WO2011069447A1 - 油气井的分段控流方法和系统 - Google Patents

油气井的分段控流方法和系统 Download PDF

Info

Publication number
WO2011069447A1
WO2011069447A1 PCT/CN2010/079550 CN2010079550W WO2011069447A1 WO 2011069447 A1 WO2011069447 A1 WO 2011069447A1 CN 2010079550 W CN2010079550 W CN 2010079550W WO 2011069447 A1 WO2011069447 A1 WO 2011069447A1
Authority
WO
WIPO (PCT)
Prior art keywords
annulus
particles
oil
porous tube
density
Prior art date
Application number
PCT/CN2010/079550
Other languages
English (en)
French (fr)
Inventor
裴柏林
薛泳
章诵梅
Original Assignee
安东石油技术(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安东石油技术(集团)有限公司 filed Critical 安东石油技术(集团)有限公司
Priority to US13/514,721 priority Critical patent/US20120318505A1/en
Priority to US13/514,743 priority patent/US9664014B2/en
Publication of WO2011069447A1 publication Critical patent/WO2011069447A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Definitions

  • the invention relates to a flow control method in the field of oil and gas well exploitation, and in particular to a method for controlling flow control of a flow control filter tube column of an oil and gas well having a porous tube.
  • Oil and gas wells generally refer to generalized production wells in oil and gas field development, including oil wells, gas wells, injection wells, etc.
  • oil and gas well production includes the production and injection of fluids in the production process of oil and gas wells, such as oil production or injection of water and steam into the formation during production, chemical production for enhanced oil recovery, and some operations.
  • an acid solution or the like is injected into the formation.
  • a device for segmentally controlling the flow rate such as a flow control filter column, and a production section of the oil and gas well along the axial direction of the oil and gas well are usually divided into several
  • a flow cell device such as a packer is used to achieve zone separation for relatively independent production.
  • Figure 1 shows a schematic diagram of flow control using a flow control filter column and packer in a well.
  • 1 is the well wall of the oil and gas well
  • 2 is the control flow filter column
  • 3 is the annular space between the control flow filter column and the well wall
  • 4 is the seal of the suspension control flow filter column.
  • Comparator, 5 is the flow control packer.
  • FIG. 1 A non-oil-bearing formation, an oil-bearing formation, and a bottom water located below the oil-bearing formation are shown in FIG.
  • the various formations are schematically represented in horizontal lines in Figure 1, but those skilled in the art will appreciate that these formations may not be horizontal, depending on the geological formation of the area in which the well is located.
  • Oil and gas wells are shown to include vertical and horizontal sections. The horizontal section extends substantially along the oil-bearing formation to increase the contact area of the well wall with the oil-bearing formation. Two regions of different permeability, namely a high permeability region and a low permeability region, are shown by way of example in FIG.
  • the flow rate of the fluid in the high permeability region is greater than the flow rate of the fluid in the low permeability region.
  • the bottom water below the oil-bearing formation will first enter the oil and gas well through the high-permeability region due to the pressure difference between the pressure of the bottom water and the pressure in the oil and gas well, resulting in a decrease in the oil and gas output of the oil and gas well. Increased water. This is a problem that should be avoided in production.
  • segmented flow control production in many oil and gas wells is achieved as follows: In the production section of the oil and gas well, the flow control filter column 2 is driven down, through the flow control filter column 2 and the isolation The device 5 effectively blocks the annulus between the flow control filter column 2 and the production section in the oil and gas well, that is, blocks the axial turbulent flow of the fluid outside the flow control filter column, thereby enabling comparison Good segment flow control production.
  • the packer is placed between two areas of different permeability. Since the flow control filter can function as a flow control, the regions of different permeability can be separated by means of a packer to independently control or segmentally control the regions of different permeability. Therefore, the oil and gas well can achieve good output and can effectively control the amount of bottom water entering the oil and gas well.
  • the current well completion method is to enter the porous pipe in the well, and there is no cement or the like between the porous pipe and the well wall to seal the annulus between the porous pipe and the wall of the well.
  • the advantage of this type of completion is that the cost is low, and the disadvantage is that the annulus becomes a passage for fluid turbulence, and in later production, it is difficult to achieve segmented flow control.
  • the perforated tube is provided with several to several tens of holes having a pore diameter of about 10 mm per meter.
  • the porous pipe is mainly used to support the well wall in the oil and gas well to prevent the block in the well from entering the porous pipe to ensure that the flow passage of the entire oil gas well is not blocked by the block.
  • 11 is the well wall of the oil and gas well
  • 12 is a porous tube
  • 13 is an annulus between the porous tube and the well wall
  • 14 is a packer for hanging the porous tube
  • 15 is a flow control filter column
  • 16 is the flow control on the column of the flow control filter
  • the filter 17 is a packer placed in the annulus between the flow control filter column and the perforated tube
  • 18 is a packer for suspending the flow control filter column.
  • the direction of the arrows in the figure indicates the direction of fluid turbulence.
  • the fluid in the formation enters the annulus between the well wall and the porous tube through the well wall, forming axial turbulence in the annulus between the well wall and the porous tube, and then passing through the flow control filter.
  • the device enters the flow control filter column. This axial turbulence destroys the packing effect of the packer disposed between the flow control filter column and the porous tube, and does not achieve good water control.
  • the technical problem to be solved by the present invention is to provide a flow control filter tube column segment flow control method for an oil and gas well having a porous tube, which utilizes anti-turbulence to seal particles and simultaneously fills the porous tube and the flow control filter tube column.
  • the annulus between the annulus and the annulus between the wellbore and the perforated pipe achieves a good separation purpose, thereby achieving a good segmental flow control production.
  • an embodiment of the present invention provides a segmented flow control method for an oil and gas well, wherein the oil and gas well includes: a first annulus, the well wall of the oil and gas well is located at the oil and gas well Forming a space between the well and the porous tube extending axially along the oil and gas well; a second annulus, the porous tube and the flow control filter tube located in the porous tube and extending axially along the oil and gas well Forming a space between the columns; the method comprising: filling the first annulus and the second annulus with anti-turbulence packer particles to enable fluid to be filled with the anti-turbulence packer particles The first annulus and the second annulus are in a seepage manner;
  • filling the first annulus and the second annulus with anti-turbulence blocking particles is by injecting the carrying of the anti-turbulence blocking particles into the first annulus and the second annulus The granules are done.
  • the density of the carrier liquid is substantially equal to the density of the turbulence blocking particles.
  • the carrier liquid is water or an aqueous solution.
  • the turbulence preventing packer particles are high molecular polymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.8 to 1.4 g/cm.
  • the turbulence prevention packing particles have an average particle diameter of 0.1-0.5 mm and a density of Polymer particles of 0.94-1.06 g/cm.
  • the turbulence preventing packer particles are high density polyethylene granules having an average particle diameter of 0.1 to 0.5 mm and a density of 0.90 to 0.98 g/cm.
  • the turbulence preventing packer particles are styrene and divinylbenzene crosslinked copolymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.96 to 1.06 g/cm.
  • the turbulence preventing packer particles are polypropylene and polyvinyl chloride polymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.8 to 1.2 g/cm.
  • the first annulus and the second annulus are filled with anti-turbulence blocking particles until the first annulus and the second annulus are substantially filled, and the first annulus is closed And the second annulus is empty.
  • the oil and gas well is a horizontal well or an inclined well.
  • the difference between the density of the carrier liquid and the density of the turbulence prevention packer particles is in the range of 0.4 g/cm or ⁇ 0.2 g/cm.
