WO2011069339A1 - 油气井生产段防窜流封隔颗粒、使用这种颗粒的完井方法及采油方法 - Google Patents

油气井生产段防窜流封隔颗粒、使用这种颗粒的完井方法及采油方法 Download PDF

Info

Publication number
WO2011069339A1
WO2011069339A1 PCT/CN2010/002014 CN2010002014W WO2011069339A1 WO 2011069339 A1 WO2011069339 A1 WO 2011069339A1 CN 2010002014 W CN2010002014 W CN 2010002014W WO 2011069339 A1 WO2011069339 A1 WO 2011069339A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
oil
turbulence
average particle
gas well
Prior art date
Application number
PCT/CN2010/002014
Other languages
English (en)
French (fr)
Inventor
裴柏林
张峰
Original Assignee
安东石油技术(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安东石油技术(集团)有限公司 filed Critical 安东石油技术(集团)有限公司
Priority to US13/514,494 priority Critical patent/US9080426B2/en
Priority to NO20120797A priority patent/NO347414B1/no
Priority to CA 2783389 priority patent/CA2783389C/en
Priority to GB1211952.5A priority patent/GB2489359B/en
Publication of WO2011069339A1 publication Critical patent/WO2011069339A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • This invention relates to the field of oil and gas production, and more particularly to an anti-turbulence packer particle for an oil and gas well production section, and a completion and oil recovery method using such an anti-turbulence packer.
  • Oil and gas wells here refer to generalized production wells in oil and gas field development, including oil wells, gas well gas wells, injection wells, etc.
  • Oil and gas well production here includes the production and injection of fluids in the production of oil and gas wells, such as oil production, or, for example, acidification by injecting acid into the formation through oil and gas wells.
  • Separating the oil and gas well into a plurality of relatively independent areas for production usually uses a packer to divide the production section of the oil and gas well along the axial direction of the oil and gas well into separate flow units, and install a flow control device in each flow unit.
  • the device for controlling the flow may be a flow control filter or the like.
  • the applicant has long been committed to the research of control flow and isolation of oil and gas well production. It has found that there are many problems in using packers.
  • the invention name is "the oil and gas well completion system that subdivides the formation fluid or injects fluid flow.”
  • the applicant for this patent is Beijing Haineng Haite Petroleum Technology Development Co., Ltd., and now Beijing Haineng Haite Petroleum Technology Development Co., Ltd. has been merged into Anton Petroleum Technology (Group) Co., Ltd.
  • the patent analyzes in detail Based on the drawbacks of the conventional packer, an oil and gas well completion system that subdivides the formation fluid or injects fluid flow is disclosed.
  • the completion system is composed of at least a flow regulating column and a porous medium disposed in the oil and gas well;
  • One type of flow regulating column is a filter with a regulated flow device.
  • the porous medium is disposed in the annular space formed by the outer wall of the regulating pipe column and the well wall, and the flow regulating filter is provided with a collecting hole and a collecting cavity, and the collecting cavity is also called a diversion layer, the set
  • the flow hole is disposed on the inner side of the collecting cavity, and is used for the formation fluid or the injection fluid to flow inside and outside the flow regulating filter; the inner side of the collecting hole is provided with a flow regulating device for regulating the formation fluid or injecting the fluid from The passage of the manifold.
  • the invention is used for regulating the flow state of a certain section of a reservoir; compared with the conventional packer method, the number of the pack sections can be greatly increased, the section of the pack is more refined, and the layered injection and production are layered.
  • the control accuracy of downhole production such as testing, plugging and profile control is improved, especially for the development of heterogeneous and multi-layer reservoirs, and other occasions where subdivision sections are required to regulate flow.
  • the porous medium described in the patent is filled in the space between the flow regulating filter and the well wall, and functions to prevent axial turbulence of the fluid, that is, to some extent, it is a packing function, which is what we propose now. Anti-turbulence and sealing particles in the production section of oil and gas wells.
  • the porous medium is a loose medium or a non-loose porous medium or a combination thereof.
  • the loose medium is formed by stacking sand or gravel particles or ceramic particles or plastic particles or a combination thereof.
  • the non-loose porous shield is a cemented medium body formed of a fibrous body or a granular cement or a consolidated porous cement or porous plastic or a combination thereof.
  • the porous medium has a permeability of 300 ⁇ m 2 -10 ⁇ 5 ⁇ 2 .
  • the patent discloses a horizontal injection well completion structure with flow control function, including a well wall and a flow control filter.
