WO2011070476A1 - Planification de traitement d'ablation et dispositif associé - Google Patents

Planification de traitement d'ablation et dispositif associé Download PDF

Info

Publication number
WO2011070476A1
WO2011070476A1 PCT/IB2010/055491 IB2010055491W WO2011070476A1 WO 2011070476 A1 WO2011070476 A1 WO 2011070476A1 IB 2010055491 W IB2010055491 W IB 2010055491W WO 2011070476 A1 WO2011070476 A1 WO 2011070476A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
volume
treatment planning
image
needle
Prior art date
Application number
PCT/IB2010/055491
Other languages
English (en)
Inventor
Pieter M. Mielekamp
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to EP10798624A priority Critical patent/EP2509527A1/fr
Priority to RU2012128523/14A priority patent/RU2581714C2/ru
Priority to BR112012013557A priority patent/BR112012013557A2/pt
Priority to CN201080055751.3A priority patent/CN102647956B/zh
Priority to JP2012542652A priority patent/JP6035148B2/ja
Priority to US13/514,075 priority patent/US9125689B2/en
Publication of WO2011070476A1 publication Critical patent/WO2011070476A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/40Hidden part removal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/503Blending, e.g. for anti-aliasing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0293Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument interstitially inserted into the body, e.g. needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/008Cut plane or projection plane definition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/028Multiple view windows (top-side-front-sagittal-orthogonal)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection

