation (24 hours) for standard sample (3 samples)
  • M c Average number of viable cells after incubation for a certain time (24 hours) of antimicrobial samples (3 samples)
  • Zinc sulfide nanoparticle LDPE composites were obtained in pellet form in the same manner as in Example 1, except that a low density polyethylene (LDPE) resin was used instead of an acrylic resin.
  • LDPE low density polyethylene
  • Zinc sulfide nanoparticle LDPE composites were obtained in pellet form in the same manner as in Example 4, except that low density polyethylene (LDPE) resin was used instead of acrylic resin.
  • LDPE low density polyethylene
  • the bananas were put in a plastic bag prepared from Examples 6 and 7 as follows and placed at room temperature. After 4 days the condition of the banana was observed.
  • a comparative example the same experiment was carried out for a general vinyl bag and a charcoal-containing vinyl bag.
  • thermoplastic resin in which the zinc sulfide nanoparticles of the present invention were masterbatch was greatly improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 티올 보호면을 갖는 평균입자 직경이 20nm 이하인 황화아연 나노 미립자를 함유하는 조성물 및 이를 포함하는 항 박테리아 및 항 진균 활성을 갖는 고분자수지인 마스터배치에 관한 것이다. 특히 티올 보호면을 갖는 황화아연 나노 미립자는 고분자수지 매트릭스 내에 용이하게 분산되며 응집 없이 균일한 분포를 가능하게 한다. 또한 티올 보호면을 갖는 황화아연 나노 미립자는 열가소성 고분자수지 매트릭스의 형성온도를 견디는 장점을 갖는다.

Description

황화아연 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법
본 발명은 항 박테리아 및 항 진균 활성을 갖는 열가소성 수지 물품의 제조를 위한 티올 보호면을 갖는 황화아연 나노 미립자 조성물 및 이를 포함하는 열가소성수지 마스터배치에 관한 것이다.
식품 포장재와 의료 분야와 같은 다수의 용도에서 사람의 질병을 예방하고 불쾌한 냄새를 피하기 위한 목적으로 박테리아 및 진균의 성장을 제한하는 것이 요구된다.
살균 특성을 갖는 다수의 제재가 매우 오랫동안 공지되어 왔고 다양한 용도로 사용되고 있다. 현재 알려진 항 박테리아 및 항 진균제는 다음의 표1 과 같이 종류가 많으며, 제한적으로 사용되고 있다.
표 1
항 진균 처리제 작용 대표적 제품 항 진균 기작 특 성
무기물계 방출형 은-제올라이트, 은-산화티탄, 은-아연-실리카, 은-인산칼슘 혼입법 미량 용출한 금속이온 및 활성산소가 세포 내 단백질의 구조를 파괴 무기물로 구성되어 있으므로 독성이 적고 열 안정성이 높기 때문에 합성섬유에 쉽게 혼입
유기금속계 방출형 소듐2-피리딜티오-1-옥사이드,카퍼-8-퀴놀린올레이트 혼입법 금속의 용출로 인해 효소반응을 정지시켜 살균작용 주로 세균, 곰팡이, 효모, 해조류 등에 강한 살균효과
아닐드계 방출형 3,4,4‘-트리클로로카바닐라이드 혼입법 양이온에 의해 살균 효과 그람양성 세균에 살균효과 큼
양성 계면활성제 방출형 알킬다이(아미노에틸) 글라이신 침지법 양이온에 의해 살균 효과 pH의 변화나 공존 물질의 영양을 적게 받음. 살균활성은 다소 열등
구아니딘계 방출형 1,1‘-헥사메틸렌비스[5-(4-클로로페닐)바이구아나이드] 혼입법 4급 암모늄에 의해 세포 표층구조 파괴 세균에는 높은 살균활성, 진균에는 효과 적음
글리콜계 방출형 2-브로모-2-니트로-1, 3-프로판디올 혼입법 포름알데하이드 생성에 의해 살균 의류용 이외의 제품에 사용
페놀계 방출형 0-페닐페놀,소듐0-페닐페녹사이드 혼입법 세포벽과 효소계 저해 과일의 방미제로 사용
유기실리콘제4급암모늄계 고정형 3-(트리메톡시시릴)프로필다이메틸옥타데실암모늄클로라이드 침지법 양이온에 의해 세포벽 파괴 독성 약하지만 살균효과 강함
상기 표1 에서 알 수 있듯이 항 박테리아 및 항 진균 처리제는 대부분 양이온을 함유하고 있는 바, 이는 음이온성인 세균의 세포막을 교란 또는 파괴하거나 세포 안으로 확산해 들어가 대사 장애를 일으킴으로써 세균을 사멸시키게 된다.
한편, 항 박테리아 및 항 진균 처리제는 크게 방출형과 고정형으로 대별된다. 이중에 방출형 항 박테리아 및 항 진균 처리제는 서서히 방출되어 주위에 있는 세균을 사멸시키는 기작을 갖는 형태로서 무기물계, 유기금속계, 아닐드계, 양성계면활성제, 구아니딘계 등이 여기에 속한다.
