WO2011071241A2 - Système de détection de fissures et procédé de détection de fissures - Google Patents

Système de détection de fissures et procédé de détection de fissures Download PDF

Info

Publication number
WO2011071241A2
WO2011071241A2 PCT/KR2010/007421 KR2010007421W WO2011071241A2 WO 2011071241 A2 WO2011071241 A2 WO 2011071241A2 KR 2010007421 W KR2010007421 W KR 2010007421W WO 2011071241 A2 WO2011071241 A2 WO 2011071241A2
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic wave
crack
ultrasonic
detection information
sensor tag
Prior art date
Application number
PCT/KR2010/007421
Other languages
English (en)
Other versions
WO2011071241A3 (fr
Inventor
Youngbin Cho
Original Assignee
Lg Innotek Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Innotek Co., Ltd. filed Critical Lg Innotek Co., Ltd.
Publication of WO2011071241A2 publication Critical patent/WO2011071241A2/fr
Publication of WO2011071241A3 publication Critical patent/WO2011071241A3/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2481Wireless probes, e.g. with transponders or radio links
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Definitions

  • the present invention relates to a crack detection system and a method thereof using an ultrasonic sensor and a short-range wireless communication tag.
  • the present invention relates to a method of simultaneously gauging the length and angle of surface opening cracks of a concrete structure, and more particularly, to a method of simultaneously measuring with a nondestructive test method the length and the angle of surface opening cracks in a concrete structure using an ultrasonic method and an impact-echo method.
  • the conventional ultrasonic method measures a transmission time (t) when ultrasonic waves produced from the transmission probe 1 arrives at the reception probe 2 through a vertex point 4 of the crack part 3.
  • the transmission time (t) indicates a time ultrasonic waves from the transmission probe 1 arrives at the reception probe 2 through a shortest range distance.
  • the depth of the crack portion 3 is obtained as shown in the Equation 1.
  • the method disposes an ultrasonic wave transmission probe 1 and an ultrasonic wave reception probe 2 at equal distance from a crack portion 3 at the left and right side of the crack portion 3 (A and B positions in the Figure), and measures a transmission time (t1) through which ultrasonic waves produced from a transmission probe 1 arrives at a reception probe 2.
  • the method places a transmission probe 1 at its original position and shifts a reception probe 2 by distance X again to the outside (C position in the Figure), and repeatedly measures a transmission time (t2) through which ultrasonic waves produced from the transmission probe 1 arrives at a reception probe 2'.
  • the depth D of the crack portion 3 may be calculated by the following Equation 2.
  • a crack detection method by the prior-art technology detects a crack only in a case a crack detection vehicle passes through tunnels, etc. Therefore, it is difficult to perform a continuous management of cracks in a tunnel in terms of a cost and a tunnel use time.
  • the present invention is to provide a crack detection system and a method thereof that can monitor cracks in a tunnel at a cheap cost.
  • a crack detection system comprises an ultrasonic wave sensor tag including a time measurement unit for measuring a current time, an ultrasonic wave detection unit capable of detecting ultrasonic waves applied from the outside, a storage unit storing ultrasonic wave detection information containing a time at which ultrasonic waves are detected by the ultrasonic wave detection unit, a short-range wireless communication module for transmitting the ultrasonic wave detection information to the outside, and a driving electric power supply unit configured to supply driving electric power to said each component; and
  • a crack detection server including a communication module for receiving the ultrasonic wave detection information by forming a communication channel with the short-range wireless communication module, a crack determination unit configured to determine if there occur cracks in a tunnel from the ultrasonic wave detection information.
  • a crack detection method includes detecting ultrasonic waves in a case there occur cracks by an ultrasonic wave sensor tag; storing ultrasonic wave detection information including the ultrasonic wave detected time; determining if a short-range wireless communication signal is detected; transmitting the stored ultrasonic wave detection information from the ultrasonic wave sensor tag to a crack detection server; and determining the occurrence of a crack from the ultrasonic wave detection information by the crack detection server.
  • a crack detection method includes determining if a preset time has elapsed after the sleeping time of an ultrasonic wave sensor tag; emitting ultrasonic waves from the ultrasonic wave sensor tag; detecting the reflective waves of the emitted ultrasonic waves; storing ultrasonic wave detection information containing the intensity and delayed time of the reflective waves; determining if a short-range wireless communication signal is detected; transmitting the ultrasonic wave detection information from the ultrasonic wave sensor tag to a crack detection server; and determining the occurrence of a crack from the ultrasonic wave detection information by the crack detection server.
