WO2020244303A1 - 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构 - Google Patents

防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构 Download PDF

Info

Publication number
WO2020244303A1
WO2020244303A1 PCT/CN2020/083744 CN2020083744W WO2020244303A1 WO 2020244303 A1 WO2020244303 A1 WO 2020244303A1 CN 2020083744 W CN2020083744 W CN 2020083744W WO 2020244303 A1 WO2020244303 A1 WO 2020244303A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous medium
wellbore
mudstone
well wall
channeling
Prior art date
Application number
PCT/CN2020/083744
Other languages
English (en)
French (fr)
Inventor
裴柏林
张娟
崔洪琪
周祥
Original Assignee
安东柏林石油科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安东柏林石油科技(北京)有限公司 filed Critical 安东柏林石油科技(北京)有限公司
Publication of WO2020244303A1 publication Critical patent/WO2020244303A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like

Definitions

  • the invention belongs to the technical field of oil and natural gas exploitation, and relates to a mining technology for oil and gas reservoirs containing mudstone layers, in particular to a porous medium artificial well wall that prevents mudstone layer mud from being produced or channeled, and a method for preventing mudstone layer mud
  • the drilled production section wellbore sometimes crosses one or more mudstone layers.
  • the mud in the mudstone layer will form mud (or mud) along with the produced fluid in the wellbore.
  • the mud will not only flow upwards along the wellbore, until it reaches the oil pump. If the mouth is blocked or the pump is stuck, it will cause the well wall to collapse and the wellbore to be scrapped.
  • the mud of different particle sizes will form bridges and blockages on the sand control net, which will eventually block the sand control net or severely block the sand control net, which will greatly reduce the liquid production; What's more serious is that as the production progresses, the mud formed by the mudstone layer continues to flow in the wellbore to the unblocked sand control net until the entire sand control pipe is blocked.
  • the purpose of the present invention is to overcome the defects of the prior art and provide an artificial well wall that can directly block the mud produced by the mudstone layer without the need to log in advance to determine the position of the mudstone layer to prevent mud production or channeling in the mudstone layer 1.
  • the method for forming the artificial well wall and the completion structure for setting the artificial well wall is to overcome the defects of the prior art and provide an artificial well wall that can directly block the mud produced by the mudstone layer without the need to log in advance to determine the position of the mudstone layer to prevent mud production or channeling in the mudstone layer 1.
  • a porous medium artificial well wall for preventing mudstone formation or channeling The artificial well wall has a cavity-like structure consistent with the shape of the wellbore as a whole, and the outer side is arranged close to the wellbore wall; There are microchannels, which allow fluids (the fluids include oil, gas, and water produced in the wellbore) to pass through but hinder the passage or channeling of mud in the mudstone layer.
  • the diameter of the microchannel is larger than the minimum diameter required for the wellbore to flow into the central pipe string from the wellbore, but smaller than the diameter of the mud particles produced by the mudstone layer.
  • the porous media of the corresponding mudstone section can also allow oil and gas and other fluids to pass through, thereby preventing mud production from entering the wellbore and The effect of allowing oil and gas to flow smoothly into the wellbore and the central pipe string.
  • the artificial well wall is a porous structure made of metal, alloy, high molecular polymer or solidified cement.
  • the artificial well wall has a stacked particle structure.
  • the present invention also adopts the following technical solutions:
  • a method for forming an artificial well wall with a porous medium to prevent mudstone formation or channeling as described above including the following steps: (a1) down into the wellbore an expansion pipe wrapped with a porous medium material layer; a2) After the expansion tube is lowered to the designated position, use the mechanical force of lifting the central pipe string, or use the internal stress of the expansion tube in the compressed state to expand the expansion tube; (a3) the role of the porous medium material layer in the expansion tube The bottom is close to the wellbore wall, forming a porous medium artificial well wall.
  • the present invention also adopts the following technical solutions:
  • a method for forming a porous medium artificial well wall that prevents mud from mudstone formation or channeling as described above includes the following steps: (b1) lowering into the wellbore a central pipe string with solid expansive material attached to its outer surface; b2) After the central pipe string is lowered to the designated position, under the action of soaking in the wellbore fluid, or injecting the expansion catalyst reactant into the wellbore, the solid puffing material expands and becomes close to the wellbore wall, forming a porous medium artificial well wall .
  • the present invention also adopts the following technical solutions:
  • a method for forming a porous medium artificial well wall that prevents mudstone formation or channeling as described above includes the following steps: (c1) running a central pipe string into the wellbore; (c2) moving the central pipe string and the well Cement slurry mixed with foaming agent is injected into the annulus between the borehole walls; (c3) After the cement slurry is solidified, a porous medium artificial well wall is formed.
  • the present invention also adopts the following technical solutions:
  • a method for forming a porous medium artificial well wall that prevents mud from mudstone formation or channeling as described above includes the following steps: (d1) a central pipe string is lowered into the wellbore, and the central pipe string is installed at one end facing the wellhead Packing channel packer; the packer sealingly connects the center string and the wellbore casing; (d2) through the filling channel, injects the packing particles into the annulus between the center string and the well wall Filling fluid until the packing particles fill the annulus; (d3) close the filling channel, and the packing particles enclosed in the annulus form a porous medium artificial well wall.
  • the packing particles have a spherical structure, with a particle size of 0.05-1.0 mm, and a true density of 0.8-1.5 g/cm 3 .
  • the central casing is a sand control tube.
  • step (d1) perforating the original sand control pipes with a perforating gun, and the diameter of the perforation It is larger than the particle size of the packing particles and can ensure the smooth passage of the packer during filling; in step (d2), the central pipe string is lowered into the original sand control pipe, and the top packer is installed.
