WO2011070313A1 - Détection basée sur la distance - Google Patents

Détection basée sur la distance Download PDF

Info

Publication number
WO2011070313A1
WO2011070313A1 PCT/GB2010/002204 GB2010002204W WO2011070313A1 WO 2011070313 A1 WO2011070313 A1 WO 2011070313A1 GB 2010002204 W GB2010002204 W GB 2010002204W WO 2011070313 A1 WO2011070313 A1 WO 2011070313A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
structured
pattern
patterns
points
Prior art date
Application number
PCT/GB2010/002204
Other languages
English (en)
Inventor
Maurice Stanley
Original Assignee
Qinetiq Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinetiq Limited filed Critical Qinetiq Limited
Priority to US13/511,929 priority Critical patent/US20120236288A1/en
Priority to JP2012542612A priority patent/JP2013513179A/ja
Priority to CN2010800558554A priority patent/CN102640087A/zh
Priority to EP10803262A priority patent/EP2510421A1/fr
Publication of WO2011070313A1 publication Critical patent/WO2011070313A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0325Detection arrangements using opto-electronic means using a plurality of light emitters or reflectors or a plurality of detectors forming a reference frame from which to derive the orientation of the object, e.g. by triangulation or on the basis of reference deformation in the picked up image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors

Definitions

  • This invention relates to range based sensing, and particularly but not exclusively to range based sensing at multiple different working ranges.
  • the effective working range of a ranging device using structured light projection will typically be determined by various design parameters, and outside of this working range accuracy and consistency are diminished, or effective ranging may not be possible, depending on the implementation of the device.
  • Applicant's WO 2004/0044525 describes a ranging apparatus using a spot projector and a detector arranged to resolve ambiguity between different ranges.
  • ranging apparatus comprising
  • a structured light generator adapted to illuminate a scene with a first structured pattern of light points and a second structured pattern of light points, said first and second patterns being configured for operation at different ranges;
  • a detector for detecting the location of light points projected in the scene
  • a processor for determining, from the detected location of a projected point in said scene, the range to said point.
  • the overall working range is increased.
  • the different working ranges or regimes of the two different light patterns may be overlapping, contiguous or separated by an unused region or set of ranges according to different embodiments.
  • a third or even more different light patterns may be employed as necessary to suit the given application.
  • structured patterns of light points refers to patterns having a plurality of recognisable features in a known, pre-defined geometry.
  • Common structured light patterns include arrays of spots, parallel lines or grids of lines.
  • the structured light pattern may comprise a single point of light to provide coarse ranging.
  • the term 'light points' used herein refers to any recognisable feature of such a pattern.
  • the structured light generator can be adapted to switch back and forth between said first and second structured patterns, either automatically according to a timing control, or adaptively in response to sensed information from the illuminated scene.
  • the structured light generator can be adapted to project the first and second patterns simultaneously. In embodiments where more than one pattern is projected
  • the light points corresponding to different patterns are preferably distinguishable by shape, colour, polarisation or configuration.
  • Shapes of individual light points may be square or circular for example, and colour can be varied both within the visible spectrum and also beyond it, allowing wavelength discrimination to be employed at the detector.
  • the configuration of light points may be varied in terms of the
  • the processor can advantageously determine which pattern is active, and hence to which pattern currently detected light points belong, either from a signal controlling the projected pattern eg a timing control signal, or from a status output from the structured light generator for example.
  • the configuration of the first and second patterns is achieved in preferred embodiments by appropriate selection of a range of variables including field of view, angular light point separation, number of light points and light output power, as will be described in greater detail in relation to the accompanying drawings below. These and other variables can be appropriately varied by selection of one or more light sources and one or more light modulators or pattern generators adapted to receive light from a source and to output a desired pattern of structured light.
  • a pattern generator is employed which is configurable between first and second states to produce different structured patterns.
  • Alternative embodiments however will employ first and second separate pattern generators adapted to produce different structured patterns.
  • the same light source may be employed, or two or more different light sources can be provided and selected as different structured patterns are required. Therefore provision of the different structured light patterns may be effected by sharing some, all, or none of the same structured light generator
  • a particularly preferred embodiment of the invention employs a structured light generator having a light source arranged to illuminate the input face of a prismatic light guide having internally reflective sides.
  • the prismatic light guide which will preferably have a regular polygonal cross section, acts a kaleidoscope to produce multiple images of the light source, at its output.
  • projection optics eg a collimation lens
  • the light source comprises an LED or array of LEDs.
  • some or all of the prismatic light guide may be commonly used in projection of the first and second light patterns.
  • a single prismatic light guide can be illuminated by two different light sources to produce two different patterns.
  • a single, configurable light source can be controlled to produce different light input patterns.
  • the full cross section of the pipe is the effective light source emission area for the collimation lens. Adjacent beams start out as contiguous until they have propagated a moderate distance from the collimation lens to become clearly individually resolvable. This imposes a minimum working distance for the 3D camera, which in some embodiments can be 10cm or more.
  • an aperture mask can be introduced in embodiments, coupled to the output of the prismatic light guide, for example between the light pipe and the collimation lens. This may be formed using evaporated metal coatings on the lens or light pipe, and can be in a variety of shapes eg square or circle. It may be favourable to make the aperture circular and having a diameter -50% of pipe cross section. This will provide a mark-space ratio of 2 for adjacent beams which will enable adjacent beams to be resolvable immediately after leaving the projector.
  • the aperture be made reflective eg evaporated metal. Therefore any light not emerging through this aperture is reflected back into the light pipe and can be recycled.
  • the aperture mask can advantageously be switched in and out of operation according to the desired light output pattern.
  • Shortening the length of the light guide for a given cross-section allows a reduction in the density and therefore the total number of spots in the system field of view, and vice versa.
  • the total number of spots can also be varied by changing the number of emission points on the LED. More emission points on the back face of the light pipe (i.e. LED face) increases the number of spots per replicated unit cell. This technique can be used to off-set shortening of the pipe to reduce size.
  • Shortening the light pipe for a given cross-section also an increase in the collection angle of light being collimated into a projected spot beam, thereby increasing spot brightness - i.e. the same LED output is now distributed across fewer LED spots.
  • Certain embodiments may have an LED emitter with an array of selectable emission points or patterns. This may be pre-defined or arbitrarily programmable using a pixelated array. This could allow different projected patterns for different 3D scanning ranges or types of objects. Scanning with a number of projected patterns provides improvement in scanner robustness and fidelity of the scan performance. A similar result could be achieved with a second projector which is designed to project a different pattern eg optimised for different ranges. This could be manually selected or operate sequentially in different image frames. The attractiveness of scanning in a single video frame may be possible if the projectors use different colour LEDs, where different colours have different patterns. Many of these features can also be achieved using an LED video projector as the projected pattern light source.