  • FIG. 1 is a description view schematically showing a method of measuring the depth of cracks vertically taken place on the surface of a concrete structure using a conventional ultrasonic method
  • FIG. 2 is a construction view showing a crack detection system according to one embodiment of the present invention
  • FIG. 3 is a conceptional view showing one example of a crack detection method applicable to the present invention
  • FIG. 4 is a flow chart showing a crack detection method according to one embodiment of the present invention.
  • FIG. 5 is a flowchart showing a crack detection method according to another embodiment of the present invention.
  • FIG. 2 shows a crack detection system according to one embodiment of the present invention.
  • a crack detection system is comprised of an ultrasonic wave sensor tag 100 attached to the inner wall of a tunnel, that is an object for which a crack or not is monitored; and a crack detection server 200 mounted on a transportation means such as tunnel-passing vehicles, receiving a piece of information from the ultrasonic wave sensor tag 100, and determining a crack or not in a tunnel.
  • the ultrasonic wave sensor tag 100 includes a time measurement unit 110 for measuring a current time, an ultrasonic wave detection unit 120 detectable of ultrasonic waves applied from the outside, a storage part 140 storing an ultrasonic wave detection information containing a time at which the ultrasonic wave detection part 120 detects ultrasonic waves, a short-range wireless communication module 160 for transmitting ultrasonic wave detection information stored in the storage part 140 to the following crack detection server 200, and a driving electric power supply unit 180 supplying driving electric power to said each component.
  • the crack detection server 200 includes a communication module 220 for receiving information stored in the storage unit 140 of the ultrasonic wave sensor tag 100; and a crack (fracture) determination unit 260 determining cracks of the tunnel from the received values.
  • the ultrasonic wave detection unit 120 is configured to detect ultrasonic waves, and when ultrasonic waves are detected, it stores a detected value (for example: intensity) and a detected time together in the storage part 140.
  • the ultrasonic wave detection unit 120 can be applicable as one of the following three implementations.
  • the ultrasonic wave detection unit simply detects only whether ultrasonic waves have occurred.
  • Such an implementation may be applicable as a fashion of when a crack takes place at the material of a wall surface of a tunnel (for example: concrete), detecting ultrasonic waves concurrently produced and making the crack ability of a tunnel known.
  • the ultrasonic wave detection unit may detect the size of ultrasonic waves applied from the outside.
  • Such an implementation may be applicable as a fashion of when a crack takes place at the material of a wall surface of a tunnel (for example: concrete), detecting ultrasonic waves concurrently produced and providing a piece of information used to determine the crack ability of a tunnel more accurately.
  • the ultrasonic wave detection unit may have an ultrasonic wave generator producing ultrasonic waves and an ultrasonic wave detector detecting ultrasonic waves together.
  • the ultrasonic wave detector may detect supersound wave that is produced from an ultrasonic generator installed at the same ultrasonic wave detection unit and reflected at a crack in a tunnel, or detect supersound wave that is produced from an ultrasonic wave generator held on another ultrasonic wave detection unit adjacent to a wall surface of the tunnel and transmitted through a crack of the tunnel.
  • the ultrasonic wave detection unit 120 may apply a PZT (Lead Zirconate Titanate) AE (Acoustic Emission) sensor or a PVDF (polyvinylidene fluoride) sensor, as a detection device for detecting ultrasonic waves applied from the outside.
  • a PZT Lead Zirconate Titanate
  • AE Acoustic Emission
  • PVDF polyvinylidene fluoride
  • the ultrasonic wave detection unit 120 can continuously perform an ultrasonic detecting action at a predetermined time interval, and in this case the storage unit 140 functions to store supersound detection information gained by the continuously performed supersound detection action till it is transmitted to the crack detection server 200.
  • the short-range wireless communication module 160 may be a RF communication module that performs a communication as a RF mode.
  • an RF mode is a communication method used in an RF smart card or an RF tag, and it is desirable to use the short-range wireless communication module having a wider recognition range if applied to the present invention.
  • the short-range wireless communication module 160 may form a wireless communication channel for a data transfer with a communication module 220 of the crack detection server 200.
  • a driving electric power supply unit 180 supplying driving electric power to internal components of the ultrasonic wave sensor tag 100 may be configured to receive electric power via a wired line or produce electric power from a wireless signal.