  • the present invention also adopts the following technical solutions:
  • a well completion structure with the function of preventing mudstone layer mud production or channeling.
  • the wellbore is provided with the above-mentioned porous medium artificial well wall for preventing mudstone layer mud production or channeling.
  • the artificial well wall is formed by the above-mentioned forming method of a porous medium artificial well wall that prevents mudstone formation or channeling.
  • the present invention provides an artificial well wall, a formation method and a completion structure for preventing mudstone layer mud production or channeling.
  • a porous medium artificial well wall downhole, the production or channeling of mudstone layer mud can be effectively prevented.
  • the principle is : After the wellbore with artificial well wall is put into production, if the mudstone section has large mud particles and cannot pass through the porous medium artificial well wall, the mud particles will cause bridging phenomenon on the surface of the porous medium artificial well wall. After a large amount of mud forms mud cakes at the interface between the porous medium artificial well wall and the mudstone section, it can completely prevent the mud from the subsequent formation of mudstone layers from being produced or channeled from the well wall.
  • the porous medium artificial well wall has the ability to prevent the flow of muddy water produced by the oil well.
  • the mudstone from the mudstone section is carried by the water production section to flow into the oil section, the mud is transported in the porous medium artificial well wall.
  • the depth of migration is only about 3cm, and a large amount of mud is blocked near the mudstone section, thereby avoiding mud channeling and blocking the wellbore and production string of the oil section.
  • the invention has the following advantages. First, there is no need to find mudstone sections. Since the porous medium well wall fills the entire wellbore (or the production section wellbore, or only the mud production section wellbore), the porous medium well wall will block each mud section by itself; The second is the simple construction process and low cost. It does not require the casing running, cement cementing, perforation and other processes involved in the traditional casing perforation completion, which avoids the disadvantages of repeatedly lifting and running the string, saving man-hours and Cost; third, the original open hole wall will not be closed, the seepage area is large, the production effect is good, and the oil output is high.
  • Figure 1 is a schematic diagram of the overall structure of using an expandable tube to form an artificial well wall in Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the specific structure of the expansion tube used in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram of the porous medium material used in Embodiment 1 of the present invention wrapped outside the expansion tube;
  • Example 4 is a schematic diagram of the wellbore structure after the self-expanding porous medium pipe string is in place in Example 2 of the present invention
  • FIG. 5 is a schematic diagram of the wellbore structure formed after the self-expanding porous medium material layer of the second embodiment of the present invention is self-expanded;
  • FIG. 6 is a schematic diagram of the wellbore structure after the chemically poured pipe string is in place in Embodiment 3 of the present invention.
  • Example 7 is a schematic diagram of the wellbore structure formed by the cement slurry fully solidified after the chemical pouring in Example 3 of the present invention.
  • FIG. 8 is a schematic diagram of the wellbore structure after the packing string is in place in Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of the wellbore structure formed after the filling operation is completed in Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of the wellbore structure after the packing string is in place in Embodiment 5 of the present invention.
  • Fig. 11 is a schematic diagram of the wellbore structure formed after the filling operation is completed in Embodiment 5 of the present invention.
  • the following describes specific implementations of an artificial well wall, formation method, and completion structure for preventing mud from mudstone formation or channeling of the present invention with reference to accompanying drawings.
  • the artificial well wall, formation method, and completion structure of the present invention for preventing mud production or channeling of mudstone layers are not limited to the description of the following embodiments.
  • the central pipe string described in this article is located inside the porous medium, including the various screens mentioned above, as well as the production layer or liquid layer of the wellbore, which is used to support the porous medium material and allow oil and gas to flow from the outside of the pipe wall into the pipe wall.
  • the ends of the central pipe string are all closed structures, for example, plugs and other components are used to seal the ends;
  • the density or volume of the packer particles refers to the true density or volume, not the bulk density or volume ;
  • the wellbore continuous packer water control technology refers to the use of the wellbore internal water control screen and annulus continuous packer to work together to control water technology.
  • the wells mentioned in this article include horizontal wells, directional wells, vertical wells, water injection wells, oil wells, and gas wells.
  • This embodiment provides a specific implementation of using a physical expansion tube method to construct a porous medium artificial well wall to prevent mudstone formation or channeling, including the following steps:
  • the expansion tube is a cylindrical structure made of metal or alloy material, which can expand outward along its radius.
  • a structure similar to that of a heart stent can be adopted, for example, an axial groove is carved on the tube wall, and the structure can be expanded into a rhombus mesh structure.
  • the porous medium material layer expands outward under the action of the expansion tube, and finally adheres to the wellbore wall to form a porous medium artificial well wall.
  • the through holes on the artificial well wall constitute microchannels for the wellbore fluid production to pass through.
  • FIG. 1 to 3 it is an application example using the method described in this embodiment.
  • the diameter of the wellbore is 8-1/2in.
  • Casing 1 has been inserted into the upper part of the wellbore.
  • FIG. 1 Firstly, insert a 5-1/2in expansion tube 7, and after the expansion tube 7 is in place, set the top packer 5 in the casing 1, then lift the central pipe string 6, and pull the expansion cone 8 to open it.
  • the expansion tube 7 makes the porous medium material layer 3 fit the well wall to form a porous medium artificial well wall.
  • FIG. 2 a specific structure of an expansion tube 7 is shown.
  • the body of the expansion tube 7 is a steel base tube 16.