  • LEDs with multiple emission points can result in LEDs which are large, and consume significant power as a result of dead space between emission points which also sinks current.
  • the spot power needed in the scene therefore determines the LED size. This in turn determines the kaleidoscope pipe width, as the emitter area is preferably no more than 30% of the width of the light pipe to ensure spots can be clearly resolved in the scene.
  • semiconductor lasers are more efficient than LEDs.
  • the LED could be substituted for a laser, optionally with a diffuser or optics to create a spot of light with the desired diverging properties to form an array of spots with a kaleidoscope light guide. This could be achieved with a tightly focussed lens.
  • the degree of divergence could be optimised using optics to match the target spot projector pattern, thereby maximising efficiency.
  • Using a laser also avoids the dependency between output power and light guide cross-section.
  • Embodiments of the invention may additionally or alternatively employ a structured light generator comprising a light source and a diffraction element.
  • the light source is preferably a laser diode.
  • the diffractive element, or diffractive array grating (DAG) in some embodiments is controllable to vary the light output between first and second states, resulting in first and second projected light patterns.
  • the diffractive element may be mechanically switchable, for example one or more elements can be moved into and out of the path of the light source in response to a control signal, or the diffractive element may be electro-optically configurable. This may be by the use of a
  • projection based range sensing can be limited to a finite range capability by aliasing or depth ambiguity whereby the detection of a projected light point or feature can correspond to or more than one possible depth or range value.
  • Solutions have been proposed above based on the use of multiple different projections patterns suitable for use at different operating ranges. Additionally or alternatively it is hereby proposed to calibrate ranging apparatus for different working ranges using the same structured light generator and detector. This would result in multiple calibration files for the same hardware.
  • Software solutions could be used to process the detected spot image with different calibration files, potentially producing multiple range maps for the scene. Algorithmic methods e.g. noise filtering could be used to select the most appropriate data for each part of the scene. Whilst each operating range would be finite, there will be clear operating windows where spot trajectories can be unambiguously tracked and correlated to pre-calibrated data.
  • a method of range detection comprising:
  • the data set is selected in response to a coarse estimate of range.
  • the depth ranges may be contiguous, overlapping, or separated by bands for which no calibration data is present.
  • Different modes of operation of a device operating according to this aspect may signal to the system which depth range to use.
  • different modes could include gesture interface whereby hand gestures at close range are recognised, a facial scan mode operating at medium range, and 3D object scanning operating at long range.
  • algorithmic methods e.g. noise filtering to select the most appropriate range for each part of the scene.
  • These operating windows may overlap. Overlapping depth windows would reveal contiguous shape data which could help the filtering algorithms.
  • Detection of hand gestures using conventional 2D camera or 3D stereoscopic camera systems requires significant image processing. It is necessary to detect the presence of an object within the detection zone, determine whether this is a hand or finger, and determine key points, edges of features of the hand or finger to be tracked to detect a geasture.
  • 2D sensors have a fundamental problem in that they cannot determine range or absolute size of objects - they merely detect the angular size of objects. Therefore to a 2D sensor a large object at a large distance is very difficult to distinguish from a small object close to the sensor. This makes it very difficult to robustly determine whether the object in the scene is a hand in the detection zone. The lack of depth information also makes it very difficult to determine gestures.
  • Stereoscopic camera systems offer significant improvements over a single 2D sensor. Once key points on the hand or finger have been determined, triangulation techniques can be used to verify their range from the sensors. However, images from each camera must be processed through multiple stages as outlined above before triangulation and range determination can occur. This results in a significant image processing challenge - particularly for real-time operation on a small and low cost mobile electronic device such as a mobile phone
  • a method of gesture detection comprising:
  • the detection area for embodiments of the invention is less than or equal to 200mm and more preferably less than or equal to 150mm or even 100mm. It is noted that according to this aspect of the invention absolute values of range for detected points are not necessary, rather the pattern of detected light spots (which will be indicative of the relative ranges of the points) can be used. Absolute range values may however be calculated for some or all detected points, for example for the purposes of gating to a particular range value, and discriminating against points detected at larger ranges.
  • the pattern of light spots detected, and the templates may be dynamic, ie may represent patterns of light spots changing over time. Appearance of new light spots in the detected area, or conversely the disappearance of existing light spots, or the movement of light spots may comprise recognisable features which can be detected and compared.
  • the structured pattern of light points comprises a regular array of spots or lines formed in a grid pattern.
  • Gestures recognisable in this way include a fist, an open palm, an extended index finger and a 'thumbs up' sign for example.
  • Each gesture which is to be recognised has an associated template which may be derived experimentally or through computer simulation for example.
  • a set of gestures may be selected to provide a high probability of discrimination.
  • Such gestures can be used as the basis for a user interface for a handheld mobile device such as a mobile telephone or a PDA for example, the gesture recognition method of the present invention providing defined signals corresponding to specific gestures.
  • the method additionally comprises detecting said plurality of points over a time interval. This allows the movement of detected points to be analysed to determine movement based gestures such as a hand wave or swipe in a given direction. More complex gestures such as clenching or unclenching of a fist may also be recognisable
  • the invention extends to methods, apparatus and/or use substantially as herein described with reference to the accompanying drawings.
  • Figure 1 shows a ranging device having two structured light generators optimised for use at different ranges
  • Figure 2 illustrates a configurable light source adapted to produce different light patterns in cooperation with a single light guide
  • Figure 3 shows a ranging device having two structured light projectors having different modes of operation
  • Figure 4 shows a laser and an adaptable diffraction element used to create differing light patterns
  • Figure 5 illustrates possible ambiguity in a ranging device
  • Figure 6 shows spot tracks associated with different working ranges
  • Figure 7 shows different calibration files associated with application specific to certain ranges
  • Figure 8 illustrates a hand gesture and associated spot pattern.
  • FIG. 1 there is illustrated a device 102 having one spot projector device 104 optimised for close working eg hand gesture detection just in front of a display, and another spot projector device 106 optimised for general 3D scanning eg face, 3D video conferencing or 3D photographing of objects. Both projectors could use the same camera sensor 108.
  • the priorities are to have a light pattern 142 with a wide field of view 1 10 (e.g. +/- 45°) with spot or feature separation 1 12 of ⁇ 2mm at a typical working distance of e.g. 50mm.
  • This spot separation is needed to record individual finger movements, potentially with more than 1 spot landing on each finger. This equates to an angular spot separation of ⁇ 2°, and so to cover +/- 45° field of view, the projector would need to output ⁇ 50x50 spots. Due to the close working range, each spot would only need low power. Close range operation could be used with a close focus or macro function in the camera lens.