  • the driving electric power supply unit may include a wireless electric power receptor producing electric power from a wireless signal transmitted from the crack detection server; and a capacitor storing electric power produced from the wireless electric power receptor.
  • the driving electric power supply unit 180 may generate electric power from a power transmission signal emitted by a crack detection server 200, store it in the capacitor, and use electric power stored in the capacitor when monitoring a crack occurrence.
  • the driving electric power supply unit may be configured to include a generator module generating electric power from a physical vibration.
  • a crack determination unit 260 of the crack detection server 200 determines a crack occasion of a tunnel and a crack occurrence position from ultrasonic detection values assembled in the storage part.
  • FIG. 3 One of the crack detection methods is illustrated in FIG. 3.
  • ultrasonic wave sensor tags A, B, C, D are disposed in a square form.
  • a pair of ultrasonic wave sensor tags that is, A and D, C and B
  • supersound wave is detected after a same delay time in a crack non-existing situation but supersound wave is detected after a different delayed time among them in a crack existing situation.
  • FIG. 4 illustrates a crack detection method according to one embodiment of the present invention.
  • a crack detection method applies a mode of manually detecting ultrasonic waves upon a crack occurrence by an ultrasonic wave sensor tag attached to a tunnel wall.
  • a crack detection method of one embodiment as described above includes the steps of: detecting ultrasonic waves in a crack occurrence by an ultrasonic wave sensor tag, in a case a crack occurs (S120); waking up the ultrasonic wave sensor tag (S142), storing the ultrasonic detection time in a storage unit (S148), sleeping the ultrasonic wave sensor tag (S110); in a case the ultrasonic wave sensor tag detects a short-range wireless communication signal of a communication module of a crack detection server (S150), waking up the ultrasonic wave sensor tag (S162), transmitting ultrasonic wave detection information containing an ultrasonic wave detection time stored in the storage unit to a crack detection server (S164); and determining a crack occurrence from the ultrasonic wave detection information by the crack detection server (S180).
  • the ultrasonic wave sensor tag exists in a sleeping mode (S110).
  • a time measurement unit; an ultrasonic wave detection unit; and a communication module for detecting the short-range wireless communication signal may be activated.
  • the ultrasonic wave sensor tag when detecting ultrasonic waves upon a crack occurrence, may be activated to produce ultrasonic waves actively to obtain information informing a more precise position in which a crack occurs.
  • the step 140 may further include the steps of: emitting ultrasonic waves; detecting the reflective waves of the emitted ultrasonic waves; and storing the intensity and delayed time of the reflective waves (reflective wave detection time - ultrasonic emitting time) in the storage unit.
  • ultrasonic wave detection information in the step 160 includes a crack occurrence time, and the intensity and delayed time of the reflective wave.
  • FIG. 5 illustrates a crack detection method according to another embodiment of the present invention.
  • a crack detection method of another embodiment of the present invention applies a mode of emitting ultrasonic waves actively by ultrasonic wave sensor tags attached to a tunnel wall, collecting reflective waves thereto and monitoring a crack occurrence.
  • a crack detection method of another embodiment as described above includes the steps of: determining if a given time has elapsed after a sleeping point (S220); waking up an ultrasonic wave sensor tag if it elapsed (S242); emitting ultrasonic waves from the ultrasonic wave sensor tag (S244); detecting the reflective waves of the emitted ultrasonic waves (S246); storing in a storage unit ultrasonic wave detection information containing the intensity and delayed time of the reflective waves (reflective wave detection time - ultrasonic wave emitting time (S248); sleeping the ultrasonic wave sensor tag (S210); in a case the ultrasonic wave sensor tag detects a short-range wireless communication signal of a communication module of a crack detection server (S250), waking up the ultrasonic wave sensor tag (S262); transmitting ultrasonic wave detection information stored in the storage unit to a crack detection server (S264); and determining a crack occurrence from the ultrasonic wave detection information by the crack detection server (S280).
  • the ultrasonic wave sensor tag exists in a sleeping mode (S210).
  • a time measurement unit; and a communication module for detecting the short-range wireless communication signal may be activated.
  • the present invention is to provide a crack detection system and a method thereof with a capability of monitoring cracks in a tunnel at a moderate cost, may be extensively used in a field necessary to monitor cracks in each kind of structure including a tunnel.