  • an oil and gas well sectional flow control system including: a first annulus, the well wall of the oil and gas well is located in the oil and gas well and along the axial direction of the oil and gas well Forming a space between the extended porous tubes; a second annulus formed by the porous tube and a space between the flow control filter tubes located within the porous tube and extending axially along the oil and gas well; Turbulent encapsulating particles filled in the first annulus and the second annulus such that fluid can be filled in the first annulus and the second annulus filled with the anti-turbulent containment particles The air flows in a seepage manner.
  • the first annulus and the second annulus are filled by injecting a carrier fluid carrying anti-turbulence flow-blocking particles into the first annulus and the second annulus.
  • the density of the granules is substantially equal to the density of the turbulent barrier particles.
  • the carrier liquid is water or an aqueous solution.
  • the turbulent flow-proof sealing particles have an average particle diameter of 0.05-1.0 mm and a density of
  • the turbulence prevention packing particles are high molecular polymer particles having an average particle diameter of 0.1 to 0.5 mm and a density of 0.94 to 1.06 g/cm.
  • the turbulence preventing packer particles are high density polyethylene granules having an average particle diameter of 0.1 to 0.5 mm and a density of 0.90 to 0.98 g/cm.
  • the turbulence preventing packer particles are styrene and divinylbenzene crosslinked copolymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.96 to 1.06 g/cm.
  • the turbulence preventing packer particles are polypropylene and polyvinyl chloride polymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.8 to 1.2 g/cm.
  • the turbulence prevention packer particles are substantially filled in the first annulus and the second annulus, and the first annulus and the second annulus are closed.
  • the oil and gas well is a horizontal well or an inclined well.
  • the difference between the density of the carrier liquid and the density of the turbulence prevention packer particles is in the range of 0.4 g/cm or ⁇ 0.2 g/cm.
  • a flow control filter tube column segment flow control method for a gas well having a porous tube is provided, and the oil and gas well that has been inserted into the porous tube includes a well wall and a downhole oil and gas well a porous tube, the porous tube is fixedly connected between the end of the wellhead and the well wall, and an annular space is formed between the porous tube and the well wall;
  • the flow control filter column segment control flow includes the following steps:
  • a flow control filter column is inserted into the porous tube through the lower inlet pipe, and the flow control filter column is provided with a flow control filter, and the flow control filter a section of the pipe string near the wellhead is fixedly connected with the well wall, and an annular space is formed between the flow control filter column and the porous pipe;
  • the particle density of the present invention is the true density of the particles, not the bulk density of the particles.
  • the present invention utilizes water or an aqueous solution having a density of about 1 g/cm 3 as a carrier liquid to carry the turbulent flow-blocking particles.
  • the present invention selects the turbulence-blocking particles having a density almost equal to that of the carrier liquid, so that Carrying the granules can easily carry the anti-turbulence sealing particles to fill the annulus between the control flow tube column and the porous tube and the annulus between the porous tube and the well wall, and prevent turbulence and isolation.
  • the particles are simultaneously accumulated in the annulus between the flow control filter column and the porous tube and in the annulus between the porous tube and the well wall, filled and filled with annulus and porous between the control flow tube column and the porous tube.
  • the completion structure of the anti-turbulence sealing particles is filled in the annulus between the annulus and the porous tube and the well wall.
  • the anti-turbulence sealing particles are tightly packed with almost no gutters.
  • the oil and gas well can be effectively separated into a plurality of relatively independent areas for oil and gas well production, achieving flow control purposes, facilitating flow segmentation management, and bringing good effects to oil and gas well production, such as Improve the production efficiency of oil and gas wells.
  • the flow of formation fluid in a medium in which turbulent containment particles are deposited is a seepage.
  • the magnitude of seepage resistance is proportional to the seepage path and inversely proportional to the seepage area.
  • Due to the thin thickness, small section and large axial length of the turbulent-blocking particles, the flow resistance of the formation fluid in the turbulent flow-blocking particles along the axial direction of the oil and gas well is 4 ⁇ ; Radial flow, large seepage area, large distance, and small flow resistance.
  • the flow resistance in the accumulation body along the axial direction of the oil and gas well is several hundred to several tens of times greater than the flow resistance of several centimeters along the radial flow of the oil and gas well, and the axial flow along the oil and gas well in the accumulation body
  • the large difference in flow resistance along the radial flow of the oil and gas well results in the flow in the axial direction of the oil and gas well in the accumulation body is much smaller than the flow along the radial flow of the oil and gas well under the same pressure difference.
  • the difference in axial and radial flow resistance of the turbulence-blocking particle accumulation body can ensure the smooth flow of the formation fluid along the radial flow of the oil and gas well in the accumulation body, and limit the oil and gas along the formation fluid.
  • the axial flow of the well acts as a packer.
  • the invention provides a convenient and practical method for controlling the flow control filter column of the oil and gas well having the porous tube, which can simultaneously realize the annulus and the porous tube between the control flow tube column and the porous tube.
  • the separation of the annulus between the well wall and the well wall has a good sealing effect, and can realize the segmented flow control production to meet the requirements of actual oilfield production such as oil recovery.
  • Figure 1 is a schematic diagram of prior art flow control using a flow control filter column and packer in an eye well.
  • FIG. 2 is a hypothetical state in which the flow control using the flow control filter column and the packer shown in FIG. 1 is directly applied to the imaginary state of the oil and gas well in which the porous tube is present, wherein the flow control filter tube is driven into the porous tube.
  • the column also seals the annulus between the flow control filter column and the porous tube without isolating the annulus between the porous tube and the well wall.
  • FIG. 3 is a schematic diagram of a flow control method for a flow control filter column of a well having a porous tube according to an embodiment of the present invention.
  • FIG. 4 is a completion structure in which an anti-turbulent flow-blocking particle is simultaneously filled in an annulus between a flow control filter string and a porous tube and in an annulus between a porous tube and a well wall according to an embodiment of the present invention.
  • the present invention provides a controlled flow control method for a gas flow well of a gas and oil well having a porous tube.
  • the oil and gas well that has been inserted into the porous tube includes a well wall of the oil and gas well and a porous tube that is inserted into the oil and gas well.
  • the porous pipe is fixedly connected between one end of the wellhead and the well wall, and an annular space is formed between the porous pipe and the well wall;
  • the flow control filter column segment control flow includes the following steps:
  • a flow control filter column is inserted into the porous tube through the lower inlet pipe, and the flow control filter column is provided with a flow control filter, and the flow control filter a section of the pipe string near the wellhead is fixedly connected with the well wall, and an annular space is formed between the flow control filter column and the porous pipe;
  • the carrier liquid carrying the turbulent flow blocking particles is water or an aqueous solution.
  • the turbulence prevention packing particles are high molecular polymer particles having a particle diameter of 0.05-0.7 mm and a density of 0.8-1.2 g/cm.
  • the turbulence prevention packing particles are high molecular polymer particles having an average particle diameter of 0.05-1.0 mm and a density of 0.8-1.4 g/cm.
  • the turbulent flow blocking particles are high molecular polymer particles having an average particle diameter of 0.1-0.5 mm and a density of 0.94-1.06 g/cm.
  • the turbulent flow-proof sealing particles have an average particle diameter of 0.1-0.5 mm and a density of
  • High density polyethylene pellets from 0.90 to 0.98 g/cm.
  • the turbulent flow blocking particles are styrene and divinylbenzene crosslinked copolymer particles having an average particle diameter of 0.05-1.0 mm and a density of 0.96-1.06 g/cm.
  • the turbulent barrier particles are polypropylene and polyvinyl chloride polymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.8 to 1.2 g/cm.