  • an LED light source 120 which is patterned to output a number of spots would help reduce the overall length of the pipe.
  • This spot projector would use an aperture mask 130 at the end of the kaleidoscope coupling to the output lens. This aperture would improve spot separation at close working ranges.
  • a pattern 144 with a narrower field of view 1 14 and smaller angular spot separation would be required from the spot projector.
  • this may be a field of view of +/- 30° or less, and having a spot or feature separation 1 16 of ⁇ 10mm at a range of 500mm (here a grid patter is shown, however line intersections are chosen as defining features).
  • This equates to a spot angular separation of ⁇ 1 ° and an array size of -30x30. Due to the extended working range each spot would need higher power.
  • a larger emitter area would be required, eg 300 ⁇ .
  • a 2x2 array LED could be used with a 25mm kaleidoscope of similar cross section. Individual emitter size could be reduced to 150 ⁇ to achieve equivalent spot power. Referring to Figure 2b, It may be possible to utilise the same optical components
  • FIG. 2a shows a 2x2 LED configuration marked as circles 220, and a 4x4 configuration marked as crosses 222. This may also be achieved using a single large area emitter and a selectable or programmable optical shutter arrangement.
  • a switchable aperture 206 on the output face of the light pipe may also be beneficial to help optimise performance in close and far modes of use.
  • Figure 3 shows an example where again there is one spot projector device optimised for close working eg hand gesture detection just in front of a display, and another optimised for general 3D scanning eg face, 3D video conferencing or 3D photographing of objects. Both projectors could use the same camera sensor 308.
  • the priorities are to have a wide field of view (e.g. +/- 45°) with spots separated by ⁇ 2mm at a typical working distance of e.g. 50mm.
  • This spot separation is needed to record individual finger movements, potentially with more than 1 spot landing on each finger. This equates to an angular spot separation of ⁇ 2°, and so to cover +/- 45° field of view, the projector would need to output ⁇ 50x50 spots. Due to the close working range, each spot would only need low power.
  • LED light source 310 which is patterned to output a number of spots would help reduce the overall length of the light guide 312.
  • This spot projector would use an aperture mask at the end of the kaleidoscope coupling to the output lens. This aperture would improve spot separation at very close working ranges.
  • a narrower field of view and smaller angular spot separation would be required from the spot projector.
  • this may be a field of view of +/- 30° or less, and having a spot separation of ⁇ 10mm at a range of 500mm. This equates to a spot angular separation of ⁇ 1 ° and an array size of -30x30.
  • This longer range performance could be achieved using a laser diode 320 and diffractive element 322 which produces an array of uniform intensity spots. This element is known as a diffractive array generator (DAG).
  • DAG diffractive array generator
  • a small collimated laser diode - either conventional edge emitter based or Vertical Cavity Surface Emitting Laser would be coupled to a small DAG whose pattern had been designed to produce the desired uniform spot array with the appropriate angular separation. It is beneficial to use DAGs with systems which need smaller fields of view to simplify manufacturing. For example, to achieve diffraction angle of 30°, the DAG will need a unit cell of dimensions 2x wavelength i.e. 1300nm for a 650nm laser. DAGs of this typical specification are available from independent suppliers.
  • the use of a laser source and DAG offers opportunities to deliver high optical power in a small system volume for extended range beyond 1 m.
  • the narrowband laser also offers opportunity to use matched narrowband optical filtering to improve signal to noise in detection of the spot pattern on distant objects.
  • Figure 4 shows a third example of a device having one spot projector device optimised for close working eg hand gesture detection just in front of a display, and another optimised for general 3D scanning eg face, 3D video conferencing or 3D photographing of objects. Both projectors could use the same camera sensor (not shown).
  • the priorities are to have a wide field of view (e.g. +/- 45°) with spots separated by ⁇ 2mm at a typical working distance of e.g. 50mm.
  • This spot separation is needed to record individual finger movements, potentially with more than 1 spot landing on each finger. This equates to an angular spot separation of ⁇ 2°, and so to cover +/- 45° field of view, the projector would need to output ⁇ 50x50 spots. Due to the close working range, each spot would only need low power.
  • This spot array could be produced using a collimated laser diode 402 and diffractive element 404 designed to produce an array of uniform intensity spots 410, 412.
  • This element is known as a diffractive array generator (DAG) - a computer designed diffraction grating whose pattern is then etched or embossed into an optical substrate.
  • DAG diffractive array generator
  • a small collimated laser diode either conventional edge emitter based or Vertical Cavity Surface Emitting Laser would illuminate the small DAG whose pattern had been designed to produce the desired uniform spot array with the appropriate angular separation. It is beneficial to use DAGs. To achieve diffraction angle of 45°, the DAG will need a unit cell of dimensions ⁇ 1.5x wavelength i.e. 1000nm for a 650nm laser.
  • diffractive element 404 could be achieved mechanically or electro-optically. Mechanical means could be to simply remove the DAG from the laser beam and project a single spot into the scene. This may be useful for measuring long distances eg measuring size of rooms etc. Alternatively the DAG could be replaced with one of another design to achieve a different spot pattern optimised for that use.
  • Switchable diffractive electro-optically could include using a programmable spatial light modulator, a Multi Access Computer generated Hologram (MACH) where a liquid crystal is electrically tuned on top of a permanent complex phase grating to access different diffraction results.
  • MCH Multi Access Computer generated Hologram
  • Another method could use electro-wetting techniques to reveal or index match a phase diffractive pattern
  • a single detector or camera is used to sense different patterns adapted for use at different ranges.
  • Such a 3D camera using multiple spot projectors could distinguish between the different projected patterns through a variety of means, including:
  • - polarisation encoding - one is polarised either linear or circular, and the 2nd projector has orthogonal polarisation encoding.
  • a polariser or polarising beamsplitter can be used in front of the camera to distinguish the 2 images.
  • Spatial pattern encoding - the 2 projectors have emission sources with characteristic shape eg left and right diagonal patterns. These patterns can then be detected simultaneously in the camera and distinguished using a pattern matching algorithm. Problems may arise with overlaps.
  • a structured light projector 502 projects an array of features indicated by divergent lines 504.
  • a camera 506 detects corresponding spots of light 508, 510 projected onto objects 520, 522 respectively.
  • points of light 508 and 510 appear at the same position, however they represent objects at different depths. This causes ambiguity in the absence of other distinguishing features.
  • this is resolved by defining different working ranges, shown as A and B in the figure, and assigning individual and different calibration data to each range.
  • Figure 6 shows how spot tracks move across a camera sensor (represented by rectangle) as an object's distance from the sensor varies, and how different sections of the spot track (shown as different dashed lines) can be associated with different working ranges.
  • the different calibration files associated with these different ranges, and examples of corresponding modes of operation are illustrated in Figure 7
  • hand gestures can be detected and interpreted by detecting how projected features or spots move in a scene without needing to undertake the
  • a lateral movement will result in a line of spots appearing on the leading edge of the object in the detection zone, and at the same time a line of spots disappearing from the trailing edge of the object in the detection zone. Change in height would result in a group of spots on the object moving in a similar manner on the detector in correspondence with the change in range.
  • Object movements or gestures can be efficiently detected by comparing sequential images. For example, the simple process of subtracting sequential images will remove spots on objects in the scene that have not moved, but emphasize areas where there have been changes in the object i.e. a gesture. Analysing these changes can reveal gestures.