Abstract

L'invention porte sur un système de détection de fissures. Le système de détection de fissures comprend une étiquette de capteur d'ondes ultrasoniques comprenant une unité de mesure de temps pour mesurer un temps actuel, une unité de détection d'ondes ultrasoniques apte à détecter des ondes ultrasoniques appliquées à partir de l'extérieur, une unité de stockage stockant une information de détection d'ondes ultrasoniques contenant un temps auquel des ondes ultrasoniques sont détectées par l'unité de détection d'ondes ultrasoniques, un module de communication sans fil de courte portée pour transmettre l'information de détection d'ondes ultrasoniques vers l'extérieur, et une unité d'alimentation électrique de commande configurée afin de délivrer une énergie électrique de commande à chacun desdits composants ; et un serveur de détection de fissures comprenant un module de communication pour recevoir l'information de détection d'ondes ultrasoniques par formation d'un canal de communication avec le module de communication sans fil de courte portée, une unité de détermination de fissures configurée de façon à déterminer s'il se produit des fissures dans un tunnel à partir de l'information de détection d'ondes ultrasoniques.
PCT/KR2010/007421 2009-12-11 2010-10-27 Système de détection de fissures et procédé de détection de fissures WO2011071241A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0122969 2009-12-11
KR1020090122969A KR20110066353A (ko) 2009-12-11 2009-12-11 크랙 감지 시스템 및 크랙 감지 방법

Publications (2)

Publication Number Publication Date
WO2011071241A2 true WO2011071241A2 (fr) 2011-06-16
WO2011071241A3 WO2011071241A3 (fr) 2011-10-20

Family

ID=44146004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007421 WO2011071241A2 (fr) 2009-12-11 2010-10-27 Système de détection de fissures et procédé de détection de fissures

Country Status (2)

Country Link
KR (1) KR20110066353A (fr)
WO (1) WO2011071241A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487504A (zh) * 2013-09-26 2014-01-01 南通欧能达检测仪器有限公司 一种探伤仪处理信号的方法
CN104458906A (zh) * 2013-09-12 2015-03-25 横河电机株式会社 超声波配管测定装置
CN104990979A (zh) * 2015-06-16 2015-10-21 南京工程学院 一种光伏汇流箱箱体锈蚀告警系统
CN106124626A (zh) * 2016-06-30 2016-11-16 中国航天空气动力技术研究院 延迟高超声速边界层材料转捩的研究系统及实验研究方法
CN107728003A (zh) * 2017-09-08 2018-02-23 国网浙江省电力公司金华供电公司 接地线状态实时监测装置及控制方法
CN110455917A (zh) * 2019-08-22 2019-11-15 福建博海工程技术有限公司 一种混凝土裂缝修补质量检测方法
CN112556613A (zh) * 2020-11-30 2021-03-26 中国科学院武汉岩土力学研究所 一种基于超声波雷达的隧道结构收敛变形监测系统及方法
CN114062496A (zh) * 2021-11-16 2022-02-18 河南省焦作地质勘察设计有限公司 一种地裂缝地质灾害测量装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424736A (zh) * 2015-11-03 2016-03-23 中国电子工程设计院 金属表面微裂纹在线检测方法
CN105334235B (zh) * 2015-12-01 2019-02-01 兰毓华 一种裂纹探测系统及其探测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000572A (ko) * 2000-06-23 2002-01-05 김영식 유무선통신 시스템을 통한 부식과 방식상태의 원격 점검및 제어 시스템
US20050093302A1 (en) * 2003-10-29 2005-05-05 Masayuki Miyazaki Vibration-to-electric energy generator and method of same
US20070095160A1 (en) * 2005-11-03 2007-05-03 The Boeing Company Structural assessment and monitoring system and associated method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000572A (ko) * 2000-06-23 2002-01-05 김영식 유무선통신 시스템을 통한 부식과 방식상태의 원격 점검및 제어 시스템
US20050093302A1 (en) * 2003-10-29 2005-05-05 Masayuki Miyazaki Vibration-to-electric energy generator and method of same
US20070095160A1 (en) * 2005-11-03 2007-05-03 The Boeing Company Structural assessment and monitoring system and associated method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LYNCH, J. P. ET AL.: 'A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring' THE SHOCK AND VIBRATION DIGEST vol. 38, no. 2, 2006, ISSN 0583-1024 pages 91 - 128 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458906A (zh) * 2013-09-12 2015-03-25 横河电机株式会社 超声波配管测定装置
EP2857834A3 (fr) * 2013-09-12 2015-06-24 Yokogawa Electric Corporation Appareil de mesure de tuyau à ultrasons
US9632062B2 (en) 2013-09-12 2017-04-25 Yokogawa Electric Corporation Ultrasonic pipe measurement apparatus
CN103487504A (zh) * 2013-09-26 2014-01-01 南通欧能达检测仪器有限公司 一种探伤仪处理信号的方法
CN104990979A (zh) * 2015-06-16 2015-10-21 南京工程学院 一种光伏汇流箱箱体锈蚀告警系统
CN104990979B (zh) * 2015-06-16 2017-12-08 南京工程学院 一种光伏汇流箱箱体锈蚀告警系统
CN106124626A (zh) * 2016-06-30 2016-11-16 中国航天空气动力技术研究院 延迟高超声速边界层材料转捩的研究系统及实验研究方法
CN106124626B (zh) * 2016-06-30 2018-11-20 中国航天空气动力技术研究院 延迟高超声速边界层转捩材料的研究系统及实验研究方法
CN107728003A (zh) * 2017-09-08 2018-02-23 国网浙江省电力公司金华供电公司 接地线状态实时监测装置及控制方法
CN110455917A (zh) * 2019-08-22 2019-11-15 福建博海工程技术有限公司 一种混凝土裂缝修补质量检测方法
CN112556613A (zh) * 2020-11-30 2021-03-26 中国科学院武汉岩土力学研究所 一种基于超声波雷达的隧道结构收敛变形监测系统及方法
CN114062496A (zh) * 2021-11-16 2022-02-18 河南省焦作地质勘察设计有限公司 一种地裂缝地质灾害测量装置