  • the outer surface of the medium steel base tube 16 is provided with multiple slits along the axial direction. 17; See Figure 3, the porous medium material 3 is wrapped around the outside of the expansion tube 7.
  • the wellbore pumps can maintain safe and stable operation, and the oil production is relatively stable. It was tested after a period of production, and there was no mud output. The oil and gas output was relatively high. After a day, there was no trace of mud output.
  • This embodiment presents a specific implementation of using a self-expanding porous medium pipe string to form a porous medium artificial well wall that prevents mudstone formation or channeling, including the following steps:
  • the solid expanded material may be artificial or natural fiber cotton bonded by a water-soluble adhesive and tightly compacted, Or sponge.
  • the solid puffed material expands and becomes larger and closely adheres to the wellbore wall under the immersion of the fluid in the wellbore, forming a porous medium artificial well wall.
  • the water-soluble adhesive gradually melts under the immersion of the wellbore fluid production, and the tightly compacted fiber cotton or sponge absorbs water and expands under the immersion of the wellbore fluid production, fills the entire annulus and adheres to the well. wall.
  • the expanded fiber cotton or sponge forms a microchannel structure inside.
  • a central pipe string 17 (5-1/2in in diameter) with a solid puffing material 18 attached to the outer surface is used to run into the wellbore.
  • the solid puffing material 18 is glued by a water-soluble adhesive. Combine tightly compacted natural fiber cotton.
  • the well wall prevents the mud produced by the mudstone interval 2 from passing through or channeling in the wellbore, so that the well can resume production.
  • the solid expanded material 18 wrapped on the outer surface of the central pipe string 17 has been completely expanded to form a porous structure.
  • This embodiment provides a specific implementation method for forming a porous medium artificial well wall that prevents mudstone formation or channeling by using a chemical pouring method, including the following steps:
  • FIG. 6 to Fig. 7 it is an application example using the method described in this embodiment.
  • the diameter of the production section of the wellbore is 8-1/2in.
  • the horizontal section of the well is 250m long, with casing 1 on the top, and 2 mudstone sections 2 with a total length of 15m downhole.
  • a 5-1/2in sand control pipe 10 is first run into the wellbore, and a guide shoe 11 is provided at the bottom of the sand control pipe 10.
  • This embodiment presents a specific implementation method for forming a porous medium artificial well wall that prevents mudstone formation or channeling by filling and packing particles for an open hole, including the following steps:
  • the pipe string is a sand control pipe.
  • the method of filling the annulus with packing particles can refer to the international patent application (application number: PCT/CN2010/002014) called "Anti-channeling packing particles in the production section of oil and gas wells, using this In the "Particle Completion Method and Oil Recovery Method” patent, a method of packing and packing particles into the annulus.
  • the particle size of the spacer particles used in this embodiment is 0.05-1.0mm
  • the shape is spherical particles
  • the material is styrene-divinylbenzene cross-linked copolymer
  • the true density is 0.96-1.06g/cm 3.
  • the filling volume is 6.7m 3 and the filling liquid concentration is 3%.
  • a new open-hole completion well is a horizontal well with a diameter of 8-1/2in.
  • the horizontal section of the well is 400m long, with casing 1 on the top, and 2 mudstone sections 2 with a total length of 15m downhole.
  • a 5-1/2in sand control pipe 10 is first run into the wellbore, and a guide shoe 11 is provided at the bottom of the sand control pipe 10.
  • this embodiment does not need to carry out the lifting operation of the central pipe string. It can be filled directly after the tools are in place.
  • the operation process is simple, saves time and costs, has a wider adaptability to the wellbore, and can be widely used in horizontal wells, Multi-branched well.
  • This embodiment presents a wellbore with sand control pipes and mud plugging on the surface of the sand control pipe after it has been put into production.
  • the method of packing and packing particles is adopted to realize the blocking and prevent the formation of mud clogging on the surface of the new sand control pipe.
  • This example is an application to the well with the original sand control pipe blocked in Example 4.
  • the following improvements are made on the basis of the technical solution described in the embodiment, which can be applied to the sand control pipe that has been installed and the mud plug is generated after it is put into production.
  • Wellbore First, before step (1), first use a perforating gun to perforate the original sand control pipe, the diameter of the perforation is larger than the diameter required for packing and packing particles; second, in step (2), the center The pipe string is lowered into the original sand control pipe and the top packer is installed.
  • a casing completion is a horizontal well, the diameter of the wellbore is 8-1/2in, and the length is 480m. There are two mudstone intervals 2 with a thickness of 4m and 16m, and a total thickness of 20m.
  • the top of the wellbore is equipped with a casing 1 ,
  • the wellbore is provided with a 5-1/2in original sand control pipe 13, the original sand control pipe 13 is provided with an original shoe guide 15 at the bottom, and the original sand control pipe 13 is suspended on the casing 1 through the original screen suspension packer 14.
  • Fig. 10 In order to solve the problem of mud blockage, referring to Fig. 10, firstly lower the incident hole gun to perforate the original sand control pipe 13 to establish a fluid channel 20 with a hole density of 10 holes/m and a hole diameter of 25mm; and then lower into the top with a top packer 5
  • the new sand control pipe string 10 with an outer diameter of 2-7/8in totals 480m, and the bottom of the sand control pipe is provided with a shoe 11; after the sand control pipe is in place, the top packer 5 is seated, the filling channel 9 is opened, and the carrier is injected into the annulus
  • the packing liquid for packing particles preferably, the packing particles used in this embodiment have a particle size of 0.05-1.0 mm, a shape of spherical particles, a material of polypropylene polymer, and a true density of 0.8-1.0 mm. 0.98g/cm 3 , the filling volume is 4.2m 3 , and the filling liquid
  • Fig. 11 is a schematic diagram of the completion structure using this scheme. It can be seen from the figure that the packing particles 12 have filled the annulus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种防止泥岩层泥产出或窜流的多孔介质人工井壁,人工井壁整体呈与井筒形状一致的管腔状结构,外侧紧贴井筒井壁设置;人工井壁内部设有微通道,微通道允许流体通过而流到井筒内并且阻碍泥岩层泥液通过并流入井筒内和窜流。由于多孔介质井壁填满了整个井筒,多孔介质井壁会自行堵塞各泥岩段的泥运移,不需主动寻找泥岩段,无需传统套管射孔完井技术中涉及的下入套管、水泥固井、射孔等工序工艺,也不会封闭原先生产油气的裸眼井壁,避免了多次起下作业管柱,渗流面积大,提高了油气产量。