Abstract

La présente invention se rapporte à un appareil de mesure de distance qui est apte à projeter des motifs de lumière structurée adaptés pour être utilisés à des régimes de portée ou de profondeur particuliers. Des points de lumière détectés dans une scène peuvent être comparés à des modèles de motifs prédéterminés pour fournir un système de reconnaissance gestuelle simple et bon marché, en tant qu'interface pour un téléphone intelligent (Smartphone) ou un assistant numérique personnel (PDA) par exemple. Un générateur de lumière structurée peut être adapté pour exécuter une permutation en va-et-vient entre lesdits premier et second motifs structurés, soit automatiquement sur la base d'une commande de temporisation, soit adaptativement en réponse à des informations détectées dans la scène éclairée. En variante, le générateur de lumière structurée peut être adapté pour projeter les premier et second motifs simultanément. Des générateurs de lumière séparés peuvent être employés pour les différents motifs, ou bien des composants peuvent être partagés.
PCT/GB2010/002204 2009-12-08 2010-12-01 Détection basée sur la distance WO2011070313A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/511,929 US20120236288A1 (en) 2009-12-08 2010-12-01 Range Based Sensing
JP2012542612A JP2013513179A (ja) 2009-12-08 2010-12-01 距離に基づく検知
CN2010800558554A CN102640087A (zh) 2009-12-08 2010-12-01 基于距离的感测
EP10803262A EP2510421A1 (fr) 2009-12-08 2010-12-01 Détection basée sur la distance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0921461.0 2009-12-08
GBGB0921461.0A GB0921461D0 (en) 2009-12-08 2009-12-08 Range based sensing