고정형 항 박테리아 및 항 진균 처리제는 비용출형 또는 방어형 등으로 불리어지기도 하는데 이는 기저(Substrate)에 흡착 또는 화학적 결합에 의하여 고정되어 있는 상태에서 세균이 항 박테리아 및 항 진균 처리제에 접촉하게 되면 사멸되는 기작을 갖고 있는 것으로서 그 대표적인 예로서는 유기실리콘 제4급 암모늄계가 있다.
방출형 항 박테리아 및 항 진균 처리제는 계속적인 방출에 의해 점진적으로 방출 농도가 저하되므로 항 박테리아 및 항 진균력이 점차 감소하게 되는 단점이 있는 반면, 고정형 항 박테리아 및 항 진균 처리제인 유기 실리콘계 4급 암모늄염은 유기항 진균제의 내성 및 유해성 등이 의학상으로 문제가 될 수 있어 적합지 않은 것으로 생각된다. 또한 다수의 시판 항 박테리아 및 항 진균제가 공지되어 있다.
그러나 상기 제재는 열가소성수지 매트릭스의 형성 온도를 견딜 수 없고, 200-280℃의 온도에서 전환되거나 또는 열가소성수지 매트릭스와 상호 작용할 수 있기 때문에, 열가소성수지 매트릭스로 도입될 수 없다. 그러므로 열가소성수지 매트릭스 기재의 물품에 사용하기 용이한 새롭고 저렴한 항 박테리아 및 항 진균제재가 여전히 요구되고 있는 실정이다.
살균특성을 갖는 다수의 제재로는 4급 암모늄기재의 은, 구리 또는 아연과 같은 금속기재 성분 및 트리클로산, 피리티온과 같은 유기기재 성분이 통상적으로 알려져 있다.
본 발명은 뛰어난 항 진균 및 항박테리아 특성을 갖는, 광범위한 범위의 고분자수지에 적용 가능한 황화아연 나노 미립자 조성물을 제공하고자 한다.
본 발명은 착색, 변색, 응집의 문제점을 개선하고, 항 박테리아 및 항 진균 효과가 탁월한 고분자수지 마스터배치를 제공하고자 한다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 제공한다.
상기 조성물은 바람직하게 아연금속화합물 1~50중량%, 황함유 화합물 0.05~1.5중량%, 환원제 1~10중량% 및 안정제 0.1~10중량%를 포함한다.
또한, 본 발명은 상기 황화아연 나노 미립자 조성물을 열가소성 고분자수지 매트릭스 내에 도입시킨 항 진균 마스터배치를 제공한다.
바람직하게, 상기 아연금속화합물은 염화아연, 질산아연, 초산아연, 황산아연 및 수산화 아연 중에서 선택된 1종 이상이다.
바람직하게, 상기 황함유 화합물은 48~180의 분자량을 갖는 황 화합물이다.
바람직하게, 상기 황함유 화합물은 메르캅토아세트산, 메르캅토프로피온산, 티오디프로피온산, 메프캅토숙신산, 메프캅토에탄올, 티오디에틸렌글리콜, 티오글리콜산, 아미노에틸 메르캅탄, 티오디에틸아민, 티오우레탄, 티오카르본산, 티오우레아, 티오페놀, 티오포름아미드, 메틸메르캅탄, 이소프로필 메르캅탄, n-부틸 메르캅탄, 알릴 메르캅탄, 벤질 메르캅탄, 이들의 염 및 유도체로 이루어진 그룹에서 선택되는 1종 이상이다.
바람직하게, 상기 환원제는 수용성 아민이다.
바람직하게, 상기 환원제는 모노알칸올아민, 디알칸올아민, 트리알칸올아민 등의 알칼올 아민류; 에틸렌트리아민, m-헥실아민, 테트라메틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 헵타메틸렌디아민, 디메틸아민, 트리에탄올아민, 황산히드록실아민 및 EDTA염으로 이루어진 그룹에서 선택되는 1종 이상이다.
바람직하게, 상기 안정제는 아황산, 아황산수소나트륨, 아황산수소칼륨, 아황산수소암모늄, 피로 아황산나트륨 및 아황산나트륨으로 이루어진 그룹에서 선택되는 1종 이상이다.
또한, 본 발명은 티올 보호면을 갖는 황화아연 나노 미립자 조성물 및 열가소성수지 매트릭스를 배합기에 넣고, 50~55℃로 승온하여 0.5~1시간 동안 열가소성수지 매트릭스에 티올 보호면을 갖는 황화아연 나노 미립자를 환원 석출시키는 단계 및 수분을 완전히 제거하고 압출기에서 혼련 및 압출하는 단계를 포함하는 것을 특징으로 하는 항 진균 마스터배치의 제조방법을 제공한다.
상기 열가소성수지는 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 염화비닐수지, ABS(Acrylonitrile butadiene styrene), POM(Polyacetal), PMMA(Poly(methyl methacrylate)), PF(페놀 수지), UF(Urea-formaldehyde), MF(Melamine formaldehyde), PET(Polyethylene terephthalate), EP(에폭시 수지), PUR(폴리우레탄), AS(SAN수지), PA(Polyamid) 및 PC(Polycarbonate)로 이루어진 그룹에서 선택되는 1종 이상일 수 있다.