Definitions

  • the present invention relates to an ablation treatment planning method and to an ablation treatment planning and needle guiding method. Furthermore, the present invention relates to devices for performing such methods, to a computer program adapted for controlling such methods when executed on a computer and a computer-readable medium having stored thereon such computer program.
  • tumourous tissue In order to treat cancer, it may be necessary to remove or destroy tumourous tissue in a body of a patient. Due to advances in imaging technology and the availability of highly controllable medical devices, ablation technology is becoming a viable treatment option for a variety of non-resectable tumours.
  • RFA radio frequency ablation
  • RFA devices typically come with diameters of 1.2 to 1.6 mm and may produce ablation zones with a diameter of 1.5 - 7 cm.
  • cryo ablation Another widely available ablation therapy method is cryo ablation, where instead of heating the tissue, freezing is used to cause necrosis of tissue. In this method, cell death is due to rapid freezing of intercellular water.
  • special needles may be placed percutaneous, i.e. through the skin, into the tumour. Argon gas is delivered through the needle thereby producing an iced ablation volume of predictable size and shape.
  • Cryoablation devices typically come with diameters of 1.2 - 8 mm and may produce ablation zones having a diameter of 4 - 5 cm.
  • Microwave ablation is an upcoming thermal ablation technology in which tissue may be heated using microwaves.
  • Microwave ablation probes typically come with diameters of 1.2 - 5.7 mm and produce ablation zones having a diameter of 1.7 - 6 cm.
  • the predicted ablation volume within which a specific ablation device is intended to ablate/kill tumourous tissue are usually determined and supplied by the device manufacturers.
  • isotherms are generally specified at three different temperatures as shown in Fig. 1.
  • various volume regions 3a, 3b, 3c may be defined within an overall ablation volume 1 generated by a cryoablation needle 5 such that the surface of each volume region 3a, 3b, 3c is defined at a location having a respective temperature such as for example -40°, -20° and 0°.
  • a volume inside an isotherm has a temperature below the temperature value of the isotherm.
  • the 0°-isotherm defines the overall ablation volume 1 within which tissue is iced during cryoablation.
  • each of the ablation regions 3a, 3b, 3c as well as the overall ablation volume 1 corresponding to the 0°C-ablation region 3c may have an ellipsoid or spheroid shape.
  • the spheroid enclosing the highest temperature volume region 3c may have main axis having dimensions of 32 mm x 56 mm whereas the inner volume region 3a enclosed by the -40°C-isotherm may have dimensions of 14.5 x 34 mm.
  • An ice front may extend about 6 mm in front of a needle tip.
  • a patient is usually positioned in a CT or MRI scanner and one or more ablation needles are inserted into the tumourous tissue under guidance of real-time CT fluoroscopy or ultrasound.
  • the procedure is most often performed by an interventional radiologist in a radiology department of a hospital.
  • ablation needle placement i.e. an insertion of the ablation needle into the patient's body towards a correct location within the tumourous tissue such that a location and an orientation of the ablation needle is chosen such that during an ablation process all of the tumourous tissue is destroyed.
  • a preferred method of creating a large and/or complex ablation volume is to use a plurality of ablation needles with multiple overlapping ablation volumes.
  • overlapping ablation volumes may be mostly created in the mind of an interventional radiologist without visual feedback.
  • ablation isotherms are usually asymmetric sized, i.e. may have an ellipsoid shape, depending on a needle insertion direction, an effected area may be detemiined by both an ablation needle target location and an ablation needle insertion direction/orientation.
  • precise control of an effected ablation volume may be difficult without precise and reliable assistance by a user such as a surgeon or a radiologist, especially at oblique insertion angles of the ablation needle.
  • an ablation treatment planning method as well as for an ablation treatment planning and guiding method allowing to reliably plan an ablation volume within a region of interest comprising for example tumourous tissue within a patient and, optionally, subsequently guiding an ablation needle in order to locate and orient the needle such that the ablation volume is ablated during an ablation procedure.
  • it may be desired to provide such ablation treatment planning method allowing ablation needle delivery at oblique angles and allowing viewing of the ablation volume coverage at arbitrary plane orientations.
  • an ablation treatment planning device and an ablation treatment planning and guiding device adapted to perform or control such methods
  • a computer program element adapted for controlling or performing such methods when executed on a computer and a computer-readable medium comprising such computer program element stored thereon.
  • a success of a percutaneous ablation such as a radio frequency ablation, a cryo- ablation or a microwave ablation, may mainly depend on an accuracy concerning a location and an orientation with which an ablation needle is inserted, enabling to destroy an entire tumour while avoiding damages on other organs and minimizing risks of local reoccurrence.
  • the needle image planning/guiding system proposed therein has been invented by the applicant of the present invention and is also referred to as XperGuide.
  • This system may allow bringing percutaneous needle interventions back to the angio lab.
  • Such navigational tool may create an overlay of live fluoroscopy imaging and 3D soft tissue imaging that may provide information on needle path and target.
  • XperGuide may be used in a wide range of clinical procedures from biopsies and drainages to ablations.
  • XperGuide imaging may provide for a live 3D feedback on advancement of a needle for extra guidance and control during interventional procedure.
  • a 2D cross sectional averaged slice with an arbitrary orientation and slice thickness may be interpolated from a three-dimensional volume data set that describes a volume image.
  • Such three-dimensional volume data set may be acquired for example in computed tomography (CT) by calculating a sequence of two- dimensional tomograms that lie in an x-y-plane at predetermined z-coordinates.
  • CT computed tomography
  • such three-dimensional volume data may also be reconstructed from a set of 2D images acquired by means of a 3D rotational scan with an X-ray C-arm system.
  • elliptical cross-sectional areas of the ellipsoid isotherms within a chosen imaging plane may have to be determined in order to support flexible oblique delivery angles of an ablation needle resulting in arbitrarily oriented ablation volumes and arbitrary MPR viewing plane orientation.
  • an ablation treatment planning method comprising the following steps preferably in the indicated order is proposed: (a) acquiring, e.g. with X-ray imaging using a C-arm X-ray image acquisition device, a 3D image data set of a region of interest; (b) introducing 3D model data of an ablation volume into the 3D image data set; and (c) drawing at least one 2D image comprising a cross sectional MPR slice of the region of interest and the ablation volume within an MPR plane while using the MPR plane as a clipping plane.