Publications (1)

Publication Number Publication Date
WO2011070313A1 true WO2011070313A1 (fr) 2011-06-16

Family

ID=41642093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2010/002204 WO2011070313A1 (fr) 2009-12-08 2010-12-01 Détection basée sur la distance

Country Status (7)

Country Link
US (1) US20120236288A1 (fr)
EP (1) EP2510421A1 (fr)
JP (1) JP2013513179A (fr)
KR (1) KR20120101520A (fr)
CN (1) CN102640087A (fr)
GB (1) GB0921461D0 (fr)
WO (1) WO2011070313A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088205A1 (fr) * 2011-12-14 2013-06-20 Amaya Urrego Cesar Eduardo Système d'automatisation pour les bâtiments fondé sur la reconnaissance et activation déclenchée par le mouvement du corps humain
WO2013132494A1 (fr) * 2012-03-09 2013-09-12 Galil Soft Ltd Système et procédé de mesure sans contact de géométrie 3d
DE102012014330A1 (de) * 2012-07-20 2014-01-23 API - Automotive Process Institute GmbH Verfahren und Vorrichtung zur 3D-Vermessung
WO2014179382A2 (fr) * 2013-05-01 2014-11-06 Faro Technologies, Inc. Procédé et appareil pour utiliser des gestes afin de commander un dispositif de poursuite laser
EP2811318A1 (fr) * 2013-06-05 2014-12-10 Sick Ag Capteur optoélectronique
WO2015054085A1 (fr) * 2013-10-09 2015-04-16 Microsoft Corporation Modules d'éclairage émettant une lumière structurée
JP2015524050A (ja) * 2012-05-14 2015-08-20 コーニンクレッカ フィリップス エヌ ヴェ ターゲット物体の表面の深さをプロファイリングするための装置及び方法
US9170097B2 (en) 2008-04-01 2015-10-27 Perceptron, Inc. Hybrid system
WO2017072348A1 (fr) * 2015-10-28 2017-05-04 Valeo Comfort And Driving Assistance Dispositif et procédé de détection d'objets
US11445164B2 (en) * 2017-05-19 2022-09-13 Orbbec Inc. Structured light projection module based on VCSEL array light source
US11475583B2 (en) 2016-03-01 2022-10-18 Magic Leap, Inc. Depth sensing systems and methods