상기 열가소성수지는 나일론섬유, 폴리에틸렌테레프탈라이드 섬유, 폴리아크릴로니크릴섬유, 폴리비닐알코올 섬유, 폴리에틸렌 섬유, 폴리프로필렌 섬유, 폴리에스터 섬유, 폴리염화비닐 섬유, 폴리염화비닐리덴 섬유 및 폴리테트라플르오르에틸렌 섬유로 이루어진 그룹에서 선택되는 1종 이상일 수 있다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 필름용 마스터배치를 제공한다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 사출용 마스터배치를 제공한다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 시트용 마스터배치를 제공한다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 브로우(blow)용 마스터배치를 제공한다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 압출용 마스터배치를 제공한다.
본 발명은 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 라미네이트용 마스터배치를 제공한다.
본 발명의 황화아연 나노 미립자 조성물 및 이를 포함하는 마스터배치는 종래 항 박테리아 및 항 진균제가 가지는 착색, 변색, 응집, 항 박테리아 및 항 진균효과 미흡 등의 문제점을 개선하며 항 진균 효과가 탁월하다.
또한, 본 발명의 항 박테리아 및 항 진균 마스터배치는 제조 원가 경쟁력이 우수하다.
본 발명에 의하면, 항 진균 및 항박테리아 기능을 갖는 마스터배치를 광범위한 범위의 합성수지 분야에 적용 가능하다.
도1은 본 발명의 황화아연 나노 미립자 조성물 함유 마스터배치의 제조 공정의 순서도이다.
도2는 본 발명의 황화아연 나노 미립자 조성물 함유하는 비닐 백의 신선도 유지력 평가 결과를 나타낸 것이다.
본 발명은 아연금속염, 저분자량의 황 화합물, 환원제 및 안정제를 포함하며, 항 박테리아 및 항 진균 특성을 나타내는 티올 보호면을 갖는 것을 특징으로 하는 황화아연 나노 미립자 조성물 및 이를 열가소성수지 매트릭스 내에 도입시킨 항 박테리아 및 항 진균 마스터배치를 제공한다.
본 발명의 황화아연 나노 미립자 조성물은 ① 아연금속화합물 ② 황함유 화합물 ③ 안정제 ④ 환원제를 포함한다.
또한, 상기 조성물은 아연 나노 미립자의 콜로이드 형태로 존재하며 입자 표면상에 보호 콜로이드로 저분자량의 티올 기재 황화합물을 갖는 것을 특징으로 한다. 따라서, 본 발명의 황화아연 나노 미립자 조성물의 제조를 위해서는 황함유 화합물의 존재 하에 아연금속화합물을 환원 반응시키는 것이 필수적이다.
상기 아연금속화합물은 아연금속산 및 아연금속염을 포함하는 것으로 아연 이온을 제공하는 가용성 화합물이면 특별히 한정하지 않고 시용될 수 있다. 구체적으로, 아연의 설페이트, 니트레이트, 아세테이트, 수용성 할라이드 무기염을 포함하며, 하나 이상의 화합물이 아연 이온을 제공하는데 사용될 수 있다. 특별하게는 구입의 용이성이나 가격측면에서 황산아연 헵타 수화물(Zinc sulfate, Heptahydrate, ZnSO4ㆍ7H2O)이 바람직하다.
본 발명의 황화아연 나노 미립자 조성물에서 아연금속화합물은 바람직하게 전체 조성물 중 1~50중량%이다. 함유량이 50중량%를 초과하면 용액의 안정성이 저하되어 장기보관 시 침전물이 발생하게 되며 1중량% 이하이면 충분한 항 박테리아 및 항 진균성을 확보하기가 어렵다.
상기 황함유 화합물로는 저분자량의 황 화합물을 사용한다. 저분자량의 황 화합물은 구체적으로 48~180의 분자량을 갖는 것으로, 예를 들면 메르캅토아세트산(분자량:92), 메르캅토프로피온산(분자량:106),티오디프로피온산(분자량:178), 메프캅토숙신산(분자량:150), 메프캅토에탄올(분자량:78), 티오디에틸렌글리콜(분자량:122), 티오글리콜산(분자량:150), 아미노에틸 메르캅탄(분자량:77), 티오디에틸아민(분자량:120), 티오우레탄(분자량:105), 티오카르본산(분자량:110), 티오우레아(분자량:76), 티오페놀(분자량:110), 티오포름아미드(분자량:61), 메틸메르캅탄(분자량:72), 이소프로필 메르캅탄(분자량:76), n-부틸 메르캅탄(분자량:90), 알릴 메르캅탄(분자량:74), 벤질 메르캅탄(분자량:124) 및 이의 염, 유도체 등을 포함하며, 하나 이상의 상기 황 화합물이 사용될 수 있다. 바람직하게, 티올 기재 황 화합물이 콜로이드성 금속 입자에 대한 더욱 높은 친화성 및 우수한 보호 콜로이드성 기능 때문에 바람직하고, 메르캅토아세트산, 메르캅토프로피온산 및 메르캅토에탄올이 특히 바람직하다.
상기 황함유 화합물은 조성물 전체에 대해 0.05 내지 1.5중량%의 비율로 사용되는 것이 바람직하다. 저분자량의 황 화합물은 적은 비율로도 보호 콜로이드로서의 양호한 효과를 가질 수가 있다. 아연금속화합물의 환원 반응이 저분자량의 황 화합물의 부재 하에 수행되는 경우는, 상기 형성된 콜로이드성 금속 입자가 즉시 석출되고, 그 후에는 황 화합물이 첨가되어도 콜로이드성 금속 입자의 표면은 완전히 보호되지 않은 채로 남아 있다. 따라서 황 화합물의 존재 하에 금속화합물을 환원 반응시키는 것이 필수적이다.