  • Embodiments of the present invention provide a flow control filter tube column segment flow control method for an oil and gas well having a porous tube.
  • the oil and gas well structure that has been run into the perforated tube includes a wellbore wall 101 and a porous tube 102 that is lowered into the well.
  • the porous tube 102 is provided with a plurality of small holes per meter. The number of small holes is, for example, 30.
  • the aperture of the aperture is configured to block the block from entering the porous tube 102, such as 10 mm.
  • a packer 104 that suspends the porous tube 102 is disposed between the upper portion of the porous tube 102 and the well wall 101.
  • An annulus 103 is formed between the porous tube 102 and the well wall 101.
  • a flow control filter column 105 is lowered into the perforated tube 102 by a lowering column (not shown).
  • a flow control filter 106 is disposed on the flow control filter column 105.
  • a packer 108 for suspending the flow control filter column 105 is disposed between the upper portion of the flow control filter column 105 and the well wall 101.
  • An annulus 103 is formed between the flow control filter column 105 and the porous tube 102.
  • the carrier liquid 110 carrying the turbulent flow blocking particles is injected into the annulus 103 between the flow control filter column 105 and the porous tube 102.
  • the granulating liquid 110 carrying the turbulent flow blocking particles enters the annulus 111 between the porous tube 102 and the well wall 101 through small holes in the porous tube 102.
  • the turbulent-proof sealing particles simultaneously accumulate, fill and eventually fill the flow control filter in the annulus 103 between the flow control filter column 105 and the porous tube 102 and the annulus 111 between the porous tube 102 and the well wall 101.
  • a portion of the granulated liquid permeates through the flow control filter 106 into the flow control filter column 105 and returns to the surface, and a portion of the granulated liquid penetrates into the formation through the well wall 101.
  • the direction of the arrow in Figure 3 is the flow direction of the carrier.
  • the turbulence-proof sealing particles are high-density polyethylene having an average particle diameter of 0.1-0.5 mm and a density of 0.90-0.98 g/cm 3 . Ole particles.
  • the carrier liquid is water.
  • a packer 108 for suspending the flow control filter column 105 to simultaneously close the annulus 103 and the porous tube between the flow control filter column 105 and the porous tube 102 filled with the anti-turbulence sealing particles
  • 107 is a turbulent flow-blocking particle filled in the annulus between the flow control filter column and the porous tube
  • 108 is a packer for hanging the flow control filter column
  • 109 is filled in the porous tube and well Anti-turbulence in the annulus between the walls seals the particles.
  • the turbulence preventing packer particles are polypropylene and polyvinyl chloride polymer particles having an average particle diameter of 0.1 to 0.5 mm and a density of 0.97 g/cm 3 .
  • the turbulence preventing packer particles may be styrene and divinylbenzene crosslinked copolymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.96 to 1.06 g/cm 3 .
  • the turbulent flow blocking particles are carried by water.
  • the density of water is 1 g/cm 3 .
  • the turbulent barrier particles and water selected by the present invention are nearly equal in density. Therefore, the water can be easily carried with the anti-turbulence packing particles filled into the annulus 103 between the flow control filter column 105 and the porous tube 102 and the annulus 111 between the porous tube 102 and the well wall 101.
  • the turbulent-proof sealing particles are simultaneously stacked, filled and filled with the flow control filter tube in the annulus 103 between the flow control filter column 105 and the porous tube 102 and the annulus 111 between the porous tube 102 and the well wall 101.
  • the flow of formation fluid in a medium in which turbulent containment particles are deposited is a percolation.
  • the magnitude of seepage resistance is proportional to the seepage path and inversely proportional to the seepage area. Since the accumulation body of the turbulent flow-blocking particles is a medium having a small thickness, a small cross section, and a large axial length, the flow resistance of the formation fluid in the turbulent flow-blocking particle accumulation body along the axial direction of the oil and gas well is 4 ⁇ .
  • the seepage area is large and the distance is short, so the flow resistance is small.
  • the flow resistance of several meters to several tens of meters along the axial direction of the oil and gas well is several hundred times or even thousands of times larger than the flow resistance of several centimeters along the radial flow of the oil and gas well.
  • the large difference in flow resistance along the axial flow of the oil and gas well and the radial flow along the oil and gas well in the accumulation body leads to the flow in the axial direction of the oil and gas well in the accumulation body is much smaller than that along the radial direction of the oil and gas well under the same pressure difference. Flowing traffic.
  • the use of the turbulence prevention of the difference in axial and radial flow resistance of the particle stacking body not only ensures the smooth flow of the formation fluid along the radial flow of the oil and gas well in the accumulation body, but also limits the formation fluid along the axial direction of the oil and gas well.
  • the flow acts as a packer.
  • the invention provides a convenient and practical sectional flow control method used in oil and gas wells including a porous tube, which can simultaneously seal the annulus and the porous tube and the borehole wall between the control flow filter column and the porous tube The ring between the air. This good packing effect can achieve segmented flow control production, improve oil recovery and meet actual oilfield production requirements.
  • the production section to which the present invention relates is a generalized production section. There may be sections that are not flowable in the length of the production section, such as compartments, interlayers, and sections that are not perforated after casing cementing.
  • the flow control filter column used in the present invention includes filter segments and blind segments interposed therebetween.
  • a blind segment is a tube with no holes in the wall.
  • the anti-turbulence blocking particle ring outside the blind section acts as the main anti-axial turbulence.
  • the blind segment is mainly derived from the following two aspects.
  • each filter itself includes a filter segment and a blind segment, wherein the blind segment is disposed at both ends of the filter with a wire buckle.
  • Two filters can be connected using a thread on the blind section of the two filters. When the well is screwed to the filter, the blind section is where the caliper is.
  • an additional blind segment can be connected between the two filters.
  • the flow control filter tube string is formed by connecting a plurality of flow control filters in series.
  • the turbulence preventing packer particles of the present invention are preferably circular.
  • a flow control filter tube column segment flow control method for an oil and gas well having a porous tube has been introduced into the porous tube oil and gas well including the oil and gas well wall and the porous tube that is inserted into the oil and gas well.
  • the porous pipe is fixedly connected between one end of the wellhead and the well wall, and an annular space is formed between the porous pipe and the well wall;
  • the utility model is characterized in that: the flow control filter column segment control flow comprises the following steps:
  • a flow control filter column is inserted into the porous tube through the lower inlet pipe, and the flow control filter column is provided with a flow control filter, and the flow control filter a fixed connection between the tubular string and the well wall, and an annular space is formed between the flow control filter column and the porous tube;
  • the carrier liquid carrying the turbulent flow blocking particles is water or an aqueous solution.
  • the anti-turbulence sealing particles have an average particle diameter of 0.05-1.0 mm and a density of 0.8-1.4. High molecular weight particles of g/cm.
  • the turbulence prevention packing particles are high molecular polymer particles having an average particle diameter of 0.1 to 0.5 mm and a density of 0.94 to 1.06 g/cm.
  • the turbulence prevention packing particles are high density polyethylene particles having an average particle diameter of 0.1 to 0.5 mm and a density of 0.90 to 0.98 g/cm.
  • the turbulence preventing packer particles are styrene and divinylbenzene crosslinked copolymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.96 to 1.06 g/cm.
  • the turbulent-blocking granules are polypropylene and polyvinyl chloride polymer particles having an average particle diameter of 0. 05-1. 0 mm and a density of 0.8-1. 2 g/cm 3 .
  • the description is made, but it should be understood that the invention is not limited to the disclosed embodiments or constructions. On the contrary, the invention is intended to cover various modifications and equivalents. In addition, other combinations and configurations that include more, less, or only one element are also within the scope of the invention.