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908995B2 (en) 2009-01-12 2014-12-09 Intermec Ip Corp. Semi-automatic dimensioning with imager on a portable device
JP5138116B2 (ja) * 2011-04-19 2013-02-06 三洋電機株式会社 情報取得装置および物体検出装置
US9197881B2 (en) * 2011-09-07 2015-11-24 Intel Corporation System and method for projection and binarization of coded light patterns
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US8638989B2 (en) 2012-01-17 2014-01-28 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
US9501152B2 (en) 2013-01-15 2016-11-22 Leap Motion, Inc. Free-space user interface and control using virtual constructs
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US8693731B2 (en) 2012-01-17 2014-04-08 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging
WO2013127974A1 (fr) * 2012-03-01 2013-09-06 Iee International Electronics & Engineering S.A. Générateur de lumière structuré spatialement codé
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US9286530B2 (en) * 2012-07-17 2016-03-15 Cognex Corporation Handheld apparatus for quantifying component features
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
US9285893B2 (en) * 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
DE102012224260A1 (de) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Vorrichtung und Verfahren zur Messung der Profiltiefe eines Reifens
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US9465461B2 (en) 2013-01-08 2016-10-11 Leap Motion, Inc. Object detection and tracking with audio and optical signals
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
US20140267701A1 (en) * 2013-03-12 2014-09-18 Ziv Aviv Apparatus and techniques for determining object depth in images
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US9702977B2 (en) 2013-03-15 2017-07-11 Leap Motion, Inc. Determining positional information of an object in space
US9916009B2 (en) 2013-04-26 2018-03-13 Leap Motion, Inc. Non-tactile interface systems and methods
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US20150009290A1 (en) * 2013-07-05 2015-01-08 Peter MANKOWSKI Compact light module for structured-light 3d scanning
WO2015004213A1 (fr) * 2013-07-09 2015-01-15 Xenomatix Bvba Système de détection de contour
US20150022635A1 (en) * 2013-07-19 2015-01-22 Blackberry Limited Using multiple flashes when obtaining a biometric image
US10281987B1 (en) 2013-08-09 2019-05-07 Leap Motion, Inc. Systems and methods of free-space gestural interaction
US9721383B1 (en) 2013-08-29 2017-08-01 Leap Motion, Inc. Predictive information for free space gesture control and communication
KR101386248B1 (ko) 2013-09-09 2014-04-17 재단법인 실감교류인체감응솔루션연구단 공간 제스처 인식 장치 및 방법
FI20135961A (fi) * 2013-09-25 2015-03-26 Aalto Korkeakoulusäätiö Mallinnusjärjestely ja menetelmät ja järjestelmä kolmiulotteisen pinnan topografian mallintamiseksi
US9632572B2 (en) 2013-10-03 2017-04-25 Leap Motion, Inc. Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US9996638B1 (en) 2013-10-31 2018-06-12 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
DE102014101070A1 (de) * 2014-01-29 2015-07-30 A.Tron3D Gmbh Verfahren zum Kalibrieren und Betreiben einer Vorrichtung zum Erfassen der dreidimensionalen Geometrie von Objekten
CN104850219A (zh) * 2014-02-19 2015-08-19 北京三星通信技术研究有限公司 估计附着物体的人体姿势的设备和方法
EP3117191A4 (fr) * 2014-03-13 2018-03-28 National University of Singapore Dispositif d'interférence optique
US10419703B2 (en) * 2014-06-20 2019-09-17 Qualcomm Incorporated Automatic multiple depth cameras synchronization using time sharing
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
CN204480228U (zh) 2014-08-08 2015-07-15 厉动公司 运动感测和成像设备
DE202014010357U1 (de) * 2014-09-10 2015-12-11 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung mit einem Handscanner und Steuerung durch Gesten
DE102014013677B4 (de) 2014-09-10 2017-06-22 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung mit einem Handscanner und unterteiltem Display
US9693040B2 (en) 2014-09-10 2017-06-27 Faro Technologies, Inc. Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device
DE102014013678B3 (de) 2014-09-10 2015-12-03 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung mit einem Handscanner und Steuerung durch Gesten
US9602811B2 (en) 2014-09-10 2017-03-21 Faro Technologies, Inc. Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
JP2016150081A (ja) * 2015-02-17 2016-08-22 ソニー株式会社 光学ユニット、測定システムおよび測定方法
JP6500493B2 (ja) * 2015-02-25 2019-04-17 株式会社リコー 視差画像生成システム、ピッキングシステム、視差画像生成方法およびプログラム
JP6436349B2 (ja) * 2015-03-10 2018-12-12 アルプス電気株式会社 物体検出装置
JP6484071B2 (ja) * 2015-03-10 2019-03-13 アルプスアルパイン株式会社 物体検出装置
JP6484072B2 (ja) * 2015-03-10 2019-03-13 アルプスアルパイン株式会社 物体検出装置
US10488192B2 (en) 2015-05-10 2019-11-26 Magik Eye Inc. Distance sensor projecting parallel patterns
EP3295119A4 (fr) * 2015-05-10 2019-04-10 Magik Eye Inc. Capteur de distance
US9651366B2 (en) * 2015-05-15 2017-05-16 Everready Precision Ind. Corp. Detecting method and optical apparatus using the same
US20160335492A1 (en) * 2015-05-15 2016-11-17 Everready Precision Ind. Corp. Optical apparatus and lighting device thereof
TWI663377B (zh) * 2015-05-15 2019-06-21 高準精密工業股份有限公司 光學裝置及其發光裝置
TWI651511B (zh) * 2015-05-15 2019-02-21 高準精密工業股份有限公司 偵測方法以及應用該偵測方法的光學裝置
CN106289092B (zh) * 2015-05-15 2020-10-27 高准国际科技有限公司 光学装置及其发光装置
CN106289065B (zh) * 2015-05-15 2020-10-27 高准精密工业股份有限公司 侦测方法以及应用该侦测方法的光学装置
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US20160377414A1 (en) * 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
KR101904373B1 (ko) * 2015-06-30 2018-10-05 엘지전자 주식회사 차량용 디스플레이 장치 및 차량
DE102015008564A1 (de) * 2015-07-02 2017-01-05 Daimler Ag Erzeugung strukturierten Lichts
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
US9816804B2 (en) * 2015-07-08 2017-11-14 Google Inc. Multi functional camera with multiple reflection beam splitter
CN105005770A (zh) * 2015-07-10 2015-10-28 青岛亿辰电子科技有限公司 手持扫描仪多次扫描面部细节提升合成方法
EP3118576B1 (fr) 2015-07-15 2018-09-12 Hand Held Products, Inc. Dispositif de dimensionnement mobile avec précision dynamique compatible avec une norme nist
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US20170017301A1 (en) 2015-07-16 2017-01-19 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
DE102016214826B4 (de) * 2015-08-10 2017-11-09 Ifm Electronic Gmbh Temperaturkompensation einer strukturierten Lichtprojektion
US10397546B2 (en) * 2015-09-30 2019-08-27 Microsoft Technology Licensing, Llc Range imaging
US9958686B2 (en) * 2015-10-16 2018-05-01 Everready Precision Ind. Corp. Optical apparatus
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
CN106095133B (zh) * 2016-05-31 2019-11-12 广景视睿科技(深圳)有限公司 一种交互投影的方法及系统
US10339352B2 (en) 2016-06-03 2019-07-02 Hand Held Products, Inc. Wearable metrological apparatus
US9940721B2 (en) 2016-06-10 2018-04-10 Hand Held Products, Inc. Scene change detection in a dimensioner
US10163216B2 (en) 2016-06-15 2018-12-25 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10021372B2 (en) * 2016-09-16 2018-07-10 Qualcomm Incorporated Systems and methods for improved depth sensing
US10337860B2 (en) 2016-12-07 2019-07-02 Magik Eye Inc. Distance sensor including adjustable focus imaging sensor
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
US10771768B2 (en) * 2016-12-15 2020-09-08 Qualcomm Incorporated Systems and methods for improved depth sensing
KR102257712B1 (ko) * 2017-01-19 2021-05-27 엔비직스 엘티디 홀로그램 광 검출 및 측량
US10628950B2 (en) * 2017-03-01 2020-04-21 Microsoft Technology Licensing, Llc Multi-spectrum illumination-and-sensor module for head tracking, gesture recognition and spatial mapping
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
FR3070498B1 (fr) * 2017-08-28 2020-08-14 Stmicroelectronics Rousset Dispositif et procede de determination de la presence ou de l'absence et eventuellement du deplacement d'un objet contenu dans un logement
CN107450190B (zh) * 2017-09-08 2019-12-13 深圳奥比中光科技有限公司 一种衍射光学元件及配制方法
JP2020537237A (ja) 2017-10-08 2020-12-17 マジック アイ インコーポレイテッド 縦グリッドパターンを使用した距離測定
US10679076B2 (en) * 2017-10-22 2020-06-09 Magik Eye Inc. Adjusting the projection system of a distance sensor to optimize a beam layout
US10895752B1 (en) * 2018-01-10 2021-01-19 Facebook Technologies, Llc Diffractive optical elements (DOEs) for high tolerance of structured light
US11852843B1 (en) 2018-01-10 2023-12-26 Meta Platforms Technologies, Llc Diffractive optical elements (DOEs) for high tolerance of structured light
US10931883B2 (en) 2018-03-20 2021-02-23 Magik Eye Inc. Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging
CN108594454B (zh) 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
WO2019236563A1 (fr) * 2018-06-06 2019-12-12 Magik Eye Inc. Mesure de distance à l'aide de motifs de projection à haute densité
CN108896007A (zh) * 2018-07-16 2018-11-27 信利光电股份有限公司 一种光学测距装置及方法
US10585194B1 (en) 2019-01-15 2020-03-10 Shenzhen Guangjian Technology Co., Ltd. Switchable diffuser projection systems and methods
EP3911920A4 (fr) 2019-01-20 2022-10-19 Magik Eye Inc. Capteur tridimensionnel comprenant un filtre passe-bande ayant de multiples bandes passantes
CN113050112A (zh) * 2019-03-21 2021-06-29 深圳市光鉴科技有限公司 用于增强飞行时间分辨率的系统和方法
US11474209B2 (en) 2019-03-25 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
CN114073075A (zh) 2019-05-12 2022-02-18 魔眼公司 将三维深度图数据映射到二维图像上
CN112019660B (zh) * 2019-05-31 2021-07-30 Oppo广东移动通信有限公司 电子装置的控制方法及电子装置
CN110213413B (zh) 2019-05-31 2021-05-14 Oppo广东移动通信有限公司 电子装置的控制方法及电子装置
US11450083B2 (en) * 2019-09-27 2022-09-20 Honeywell International Inc. Dual-pattern optical 3D dimensioning
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning
US11126823B2 (en) * 2019-11-27 2021-09-21 Himax Technologies Limited Optical film stack, changeable light source device, and face sensing module
WO2021113135A1 (fr) 2019-12-01 2021-06-10 Magik Eye Inc. Amélioration de mesures de distance tridimensionnelles basées sur une triangulation avec des informations de temps de vol
CN114830190A (zh) 2019-12-29 2022-07-29 魔眼公司 将三维坐标与二维特征点相关联
EP4097681A4 (fr) 2020-01-05 2024-05-15 Magik Eye Inc Transfert du système de coordonnées d'une caméra tridimensionnelle au point incident d'une caméra bidimensionnelle
CN112415010A (zh) * 2020-09-30 2021-02-26 成都中信华瑞科技有限公司 一种成像检测方法及系统
KR20220083059A (ko) 2020-12-11 2022-06-20 삼성전자주식회사 Tof 카메라 장치와 그 구동방법
CN112965073A (zh) * 2021-02-05 2021-06-15 上海鲲游科技有限公司 分区投射装置及其光源单元和应用
CN112946604A (zh) * 2021-02-05 2021-06-11 上海鲲游科技有限公司 基于dTOF的探测设备和电子设备及其应用
CN113155047B (zh) * 2021-04-02 2022-04-15 中车青岛四方机车车辆股份有限公司 长距离孔距测量装置、方法、存储介质、设备及轨道车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030023A1 (fr) * 1998-11-17 2000-05-25 Holoplex, Inc. Vision stereoscopique destinee a la reconnaissance de gestes
WO2000075698A1 (fr) 1999-06-09 2000-12-14 Holographic Imaging Llc Presentations holographiques
GB2395261A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
WO2004044523A1 (fr) 2002-11-11 2004-05-27 Qinetiq Limited Projecteur de lumiere structuree
EP2056185A2 (fr) * 2007-11-02 2009-05-06 Northrop Grumman Space & Mission Systems Corporation Lumière de reconnaissance de geste et projecteur d'image vidéo
US20090189858A1 (en) * 2008-01-30 2009-07-30 Jeff Lev Gesture Identification Using A Structured Light Pattern