  • an ablation treatment planning and guiding method comprising the steps of (i) planning an ablation volume within a region of interest using at least one 2D image drawn in accordance with the method according to the above-mentioned first aspect of the invention wherein a location and an orientation of the ablation volume is predetermined by a planned location and orientation of an ablation needle; and (ii) guiding the ablation needle into the region of interest in accordance with the planned location and orientation.
  • an ablation treatment planning device and an ablation treatment planning and guiding device adapted for performing or controlling the methods according to the above first and second aspect of the invention, respectively, a computer program element adapted for controlling a method according to the above-mentioned first and second aspect of the invention, respectively, and a computer- readable medium having stored thereon a respective computer program element are proposed.
  • a gist of the present invention may be seen as based on the idea to use a more graphics based approach in order to visualize an ablation volume to be planned within a 3D image of a region of interest such that the ablation area may be visualized in any desired viewing plane orientation.
  • specific image processing procedures such as clipping imaging planes, tagging portions of the 3D model data of the ablation volume through the desired MPR plane into a stencil buffer, blending such tagged portions to a colour buffer, culling an outside or an inside of the ablation volume model, merging of ablation volumes, model transformation for scaling, positioning and/or
  • transforming the 3D model data of the ablation volume in a predetermined direction, etc. may be advantageously used in order to visualize the ablation volume within the region of interest such that a physician may easily plan a subsequent surgical intervention and then guide the ablation needle(s) according to such plan.
  • a physician having a 3-dimensional image of a region of interest may plan an ablation intervention by experimentally inserting simulated ablation volumes having a predictable shape and size into the visualized region of interest within a physiological 3D image at a selectable location and a selectable orientation.
  • the ablation volume should be visualized within the physiological 3D image in a way such that the physician may easily determine whether all tumourous tissue is enclosed within the planned ablation volume.
  • a basic idea therein may be that, if an MPR image plane is used as a clipping plane while drawing an ablation volume of e.g. spheroid or ellipsoid shape, the 2D cross- sectional ablation areas may show up as portions of the spheroid/ellipsoid that have been cut away and that may show an inside of the spheroid/ellipsoid.
  • an ablation volume e.g. spheroid or ellipsoid shape
  • Fig. 1 shows regions of an ablation volume created by a cryo ablation needle.
  • Fig. 2, 2a, 2b, 2c show presentations of a spheroid ablation volume within a
  • FIG. 3D image with an undipped ablation volume (Fig. 3) and with clipped cross-sectional ablation areas taken at various MPR planes (Fig. 2a,b,c).
  • Fig. 3a,b show a representation of a plurality of spheroid ablation volumes wherein overlapping ablation areas are visualized in a superimposed way.
  • Fig. 4a,b show a representation of a plurality of spheroid ablation volumes wherein overlapping ablation areas are visualized in a non- superimposed way.
  • Figs. 5a-e show a planned overall ablation volume composed from three
  • Fig. 6 shows an ablation treatment planning device comprising a
  • a volume rendered image is shown. Such image may be based on a 3D image data set acquired with an X-ray imaging device from a region of interest.
  • an ablation treatment planning system 100 may comprise such X-ray imaging device such as e.g. a C-arm system as shown in Fig. 6 which is adapted to acquire a plurality of X-ray projection images under various image acquisition angles such that, finally, a 3D image data set may be generated from the plurality of 2D projection images.
  • an X-ray source 101 attached to a first end of a C-arm 109 may emit X-rays which are transmitted through a region of interest 103 within a patient (not shown) lying on a displaceable table 105.
  • the X-rays are then detected with an X-ray detector 107 attached to a second end of the C-arm 109.
  • the C-arm may be moved and rotated to various positions and orientation and various 2D projection images may be acquired and transmitted to a controller 111 comprising a computer and a memory.
  • the various 2D projection images may be used to generate a 3D image data set.
  • Such 3D image data set may represent a volume rendered image of the region of interest such as the image including a spine, some ribs and a kidney of a patient as shown in Fig. 2.
  • 3D model data of an ablation volume 1 are introduced.
  • the introduction of the 3D model data of the ablation volume into the 3D image data of the region of interest may be performed in a specific way using a stencil buffer such that 3D image data representing pixels may be
  • Figs. 2a, 2b, 2c show clipped cross-sectional ablation areas of the ablation volume 1 positioned in the kidney of the patient in a frontal view (Fig. 2a), lateral view (Fig. 2b) and an axial view (Fig. 2c).
  • clipping may mean that a clipping plane is used to clip, i.e. "hide", a region of the represented three-dimensional space.
  • a clipping plane may be a plane that separates the represented space into two regions, one region is included from the viewing volume, the other is excluded from the viewing volume. For example, if a half sphere would have to be drawn, a clipping plane may be used that "slices" a sphere and only draws half of it.
  • Figs. 2, 2a, 2b, 2c may not be optimum for practical use for a physician. Only the inside of the spheroid ablation volume 1 may be relevant whereas the outside thereof may be distracting and may even be present if the intersecting MPR plane is behind the ablation volume. Furthermore, the shaded rendering may fully hide important clinical information comprised in the 3D image data set.
  • a 3 -steps drawing sequence that uses a stencil buffer as for instance provided by OpenGL ® or DirectX ® is proposed: 1. In a first step, by culling its outside, only the inside of the spheroid ablation volume will be drawn/tagged through the MPR clip-plane in the stencil buffer;
  • a "stencil buffer” may be similar to the color buffer with the exception that pixels in the stencil buffer do not represent colors but may have an application-specific meaning.
  • the stencil buffer may not be directly visible in the finally drawn image like the color buffer, but bits in the stencil planes may form an unsigned integer tag that effects and may be updated by drawing commands, through stencil function and stencil operations.
  • the stencil function may control whether a fragment is discarded or not by a stencil test, and the stencil operation may determine how the stencil planes are updated as a result of that test.