상기 안정제로는 아황산화합물을 함유하는 것이 바람직하고, 그중에서도 특히 아황산 또는 그 알칼리 금속염, 알카리토류 금속염, 암모늄염 등을 들 수 있다. 구체적으로, 아황산, 아황산수소나트륨, 아황산수소칼륨, 아황산수소암모늄, 피로 아황산나트륨, 아황산나트륨 등이 있다. 대부분의 아황산화합물은 환원력을 가지고 있으므로 보조 환원제로도 작용한다. 티올 보호면을 갖는 황화아연 나노 미립자 조성물 중의 아황산화합물은 바람직하게 1~10중량%이다. 1중량% 미만에서는 안정제로서의 효과가 발현되지 않고, 10중량%가 넘어도 효과가 포화되어 장점이 없다.
상기 환원제로는 종래에는 수산화붕소나트륨 등의 알칼리금속 수소화붕소염, 히드라진화합물, 포름알데히드 등을 사용하였으나, 이들은 환경성이나 유해성이 있는 환원제이므로, 본 발명에서는 환원제로 1종 이상의 수용성 아민을 사용한다.
수용성 아민으로는 구체적으로, 모노알칸올아민, 디알칸올아민, 트리알칸올아민 등의 알칼올 아민류; 에틸렌트리아민, m-헥실아민, 테트라메틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 헵타메틸렌디아민, 디메틸아민, 트리에탄올아민, 황산히드록실아민, EDTA염 등을 사용할 수 있고, 그 중에서도 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민이 바람직하고, 에틸렌디아민이 가장 바람직하다.
수용성 아민은 전제 조성물 중 0.1 내지 10중량%의 범위에서 사용한다. 0.1중량% 미만이면 아민 첨가의 효과가 충분히 발휘되지 않고, 10중량%를 초과하게 되면 환원제 조성물의 안정성이 저하되는 경우가 발생하므로 바람직하지 않다. 2 내지 10중량%의 범위가 보다 바람직하다.
수용성 아민을 사용하면 열가소성 수지 매트릭스 중에 티올 보호면을 갖는 황화아연 나노 미립자의 석출온도를 55℃ 이하로 낮출 수 있으며 석출속도도 증대 시킬 수 있다. 아울러 열가소성수지 매트릭스와의 부착성을 향상시키고 액 안정성도 현저히 높일 수 있다. 또한, 가열이나 특별한 광 조사 없이 20-70℃ 정도의 반응 온도에서 금속 화합물을 환원시킬 수 있다.
본 발명의 황화아연 나노 미립자 조성물은 임의의 천연 또는 합성고분자수지, 이들의 혼합물 또는 배합물을 비롯하여 종이류, 천연 섬유류, 코팅액, 염색원료, 인쇄 잉크액에 포함시켜 사용할 수 있다. 즉, 다양한 용도의 수지 조성물에 포함시킴으로써 항 박테리아 및 항 진균 효과를 볼 수 있다.
그중에서도 본 발명은 상기 황화아연 나노 미립자 조성물을 열가소성 수지에 도입시켜 사용하는 방법 및 그러한 열가소성 수지를 제공한다.
이하에서는 황화아연 나노 미립자 조성물을 열가소성 수지에 도입시키는 방법을 설명한다. 이를 위해 우선, 나노 미립자 조성물을 열가소성 수지의 마스터배치 공정에 투입한다. 이때 조성물은 마스터배치 총중량의 5~15% 투입한다. 5중량% 미만으로 투입하면, 만족스러운 항 진균 효과를 달성할 수 없고, 15중량%를 초과할 경우, 열가소성 수지의 다른 물성에 영향을 줄 염려가 있다. 다음으로, 교반과정을 거쳐 마스터배치를 생산한다.
또한, 본 발명에서 사용할 수 있는 열가소성수지 매트릭스는 특별히 한정되지 않으나, 구체적인 예를들면 폴리에틸렌(저밀도 폴리에틸렌수지(LDPE), 초저밀도 폴리에틸렌수지(LLDPE), 고밀도 폴리에틸렌(HDPE), 에틸렌-비닐아세테이트수지(EVA), 이의 공중합체 등- 농업용 필름, 피복, 포대, 물통, 쓰레기통, 바닥시트); 폴리프로필렌(HOMO PP, RANDOM PP, 이의 공중합체- 상자, 용기류, 약품용기, 포장필름, 파이프, 인조피혁); 폴리스티렌(HIPS, GPPS, SAN- 컵, 식기, 치솔대, 사무용품, 우유통, 요구르트통 등); 염화비닐수지(경질필름, 전선관, 호오스, 인조피혁, 식품용기, 포장용기); 투명 또는 일반 ABS(TV, 문구류, 범퍼, 완구, 운동용구, 자동차 내장재 등); POM(폴리아세탈); PMMA(아크릴- 렌즈, 커버, 항공기용품, TV필터, 케이스 등); PF(페놀수지- 프러그, 소켓트, 스위치박스, 코넥터 등); UF(urea-formaldehyde, 우레아 수지- 화장품 용기, 식기류, 조명기구, 각종 케이스 등); MF(멜라민 수지-식기류, 커피잔, 밥공기 등); PET(폴리에틸렌테레프탈레이드- 의자, 테이블, 음료수병, 식용류병, 약품 탱크, 헬멧 등); PBT(폴리부틸렌테레프탈레이드); EP(에폭시 수지-기계부품, 공구류); PUR(폴리우레탄- 전선피복, 각종 성형품); AS(SAN수지-전기기기케이스, 미터커버, 밧데리케이스 등); PA(PA66- 에나멜 전선, 내열성 제품 등; PA6- 기어, 베어링, 기계 부품, 나이론 호스, 섬유 등); PC(폴리카보네이트); PC Alloy 등이 있다.