Description

油气井的分段控流方法和系统 技术领域
本发明涉及一种油气井开采领域的控流方法, 具体地说, 涉及一 种存在多孔管的油气井的控流过滤器管柱分段控流方法。
背景技术
油气井一般是指油气田开发中广义的生产井, 包括油井、 气井、 注入井等。 在油气井生产过程中, 无论是直井还是水平井, 由于油藏 的非均质特性,都需要将油气井封隔成多个相对独立的区域来进行生 产。 这里, 油气井生产包括油气井生产过程中流体的产出和注入, 如 石油开采或者在生产过程中向地层注入水、 汽, 用于提高油田采收率 的化学剂生产等, 还包括一些作业过程中向地层注酸液等。
在将油气井封隔成多个相对独立的区域来进行生产的过程中,通 常采用分段控制流量的装置比如控流过滤器管柱和将油气井的生产 段沿油气井轴向分隔成几个流动单元的装置比如封隔器来实现区域 的分隔, 以实现相对独立的生产。
图 1 示出了在棵眼井中采用控流过滤器管柱和封隔器进行控流 的示意图。 在图 1 中, 1 为油气井的井壁, 2为控流过滤器管柱, 3 为控流过滤器管柱与井壁之间的环空, 4为悬挂控流过滤器管柱的封 隔器, 5为控流封隔器。
下面参照图 1所示筒要说明分段控流的过程。在图 1中示出了非 含油地层、含油地层和位于含油地层下面的底水。 图 1中以水平线示 意性地表示各个地层,但是本领域技术人员可以理解这些地层可能不 是水平的, 这取决于油气井所处地区的地质构造。 油气井示出为包括 竖直段和水平段。水平段基本上沿含油地层延伸以便增加井壁与含油 地层的接触面积。 图 1 中以示例的方式示出了两个渗透率不同的区 域, 即高渗透率区域和低渗透率区域。 在不对油气井进行控流的情况 下 (即, 在图 1中不设置封隔器 5的情况下), 由于两个区域的渗透 率不同,流体在高渗透率区域中的流量大于流体在低渗透率区域中的 流量。 在这种情况下, 含油地层下面的底水会由于底水的压力与油气 井内的压力之间的压力差而首先穿过高渗透率区域进入油气井中,导 致油气井的产出中油气减少而水增多。 这是生产中应该避免的问题。
目前, 如图 1所示, 在很多油气井中分段流量控制生产以如下方 式实现: 在油气井内的生产段内下入控流过滤器管柱 2, 通过控流过 滤器管柱 2和封隔器 5来有效地封隔控流过滤器管柱 2和油气井内的 生产段之间的环空, 即, 堵塞了流体在控流过滤器管柱外的轴向窜流 通道, 从而能够实现较好的分段流量控制生产。 一般, 封隔器设置在 两个渗透率不同的区域之间。由于控流过滤器能够起到流量控制的作 用,因此借助于封隔器将不同渗透率的区域封隔开可以对各个不同渗 透率的区域进行独立控制或分段控制。因此可以使油气井实现良好的 产出并且能够有效地控制底水进入油气井的量。
然而, 目前的油气井的完井方式是在棵眼井中下入多孔管, 并且 多孔管和井壁之间没有充填水泥等物来固封多孔管和棵眼井壁之间 的环空。 这种完井方式的优点是成本低, 缺点是该环空成为流体窜流 的通道, 在以后的生产中, 难以实现分段流动控制。 多孔管上每米设 置有几个到几十个孔径为 10mm左右的孔。多孔管在油气井中主要是 用于对井壁进行支撑、防止井内的块状物进入多孔管内以保证整个油 气井的流动通道不被块状物堵塞。
如图 2所示,如果将图 1所示的应用于棵眼井的采用封隔器进行 控流的技术直接应用于现有的已下入多孔管的油气井中,则无法封隔 多孔管与井壁之间的环空,因此进入油气井中的底水可以沿轴向在多 孔管与井壁之间的环空中流动。 由此, 多孔管和井壁之间的环空形成 了轴向窜流通道,这破坏了多孔管内控流过滤器管柱与多孔管之间的 封隔效果, 不能达到 ^艮好的控水的目的。 在图 2 中, 11 为油气井的 井壁, 12为多孔管, 13为多孔管与井壁之间的环空, 14为悬挂多孔 管的封隔器, 15为控流过滤器管柱, 16为控流过滤器管柱上的控流 过滤器, 17 为设置在控流过滤器管柱和多孔管之间的环空内的封隔 器, 18 为悬挂控流过滤器管柱的封隔器。 图中的箭头方向表示流体 窜流方向。 如图 2所示, 地层中的流体通过井壁进入井壁和多孔管之 间的环空内, 在井壁和多孔管之间的环空内形成轴向窜流, 再穿过控 流过滤器进入控流过滤器管柱内。这种轴向窜流破坏了设置在控流过 滤器管柱与多孔管之间的封隔器的封隔效果, 不能实现 4艮好的控水。 发明内容
本发明要解决的技术问题在于提供一种存在多孔管的油气井的 控流过滤器管柱分段控流方法,它利用防窜流封隔颗粒同时填充多孔 管和控流过滤器管柱之间的环空及井壁和多孔管之间的环空,实现了 很好的封隔目的, 从而实现了很好的分段控流生产。
为解决上述问题,本发明的一个实施方式提供了一种油气井的分 段控流方法, 其中, 所述油气井包括: 第一环空, 其由所述油气井的 井壁和位于该油气井内并沿所述油气井轴向延伸的多孔管之间的空 间形成; 第二环空, 其由所述多孔管和位于该多孔管内并沿所述油气 井轴向延伸的控流过滤器管柱之间的空间形成; 所述方法包括: 向所 述第一环空和所述第二环空中填充防窜流封隔颗粒,以使得流体能够 在填充有所述防窜流封隔颗粒的第一环空和所述第二环空中以渗流 的方式;巟动。
优选地, 向所述第一环空和所述第二环空中填充防窜流封隔颗粒 是通过向所述第一环空和所述第二环空中注入携带防窜流封隔颗粒 的携粒液来完成的。
优选地, 所述携粒液的密度与所述防窜流封隔颗粒的密度基本上 相等。
优选地, 所述携粒液是水或者水溶液。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.05-1.0mm、 密度为 0.8-1.4 g/cm 的高分子聚合物颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.1-0.5mm、 密度为 0.94-1.06 g/cm 的高分子聚合物颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.1-0.5mm、 密度为 0.90-0.98g/cm 的高密度聚乙烯颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm 的苯乙烯和二乙烯苯交联共聚物颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.05-1.0 mm、 密度 为 0.8-1.2 g/cm 的聚丙烯和聚氯乙烯高分子聚合物颗粒。
优选地, 向所述第一环空和所述第二环空中填充防窜流封隔颗粒 直至基本填满所述第一环空和所述第二环空,并封闭所述第一环空和 所述第二环空。 优选地, 所述油气井为水平井或斜井。
优选地, 所述携粒液的密度与所述防窜流封隔颗粒的密度之差在 士 0.4 g/cm或士 0.2 g/cm 的范围内。
根据本发明的另一个实施方式, 提供了一种油气井分段控流系 统, 包括: 第一环空, 其由所述油气井的井壁和位于该油气井内并沿 所述油气井轴向延伸的多孔管之间的空间形成; 第二环空, 其由所述 多孔管和位于该多孔管内并沿所述油气井轴向延伸的控流过滤器管 柱之间的空间形成; 以及防窜流封隔颗粒, 其填充在所述第一环空中 和所述第二环空中,使得流体能够在填充有所述防窜流封隔颗粒的所 述第一环空和所述第二环空中以渗流的方式流动。
优选地,通过向所述第一环空和所述第二环空中注入携带防窜流 封隔颗粒的携粒液来填充所述第一环空和所述第二环空。
优选地, 所述携粒液的密度与防窜流封隔颗粒的密度基本上相 等。
优选地, 所述携粒液是水或者水溶液。
优选地, 所述防窜流封隔颗粒的平均粒径为 0.05-1.0mm、 密度为
0.8-1.4 g/cm 的高分子聚合物颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.1-0.5mm、 密度为 0.94-1.06 g/cm 的高分子聚合物颗粒。 优选地, 所述防窜流封隔颗粒是平均粒径为 0.1-0.5mm、 密度为 0.90-0.98g/cm 的高密度聚乙烯颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm 的苯乙烯和二乙烯苯交联共聚物颗粒。