  • the stencil test may be operated on 2D pixels during a final step of rasterization when drawing the 2D image. The test may be controlled by means of the StencilFunc.
  • the stencil operation is a comparison between the value in the stencil buffer for a destination pixel and a stencil reference value (specified for this operation). If stencilling is enabled, an application can control, using glStencilOp, what happens under three different scenarios: (1.) The stencil test fails; (2.) The stencil test passes but the depth test fails; and (3.) Both, the stencil test and the depth test pass.
  • the term "culling” refers to an operation used to reduce fill-limited drawings by backface or frontface removal. If a polygon normal is facing away from a viewer then it is "backfacing".
  • Backface culling is a process by which polygons (usually triangles) that are not facing a camera are removed from a rendering pipeline. For example, if one is drawing a sphere, half of its polygons are backfacing at any given time. Backface culling is enabled by default. Drawing backfaced polygons may be useful when two side shading is enabled to look from the inside or to draw the inside of partially open or clipped objects. If frontface culling is enabled, only the back/inside of an object is rendered.
  • modeling and viewing transformations are setup and the cross sectional volumes slices are interpolated and displayed.
  • the modeling and viewing transformation will be setup to configure the planned ablation orientation, position and scaling of the sphere.
  • the cross sectional elliptical projection is obtained by a three step process. glStencilOp(GL_KEEP, GL KEEP , GL REPLACE) ;
  • glStencilFunc (GL_ALWAYS, STENCILMASK ELIPSE INSIDE, , 0 ); glCo lorMask(GL_F ALSE , GL FALSE, GL FALSE, GL FALSE);
  • the inside of the projected sphere will be drawn, by culling the front-faces.
  • the stencil buffer is setup such that the pixels that will be drawn are labeled STENCILMASK ELIPSE INSIDE. Note that, as shown above, by drawing the inside, if the clipplane is in front of the center of the ablation, to much of the projected cross section is drawn. This will be corrected in the next step.
  • a correct model transformation that scales, positions and transforms the ablation area in a direction of an ablation needle is set up.
  • the ellipsoids are drawn as spheres in a scaled coordinate system.
  • the stencil buffer and clip plane will need to be initialized.
  • An example of a result of the above 3-step drawing sequence is shown in Fig. 3a. Therein, three overlapping ablation volumes la, lb, lc have been introduced into a 3D image. Overlapping ablation areas are drawn by the rendering scheme as described above.
  • FIG. 3b multiple isotherms represented as ablation regions 3a, 3b, 3c as they may be defined for the various cryoablation needles are visualized in three different colors (indicated in Fig. 3b as different patterns).
  • ablation area representations 2a, 2b, 2c having different transparency levels.
  • Such different transparency levels may complicate an image interpretation to be made by a physician.
  • a representation with a drawn 2D image in which a plurality of tagged portions corresponding to a plurality of ablation volumes are blended into the color buffer such that profiles representing the ablation volumes do not overlap may be a preferred visualization.
  • Such non-overlapping presentation may provide for an easier image interpretation, particularly in the case of multiple isotherms as shown in Fig. 4b.
  • glColorMask (GL_TRUE, GL TRUE, GL TRUE, GL TRUE); glCullFace( GL FRONT);
  • the ablation profile need to be drawn in a specific order.
  • the profiles need to be drawn from inside out, so first all colder profiles then all less cold etc. This can be described as: for all ablations:
  • An orientation of the ablation volume in relation to a needle target location is usually defined by the device manufactures.
  • this relation is defined by the so-called Ice Front (in front of the needle tip).
  • the ablation volume can be drawn relative to the needle target location by a procedure as shown below. void DrawAblationIsoTerm(Vector3D& needleTarget, Matrixl6D& neeldleRotation, IsoTherm therm) ⁇
  • Vector3D dir needleRotation* Vector3D(0,0,l);
  • Vector3D ablatonTarget needleTarget+ (dir* (therm length- therm front)); glPushMatrixO;
  • gluQuadricDrawStyle (m ablation ellipse, GLU FLAT);
  • glColorMask (GL_FALSE, GL FALSE, GL FALSE, GL FALSE); glEnable( GL CULL FACE );
  • glStencilOp (GL_KEEP, GL KEEP, GL INCR); glColorMask(GL_TRUE, GL TRUE, GL TRUE, GL TRUE);
  • Fig 5 a shows three ablations, planned parallel next to each other, in the entry point view, i.e. the plane that is orthogonal to the needle directions.
  • Fig 5b, 5c, 5d, 5e show multiple orthogonal views on the same ablations. Note that the current needle 1 is shown in these presentations.
  • a C-arm X-ray imaging system may first be arranged such as to acquire images in the entry point view.
  • the needle is projected as a single point in the correct direction and without parallax as long as the C-Arm X-ray source is correctly oriented on the extension of the planned needle trajectory
  • the needle may then be inserted to a certain degree so as to be guided in its orientation.
  • the C-arm system may be rotated about 90° such as to acquire images in a plane including a longitudinal direction of the needle. In such orientation, a further insertion of the needle may be monitored and it may be observed whether the needle has finally attained its planned location.
  • the needles For the insertion of multiple needles it is advantageous to position the needles parallel to a first or a selected needle. In this way the ablation profiles/needles can be positioned in parallel relative to each other.
  • the needle target (ice front) and entry point (cross section with skin) may be calculated.
  • the ablation can be planned prior to the intervention on pre-interventional multi-modality data (MR/CT/XperCT) image data, and transformed to the interventional situation by means of 3D/3D registration, with a (fast scan) interventional acquisition.
  • MR/CT/XperCT multi-modality data
  • an ablation treatment planning and, optionally, guiding method usable for e.g. tumour tissue ablation with a cryoablation needle which cools down an adjacent tumour tissue to thereby generate an ablation volume is proposed.
  • a 3D image data set of a region of interest may be acquired by e.g. X- ray imaging using e.g. a C-arm system.
  • 3D model data of the ablation volume are introduced into the 3D image data set for example by tagging image pixels using a stencil buffer and possibly by culling specific inside areas and/or outside areas of the ablation volume.
  • a 2D image to be visualized to a physician and comprising a projection of the region of interest and the ablation volume is drawn wherein an MPR (multi planar reformatting) plane in which the 2D image is drawn is used as a clipping plane.
  • an ablation volume having any arbitrary shape such as for example an ellipsoid shape may be visualized within a 3D image space by drawing 2D images in any desired MPR plane such that also oblique orientations of the ablation volume can be represented.
  • an ablation needle may be guided to a location and in an orientation as previously planned.