Description

防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构 技术领域
本发明属于石油和天然气开采技术领域,涉及一种含有泥岩层的油气藏的开采技术,特别是涉及一种防止泥岩层泥产出或窜流的多孔介质人工井壁、一种防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,以及一种具有防止泥岩层泥产出或窜流功能的完井结构。
背景技术
由于地层中存在泥岩层与含油气的砂岩层交叠出现的现象,因此在油气藏开采过程中,钻出的生产段井筒有时存在穿越一个或多个泥岩层的情况。对于这种裸眼井,此时若直接投产,泥岩层的泥会随着井筒中的产液形成泥液(或泥浆),泥液不仅会沿着井筒向上窜流,直至到达抽油泵,将泵口堵死或将泵卡死,严重时还会导致井壁坍塌、井筒报废。对于需要防砂而下入防砂管的井筒,泥液流经防砂网后,不同粒径的泥质会在防砂网上形成桥堵,最终把防砂网堵塞或严重堵塞,使产液量大幅度下降;更为严重的是随着生产的进行,泥岩层形成的泥液在井筒中不断窜流至未堵塞的防砂网,直至整个防砂管被堵塞。
针对这一问题,现有技术中有一种采用套管射孔的完井技术方案,该方案首先向井筒中下入套管,然后向套管与井壁的环空中注入水泥并等待水泥凝固。由于套管和水泥环的屏蔽作用,泥不能流入井筒,油气也无法流入井筒。为了使油气能流入井筒,避开泥岩层,在有油气对应层位射孔从而达到泥不流入井筒,泥不窜流,油气能流入井筒的效果。该技术存在如下缺点,一是工序繁琐复杂,它需要下入套管、水泥固井、射孔等,二是成本高,井射孔每米成本就达到1万人民币,三是固井过程中水泥泥浆对产液层的破坏较大,四是完井后油气只能从射孔的孔眼中渗出,使得渗流面积相比于原始井壁大大减小,从而严重降低了油井的产能。
现有技术中还有一种将泥岩层段进行隔离防止产出或窜流的技术方案,具体为:根据预先测井数据,在生产段相应的泥岩段的位置设置盲管进行隔离并在盲管两端加封隔器进行隔离。然而,该技术方案存在如下缺点,一是需要提前进行精准的测井工作找出泥岩段所在的位置,耗时费力;二是为了实现对泥岩层段的有效卡封,通常需要留出足够的余量(即卡封的长度大于泥岩层段的长度)导致油气生产段长度缩短;三使对于泥岩层与含油气的砂岩层交叠较为密集的生产段,由于封隔器无法做到精度非常高的定位与密封,则需要对该井段进行整体密封,这两种情况都会缩短井筒中有效产液段的长度,从而降低了油井的产能;四是井下封隔器卡封往往存在较高的密封失败的风险如井筒扩径的情况封隔器无法贴合井壁的情况,使其无法封隔泥岩的窜流和产出。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种无需事先测井确定泥岩层位置、可直接对泥岩层产出泥液进行封堵的防止泥岩层泥产出或窜流的人工井壁、所述人工井壁的形成方法,以及设置所述人工井壁的完井结构。
为实现上述目的,本发明采用了如下技术方案:
一种防止泥岩层泥产出或窜流的多孔介质人工井壁,所述人工井壁整体呈与井筒形状一致的管腔状结构,外侧紧贴井筒井壁设置;所述人工井壁内部设有微通道,所述微通道允许流体(所述流体包括井筒中产出的油、气、水)通过而阻碍泥岩层泥液通过或窜流。所述微通道的直径大于井筒产液由井筒流入中心管柱所需要的最小直径,而小于泥岩层产出的泥颗粒的直径,因而泥液携带泥通过人工井壁时,泥液中的泥颗粒会将微通道堵塞,从而阻止泥液继续向人工井壁内部流动或在井筒中窜流,同时对应的泥岩段多孔介质又能让油气等流体通过,达到了既防止泥产出进入井筒又能让油气顺利流入井筒及中心管柱的效果。
进一步,所述人工井壁为金属、合金、高分子聚合物或固化水泥材质的多孔结构。
进一步,所述人工井壁为堆积的封隔颗粒结构。
为实现上述目的,本发明还采用了如下技术方案:
一种如上所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,包括以下步骤:(a1)向井筒中下入外层包裹有多孔介质材料层的膨胀管;(a2)膨胀管下入到指定位置后,利用上提中心管柱的机械力,或者利用膨胀管在压缩状态时的内应力,撑开膨胀管;(a3)多孔介质材料层在膨胀管的作用下贴紧井筒井壁,形成多孔介质人工井壁。
为实现上述目的,本发明还采用了如下技术方案:
一种如上所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,包括以下步骤:(b1)向井筒中下入外表面附着有固体膨化材料的中心管柱;(b2)中心管柱下入到指定位置后,在井筒内流体的浸泡作用下,或者向井筒内注入膨胀催化反应剂,固体膨化材料膨胀变大并紧贴井筒井壁,成多孔介质人工井壁。
为实现上述目的,本发明还采用了如下技术方案:
一种如上所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,包括以下步骤:(c1)向井筒中下入中心管柱;(c2)向中心管柱与井筒井壁之间的环空中注入混有发泡剂的水泥浆;(c3)水泥浆固化后,形成多孔介质人工井壁。
为实现上述目的,本发明还采用了如下技术方案:
一种如上所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,包括以下步骤:(d1)向井筒中下入中心管柱,中心管柱朝向井口一端安装设有充填通道的封隔器;所述封隔器将中心管柱与井筒套管密封连接;(d2)通过充填通道,向中心管柱与井筒井壁之间的环空中注入携带有封隔颗粒的充填液,直至封隔颗粒填满环空;(d3)关闭充填通道,封闭在环空中的封隔颗粒形成多孔介质人工井壁。
进一步,所述封隔颗粒为球形结构,粒径为0.05-1.0mm,真实密度为0.8-1.5g/cm 3
进一步,所述中心套管为防砂管。
进一步,对于设置防砂管且投产后防砂管已经产生泥堵的井,在步骤 (d1)之前还包括以下步骤:(d1.1)用射孔枪对原防砂管进行射孔,射孔的孔径大于封隔颗粒的粒径并能保证充填时封隔体顺利通过;在步骤(d2)中,将中心管柱下入原防砂管内部,并安装顶部封隔器。
为实现上述目的,本发明还采用了如下技术方案:
一种具有防止泥岩层泥产出或窜流功能的完井结构,所述井筒内部设有如上所述的防止泥岩层泥产出或窜流的多孔介质人工井壁。
进一步,所述人工井壁通过如上所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法而形成。