특히, 본 발명은 나일론부터 부직포에 이르기까지 각종 섬유에도 이용될 수 있다. 구체적으로, 나일론섬유, 폴리에틸렌테레프탈라이드 섬유, 폴리아크릴로니크릴섬유, 폴리비닐알코올 섬유, 폴리에틸렌 섬유, 폴리프로필렌 섬유, 폴리에스터 섬유, 폴리염화비닐 섬유, 폴리염화비닐리덴 섬유, 폴리테트라플르오르에틸렌 섬유 등의 예를 들수 있다.
본 발명은 상술한 고분자수지로 한정되지 않으며, 임의의 천연 또는 합성 고분자수지, 이들의 혼합물 또는 배합물에 모두 사용될 수 있다.
본 발명의 항 진균 및 항박테리아 마스터배치는 광범위한 분야에 적용될 수 있다. 구체적으로, 본 발명은 필름용 마스터배치, 사출용 마스터배치, 시트용 마스터배치, 브로우용 마스타배치, 압출용 마스터배치, 라미네이트용 마스터배치 또는 우레탄용 마스터배치를 제공한다.
본 발명의 티올 보호면을 갖는 황화아연 나노 미립자를 함유하는 물품은 높은 항 박테리아 및 항 진균 특성을 갖는 것을 입증하였다.
이러한 항 박테리아 및 항 진균 특성은 열가소성 수지 매트릭스에 티올 보호면을 갖는 황화아연 나노 미립자 조성물을 첨가함으로써 부여된다. 티올 보호면을 갖는 황화아연 나노 미립자 조성물은 열가소성 수지 매트릭스 내에 용이하게 분산됨으로써 열가소성 수지 매트릭스 내에 균일한 분포를 가능하게 한다.
항 박테리아 및 항 진균성 제재로서 종래 공지된 다수의 금속기재 입자와는 달리 본 발명의 황화아연 나노 미립자는 열가소성 수지 매트릭스 내에서 응집되지 않는다. 또한, 티올 보호면을 갖는 황화아연 나노 미립자는 열가소성수지 매트릭스의 형성 온도를 견디는 잇점을 갖는다. 따라서 티올 보호면을 갖는 황화아연 나노 미립자는 이러한 온도에서 변성되거나 개질되지 않는다. 더욱이 티올 보호면을 갖는 황화아연 나노 미립자는 비활성이고 열가소성수지 매트릭스와 반응하지 않아서, 예를 들면 산화아연(ZnO) 또는 은(Ag)과 같은 종래 기술의 항 박테리아 및 항 진균제와는 달리 열가소성 수지의 열화, 착색 또는 황화의 문제를 일으키지 않는다. 아울러 황화아연 나노미립자는 우수한 무광제(delustrant)이라는 장점도 갖고 있다. 따라서, 티올 보호면을 갖는 황화아연 나노 미립자는 열가소성 수지 매트릭스와 같은 중합체 매트릭스로의 도입이 용이할 뿐만 아니라 사용면에서 우수한 특성을 갖는다.
또한, 본 발명의 나노 미립자 조성물을 포함하는 열가소성 수지 마스터배치에서는 티올 보호면을 갖는 황화아연 나노 미립자의 확산 및 이동에 의해 항 박테리아 및 항 진균 활성원이 열가소성 수지의 표면에 방출되어 박테리아 및 진균을 함유하는 환경과 접촉하게 된다. 따라서, 항 진균 및 항 박테리아 활성이 보다 장기간 지속되는 장점이 있다.
이하 본 발명의 바람직한 실시예를 기재한다. 다만 본 발명이 이에 한정하는 것은 아니다.
<티올 보호면을 갖는 황화아연 나노 미립자 조성물의 제조>
티올 보호면을 갖는 황화아연 나노 미립자 조성물을 제조하기 위해 아연금속화합물로 황산아연 7수화물, 보호제 전구체 황함유 화합물로서 메르캅토 아세트산, 환원제로서 에틸렌 디아민, 안정제로서 아황산 수소나트륨을 하기 표2와 같은 조성비로 준비하였다.