Abstract

L'invention porte sur une planification de traitement d'ablation et, facultativement, sur un procédé de guidage utilisable pour une ablation de tissu tumoral, par exemple, au moyen d'une aiguille de cryo-ablation refroidissant un tissu tumoral adjacent afin de générer ainsi un volume d'ablation. Afin de pouvoir planifier un traitement d'ablation, un ensemble de données d'image tridimensionnelle d'une région d'intérêt peut être acquise au moyen par exemple d'une imagerie par rayons X, à l'aide par exemple d'un système de bras C. Ensuite, les données du modèle tridimensionnel du volume d'ablation sont introduites dans l'ensemble de données d'image tridimensionnelle, par exemple par le marquage de pixels d'image à l'aide d'un tampon pochoir et éventuellement par l'élimination de zones internes et/ou de zones externes spécifiques du volume d'ablation. Enfin, une image bidimensionnelle devant être visualisée par un médecin et comportant une projection de la région d'intérêt et du volume d'ablation est dessinée, un plan de reformatage multi-planaire (MPR), dans lequel l'image en deux dimensions est dessinée, étant utilisé comme plan de coupe. À l'aide d'une telle approche graphique, un volume d'ablation ayant une forme arbitraire quelconque, telle que par exemple une forme ellipsoïdale, peut être visualisée dans un espace d'image tridimensionnelle, en dessinant les images bidimensionnelles dans n'importe quel plan MPR voulu, de telle sorte que des orientations obliques du volume d'ablation peuvent aussi être représentées. Dans un procédé de guidage ultérieur, une aiguille d'ablation peut être guidée jusqu'à un emplacement et selon une orientation telle que celle prévue auparavant.
PCT/IB2010/055491 2009-12-08 2010-11-30 Planification de traitement d'ablation et dispositif associé WO2011070476A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10798624A EP2509527A1 (fr) 2009-12-08 2010-11-30 Planification de traitement d'ablation et dispositif associé
RU2012128523/14A RU2581714C2 (ru) 2009-12-08 2010-11-30 Планирование абляционного лечения и устройство
BR112012013557A BR112012013557A2 (pt) 2009-12-08 2010-11-30 método de planejamento de tratamento por ablação, método de guia e planejamento de tratamento por ablação, dispositivo de planejamento de tratamento por ablação, dispositivo de guia e planejamento de tratamento por ablição, elemento de progrma de computador e mídia legível em computador
CN201080055751.3A CN102647956B (zh) 2009-12-08 2010-11-30 消融处置规划及设备
JP2012542652A JP6035148B2 (ja) 2009-12-08 2010-11-30 アブレーション治療計画及びデバイス
US13/514,075 US9125689B2 (en) 2009-12-08 2010-11-30 Clipping-plane-based ablation treatment planning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09178296 2009-12-08
EP09178296.1 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011070476A1 true WO2011070476A1 (fr) 2011-06-16

Family

ID=43532967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/055491 WO2011070476A1 (fr) 2009-12-08 2010-11-30 Planification de traitement d'ablation et dispositif associé

Country Status (7)

Country Link
US (1) US9125689B2 (fr)
EP (1) EP2509527A1 (fr)
JP (1) JP6035148B2 (fr)
CN (1) CN102647956B (fr)
BR (1) BR112012013557A2 (fr)
RU (1) RU2581714C2 (fr)
WO (1) WO2011070476A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008148A1 (fr) * 2011-07-11 2013-01-17 Koninklijke Philips Electronics N.V. Appareil de planification d'application d'énergie
JP2014054347A (ja) * 2012-09-12 2014-03-27 Hitachi Medical Corp 冷凍治療温度制御システム
CN103796607A (zh) * 2011-09-13 2014-05-14 皇家飞利浦有限公司 具有病变覆盖范围反馈的消融规划
US10607738B2 (en) 2015-05-15 2020-03-31 University Health Network System and method for minimally invasive thermal ablation treatment planning
EP3628251A1 (fr) * 2018-09-28 2020-04-01 Koninklijke Philips N.V. Système de planification de thérapie d'ablation
WO2020210621A1 (fr) * 2019-04-12 2020-10-15 Mako Surgical Corp. Systèmes robotiques et procédés de manipulation d'un guide de coupe pour un instrument chirurgical
EP3122274B1 (fr) * 2014-03-22 2021-08-04 Varian Medical Systems, Inc. Système et procédés de planification de traitement d'ablation
CN113838556A (zh) * 2021-09-24 2021-12-24 北京三春晖医疗器械有限公司 一种复合脉冲电场肿瘤消融计划系统
CN113974820A (zh) * 2021-09-10 2022-01-28 周翔 一种基于残差拟合的模拟消融方法、装置、存储介质及设备