本发明一种防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构,通过在井下构成多孔介质人工井壁,可以有效防止泥岩层泥产出或窜流,其原理在于:所述设有人工井壁的井筒投产后,若是泥岩段的泥质颗粒较大,不能通过多孔介质人工井壁,则泥质颗粒会在多孔介质人工井壁表面产生桥堵现象,当足够多的泥质在多孔介质人工井壁与泥岩段界面处形成泥饼之后,便可完全阻止后续形成的泥岩层的泥液从井壁产出或窜流。实践证明,多孔介质人工井壁具有防止油井产出泥水的窜流的能力,当产水段携带泥岩段的泥质向出油段窜流的过程中,泥质在多孔介质人工井壁中运移的深度只有3cm左右,大量泥质被封堵在泥岩段附近,从而避免了泥液窜流现象,并避免泥堵塞出油段井筒和生产管柱。
本发明具有以下优点,一是不需寻找泥岩段,由于多孔介质井壁填满了整个井筒(或生产段井筒,或仅产泥段井筒),多孔介质井壁会自行堵塞各出泥段;二是施工工序简单,成本低,不需要传统套管射孔完井中涉及的下入套管、水泥固井、射孔等工序工艺,避免了多次起下管柱的弊端,节约了工时与成本;三是不会封闭原先的裸眼井壁,渗流面积大,生产效果好,油产量高。
附图说明
图1是本发明实施例1中利用膨胀管形成人工井壁的整体结构示意图;
图2是本发明实施例1中采用的膨胀管的具体结构示意图;
图3是本发明实施例1中采用的多孔介质材料包裹在膨胀管外部的截面结构示意图;
图4是本发明实施例2自膨胀多孔介质管柱到位后的井筒结构示意图;
图5是本发明实施例2自膨胀多孔介质材料层自膨胀完毕后形成井筒结构示意图;
图6是本发明实施例3中化学浇筑管柱到位后的井筒结构示意图;
图7是本发明实施例3中化学浇筑完毕后,水泥浆充分固化形成的井筒结构示意图;
图8是本发明实施例4中充填管柱到位后的井筒结构示意图;
图9是本发明实施例4中充填作业完毕后形成的井筒结构示意图;
图10是本发明实施例5中充填管柱到位后的井筒结构示意图;
图11是本发明实施例5中充填作业完毕后形成的井筒结构示意图。
具体实施方式
以下结合附图1至11,进一步说明本发明一种防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构的具体实施方式。本发明一种防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构不限于以下实施例的描述。
本文中采用的术语释义如下:筛管,行业内也称为井下过滤器,或者防砂管;控水筛管,行业内也称为井下控流过滤器,或者控流防砂管、控流筛管或控水防砂管;相对于油来讲,对水有额外附加流动阻力功能的控水筛管称为AICD,对水无额外附加流动阻力功能的控水筛管称为ICD,AICD和ICD都属于控水筛管的范畴;环空,是指筛管(或控水筛管)和井壁之间的环形空间。本文中所述中心管柱位于多孔介质内侧,包括上述的各种筛管,以及下入井筒生产层或产液层,用于支撑多孔介质材料,允许油气从管壁外流入管壁内的各种管柱。所述中心管柱的端部均为封闭结构,例如采用丝堵等部件将其端部进行封闭;所述封隔体颗粒的密度或体积,均指真实密度或体积,而非堆积密度或体积;所述井筒连续封隔体控水技术是指采用井筒内控水筛管加环空连续封隔体共同作用进行控水的技术。本文中所述的井包括,水平井,定向井,直井,注水井,油井,气井。
实施例1:
本实施例给出一种采用物理膨胀管方式,构造形成防止泥岩层泥产出或窜流的多孔介质人工井壁的具体实施方式,包括以下步骤:
(1)向井筒中下入外层包裹有多孔介质材料层的膨胀管。具体的,所述膨胀管为金属或合金材质的筒状结构,可沿其半径方向向外膨胀。作为所述膨胀管的一种具体实施方式,可以采用与心脏支架类似的结构,例如在管壁上刻有轴向的槽,该结构可膨胀为菱形网状结构。
(2)膨胀管下入到指定位置后,采用上提中心管柱(带有膨胀锥)过程中产生的机械力,或者借助膨胀管在压缩状态(即未膨胀状态)时的内应力,使膨胀管沿半径方向向外膨胀并撑开。
(3)多孔介质材料层在膨胀管的作用下向外延展,最终贴紧井筒井壁,形成多孔介质人工井壁,人工井壁上的通孔即构成供井筒产液通过的微通道。
(4)投产后,当泥液流经所述人工井壁的多孔介质材料中的微孔时,可以在微孔中产生泥堵现象并形成泥饼,因而可以阻止后续形成的泥液在微孔中流动,从而起到了允许油气等流体通过而阻碍泥岩层泥液的通过或窜流的效果。
如图1至图3所示,是一个采用本实施例所述方法的应用实例。某裸眼完井新井,井筒直径为8-1/2in,井筒上部已下入套管1,井筒中存在厚度为20m的泥岩层段2,其他为可以正常产液的生产段4。
参见图1,先下入5-1/2in的膨胀管7,膨胀管7到位后,在套管1内座封顶部封隔器5,然后上提中心管柱6,拉动膨胀锥8撑开膨胀管7,使得多孔介质材料层3贴合井壁,构成多孔介质人工井壁。参见图2,给出了一种膨胀管7的具体结构,所述膨胀管7本体为钢制基管16,中钢制基管16的外表面沿轴向方向,交叉设置了多条割缝17;参见图3,所述多孔介质材料3包裹在膨胀管7的外部。投产后,井筒中的抽油泵能够保持安全稳定运行,产油量较为稳定。投产一段时间后进行检测,没有泥产出,油气产量较高,一天以后再未见微量的泥产出。
实施例2:
本实施例给出一种采用自膨胀多孔介质管柱方式,构成形成防止泥岩 层泥产出或窜流的多孔介质人工井壁的具体实施方式,包括以下步骤:
(1)向井筒中下入外表面附着有固体膨化多孔材料的中心管柱;具体的,所述固体膨化材料可以是通过水溶性粘合剂粘合并紧密压实的人工或天然纤维棉,或者海绵。
(2)中心管柱下入到指定位置后,在井筒内流体的浸泡作用下,固体膨化材料膨胀变大并紧贴井筒井壁,形成多孔介质人工井壁。具体的,所述水溶性粘合剂在井筒产液的浸泡作用下逐步融解,紧密压实的纤维棉或海绵在井筒产液的浸泡作用下吸水膨胀,填满整个环空并紧贴于井壁。膨胀后的纤维棉或海绵内部形成微通道结构。
(3)投产后,当泥液流经所述人工井壁的多孔介质材料中的微孔时,可以在微孔中产生泥堵现象并形成泥饼,因而可以阻止后续形成的泥液在微孔中流动,从而起到了允许流体通过而阻碍泥岩层泥液的通过或窜流的效果。
如图4至5所示,是一个采用本实施例所述方法的应用实例。某套管完井的井,井筒直径为8-1/2in,投产后两次出现泥块堵塞抽油泵的入口导致抽油泵报废的现象,初步判断为套管上部泥岩段2产出的泥液,经过套管1外的套管外封隔器16窜流到生产段4从而堵塞抽油泵。