표 2
구 분 조성물 Ⅰ 조성물 Ⅱ
황산아연 7수화물 30wt% 50wt%
메르캅토 아세트산 0.5wt% 0.5wt%
에틸렌 디아민 1.2wt% 2.0wt%
아황산 수소나트륨 3.2wt% 3.2wt%
증류수 up to 100wt% up to 100wt%
먼저 200㎖의 비이커에 증류수 65g과 황산아연 7수화물 30g 및 메르캅토 아세트산 0.5g을 투입한 후 마그네틱 교반기로 상온에서 30분간 교반하였다. 이 혼합물 용액의 온도를 50℃로 승온 시키면서 에틸렌 디아민 1.3g과 아황산 수소나트륨 3.2g을 추가로 투입한 후, 50℃의 온도를 유지하면서 1시간 동안 환원반응을 실시하였다. 다음으로, 환원반응이 끝난 혼합용액을 실온까지 냉각시켜 10중량%의 황화아연 나노 미립자 조성물을 얻었다.
<황화아연 나노 미립자 마스터배치화 공정>
실시예 1
① 배합에 아크릴 수지 100kg을 투입하고 상기 황화아연 나노 미립자 조성물Ⅰ 용액 10kg을 배합기에 투입하고, 배합기 실내온도를 55℃로 승온하여 1시간 동안 환원, 석출 반응을 실시하였다.
② 배합기의 온도를 80℃로 승온하여 수분을 충분히 제거하고, 수지에 황화아연 나노 미립자를 환원 석출시킨다.
③ 황화아연 나노 미립자가 환원, 석출된 아크릴 수지를 쌍축압출기에 투입하였다. 이때 압출기의 온도는 170℃를 유지하였다.
④ 압출기에서 혼련 및 압출하여 황화아연 나노 미립자 아크릴 복합재료를 펠렛 형태로 수득하였다. 이때 황화아연 나노 미립자의 함유량은 10,000ppm이었다.
실시예 2
아크릴 수지 대신에 ABS 수지를 사용하는 것을 제외하고 실시예 1에서와 동일한 방법으로 황화아연 나노 미립자 ABS 복합재료를 펠렛 형태로 수득하였다.
실시예 3
아크릴 수지 대신에 에폭시 수지를 사용하는 것을 제외하고 실시예 1에서와 동일한 방법으로 황화아연 나노 미립자 에폭시 복합재료를 펠렛 형태로 수득하였다.
실시예 4
황화아연 나노 미립자 조성물Ⅱ 용액 10kg를 사용하는 것을 제외하고는 실시예 1에서와 동일하게 황화아연 나노 미립자 아크릴 복합재료를 펠렛 형태로 수득하였다. 이때 황화아연 나노 미립자의 함유량은 16,500ppm이었다.
실시예 5
아크릴 수지 대신에 ABS 수지를 사용하는 것을 제외하고 실시예 4에서와 동일한 방법으로 황화아연 나노 미립자 ABS 복합재료를 펠렛 형태로 수득하였다.
항균력 평가
실시예 1 내지 5로부터 제조된 시료들의 시험균(대장균, Escherichia coli ATCC 8739)에 대한 항균력을 평가하였다. 표준피복필름으로 Stomacher 400 POLY-BAG을 사용하였고, 시험균액을 35 ± 1℃, RH 90 ± 5 %에서 24 시간 정치 배양후 균수 측정하였다. 결과를 하기 표3에 나타내었다.
표 3
실시예1 실시예2 실시예3 실시예4 실시예5
접종균 농도(CFU/㎖) 2.7 × 105 2.7 × 105 2.7 × 105 2.7 × 105 2.7 × 105
증식치(F) 1.7 1.7 1.7 1.7 1.7
Ma 2.7 × 105 2.7 × 105 2.7 × 105 2.7 × 105 2.7 × 105
Mb 1.5 × 107 1.5 × 107 1.5 × 107 1.5 × 107 1.5 × 107
Mc 1.0 × 106 4.5 × 104 < 10 < 10 < 10
항균활성치 (S) - 감소율 (%) (1.2) 93.2 (2.5) 99.7 (6.2) 99.9 (6.2) 99.9 (6.2) 99.9
CFU = Colony Forming Unit
시료 표면적 : 25 ㎤
항균활성치 (S) : log(Mb / Mc) 감소율(%) : [(Mb - Mc) / Mb] × 100
증식치 (F) : log(Mb / Ma) (1.5 이상)
Ma : 표준시료의 시험균 접종직후의 생균수의 평균 (3검체)
Mb : 표준시료의 일정시간 (24 시간) 배양후 생균수의 평균 (3검체)
Mc : 항균가공시료의 일정시간 (24 시간) 배양후 생균수의 평균 (3검체)
실시예 6
아크릴 수지 대신에 저밀도 폴리에틸렌(LDPE) 수지를 사용하는 것을 제외하고 실시예 1에서와 동일한 방법으로 황화아연 나노 미립자 LDPE 복합재료를 펠렛 형태로 수득하였다.
실시예 7
아크릴 수지 대신에 저밀도 폴리에틸렌(LDPE) 수지를 사용하는 것을 제외하고 실시예 4에서와 동일한 방법으로 황화아연 나노 미립자 LDPE 복합재료를 펠렛 형태로 수득하였다.
신선도 유지 평가
식품의 신선도 유지력을 평가하기 위하여 아래와 같이 실시예 6 및 7로부터 제조된 비닐 백에 바나나를 넣고 상온에 두었다. 4일 후 바나나의 상태를 관찰하였다. 비교예로 일반 비닐 백 및 숯 함유 비닐 백에 대해서도 동일한 실험을 하였다.