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789057B2 (ja) * 1986-06-11 1995-09-27 キヤノン株式会社 距離測定装置
JPH0816608B2 (ja) * 1991-03-15 1996-02-21 幸男 佐藤 形状計測装置
JP2003131785A (ja) * 2001-10-22 2003-05-09 Toshiba Corp インタフェース装置および操作制御方法およびプログラム製品
JP4917615B2 (ja) * 2006-02-27 2012-04-18 プライム センス リミティド スペックルの無相関を使用した距離マッピング(rangemapping)
EP1994503B1 (fr) * 2006-03-14 2017-07-05 Apple Inc. Champs lumineux a variation de profondeur destines a la detection tridimensionnelle
KR101408959B1 (ko) * 2006-03-14 2014-07-02 프라임센스 엘티디. 삼차원 감지를 위한 깊이 가변 광 필드
JP4836086B2 (ja) * 2007-09-10 2011-12-14 三菱電機株式会社 3次元形状検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030023A1 (fr) * 1998-11-17 2000-05-25 Holoplex, Inc. Vision stereoscopique destinee a la reconnaissance de gestes
WO2000075698A1 (fr) 1999-06-09 2000-12-14 Holographic Imaging Llc Presentations holographiques
GB2395261A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
WO2004044523A1 (fr) 2002-11-11 2004-05-27 Qinetiq Limited Projecteur de lumiere structuree
WO2004044525A2 (fr) 2002-11-11 2004-05-27 Qinetiq Limited Appareil de telemetrie
EP2056185A2 (fr) * 2007-11-02 2009-05-06 Northrop Grumman Space & Mission Systems Corporation Lumière de reconnaissance de geste et projecteur d'image vidéo
US20090189858A1 (en) * 2008-01-30 2009-07-30 Jeff Lev Gesture Identification Using A Structured Light Pattern