优选地, 所述防窜流封隔颗粒是平均粒径为 0.05-1.0 mm、 密度 为 0.8-1.2 g/cm 的聚丙烯和聚氯乙烯高分子聚合物颗粒。
优选地,所述防窜流封隔颗粒基本上被填满在所述第一环空中和 第二环空中, 并且, 所述第一环空和所述第二环空被封闭。
优选地, 所述油气井为水平井或斜井。
优选地, 所述携粒液的密度与所述防窜流封隔颗粒的密度之差在 士 0.4 g/cm或士 0.2 g/cm 的范围内。
根据本发明的又一个实施方式,提供了一种存在多孔管的油气井 的控流过滤器管柱分段控流方法, 已下入多孔管的油气井包括油气井 井壁和下入油气井内的多孔管,所述多孔管靠近井口一端和井壁之间 固定连接, 多孔管与井壁之间形成一个环空;
所述控流过滤器管柱分段控流包括下列步骤:
1 )、 下入控流过滤器管柱: 在多孔管内通过下入管柱下入一个控 流过滤器管柱, 所述控流过滤器管柱上设置有控流过滤器, 所述控流 过滤器管柱靠近井口的一段和井壁之间固定连接,控流过滤器管柱和 多孔管之间形成一个环空;
2 )、 填充防窜流封隔颗粒: 向控流过滤器管柱和多孔管之间的环 空内注入携带防窜流封隔颗粒的携粒液;携粒液携带防窜流封隔颗粒 通过多孔管上的孔同时进入多孔管和井壁之间的环空内,防窜流封隔 颗粒同时在控流过滤器管柱和多孔管之间的环空及多孔管和井壁之 间的环空内堆积、填充并充满控流过滤器管柱和多孔管之间的环空及 多孔管和井壁之间的环空, 一部分携粒液进入控流过滤器并返回地 面, 还有一部分携粒液通过井壁渗入地层;
3 )、封闭: 封闭填充满防窜流封隔颗粒的控流过滤器管柱和多孔 管之间的环空;
4 )、脱开连接控流过滤器管柱的下入管柱, 形成在控流过滤器管 柱和多孔管之间的环空内及多孔管和井壁之间的环空内同时填充满 防窜流封隔颗粒的完井结构。 本发明所述颗粒密度为颗粒真实密度, 不是颗粒堆积密度。 本发明利用密度为 1 g/cm3左右的水或水溶液作为携粒液携带防 窜流封隔颗粒, 因而, 本发明选择密度和携粒液的密度几乎相等的防 窜流封隔颗粒,这样携粒液就可以^艮容易地携带防窜流封隔颗粒填充 到控流过滤器管柱和多孔管之间的环空及多孔管和井壁之间的环空 内,防窜流封隔颗粒同时在控流过滤器管柱和多孔管之间的环空及多 孔管和井壁之间的环空内堆积、填充并充满控流过滤器管柱和多孔管 之间的环空及多孔管和井壁之间的环空,一部分携粒液进入控流过滤 器并返回地面, 还有一部分携粒液通过井壁渗入地层; 最终形成在控 流过滤器管柱和多孔管之间的环空内及多孔管和井壁之间的环空内 同时填充满防窜流封隔颗粒的完井结构。 防窜流封隔颗粒充填紧实, 几乎没有窜槽。结合控流过滤器管柱可有效地将油气井封隔成多个相 对独立的区域来进行油气井生产, 达到流量控制目的,便于流量分段 管理, 对油气井生产带来好的效果, 如提高油气井生产效率等。
而且, 即使防窜流封隔颗粒充填后仍有窜槽, 生产中很小流量的 液体的轴向窜流就会带动防窜流封隔颗粒产生移动,往窜槽方向堆积 并堆积满窜槽, 从而达到 [艮好的防窜流封隔效果, 结合控流过滤器管 柱实现油气井控流过滤器管柱分段控流目的。
地层流体在防窜流封隔颗粒堆积而成的介质中的流动是一种渗 流。 根据渗流力学原理, 渗流阻力的大小与渗流路程成正比, 与渗流 面积成反比。 由于防窜流封隔颗粒的堆积体为厚度薄、 断面小、 轴向 长度大,地层流体在防窜流封隔颗粒中沿油气井轴向窜流的流动阻力 4艮大; 而沿油气井径向流动, 渗流面积大、 巨离短、 流动阻力 ^艮小。 堆积体中沿油气井轴向流动数米至数十米的流动阻力比沿油气井径 向流动几厘米的流动阻力要大几百倍甚至上千倍,堆积体中沿油气井 轴向流动和沿油气井径向流动的流动阻力的巨大差异,导致在相同压 差作用下,堆积体中沿油气井轴向流动的流量远远小于沿油气井径向 流动的流量。这样利用这种防窜流封隔颗粒堆积体在轴向和径向流动 阻力的差异性,既能保证地层流体在堆积体中沿油气井径向流动的畅 通, 又限制了地层流体的沿油气井轴向的流动, 起到封隔器的作用。
本发明提供了一种方便、实用的存在多孔管的油气井的控流过滤 器管柱分段控流方法,它可以同时实现控流过滤器管柱和多孔管之间 的环空及多孔管和井壁之间的环空的封隔, 封隔效果好, 可以 ^艮好地 实现分段控流生产, 满足提高油田采收率等实际油田生产要求。 附图说明
图 1 为现有技术的在棵眼井中采用控流过滤器管柱和封隔器进 行控流的示意图。
图 2为当将图 1所示的采用控流过滤器管柱和封隔器实现控流的 技术直接应用于存在多孔管的油气井的假想状态,其中在多孔管内下 入控流过滤器管柱并且对控流过滤器管柱和多孔管之间的环空进行 封隔而没有对多孔管和井壁之间的环空进行封隔。
图 3 为根据本发明实施方式的存在多孔管的油气井的控流过滤 器管柱分段控流方法的示意图。
图 4 为根据本发明实施方式的在控流过滤器管柱和多孔管之间 的环空内及多孔管和井壁之间的环空内同时填充满防窜流封隔颗粒 的完井结构示意图。
具体实施方式
总体而言,本发明提供了一种存在多孔管的油气井的控流过滤器 管柱分段控流方法, 已下入多孔管油气井包括油气井井壁和下入油气 井内的多孔管, 所述多孔管靠近井口一端和井壁之间固定连接, 多孔 管与井壁之间形成一个环空; 所述控流过滤器管柱分段控流包括下列步骤:
1 )、 下入控流过滤器管柱: 在多孔管内通过下入管柱下入一个控 流过滤器管柱, 所述控流过滤器管柱上设置有控流过滤器, 所述控流 过滤器管柱靠近井口的一段和井壁之间固定连接,控流过滤器管柱和 多孔管之间形成一个环空;
2 )、 填充防窜流封隔颗粒: 向控流过滤器管柱和多孔管之间的环 空内注入携带防窜流封隔颗粒的携粒液;携粒液携带防窜流封隔颗粒 通过多孔管上的孔同时进入多孔管和井壁之间的环空内,防窜流封隔 颗粒同时在控流过滤器管柱和多孔管之间的环空及多孔管和井壁之 间的环空内堆积、填充并充满控流过滤器管柱和多孔管之间的环空及 多孔管和井壁之间的环空, 一部分携粒液进入控流过滤器并返回地 面, 还有一部分携粒液通过井壁渗入地层;
3 )、封闭: 封闭填充满防窜流封隔颗粒的控流过滤器管柱和多孔 管之间的环空;
4 )、脱开连接控流过滤器管柱的下入管柱, 形成在控流过滤器管 柱和多孔管之间的环空内及多孔管和井壁之间的环空内同时填充满 防窜流封隔颗粒的完井结构。
其中, 所述携带防窜流封隔颗粒的携粒液为水或水溶液。
其中,所述防窜流封隔颗粒为粒径为 0.05-0.7mm、密度为 0.8-1.2 g/cm 的高分子聚合物颗粒。
其中, 所述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、 密度为 0.8-1.4 g/cm 的高分子聚合物颗粒。
其中, 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 密度为 0.94-1.06 g/cm 的高分子聚合物颗粒。
其中, 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 密度为
0.90-0.98g/cm 的高密度聚乙烯颗粒。
其中, 所述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm 的苯乙烯和二乙烯苯交联共聚物颗粒。 所述防窜流封隔颗粒为平均粒径为 0.05-1.0 mm、 密度为 0.8-1.2 g/cm 的聚丙烯和聚氯乙烯高分子聚合物颗粒。
下面将参考附图详细说明本发明的实施方式。
实施方式 1
本发明的实施方式提供了一种存在多孔管的油气井的控流过滤 器管柱分段控流方法。 如图 3所示, 已下入多孔管的油气井结构包括 油气井井壁 101和下入油气井内的多孔管 102。 所述多孔管 102上每 米设置有多个小孔。 小孔的数目比如为 30个。 小孔的孔径设置成能 够阻挡块状物进入多孔管 102内, 比如 10mm。 多孔管 102的上部和 井壁 101之间设置有悬挂多孔管 102的封隔器 104。 在多孔管 102与 井壁 101之间形成一个环空 103。
下面参图 3详细描述根据本发明实施方式的控水封隔方法,其包 括下列步骤:
1 )在多孔管 102内通过下入管柱(未示出 ) 下入一个控流过滤 器管柱 105。 所述控流过滤器管柱 105上设置有控流过滤器 106。 所 述控流过滤器管柱 105的上部和井壁 101之间设置有悬挂控流过滤器 管柱 105的封隔器 108。 在控流过滤器管柱 105和多孔管 102之间形 成一个环空 103。
2 ) 向控流过滤器管柱 105和多孔管 102之间的环空 103内注入 携带防窜流封隔颗粒的携粒液 110。携带防窜流封隔颗粒的携粒液 110 通过多孔管 102上的小孔进入多孔管 102和井壁 101之间的环空 111 内。防窜流封隔颗粒同时在控流过滤器管柱 105和多孔管 102之间的 环空 103及多孔管 102和井壁 101之间的环空 111内堆积、填充并最 终充满控流过滤器管柱 105和多孔管 102之间的环空 103及多孔管 102和井壁 101之间的环空 111。 一部分携粒液渗过控流过滤器 106 进入控流过滤器管柱 105中并返回地面,还有一部分携粒液通过井壁 101渗入地层中。 图 3中箭头方向为携粒液的流动方向。 防窜流封隔 颗粒为平均粒径为 0.1-0.5mm、 密度为 0.90-0.98g/cm3的高密度聚乙 烯颗粒。 所述携粒液为水。
3 )座封悬挂控流过滤器管柱 105的封隔器 108, 以同时封闭填 充满防窜流封隔颗粒的控流过滤器管柱 105和多孔管 102之间的环空 103以及多孔管 102和井壁 101之间的环空 111。
4 )脱开连接控流过滤器管柱 105的下入管柱(未示出), 形成在 控流过滤器管柱 105和多孔管 102之间的环空 103内及多孔管 102和 井壁 101之间的环空 111内同时填充满防窜流封隔颗粒的完井结构, 如图 4所示。 在图 4中, 101为油气井井壁, 102为多孔管, 104为 悬挂多孔管的封隔器, 105为控流过滤器管柱, 106为控流过滤器管 柱上的控流过滤器, 107为填充在控流过滤器管柱和多孔管之间的环 空内的防窜流封隔颗粒, 108 为悬挂控流过滤器管柱的封隔器, 109 为填充在多孔管和井壁之间的环空内的防窜流封隔颗粒。
实施方式 2
本发明实施方式中, 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、密度为 0.97g/cm3的聚丙烯和聚氯乙烯高分子聚合物颗粒。
其它方法步骤和实施方式 1相同。
实施方式 3
本发明实施方式中, 所述防窜流封隔颗粒可以为平均粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm3的苯乙烯和二乙烯苯交联共聚物 颗粒。
其它方法步骤和实施方式 1相同。
在本发明的实施方式 1、 实施方式 2和实施方式 3中, 利用水携 带防窜流封隔颗粒。 水的密度为 1 g/cm3。 本发明选择的防窜流封隔 颗粒和水的密度几乎相等。因此水可以艮容易地携带防窜流封隔颗粒 填充到控流过滤器管柱 105和多孔管 102之间的环空 103及多孔管 102和井壁 101之间的环空 111内。 防窜流封隔颗粒同时在控流过滤 器管柱 105和多孔管 102之间的环空 103及多孔管 102和井壁 101之 间的环空 111内堆积、 填充并充满控流过滤器管柱 105和多孔管 102 之间的环空 103及多孔管 102和井壁 101之间的环空 111。 一部分水 穿过控流过滤器 106进入控流过滤器管柱 105并返回地面。还有一部 分水通过井壁 101渗入地层中。最终形成在控流过滤器管柱 105和多 孔管 102之间的环空 103内及多孔管 102和井壁 101之间的环空 111 内同时填充满防窜流封隔颗粒的完井结构。
地层流体在防窜流封隔颗粒堆积而成的介质中的流动是一种渗 流。 根据渗流力学原理, 渗流阻力的大小与渗流路程成正比, 与渗流 面积成反比。 由于防窜流封隔颗粒的堆积体为厚度薄、 断面小、 轴向 长度大的介质,地层流体在防窜流封隔颗粒堆积体中沿油气井轴向窜 流的流动阻力 4艮大。而当地层流体沿油气井径向流动时,渗流面积大、 距离短, 因此流动阻力艮小。 堆积体中沿油气井轴向流动数米至数十 米的流动阻力比沿油气井径向流动几厘米的流动阻力要大几百倍甚 至上千倍。堆积体中沿油气井轴向流动和沿油气井径向流动的流动阻 力的巨大差异, 导致在相同压差作用下, 堆积体中沿油气井轴向流动 的流量远远小于沿油气井径向流动的流量。利用这种防窜流封隔颗粒 堆积体轴向和径向流动阻力的差异性,既能保证地层流体在堆积体中 沿油气井径向流动的畅通, 又限制了地层流体沿油气井轴向的流动, 起到封隔器的作用。
本发明提供了一种方便、实用的在包括多孔管的油气井中使用的 分段控流方法,它可以同时封隔控流过滤器管柱和多孔管之间的环空 及多孔管和井壁之间的环空。这种良好的封隔效果可以实现分段控流 生产, 提高油田采收率, 满足实际油田生产要求。
本发明涉及的生产段是一种广义的生产段。生产段的长度范围中 可能存在不能流动的区段,如隔层,夹层,套管固井后未射孔的区段。
本发明中采用的控流过滤器管柱上包括彼此相间的过滤段和盲 段。 盲段是壁面上没有孔的管。 盲段外的防窜流封隔颗粒环起主要的 防轴向窜流的作用。 盲段主要来源于以下两个方面。 一方面, 每个过 滤器本身包括过滤段和盲段,其中盲段设置在过滤器的两端并带有丝 扣。 可以使用两个过滤器的盲段上的丝扣来连接两个过滤器。 在井上 拧扣连接过滤器时, 盲段是卡钳子的地方。 另一方面, 可以在两个过 滤器之间连接额外的盲段。 对于控流过滤器管柱较长的情况, 控流过 滤器管柱是多个控流过滤器串接而成的。
本发明所述的防窜流封隔颗粒优选圓形。
在本发明的实施方式中,一种存在多孔管的油气井的控流过滤器 管柱分段控流方法, 已下入多孔管油气井包括油气井井壁和下入油气 井内的多孔管, 所述多孔管靠近井口一端和井壁之间固定连接, 多孔 管与井壁之间形成一个环空;
其特征在于: 所述控流过滤器管柱分段控流包括下列步骤:
1 )、 下入控流过滤器管柱: 在多孔管内通过下入管柱下入一个控 流过滤器管柱, 所述控流过滤器管柱上设置有控流过滤器, 所述控流 过滤器管柱和井壁之间固定连接,控流过滤器管柱和多孔管之间形成 一个环空;
2 )、 填充防窜流封隔颗粒: 向控流过滤器管柱和多孔管之间的环 空内注入携带防窜流封隔颗粒的携粒液;携粒液携带防窜流封隔颗粒 通过多孔管上的孔同时进入多孔管和井壁之间的环空内,防窜流封隔 颗粒同时在控流过滤器管柱和多孔管之间的环空及多孔管和井壁之 间的环空内堆积、填充并充满控流过滤器管柱和多孔管之间的环空及 多孔管和井壁之间的环空。
3 )、封闭: 封闭填充满防窜流封隔颗粒的控流过滤器管柱和多孔 管之间的环空; 同时也使得多孔管和井壁之间的环空中的封隔介质被 封闭;
4 )、脱开连接控流过滤器管柱的下入管柱, 形成在控流过滤器管 柱和多孔管之间的环空内及多孔管和井壁之间的环空内同时填充满 防窜流封隔颗粒的完井结构。
所述携带防窜流封隔颗粒的携粒液为水或水溶液。
所述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、 密度为 0.8-1.4 g/cm 的高分子聚合物颗粒。
所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 密度为 0.94-1.06 g/cm 的高分子聚合物颗粒。
所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 密度为 0.90-0.98g/cm 的高密度聚乙烯颗粒。
所述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm 的苯乙烯和二乙烯苯交联共聚物颗粒。
所述防窜流封隔颗粒为平均粒径为 0. 05-1. 0 mm、密度为 0. 8-1. 2 g/cm3的聚丙烯和聚氯乙烯高分子聚合物颗粒。 明进行了描述, 但是应当理解, 本发明并不局限于所公开的实施方式 或构造。 相反, 本发明意图覆盖各种改型和等同方案。 另外, 尽管以 更多、更少或者仅包括一个要素的其它组合及构造也属于本发明的范 围内。