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
US11264139B2 (en) 2007-11-21 2022-03-01 Edda Technology, Inc. Method and system for adjusting interactive 3D treatment zone for percutaneous treatment
US11464578B2 (en) 2009-02-17 2022-10-11 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
JP5323194B2 (ja) * 2009-08-21 2013-10-23 株式会社東芝 医用画像処理装置及びその方法
WO2013005837A1 (fr) * 2011-07-06 2013-01-10 株式会社東芝 Dispositif de diagnostic d'image médicale
WO2013097069A1 (fr) * 2011-12-26 2013-07-04 Intel Corporation Registres à multiples plans ciseaux pour le rendu de données d'image
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
WO2014198796A1 (fr) * 2013-06-11 2014-12-18 Minmaxmedical Système de positionnement d'un dispositif chirurgical
US10183180B2 (en) 2013-08-30 2019-01-22 Koninklijke Philips N.V. System and method for visualizing information in a procedure of placing sources
USD761313S1 (en) 2014-05-01 2016-07-12 St. Jude Medical, Cardiology Division, Inc. Display screen with a transitional graphical user interface
USD761808S1 (en) * 2014-05-01 2016-07-19 St. Jude Medical, Cardiology Division, Inc. Display screen with transitional graphical user interface
US10729500B2 (en) 2014-05-01 2020-08-04 St. Jude Medical, Cardiology Division, Inc. Depicting force
USD753150S1 (en) 2014-05-15 2016-04-05 Biosense Webster (Israel) Ltd. Portion of a display screen with animated icon
US10925511B2 (en) 2014-07-24 2021-02-23 Cardiosolv Ablation Technologies, Inc. System and method for cardiac ablation
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
WO2016070113A1 (fr) * 2014-10-31 2016-05-06 Edda Technology, Inc. Procédé et système pour ajuster une zone de traitement tridimensionnelle (3d) interactive pour un traitement percutané
US10188467B2 (en) * 2014-12-12 2019-01-29 Inneroptic Technology, Inc. Surgical guidance intersection display
JP6858127B2 (ja) * 2015-02-17 2021-04-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 組織アブレーションを支援するための装置及び方法
CN107530131B (zh) * 2015-03-26 2021-02-26 皇家飞利浦有限公司 用于肿瘤消融处置规划的系统和方法
US9949700B2 (en) 2015-07-22 2018-04-24 Inneroptic Technology, Inc. Medical device approaches
CN105286988A (zh) * 2015-10-12 2016-02-03 北京工业大学 一种ct影像引导肝肿瘤热消融针定位与导航系统
US9675319B1 (en) 2016-02-17 2017-06-13 Inneroptic Technology, Inc. Loupe display
CN109788927B (zh) * 2016-09-23 2023-06-23 皇家飞利浦有限公司 用于规划注射点的位置的体积呈现
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
US10327851B2 (en) 2016-12-13 2019-06-25 Biosense Webster (Israel) Ltd. Method and apparatus for ablation planning and control
WO2019010232A1 (fr) * 2017-07-07 2019-01-10 Canon U.S.A. Inc. Planification d'ablation à sondes multiples
US11259879B2 (en) 2017-08-01 2022-03-01 Inneroptic Technology, Inc. Selective transparency to assist medical device navigation
US11197723B2 (en) 2017-10-09 2021-12-14 Canon U.S.A., Inc. Medical guidance system and method using localized insertion plane
CN115944392A (zh) * 2017-11-21 2023-04-11 深圳迈瑞生物医疗电子股份有限公司 用于规划消融的超声系统及方法
US11484365B2 (en) 2018-01-23 2022-11-01 Inneroptic Technology, Inc. Medical image guidance
JP2021532943A (ja) * 2018-08-09 2021-12-02 ザ ジェネラル ホスピタル コーポレイション 治療要求を正確に満たす患者の体の標的領域へのエネルギーの伝送
CN110432985B (zh) * 2019-08-01 2021-08-31 中山大学肿瘤防治中心 介入消融方案模拟方法、系统、电子设备及存储介质
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump
CN112007289B (zh) * 2020-09-09 2022-11-18 上海沈德医疗器械科技有限公司 一种组织消融的自动规划方法及装置
CN112315579B (zh) * 2020-11-25 2021-07-02 上海睿刀医疗科技有限公司 一种基于病灶区域的电极针布针装置及方法
US20220296388A1 (en) * 2021-03-16 2022-09-22 Mazor Robotics Ltd. Systems and methods for training and using an implant plan evaluation model
CN113952030B (zh) * 2021-10-28 2023-12-15 北京深睿博联科技有限责任公司 一种射频电极进针路径和消融位置的规划方法及装置
CN116492049B (zh) * 2023-06-29 2023-10-03 北京智愈医疗科技有限公司 一种前列腺适形消融范围的确定方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007501A1 (fr) * 1998-08-03 2000-02-17 Cardiac Pathways Corporation Modele graphique tridimensionnel, modifiable de façon dynamique, d'une region corporelle
WO2002009571A2 (fr) * 2000-07-31 2002-02-07 Galil Medical Ltd. Systemes et procedes de planification et de facilitation de cryochirurgie
WO2005112775A1 (fr) * 2004-05-21 2005-12-01 Boston Scientific Limited Navigation a ultrasons 3-d au cours d'une ablation par radio-frequence
WO2007113703A2 (fr) 2006-03-30 2007-10-11 Koninklijke Philips Electronics N. V. Procédé de ciblage, dispositif de ciblage, support lisible par un ordinateur et élément de programme
WO2008139354A2 (fr) 2007-05-10 2008-11-20 Koninklijke Philips Electronics N. V. Procédé de ciblage, dispositif de ciblage, support lisible par ordinateur et élément de programme
US20090124896A1 (en) * 2007-11-09 2009-05-14 Gabriel Haras Method and device for planning and/or monitoring an interventional high-frequency thermoablation