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170097B2 (en) 2008-04-01 2015-10-27 Perceptron, Inc. Hybrid system
WO2013088205A1 (fr) * 2011-12-14 2013-06-20 Amaya Urrego Cesar Eduardo Système d'automatisation pour les bâtiments fondé sur la reconnaissance et activation déclenchée par le mouvement du corps humain
WO2013132494A1 (fr) * 2012-03-09 2013-09-12 Galil Soft Ltd Système et procédé de mesure sans contact de géométrie 3d
JP2015524050A (ja) * 2012-05-14 2015-08-20 コーニンクレッカ フィリップス エヌ ヴェ ターゲット物体の表面の深さをプロファイリングするための装置及び方法
US9797708B2 (en) 2012-05-14 2017-10-24 Koninklijke Philips N.V. Apparatus and method for profiling a depth of a surface of a target object
DE102012014330A1 (de) * 2012-07-20 2014-01-23 API - Automotive Process Institute GmbH Verfahren und Vorrichtung zur 3D-Vermessung
US9360301B2 (en) 2013-05-01 2016-06-07 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US9684055B2 (en) 2013-05-01 2017-06-20 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
WO2014179382A3 (fr) * 2013-05-01 2015-01-15 Faro Technologies, Inc. Procédé et appareil pour utiliser des gestes afin de commander un dispositif de poursuite laser
US9234742B2 (en) 2013-05-01 2016-01-12 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US10481237B2 (en) 2013-05-01 2019-11-19 Faro Technologies, Inc. Method and apparatus for using gestures to control a measurement device
US9383189B2 (en) 2013-05-01 2016-07-05 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US9910126B2 (en) 2013-05-01 2018-03-06 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US9618602B2 (en) 2013-05-01 2017-04-11 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
WO2014179382A2 (fr) * 2013-05-01 2014-11-06 Faro Technologies, Inc. Procédé et appareil pour utiliser des gestes afin de commander un dispositif de poursuite laser
EP2811318A1 (fr) * 2013-06-05 2014-12-10 Sick Ag Capteur optoélectronique
WO2015054085A1 (fr) * 2013-10-09 2015-04-16 Microsoft Corporation Modules d'éclairage émettant une lumière structurée
US9443310B2 (en) 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
FR3043210A1 (fr) * 2015-10-28 2017-05-05 Valeo Comfort & Driving Assistance Dispositif et procede de detection d'objets
WO2017072348A1 (fr) * 2015-10-28 2017-05-04 Valeo Comfort And Driving Assistance Dispositif et procédé de détection d'objets
US11475583B2 (en) 2016-03-01 2022-10-18 Magic Leap, Inc. Depth sensing systems and methods
US11445164B2 (en) * 2017-05-19 2022-09-13 Orbbec Inc. Structured light projection module based on VCSEL array light source

Also Published As

Publication number Publication date
KR20120101520A (ko) 2012-09-13
US20120236288A1 (en) 2012-09-20
GB0921461D0 (en) 2010-01-20
CN102640087A (zh) 2012-08-15
JP2013513179A (ja) 2013-04-18
EP2510421A1 (fr) 2012-10-17

Similar Documents

Publication Publication Date Title
US20120236288A1 (en) Range Based Sensing
US10031588B2 (en) Depth mapping with a head mounted display using stereo cameras and structured light
CN108779905B (zh) 多模式照明模块和相关方法
US9870068B2 (en) Depth mapping with a head mounted display using stereo cameras and structured light
JP6547104B2 (ja) 動的構造化光を用いた三次元深度マッピング
US9869580B2 (en) Controllable optical sensing
KR102163728B1 (ko) 거리영상 측정용 카메라 및 이를 이용한 거리영상 측정방법
US9885459B2 (en) Pattern projection using micro-lenses
KR101801355B1 (ko) 회절 소자와 광원을 이용한 대상물의 거리 인식 장치
CN104284625B (zh) 用于对目标对象的表面的深度进行仿形的装置和方法
CN109891187A (zh) 结构光投影仪
KR101479734B1 (ko) 구조광 패턴 기반의 3차원 형상 측정 시스템
JP6230911B2 (ja) 距離測定のためのライトプロジェクタ及びビジョンシステム
KR102101865B1 (ko) 카메라 장치
US11019328B2 (en) Nanostructured optical element, depth sensor, and electronic device
US10085013B2 (en) 3D camera module
CN114089348A (zh) 结构光投射器、结构光系统以及深度计算方法
JP6626552B1 (ja) マルチ画像プロジェクタ及びマルチ画像プロジェクタを有する電子デバイス
KR20130028594A (ko) 구조광 생성 방법, 그 장치 및 그 장치를 이용한 모션 인식 장치
KR102103919B1 (ko) 다중 이미지 프로젝터 및 다중 이미지 프로젝터를 구비한 전자 기기
KR20200041851A (ko) 카메라 장치
CN116974090A (zh) 3d成像系统及其控制方法、装置、设备及介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055855.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010803262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13511929

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012542612

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127017522

Country of ref document: KR

Kind code of ref document: A