그 결과를 도 2에 나타내었다.
상기 평가로부터 본 발명의 황화아연 나노 미립자를 마스터배치 시킨 열가소성 수지의 경우 항 박테리아, 항 진균력 및 신선도 유지력이 월등히 향상되었음을 확인할 수 있다.

Claims (18)

  1. 아연금속화합물, 황함유 화합물, 환원제 및 안정제를 포함하며, 티올 보호면을 갖는 것을 특징으로 하는 항 박테리아 및 항 진균 특성의 황화아연 나노 미립자 조성물.
  2. 제1항에 있어서,
    아연금속화합물 1~50중량%, 황함유 화합물 0.05~1.5중량%, 환원제 1~10중량% 및 안정제 0.1~10중량%를 포함하는 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  3. 제1항에 있어서,
    상기 아연금속화합물은 염화아연, 질산아연, 초산아연, 황산아연 및 수산화 아연 중에서 선택된 1종 이상인 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  4. 제1항에 있어서,
    상기 황함유 화합물은 48~180의 분자량을 갖는 황 화합물인 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  5. 제1항에 있어서,
    상기 황함유 화합물은 메르캅토아세트산, 메르캅토프로피온산, 티오디프로피온산, 메프캅토숙신산, 메프캅토에탄올, 티오디에틸렌글리콜, 티오글리콜산, 아미노에틸 메르캅탄, 티오디에틸아민, 티오우레탄, 티오카르본산, 티오우레아, 티오페놀, 티오포름아미드, 메틸메르캅탄, 이소프로필 메르캅탄, n-부틸 메르캅탄, 알릴 메르캅탄, 벤질 메르캅탄, 이들의 염 및 유도체로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  6. 제1항에 있어서,
    상기 환원제는 수용성 아민인 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  7. 제1항에 있어서,
    상기 환원제는 모노알칸올아민, 디알칸올아민, 트리알칸올아민 등의 알칼올 아민류; 에틸렌트리아민, m-헥실아민, 테트라메틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 헵타메틸렌디아민, 디메틸아민, 트리에탄올아민, 황산히드록실아민 및 EDTA염으로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  8. 제1항에 있어서,
    상기 안정제는 아황산, 아황산수소나트륨, 아황산수소칼륨, 아황산수소암모늄, 피로 아황산나트륨 및 아황산나트륨으로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 황화아연 나노 미립자 조성물.
  9. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물 및 열가소성수지 매트릭스를 배합기에 넣고, 50~55℃로 승온하여 0.5~1시간 동안 열가소성수지 매트릭스에 티올 보호면을 갖는 황화아연 나노 미립자를 환원 석출시키는 단계 및 수분을 완전히 제거하고 압출기에서 혼련 및 압출하는 단계를 포함하는 것을 특징으로 하는 항 박테리아 및 항 진균 마스터배치의 제조방법.
  10. 제9항에 있어서,
    상기 열가소성수지는 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 염화비닐수지, ABS(Acrylonitrile butadiene styrene), POM(Polyacetal), PMMA(Poly(methyl methacrylate)), PF(페놀 수지), UF(Urea-formaldehyde), MF(Melamine formaldehyde), PET(Polyethylene terephthalate), EP(에폭시 수지), PUR(폴리우레탄), AS(SAN수지), PA(Polyamid) 및 PC(Polycarbonate)로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 항 박테리아 및 항 진균 마스터배치의 제조방법.
  11. 제9항에 있어서,
    상기 열가소성수지는 나일론섬유, 폴리에틸렌테레프탈라이드 섬유, 폴리아크릴로니크릴섬유, 폴리비닐알코올 섬유, 폴리에틸렌 섬유, 폴리프로필렌 섬유, 폴리에스터 섬유, 폴리염화비닐 섬유, 폴리염화비닐리덴 섬유 및 폴리테트라플르오르에틸렌 섬유로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 항 박테리아 및 항 진균 마스터배치의 제조방법.
  12. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 열가소성 고분자수지 매트릭스 내에 도입시킨 것을 특징으로 하는 항 박테리아 및 항 진균 마스터배치.
  13. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 항박테리아 및 항진균 활성을 갖는 필름용 마스터배치.
  14. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 항박테리아 및 항진균 활성을 갖는 사출용 마스터배치.
  15. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 항박테리아 및 항진균 활성을 갖는 시트용 마스터배치.
  16. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 항박테리아 및 항진균 활성을 갖는 블로우(blow)용 마스터배치.
  17. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 항박테리아 및 항진균 활성을 갖는 압출용 마스터배치.
  18. 제1항 내지 제8항 중 어느 한 항의 황화아연 나노 미립자 조성물을 5~15중량% 포함하는 것을 특징으로 하는 항박테리아 및 항진균 활성을 갖는 라미네이트용 마스터배치.