参考图4,为解决泥堵问题,采用外表面附着有固体膨化材料18的中心管柱17(直径5-1/2in)下入井筒,所述固体膨化材料18为通过水溶性粘合剂粘合并紧密压实的天然纤维棉。中心管柱17到位后,在套管1内座封顶部封隔器5,然后静置12h,使得固体膨化材料吸收地层水后充分膨胀,形成海绵状结构并贴合井壁,构成多孔介质人工井壁,从而抑制泥岩层段2产出的泥液通过或在井筒中窜流,使得该井恢复生产。参考图5,所示中心管柱17外表面包裹的固体膨化材料18已经完全膨胀,形成的多孔结构。
实施例3:
本实施例给出一种采用化学浇筑方式,构成形成防止泥岩层泥产出或窜流的多孔介质人工井壁的具体实施方式,包括以下步骤:
(1)向井筒中下入中心管柱;
(2)向中心管柱与井筒井壁之间的环空中注入混有发泡剂的水泥浆;具体的,所述水泥浆中混入的发泡剂的数量,应该以能够在凝固后的水泥中形成微通道结构的孔隙为宜。
(3)水泥浆或高分子聚合物母液固化后,形成多孔介质人工井壁。
(4)投产后,当泥液流经所述人工井壁的多孔介质材料中的微孔时,可以在微孔中产生泥堵现象并形成泥饼,因而可以阻止后续形成的泥液在微孔中流动,从而起到了允许流体通过而阻碍泥岩层泥液的通过或窜流的效果。
如图6至图7所示,是一个采用本实施例所述方法的应用实例。某新裸眼完井水平井,生产段井筒直径为8-1/2in,该井水平段长250m,顶部设有套管1,井下存在2个总长度为15m的泥岩层段2。为预防投产后产生泥堵问题,参考图6,首先向井筒中下入5-1/2in的防砂管10,防砂管10底端设有引鞋11。防砂管到位后,在套管内座封设有充填通道9的顶部封隔器5,然后通过充填通道9,向环空内注入混有发泡剂的水泥浆19,直至水泥浆19填满环空,然后静置24h,使得水泥浆充分固化形成多孔介质人工井壁。投产后,多孔介质人工井壁有效抑制泥岩层段2产出的泥液,并有效抑制泥液通过或在井筒中窜流至生产段4,使得该井保持安全稳定生产。参考图7,是采用本方案的完井结构示意图,从图中可见水泥浆19已经充分固化,形成了多孔结构。
实施例4:
本实施例给出一种针对裸眼井采用充填封隔颗粒的方式,构成形成防止泥岩层泥产出或窜流的多孔介质人工井壁的具体实施方式,包括以下步骤:
(1)向井筒中下入中心管柱,中心管柱朝向井口一端安装设有充填通道的封隔器;所述封隔器将中心管柱与井筒套管密封连接;优选的,所述中心管柱为防砂管。
(2)通过充填通道,向中心管柱与井筒井壁之间的环空中注入携带有封隔颗粒的充填液,直至封隔颗粒填满环空;
(3)关闭充填通道,封闭在环空中的封隔颗粒形成多孔介质人工井壁,封隔颗粒之间存在可供产液通过的微孔通道。
(4)投产后,当泥液流经所述人工井壁的多孔介质材料中的微孔时,可以在微孔中产生泥堵现象并形成泥饼,因而可以阻止后续形成的泥液在微孔中流动。从整个井段来看,总体上起到了允许流体通过而阻碍泥岩层泥液通过或窜流的效果。
本实施例中,所述向环空中充填封隔颗粒的方法,可参照国际专利申请(申请号:PCT/CN2010/002014)提出的名为“油气井生产段防窜封隔颗粒、使用这种颗粒的完井方法及采油方法”专利中,向环空中充填封隔颗粒的方法。优选的,本实施例中所采用的所述封隔颗粒的粒径为0.05-1.0mm、形状为球形颗粒、材质为苯乙烯二乙烯苯交联共聚物、真实密度为0.96-1.06g/cm 3,充填量为6.7m 3,充填液浓度3%。
如图8至图9所示,是一个采用本实施例所述方法的应用实例。某裸眼完井新井为水平井,井筒直径为8-1/2in,该井水平段长400m,顶部设有套管1,井下存在2个总长度为15m的泥岩层段2。为预防投产后产生泥堵问题,参考图8,首先向井筒中下入5-1/2in的防砂管10,防砂管10底端设有引鞋11。防砂管到位后,在套管内座封设有充填通道9的顶部封隔器5,然后通过充填通道9,向环空内注入携带有封隔颗粒的充填液,,直至封隔颗粒填满环空,形成多孔介质人工井壁。投产后,泥岩层段2产出的泥液在多孔介质人工井壁上形成泥堵,封堵住了后续泥液产出,阻止了泥液在井筒中窜流至生产段4,使得该井保持稳定生产。参考图9,是采用本方案的完井结构示意图,从图中可见封隔颗粒12已充满环空。
本实施例相对于实施例1,不用专门进行上提中心管柱作业,工具到位后直接充填即可,操作过程简便,节约时间费用,对井筒的适应性更广,可广泛应用于水平井、多分枝井。
实施例5:
本实施例给出一种针对设置防砂管并已经投产后在防砂管表面上产生了泥堵的井筒,采用充填封隔颗粒的方式,实现了解堵并在新的防砂管表 面被泥堵塞形成防止泥岩层泥产出或窜流的多孔介质人工井壁的具体实施方式。
本实施例是对实施例4做出的在原防砂管被堵塞的井的应用,在实施例所述技术方案的基础上做出如下改进,即可适用于已经设置防砂管且投产后产生泥堵的井筒:一是在步骤(1)之前,首先用射孔枪对原防砂管进行射孔,射孔的孔径大于充填封隔颗粒所需的孔径;二是在步骤(2)中,将中心管柱下入原防砂管内部,并安装顶部封隔器。
如图10至图11所示,是一个采用本实施例所述方法的应用实例。某套管完井为水平井,井筒直径为8-1/2in,长度480m,井筒中存在2个厚度分别为4m和16m,总厚度为20m的泥岩层段2,井筒顶部设有套管1,井筒中设有5-1/2in原防砂管13,原防砂管13底部设有原引鞋15,原防砂管13通过原筛管悬挂封隔器14悬挂在套管1上。投产一个月后,原防砂管13严重堵塞,因为泥岩段2产出的泥液在整个井筒中窜流将原防砂管13完全堵塞,使得产能下降到投产初期的1/3。
为解决泥堵问题,参考图10,首先下入射孔枪对原防砂管13进行射孔,建立流体通道20,孔密10孔/m,孔径25mm;然后下入顶部有顶部封隔器5的外径为2-7/8in的新防砂管柱10共计480m,其底部设有引鞋11;防砂管到位后,座封顶部封隔器5,打开充填通道9,向环空内注入携带有封隔颗粒的充填液,优选的,本实施例中所采用的所述封隔颗粒的粒径为0.05-1.0mm、形状为球形颗粒、材质为聚丙烯高分子聚合物、真实密度为0.8-0.98g/cm 3,充填量为4.2m 3,充填液为含有3%封隔颗粒浓度的海水混合液。
直至封隔颗粒填满环空,共计充填封隔颗粒4.1m,构成多孔介质人工井壁。再次投产后,该井长期保持安全稳定生产,未再发生防砂管泥堵现象。参考图11,是采用本方案的完井结构示意图,从图中可见封隔颗粒12已充满环空。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域 的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替-换,都应当视为属于本发明的保护范围。