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224547A (ja) * 1990-01-31 1991-10-03 Hitachi Medical Corp Ct装置における照射条件設定方法
US6241725B1 (en) * 1993-12-15 2001-06-05 Sherwood Services Ag High frequency thermal ablation of cancerous tumors and functional targets with image data assistance
JP3531963B2 (ja) * 1994-03-25 2004-05-31 株式会社東芝 放射線治療計画装置
US6575969B1 (en) * 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
DE69837480T2 (de) * 1997-02-20 2007-12-06 Picker Medical Systems, Ltd. Dynamische echtzeit-bildrekonstruktion
US6771264B1 (en) * 1998-08-20 2004-08-03 Apple Computer, Inc. Method and apparatus for performing tangent space lighting and bump mapping in a deferred shading graphics processor
DE19854905C2 (de) * 1998-11-27 2002-08-14 Siemens Ag Verfahren zur Darstellung der Spitze eines im Körper eines Patienten befindlichen medizinischen Instrumentes
US6505065B1 (en) * 1999-10-29 2003-01-07 Koninklijke Philips Electronics, N.V. Methods and apparatus for planning and executing minimally invasive procedures for in-vivo placement of objects
US6671538B1 (en) * 1999-11-26 2003-12-30 Koninklijke Philips Electronics, N.V. Interface system for use with imaging devices to facilitate visualization of image-guided interventional procedure planning
AU2001239926A1 (en) * 2000-02-25 2001-09-03 The Research Foundation Of State University Of New York Apparatus and method for volume processing and rendering
FR2846122B1 (fr) * 2002-10-22 2005-04-15 Eric Piccuezzu Procede et dispositif de construction et de visualisation de l'image d'un modele informatique
US20040085310A1 (en) * 2002-11-04 2004-05-06 Snuffer John T. System and method of extracting 3-D data generated for 2-D display applications for use in 3-D volumetric displays
US8102392B2 (en) * 2003-06-27 2012-01-24 Kabushiki Kaisha Toshiba Image processing/displaying apparatus having free moving control unit and limited moving control unit and method of controlling the same
JP4434668B2 (ja) 2003-09-10 2010-03-17 株式会社東芝 治療システム及び治療支援システム
US20050245826A1 (en) * 2004-03-23 2005-11-03 Gervais Chetley Livingston C Apparatus for imaging human tissue
WO2006004894A2 (fr) * 2004-06-29 2006-01-12 Sensable Technologies, Inc. Appareil et procedes de rendu haptique utilisant des donnees dans un pipeline d'elements graphiques
DE102004034503A1 (de) * 2004-07-16 2006-02-16 Siemens Ag Verfahren und Vorrichtung zum Laden und Nachbearbeiten von digitalen dreidimensionalen Daten
US7452357B2 (en) 2004-10-22 2008-11-18 Ethicon Endo-Surgery, Inc. System and method for planning treatment of tissue
CN101065062B (zh) * 2004-11-23 2010-11-03 皇家飞利浦电子股份有限公司 图像处理系统和介入期间显示图像的方法
EP1913546A4 (fr) * 2005-08-09 2009-12-16 Gil Zwirn Systeme therapeutique et systeme d'imagerie medicale par radiofrequence de haute resolution
US20080033419A1 (en) * 2006-08-04 2008-02-07 Nields Morgan W Method for planning, performing and monitoring thermal ablation
US8155416B2 (en) * 2008-02-04 2012-04-10 INTIO, Inc. Methods and apparatuses for planning, performing, monitoring and assessing thermal ablation
US7643662B2 (en) * 2006-08-15 2010-01-05 General Electric Company System and method for flattened anatomy for interactive segmentation and measurement
US8212840B2 (en) * 2006-10-23 2012-07-03 Qualcomm Incorporated 3-D clipping in a graphics processing unit
US8007437B2 (en) * 2006-11-08 2011-08-30 Siemens Aktiengesellschaft Method and apparatus for interactive 4-dimensional (4D) virtual endoscopy
US9747684B2 (en) * 2007-01-24 2017-08-29 Koninklijke Philips N.V. RF ablation planner
US20080317204A1 (en) * 2007-03-16 2008-12-25 Cyberheart, Inc. Radiation treatment planning and delivery for moving targets in the heart
US20090082660A1 (en) * 2007-09-20 2009-03-26 Norbert Rahn Clinical workflow for treatment of atrial fibrulation by ablation using 3d visualization of pulmonary vein antrum in 2d fluoroscopic images
EP2206091A2 (fr) * 2007-09-26 2010-07-14 Koninklijke Philips Electronics N.V. Visualisation de données anatomiques
DE102007046453A1 (de) * 2007-09-28 2009-04-16 Siemens Ag Simulationsverfahren und Simulationssystem
US9622813B2 (en) * 2007-11-01 2017-04-18 Covidien Lp Method for volume determination and geometric reconstruction
US8195271B2 (en) * 2007-11-06 2012-06-05 Siemens Aktiengesellschaft Method and system for performing ablation to treat ventricular tachycardia
WO2009067654A1 (fr) 2007-11-21 2009-05-28 Edda Technology, Inc. Procédé et système pour une planification chirurgicale préopération percutanée
US8217934B2 (en) * 2008-01-23 2012-07-10 Adobe Systems Incorporated System and methods for rendering transparent surfaces in high depth complexity scenes using hybrid and coherent layer peeling
JP5027922B2 (ja) * 2008-05-07 2012-09-19 株式会社日立製作所 超音波診断装置
US8073227B2 (en) * 2008-05-09 2011-12-06 Siemens Aktiengesellschaft System and method for geometric modeling of tubular structures
US9597145B2 (en) * 2008-08-20 2017-03-21 Prostacare Pty Ltd Non-thermal ablation system for treating tissue
CN102422335B (zh) * 2009-05-12 2016-03-02 美国医软科技公司 用于交互式术前评估的系统、方法和装置
US20100305439A1 (en) * 2009-05-27 2010-12-02 Eyal Shai Device and Method for Three-Dimensional Guidance and Three-Dimensional Monitoring of Cryoablation
CN104246855B (zh) * 2009-06-29 2017-08-15 皇家飞利浦电子股份有限公司 肿瘤消融培训系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007501A1 (fr) * 1998-08-03 2000-02-17 Cardiac Pathways Corporation Modele graphique tridimensionnel, modifiable de façon dynamique, d'une region corporelle
WO2002009571A2 (fr) * 2000-07-31 2002-02-07 Galil Medical Ltd. Systemes et procedes de planification et de facilitation de cryochirurgie
WO2005112775A1 (fr) * 2004-05-21 2005-12-01 Boston Scientific Limited Navigation a ultrasons 3-d au cours d'une ablation par radio-frequence
WO2007113703A2 (fr) 2006-03-30 2007-10-11 Koninklijke Philips Electronics N. V. Procédé de ciblage, dispositif de ciblage, support lisible par un ordinateur et élément de programme
WO2008139354A2 (fr) 2007-05-10 2008-11-20 Koninklijke Philips Electronics N. V. Procédé de ciblage, dispositif de ciblage, support lisible par ordinateur et élément de programme
US20090124896A1 (en) * 2007-11-09 2009-05-14 Gabriel Haras Method and device for planning and/or monitoring an interventional high-frequency thermoablation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Intersections of ellipsoids and planes of arbitrary orientation and position", MATHEMATICAL GEOLOGY, vol. 11, no. 3, 3 June 1979 (1979-06-03)
See also references of EP2509527A1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008148A1 (fr) * 2011-07-11 2013-01-17 Koninklijke Philips Electronics N.V. Appareil de planification d'application d'énergie
CN103648424A (zh) * 2011-07-11 2014-03-19 皇家飞利浦有限公司 能量施加规划设备
US9757201B2 (en) 2011-07-11 2017-09-12 Koninklijke Philips N.V. Energy application planning apparatus
CN103796607A (zh) * 2011-09-13 2014-05-14 皇家飞利浦有限公司 具有病变覆盖范围反馈的消融规划
JP2014054347A (ja) * 2012-09-12 2014-03-27 Hitachi Medical Corp 冷凍治療温度制御システム
EP3122274B1 (fr) * 2014-03-22 2021-08-04 Varian Medical Systems, Inc. Système et procédés de planification de traitement d'ablation
US10607738B2 (en) 2015-05-15 2020-03-31 University Health Network System and method for minimally invasive thermal ablation treatment planning
EP3628251A1 (fr) * 2018-09-28 2020-04-01 Koninklijke Philips N.V. Système de planification de thérapie d'ablation
WO2020064659A1 (fr) * 2018-09-28 2020-04-02 Koninklijke Philips N.V. Système de planification de thérapie d'ablation
WO2020210621A1 (fr) * 2019-04-12 2020-10-15 Mako Surgical Corp. Systèmes robotiques et procédés de manipulation d'un guide de coupe pour un instrument chirurgical
US11684374B2 (en) 2019-04-12 2023-06-27 Mako Surgical Corp. Robotic systems and methods for manipulating a cutting guide for a surgical instrument
CN113974820A (zh) * 2021-09-10 2022-01-28 周翔 一种基于残差拟合的模拟消融方法、装置、存储介质及设备
CN113838556A (zh) * 2021-09-24 2021-12-24 北京三春晖医疗器械有限公司 一种复合脉冲电场肿瘤消融计划系统