Claims

权利要求
1、 一种油气井的分段控流方法, 其中, 所述油气井包括: 第一环空, 其由所述油气井的井壁和位于该油气井内并沿所述油 气井轴向延伸的多孔管之间的空间形成;
第二环空, 其由所述多孔管和位于该多孔管内并沿所述油气井轴 向延伸的控流过滤器管柱之间的空间形成;
所述方法包括:
向所述第一环空和所述第二环空中填充防窜流封隔颗粒, 以使得 流体能够在填充有所述防窜流封隔颗粒的第一环空和所述第二环空 中以渗流的方式流动。
2、 如权利要求 1 的方法, 其中向所述第一环空和所述第二环空 中填充防窜流封隔颗粒是通过向所述第一环空和所述第二环空中注 入携带防窜流封隔颗粒的携粒液来完成的。
3、 如权利要求 2的方法, 其中, 所述携粒液的密度与所述防窜 流封隔颗粒的密度基本上相等。
4、 如权利要求 2的方法, 其中所述携粒液是水或者水溶液。
5、 如权利要求 1或 2的方法, 其中所述防窜流封隔颗粒是平均 粒径为 0.05-1.0mm、 密度为 0.8-1.4 g/cm3的高分子聚合物颗粒。
6、 如权利要求 1或 2的方法, 其中所述防窜流封隔颗粒是平均 粒径为 0.1-0.5mm、 密度为 0.94-1.06 g/cm 的高分子聚合物颗粒。
7、 如权利要求 1或 2的方法, 其中所述防窜流封隔颗粒是平均 粒径为 0.1-0.5mm、 密度为 0.90-0.98g/cm3的高密度聚乙烯颗粒。
8、 如权利要求 1或 2的方法, 其中所述防窜流封隔颗粒是平均 粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm3的苯乙烯和二乙烯苯交联 共聚物颗粒。
9、 如权利要求 1或 2的方法, 其中所述防窜流封隔颗粒是平均 粒径为 0.05-1.0 mm、 密度为 0.8-1.2 g/cm3的聚丙烯和聚氯乙烯高分 子聚合物颗粒。
10、 如权利要求 1或 2的方法, 向所述第一环空和所述第二环空 中填充防窜流封隔颗粒直至基本填满所述第一环空和所述第二环空, 并封闭所述第一环空和所述第二环空。
11、如权利要求 1或 2的方法,其中所述油气井为水平井或斜井。
12、 如权利要求 2的方法, 其中, 所述携粒液的密度与所述防窜 流封隔颗粒的密度之差在士 0.4 g/cm 的范围内。
13、 如权利要求 2的方法, 其中, 所述携粒液的密度与所述防窜 流封隔颗粒的密度之差在士 0.2 g/cm 的范围内。
14、 一种油气井分段控流系统, 包括:
第一环空, 其由所述油气井的井壁和位于该油气井内并沿所述油 气井轴向延伸的多孔管之间的空间形成;
第二环空, 其由所述多孔管和位于该多孔管内并沿所述油气井轴 向延伸的控流过滤器管柱之间的空间形成; 以及
防窜流封隔颗粒, 其填充在所述第一环空中和所述第二环空中, 使得流体能够在填充有所述防窜流封隔颗粒的所述第一环空和所述 第二环空中以渗流的方式流动。
15、 如权利要求 14的系统, 其中通过向所述第一环空和所述第 二环空中注入携带防窜流封隔颗粒的携粒液来填充所述第一环空和 所述第二环空。
16、 如权利要求 15 的系统, 其中, 所述携粒液的密度与防窜流 封隔颗粒的密度基本上相等。
17、 如权利要求 15的系统, 其中所述携粒液是水或者水溶液。
18、 如权利要求 14或 15的系统, 其中所述防窜流封隔颗粒的平 均粒径为 0.05-1.0mm、 密度为 0.8-1.4 g/cm3的高分子聚合物颗粒。
19、 如权利要求 14或 15的系统, 其中所述防窜流封隔颗粒是平 均粒径为 0.1-0.5mm、 密度为 0.94-1.06 g/cm3的高分子聚合物颗粒。
20、 如权利要求 14或 15的系统, 其中所述防窜流封隔颗粒是平 均粒径为 0.1-0.5mm、 密度为 0.90-0.98g/cm3的高密度聚乙烯颗粒。
21、 如权利要求 14或 15的系统, 其中所述防窜流封隔颗粒是平 均粒径为 0.05-1.0mm、 密度为 0.96-1.06g/cm3的苯乙烯和二乙烯苯交 联共聚物颗粒。
22、 如权利要求 14或 15的系统, 其中: 所述防窜流封隔颗粒是 平均粒径为 0.05-1.0 mm、 密度为 0.8-1.2 g/cm3的聚丙烯和聚氯乙烯 高分子聚合物颗粒。
23、 如权利要求 14的系统, 其中所述防窜流封隔颗粒基本上被 填满在所述第一环空中和第二环空中, 并且, 所述第一环空和所述第 二环空被封闭。
24、 如权利要求 13或 15的系统, 其中所述油气井为水平井或斜 井。
25、 如权利要求 16的系统, 其中, 所述携粒液的密度与所述防 窜流封隔颗粒的密度之差在士 0.4 g/cm 的范围内。
26、 如权利要求 16的系统, 其中, 所述携粒液的密度与所述防 窜流封隔颗粒的密度之差在士 0.2 g/cm 的范围内。
27、 一种存在多孔管的油气井的控流过滤器管柱分段控流方法, 已下入多孔管油气井包括油气井井壁和下入油气井内的多孔管,所述 多孔管靠近井口一端和井壁之间固定连接,多孔管与井壁之间形成一 个环空;
其特征在于: 所述控流过滤器管柱分段控流包括下列步骤: 1 )、 下入控流过滤器管柱: 在多孔管内通过下入管柱下入一个控 流过滤器管柱, 所述控流过滤器管柱上设置有控流过滤器, 所述控流 过滤器管柱和井壁之间固定连接,控流过滤器管柱和多孔管之间形成 一个环空;
2 )、 填充防窜流封隔颗粒: 向控流过滤器管柱和多孔管之间的环 空内注入携带防窜流封隔颗粒的携粒液;携粒液携带防窜流封隔颗粒 通过多孔管上的孔同时进入多孔管和井壁之间的环空内,防窜流封隔 颗粒同时在控流过滤器管柱和多孔管之间的环空及多孔管和井壁之 间的环空内堆积、填充并充满控流过滤器管柱和多孔管之间的环空及 多孔管和井壁之间的环空。
3 )、封闭: 封闭填充满防窜流封隔颗粒的控流过滤器管柱和多孔 管之间的环空; 同时也使得多孔管和井壁之间的环空中的封隔介质被 封闭;
4 )、脱开连接控流过滤器管柱的下入管柱, 形成在控流过滤器管 柱和多孔管之间的环空内及多孔管和井壁之间的环空内同时填充满 防窜流封隔颗粒的完井结构。
PCT/CN2010/079550 2009-12-11 2010-12-08 油气井的分段控流方法和系统 WO2011069447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/514,721 US20120318505A1 (en) 2009-12-11 2010-12-08 Method and system for segmental flow control in oil-gas well
US13/514,743 US9664014B2 (en) 2009-12-11 2010-12-08 Method and system for segmental flow control in oil-gas well