Claims (12)

  1. 一种防止泥岩层泥产出或窜流的多孔介质人工井壁,其特征在于:所述人工井壁整体呈与井筒形状一致的管腔状结构,外侧紧贴井筒井壁设置;所述人工井壁内部设有微通道,所述微通道允许流体通过而阻碍泥岩层泥液通过或窜流。
  2. 根据权利要求1所述的防止泥岩层泥产出或窜流的多孔介质人工井壁,其特征在于:所述人工井壁为金属、合金、高分子聚合物或固化水泥材质的多孔结构。
  3. 根据权利要求1所述的防止泥岩层泥产出或窜流的多孔介质人工井壁,其特征在于:所述人工井壁为堆积的封隔颗粒结构。
  4. 一种如权利要求2所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,其特征在于:包括以下步骤:
    (a1)向井筒中下入外层包裹有多孔介质材料层的膨胀管;
    (a2)膨胀管下入到指定位置后,利用上提中心管柱的机械力,或者利用膨胀管在压缩状态时的内应力,撑开膨胀管;
    (a3)多孔介质材料层在膨胀管的作用下贴紧井筒井壁,形成多孔介质人工井壁。
  5. 一种如权利要求2所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,其特征在于:包括以下步骤:
    (b1)向井筒中下入外表面附着有固体膨化材料的中心管柱;
    (b2)中心管柱下入到指定位置后,在井筒内流体的浸泡作用下,或者向井筒内注入催化反应剂,固体膨化材料膨胀变大并紧贴井筒井壁,成多孔介质人工井壁。
  6. 一种如权利要求2所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,其特征在于:包括以下步骤:
    (c1)向井筒中下入中心管柱;
    (c2)向中心管柱与井筒井壁之间的环空中注入混有发泡剂的水泥浆;
    (c3)水泥浆固化后,形成多孔介质人工井壁。
  7. 一种如权利要求3所述的防止泥岩层泥产出或窜流的多孔介质人工井壁 的形成方法,其特征在于:包括以下步骤:
    (d1)向井筒中下入中心管柱,中心管柱朝向井口一端安装设有充填通道的封隔器;所述封隔器将中心管柱与井筒套管密封连接;
    (d2)通过充填通道,向中心管柱与井筒井壁之间的环空中注入携带有封隔颗粒的充填液,直至封隔颗粒填满环空;
    (d3)关闭充填通道,封闭在环空中的封隔颗粒形成多孔介质人工井壁。
  8. 根据权利7所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,其特征在于:所述封隔颗粒为球形结构,粒径为0.05-1.0mm,真实密度为0.8-1.5g/cm 3
  9. 根据权利7所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,其特征在于:所述中心套管为防砂管。
  10. 根据权利7所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法,其特征在于:对于设置防砂管且投产后防砂管已经产生泥堵的井,
    在步骤(d1)之前还包括以下步骤:(d1.1)用射孔枪对原防砂管进行射孔,射孔的孔径大于封隔颗粒的粒径;
    在步骤(d2)中,将中心管柱下入原防砂管内部,并安装顶部封隔器。
  11. 一种具有防止泥岩层泥产出或窜流功能的完井结构,其特征在于:所述井筒内部设有如权利要求1至3中任一权利要求所述的防止泥岩层泥产出或窜流的多孔介质人工井壁。
  12. 一种具有防止泥岩层泥产出或窜流功能的完井结构,其特征在于:井筒内部设有防止泥岩层泥水窜流的多孔介质人工井壁,所述人工井壁通过权利要求4至10中任一权利要求所述的防止泥岩层泥产出或窜流的多孔介质人工井壁的形成方法而形成。
PCT/CN2020/083744 2019-06-06 2020-04-08 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构 WO2020244303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910489275.9 2019-06-06
CN201910489275.9A CN110173230A (zh) 2019-06-06 2019-06-06 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构