PCT/KR2010/008414 2009-12-08 2010-11-25 황화아연 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법 WO2011071261A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0121264 2009-12-08
KR1020090121264A KR101039043B1 (ko) 2009-12-08 2009-12-08 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2011071261A2 true WO2011071261A2 (ko) 2011-06-16
WO2011071261A3 WO2011071261A3 (ko) 2011-11-10

Family

ID=44146016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008414 WO2011071261A2 (ko) 2009-12-08 2010-11-25 황화아연 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101039043B1 (ko)
WO (1) WO2011071261A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108244138A (zh) * 2018-01-17 2018-07-06 上海化工研究院有限公司 一种抗生素废渣防霉变剂及其制备方法
US20220312732A1 (en) * 2019-05-27 2022-10-06 Toyobo Co., Ltd. Animal garment and animal biological information measurement apparatus
CN115413673A (zh) * 2022-09-30 2022-12-02 安徽江淮汽车集团股份有限公司 一种适用于热塑性塑料的抗菌剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233392B2 (en) 2011-11-16 2016-01-12 Selim Fiber Co., Ltd. Artificial hair filament having antibacterial and antifungal properties, method and device for preparing the same
KR102253875B1 (ko) 2020-12-11 2021-05-20 (주)모테크바이오 항균 탈취제 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040072725A (ko) * 2002-01-11 2004-08-18 로디아닐 진드기를 박멸하는 제제로서의 황화아연의 용도
KR20050059334A (ko) * 2002-11-08 2005-06-17 로디아닐 항박테리아 및 항진균 활성을 갖는 물품
JP2006008672A (ja) * 2004-05-25 2006-01-12 Toray Ind Inc 無機抗菌剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585059B2 (ja) * 1995-06-02 2004-11-04 松下電器産業株式会社 抗菌性組成物、および抗菌性樹脂組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040072725A (ko) * 2002-01-11 2004-08-18 로디아닐 진드기를 박멸하는 제제로서의 황화아연의 용도
KR20050059334A (ko) * 2002-11-08 2005-06-17 로디아닐 항박테리아 및 항진균 활성을 갖는 물품
JP2006008672A (ja) * 2004-05-25 2006-01-12 Toray Ind Inc 無機抗菌剤

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108244138A (zh) * 2018-01-17 2018-07-06 上海化工研究院有限公司 一种抗生素废渣防霉变剂及其制备方法
CN108244138B (zh) * 2018-01-17 2021-09-07 上海化工研究院有限公司 一种抗生素废渣防霉变剂及其制备方法
US20220312732A1 (en) * 2019-05-27 2022-10-06 Toyobo Co., Ltd. Animal garment and animal biological information measurement apparatus
CN115413673A (zh) * 2022-09-30 2022-12-02 安徽江淮汽车集团股份有限公司 一种适用于热塑性塑料的抗菌剂及其制备方法

Also Published As

Publication number Publication date
WO2011071261A3 (ko) 2011-11-10
KR101039043B1 (ko) 2011-06-03

Similar Documents

Publication Publication Date Title
KR101334283B1 (ko) 항균 플라스틱 소재, 항균 플라스틱, 항균 플라스틱 제조용 마스터배치, 및 항균 플라스틱의 제조방법
WO2011071261A2 (ko) 황화아연 나노 미립자 조성물, 이를 함유하는 항 박테리아 및 항 진균 활성 고분자 수지 마스타배치 및 그 제조방법
CN100551961C (zh) 薄膜用抗菌透气防水塑料粒料及其制造方法
WO2015105214A1 (ko) 항균 섬유 소재, 항균 섬유, 항균 섬유 제조용 마스터배치, 및 항균 섬유의 제조방법
CN100413924C (zh) 聚合物/蒙脱土-大蒜素纳米抗菌复合材料及其制备方法
CN110343327A (zh) 一种壳聚糖负载纳米银抗菌聚丙烯材料及其制备方法
CN111909454A (zh) 一种抗菌母粒及其应用
CN109438937B (zh) 一种抗菌型pla基可降解食品包装材料及其制备方法
CA2090208A1 (en) Antibacterial and antifungal polyacetal resin composition
CN102037988B (zh) 一种复合抗菌剂及其制备方法
CN108690263A (zh) 一种抗菌聚烯烃及其制备方法
CN106810756A (zh) 一种饭盒用抗菌性聚丙烯复合材料及其制备方法
CN108077307A (zh) 一种聚乙烯亚胺包埋无色纳米银抗菌剂
Palomba et al. Activity of antimicrobial silver polystyrene nanocomposites
CN107793581B (zh) 一种高效的抗菌母料及制备方法
CN102212220B (zh) 一种抗菌聚乙烯组合物及其制备方法
KR20050020437A (ko) 은 담지 무기계 항균제 및 이를 함유한 열가소성 수지마스터배치
CN114736445A (zh) 一种抗菌阻燃的聚乙烯材料及其制备方法、一种抗菌阻燃聚乙烯薄膜及其制备方法
Shakir et al. Investigation of thermal, antibacterial, antioxidant and antibiofilm properties of PVC/ABS/ZnO nanocomposites for biomedical applications
JPWO2003085051A1 (ja) 抗菌性ガラス組成物、抗菌性樹脂組成物及びその製造方法
CN113372650A (zh) 抗菌环保食品包装盒及其制备工艺
CN103059494B (zh) 抗菌asa塑料
CN102399419B (zh) 一种抗菌聚对苯二甲酸乙二酯组合物及其制备方法
CN108912478B (zh) 一种花洒用零配件
CN111206295A (zh) 一种灭菌口罩专用材料、灭菌网、灭菌口罩及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10836157

Country of ref document: EP

Kind code of ref document: A2