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910250793A CN101705810B (zh) 2009-12-11 2009-12-11 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN200910250793.1 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011069447A1 true WO2011069447A1 (zh) 2011-06-16

Family

ID=42376059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079550 WO2011069447A1 (zh) 2009-12-11 2010-12-08 油气井的分段控流方法和系统

Country Status (3)

Country Link
US (2) US20120318505A1 (zh)
CN (1) CN101705810B (zh)
WO (1) WO2011069447A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664014B2 (en) 2009-12-11 2017-05-30 Anton Bailin Oilfield Technologies (Beijing) Co., Ltd. Method and system for segmental flow control in oil-gas well
CN110593862A (zh) * 2019-09-02 2019-12-20 中国石油大学(北京) 优势渗流通道确定方法、装置和计算机设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705808B (zh) * 2009-12-11 2012-05-30 安东石油技术(集团)有限公司 套管外存在窜槽的油气井的控流过滤器管柱分段控流方法
CN101705802B (zh) * 2009-12-11 2013-05-15 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
RU2488686C1 (ru) * 2012-01-10 2013-07-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разобщения и управления выработкой запасов, дренируемых горизонтальной скважиной, и устройство для его осуществления
US10260330B2 (en) 2015-04-29 2019-04-16 General Electric Company Fluid intake for an artificial lift system and method of operating such system
US20180187533A1 (en) * 2017-01-05 2018-07-05 Saudi Arabian Oil Company Hydrocarbon production by fluidically isolating vertical regions of formations
CN111212958A (zh) * 2017-10-13 2020-05-29 阿布扎比国家石油公司 用于从水平井生产流体或气体的方法及装置
CN111949650A (zh) 2019-05-15 2020-11-17 华为技术有限公司 一种多语言融合查询方法及多模数据库系统
CN110173230A (zh) * 2019-06-06 2019-08-27 安东柏林石油科技(北京)有限公司 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构
CN113833437A (zh) * 2021-09-24 2021-12-24 安东柏林石油科技(北京)有限公司 一种提高井下环空中轴向防窜流能力的方法及结构
CN117489296B (zh) * 2023-12-29 2024-03-22 克拉玛依市白碱滩区(克拉玛依高新区)石油工程现场(中试)实验室 一种井间防窜方法及模拟实验装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020020524A1 (en) * 2000-05-04 2002-02-21 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
CN1918361A (zh) * 2004-02-12 2007-02-21 国际壳牌研究有限公司 抑制到或从井筒的流体连通
CN101238271A (zh) * 2005-06-01 2008-08-06 贝克休斯公司 可膨胀的流动控制装置
CN201254976Y (zh) * 2008-09-04 2009-06-10 安东石油技术(集团)有限公司 一种新的水平井防砂完井结构
CN101463719A (zh) * 2009-01-21 2009-06-24 安东石油技术(集团)有限公司 一种高效控流筛管的控流装置
CN101476455A (zh) * 2008-01-04 2009-07-08 安东石油技术(集团)有限公司 可充填控水筛管及其布设方法
CN101705809A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在防砂管油气井的控流过滤器管柱分段控流方法
CN101705810A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN101705808A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 套管外存在窜槽的油气井的控流过滤器管柱分段控流方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU738914C (en) * 1997-10-16 2002-04-11 Halliburton Energy Services, Inc. Methods and apparatus for completing wells in unconsolidated subterranean zones
US7624802B2 (en) * 2007-03-22 2009-12-01 Hexion Specialty Chemicals, Inc. Low temperature coated particles for use as proppants or in gravel packs, methods for making and using the same
US20090000787A1 (en) 2007-06-27 2009-01-01 Schlumberger Technology Corporation Inflow control device
CN101748999B (zh) 2008-12-11 2012-09-05 安东石油技术(集团)有限公司 一种控流筛管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020020524A1 (en) * 2000-05-04 2002-02-21 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
CN1918361A (zh) * 2004-02-12 2007-02-21 国际壳牌研究有限公司 抑制到或从井筒的流体连通
CN101238271A (zh) * 2005-06-01 2008-08-06 贝克休斯公司 可膨胀的流动控制装置
CN101476455A (zh) * 2008-01-04 2009-07-08 安东石油技术(集团)有限公司 可充填控水筛管及其布设方法
CN201254976Y (zh) * 2008-09-04 2009-06-10 安东石油技术(集团)有限公司 一种新的水平井防砂完井结构
CN101463719A (zh) * 2009-01-21 2009-06-24 安东石油技术(集团)有限公司 一种高效控流筛管的控流装置
CN101705809A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在防砂管油气井的控流过滤器管柱分段控流方法
CN101705810A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN101705808A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 套管外存在窜槽的油气井的控流过滤器管柱分段控流方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664014B2 (en) 2009-12-11 2017-05-30 Anton Bailin Oilfield Technologies (Beijing) Co., Ltd. Method and system for segmental flow control in oil-gas well
CN110593862A (zh) * 2019-09-02 2019-12-20 中国石油大学(北京) 优势渗流通道确定方法、装置和计算机设备
CN110593862B (zh) * 2019-09-02 2020-09-18 中国石油大学(北京) 优势渗流通道确定方法、装置和计算机设备

Also Published As

Publication number Publication date
US20120318505A1 (en) 2012-12-20
US20120241168A1 (en) 2012-09-27
CN101705810A (zh) 2010-05-12
US9664014B2 (en) 2017-05-30
CN101705810B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2011069447A1 (zh) 油气井的分段控流方法和系统
WO2011069342A1 (zh) 油气井的控流过滤器管柱分段控流方法及油气井结构
WO2011069341A1 (zh) 油气井的控流过滤器管柱分段控流方法及油气井结构
CA2849253C (en) Fluid filtering device for a wellbore and method for completing a wellbore
WO2011069339A1 (zh) 油气井生产段防窜流封隔颗粒、使用这种颗粒的完井方法及采油方法
CA2899792C (en) Sand control screen having improved reliability
CN109653707B (zh) 一种裂缝性油气藏油气井充填封隔体颗粒降水增油方法
WO2021022908A1 (zh) 不改变管柱更换充填层的方法、返排服务装置和完井结构
CN210685949U (zh) 一种用于同井注采的完井结构
WO2020244303A1 (zh) 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构
WO2021004163A1 (zh) 一种用于同井注采的封隔方法及完井结构
CN215672154U (zh) 注水井
CN103867181B (zh) 利用半渗封隔环进行分段控流的方法
OA16877A (en) Fluid filtering device for a wellbore and method for completing a wellbore.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13514721

Country of ref document: US

Ref document number: 13514743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835482

Country of ref document: EP

Kind code of ref document: A1