Also Published As

Publication number Publication date
WO2011071241A3 (fr) 2011-10-20
KR20110066353A (ko) 2011-06-17

Similar Documents

Publication Publication Date Title
WO2011071241A2 (fr) Système de détection de fissures et procédé de détection de fissures
CN105008955B (zh) 车辆障碍物检测设备和车辆障碍物检测系统
HRP20200313T1 (hr) Metoda za daljinsku detekciju, lokalizaciju i praćenje kritičnih nedostataka u cjevovodima
US20130220017A1 (en) Non-destructive inspection apparatus for detecting internal defect of concrete structure using ultrasonic waves
CN1893301A (zh) 无线通信装置
CN102150061A (zh) 用于紧急情况存在检测的系统、装置和方法
KR101807739B1 (ko) 누수감지센서를 이용한 배관누수 및 싱크홀 모니터링 시스템 및 그 방법
US9772251B2 (en) Leak detection system, vibration detection device, information processing device, and leak detection method
EP2150808A1 (fr) Procédé et système pour détecter une anomalie et déterminer sa taille
CN108332789A (zh) 一种火车受电弓的结构健康监测系统
WO2020116032A1 (fr) Système de surveillance routière, dispositif de surveillance routière, procédé de surveillance routière et support lisible par ordinateur non transitoire
CN106133550A (zh) 物体探测装置以及物体探测方法
KR20120137974A (ko) 열차 외부결함 검출장치 및 방법
KR20190053151A (ko) 노면 평탄도 진동감지 단말을 이용한 도로 요철·파손 감지 시스템 및 방법
JP2019079303A (ja) 道路設備点検システムおよび道路設備点検方法、ならびにそれに使用されるサーバ
JPH10318725A (ja) 構造物変形検出システム
WO2020206386A1 (fr) Détection à de fibres optiques répartie pour applications de ville intelligente
KR20130005199U (ko) 초음파를 이용한 콘크리트 구조물의 내부결함 비파괴 검사장치
CN113253281B (zh) 物体移动检测装置和方法及非暂时性计算机可读存储介质
JP2003185643A (ja) ひび割れ検知システム
CN103926580A (zh) 用于环境传感机构的系统
JP2004264074A (ja) 環境変化監視システムと環境変化検出装置及び監視装置
JP2002131426A (ja) 超音波センサ装置
JP2003329656A (ja) コンクリート吹付法面の密着度診断法とその装置
JP2005291735A (ja) プレストレストコンクリートの緊張材の破断検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836137

Country of ref document: EP

Kind code of ref document: A2