Publications (1)

Publication Number Publication Date
WO2020244303A1 true WO2020244303A1 (zh) 2020-12-10

Family

ID=67698127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083744 WO2020244303A1 (zh) 2019-06-06 2020-04-08 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构

Country Status (2)

Country Link
CN (1) CN110173230A (zh)
WO (1) WO2020244303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893146A (zh) * 2021-12-24 2022-08-12 中煤地质集团有限公司 一种窜槽钻孔启封固井的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173230A (zh) * 2019-06-06 2019-08-27 安东柏林石油科技(北京)有限公司 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构
CN113833437A (zh) * 2021-09-24 2021-12-24 安东柏林石油科技(北京)有限公司 一种提高井下环空中轴向防窜流能力的方法及结构

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992522A (en) * 1997-08-12 1999-11-30 Steelhead Reclamation Ltd. Process and seal for minimizing interzonal migration in boreholes
CN101705810A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN101705802A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
WO2013165668A1 (en) * 2012-05-04 2013-11-07 Schlumberger Canada Limited Compliant sand screen
CN103726813A (zh) * 2014-01-13 2014-04-16 安东柏林石油科技(北京)有限公司 油气井过滤器管柱外充填环中建立封隔的完井结构及方法
CN105587295A (zh) * 2014-11-18 2016-05-18 中国石油天然气股份有限公司 人工井壁生成方法及装置
CN205577959U (zh) * 2016-03-04 2016-09-14 中国石油集团渤海钻探工程有限公司 一种免填充可膨胀筛管
CN106761593A (zh) * 2016-12-14 2017-05-31 中国石油集团长城钻探工程有限公司 一种复杂地层预处理工艺
CN108533235A (zh) * 2018-03-05 2018-09-14 中国石油大学(华东) 一种裸眼井外包裹膨胀充填防砂方法
CN110173230A (zh) * 2019-06-06 2019-08-27 安东柏林石油科技(北京)有限公司 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7644773B2 (en) * 2002-08-23 2010-01-12 Baker Hughes Incorporated Self-conforming screen
US7926565B2 (en) * 2008-10-13 2011-04-19 Baker Hughes Incorporated Shape memory polyurethane foam for downhole sand control filtration devices
CN104363995A (zh) * 2012-05-29 2015-02-18 哈利伯顿能源服务公司 多孔介质筛
CN103696741A (zh) * 2013-12-09 2014-04-02 安东柏林石油科技(北京)有限公司 一种易拔出井下防砂管柱的防砂井完井结构
CN106246143B (zh) * 2016-08-26 2018-08-21 中国石油化工股份有限公司 一种出水油层的控水方法及其控水防砂管柱
CN109098694A (zh) * 2017-06-21 2018-12-28 中国石油化工股份有限公司 用于压裂水平气井的控水防砂装置及方法
CN108180001B (zh) * 2018-01-19 2020-06-30 吉林大学 泡沫注浆法改造海洋泥质粉砂型天然气水合物储层的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992522A (en) * 1997-08-12 1999-11-30 Steelhead Reclamation Ltd. Process and seal for minimizing interzonal migration in boreholes
CN101705810A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN101705802A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
WO2013165668A1 (en) * 2012-05-04 2013-11-07 Schlumberger Canada Limited Compliant sand screen
CN103726813A (zh) * 2014-01-13 2014-04-16 安东柏林石油科技(北京)有限公司 油气井过滤器管柱外充填环中建立封隔的完井结构及方法
CN105587295A (zh) * 2014-11-18 2016-05-18 中国石油天然气股份有限公司 人工井壁生成方法及装置
CN205577959U (zh) * 2016-03-04 2016-09-14 中国石油集团渤海钻探工程有限公司 一种免填充可膨胀筛管
CN106761593A (zh) * 2016-12-14 2017-05-31 中国石油集团长城钻探工程有限公司 一种复杂地层预处理工艺
CN108533235A (zh) * 2018-03-05 2018-09-14 中国石油大学(华东) 一种裸眼井外包裹膨胀充填防砂方法
CN110173230A (zh) * 2019-06-06 2019-08-27 安东柏林石油科技(北京)有限公司 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893146A (zh) * 2021-12-24 2022-08-12 中煤地质集团有限公司 一种窜槽钻孔启封固井的方法

Also Published As

Publication number Publication date
CN110173230A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2020244303A1 (zh) 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构
AU2012321258B2 (en) Fluid filtering device for a wellbore and method for completing a wellbore
US7918272B2 (en) Permeable medium flow control devices for use in hydrocarbon production
AU2004233191B2 (en) A wellbore apparatus and method for completion, production and injection
US9322248B2 (en) Wellbore apparatus and methods for multi-zone well completion, production and injection
US7841398B2 (en) Gravel packing apparatus utilizing diverter valves
US4685519A (en) Hydraulic fracturing and gravel packing method employing special sand control technique
US9670756B2 (en) Wellbore apparatus and method for sand control using gravel reserve
CA2783503C (en) Segmental flow-control method for flow-control filter string in oil-gas well and oil-gas well structure
WO2021022908A1 (zh) 不改变管柱更换充填层的方法、返排服务装置和完井结构
CA2899792C (en) Sand control screen having improved reliability
US4192375A (en) Gravel-packing tool assembly
US20180371879A1 (en) Gravel Packing System and Method
CN104727787A (zh) 压穿筛管充填防砂方法
US4460045A (en) Foam gravel packing in highly deviated wells
US2998065A (en) Method and apparatus for stabilizing productive formations
CN110847874B (zh) 一种压裂充填脱砂管柱及压裂充填脱砂方法
US9494000B2 (en) Methods of maintaining sufficient hydrostatic pressure in multiple intervals of a wellbore in a soft formation
CN207332845U (zh) 防砂装置
CN215672154U (zh) 注水井
WO2006023307A1 (en) Rat hole bypass for gravel packing assembly
WO2022183898A1 (zh) 操作注水井的方法以及注水井
CN110424923B (zh) 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构
OA16877A (en) Fluid filtering device for a wellbore and method for completing a wellbore.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817706

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20817706

Country of ref document: EP

Kind code of ref document: A1