Also Published As

Publication number Publication date
RU2012128523A (ru) 2014-01-20
JP6035148B2 (ja) 2016-11-30
RU2581714C2 (ru) 2016-04-20
BR112012013557A2 (pt) 2017-10-10
CN102647956B (zh) 2015-06-17
US20120237105A1 (en) 2012-09-20
CN102647956A (zh) 2012-08-22
US9125689B2 (en) 2015-09-08
EP2509527A1 (fr) 2012-10-17
JP2013512748A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
US9125689B2 (en) Clipping-plane-based ablation treatment planning
US11464578B2 (en) Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US11464575B2 (en) Systems, methods, apparatuses, and computer-readable media for image guided surgery
US8798339B2 (en) Targeting method, targeting device, computer readable medium and program element
US9364294B2 (en) Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8102392B2 (en) Image processing/displaying apparatus having free moving control unit and limited moving control unit and method of controlling the same
EP2222224B1 (fr) Procédé et système pour une planification chirurgicale préopération percutanée
JP4664623B2 (ja) 画像処理表示装置
US20070055131A1 (en) Method for displaying a medical implant in an image and a medical imaging system
EP3028258B1 (fr) Procédé et système d'imagerie par tomosynthese
US20070167762A1 (en) Ultrasound system for interventional treatment
Schumann et al. Visualization support for the planning of hepatic needle placement
US20160058424A1 (en) Image registration for ct or mr imagery and ultrasound imagery using mobile device
US20230172574A1 (en) System and method for identifying and marking a target in a fluoroscopic three-dimensional reconstruction
Alpers et al. CT-Based Navigation Guidance for Liver Tumor Ablation.
Liu et al. Surgical instrument guidance using synthesized anatomical structures
Bao et al. Ultrasound-guided ablation system for laparoscopic liver surgery
Hernes et al. Neuronavigation with intraoperative 3D ultrasound; multimodal 2D and 3D display techniques and interactive stereoscopic visualisation for guiding surgical procedures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055751.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798624

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010798624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010798624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4271/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012542652

Country of ref document: JP

Ref document number: 13514075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012128523

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013557

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013557

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120605