  • the well wall is composed of an ascending section and a horizontal section, and the flow control filter is located in the horizontal section of the well wall and Fixedly connected to the well wall, the cavity between the flow control filter and the well wall is filled with vitreous hollow particles.
  • the vitreous hollow particles described in this patent are the anti-mite packing media for oil and gas wells.
  • the patent also discloses that the glassy hollow particles have a filling degree of 80% to 100%.
  • the glassy hollow particles are hollow beads in fly ash formed after combustion or artificial hollow glass spheres.
  • the glassy hollow particles have a density of 0.5 1.8 g/cm 3 combat
  • the glassy hollow particles have a particle size of 30 ⁇ m to 1000 ⁇ m ⁇ .
  • the density of the actual hollow beads is mostly about 0.6g/cm 3 , which is about 0.4 from the density of water lg/cm 3 . Because the flow limit of the flow control filter is too small, the water flowing through the hollow beads is too small, most of them. In this case, the requirement to fill the hollow beads is still not met.
  • the pressure resistance of the hollow beads is poor. When the hollow beads are pressed, 50% of the hollow beads will be broken, and the hollow beads after the rupture will greatly increase the specific gravity. The broken hollow beads will seriously affect the anti-turbulence of the oil and gas well production section. Separation effect.
  • the applicant established a suitable experimental device and used a lot of media for filling and sealing experiments, such as filling and sealing experiments with quartz sand. During the experiment, the applicant found: Due to the limitation of the flow control device Flow, quartz sand and other particles are not filled, forming large gaps and gutters.
  • the materials sought need to meet the high temperature, high pressure and high strength extrusion force in the well. They also need oil and water resistance. In many cases, they also require strong acid resistance, and they also require stability from several years to ten years. There is also a need to facilitate the production of the desired particle size. Over the years, applicants have been working proficiently, and experiments have shown that most plastics do not meet the requirements of oil and gas wells for tamper-proof media.
  • the packing medium can not block the oil and gas well, otherwise the oil and gas well will not be liquidated and will be scrapped.
  • the permeability of the packing medium should not be too large or too small, so that the radial resistance is small and the axial resistance is large to prevent the formation fluid or the injection fluid from flowing along the axial direction of the oil and gas well while allowing the formation fluid. Or the purpose of injecting fluid along the radial direction of the oil and gas well. This requires the particle size to be within the required range.
  • the technical problem to be solved by the present invention is to overcome the defects of the anti-turbulence sealing particles of the existing packer or the production section, and provide an anti-turbulence sealing particle for the oil and gas well production section, which has flow control filtration in the oil and gas well.
  • it When it is filled, it can be filled with the granulating liquid into the space that needs to be sealed, and it is packed tightly and has almost no gutter.
  • the oil and gas well can be effectively separated into a plurality of relatively independent areas for oil and gas.
  • Well production to achieve the purpose of segmental flow control, facilitate flow segmentation management, and bring good results to oil and gas well production, such as improving oil and gas well production efficiency.
  • the Applicant proposes to use a granular material having a density close to that of a conventional carrier liquid as a turbulent flow-blocking particle to achieve the object of solving the above problems, because the packing medium and the carrier medium have similar densities, etc. In the nature, the packing medium is easy to achieve the purpose of packing.
  • the present invention adopts the following technical solutions:
  • the invention relates to an anti-turbulence sealing particle for a production section of an oil and gas well, wherein the anti-turbulence sealing particle is a high molecular polymer particle having an average particle diameter of 0.05-1.0 mm and a density of 0.8-1.4 g/cm 3 .
  • the turbulence prevention packing particles are high molecular polymer particles having an average particle diameter of 0.1 to 0.5 mm and a density of 0.94 to 1.06 g/cm 3 .
  • the turbulence preventing packer particles are polyethylene particles having an average particle diameter of 0.1 to 0.5 mm and a density of 0.90 to 0.98 g/cm 3 .
  • the polyethylene is a high density polyethylene.
  • the turbulent flow blocking particles are styrene and divinylbenzene crosslinked copolymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.96 to 1.06 g/cm 3 .
  • the turbulent barrier particles are polypropylene and polyvinyl chloride polymer particles having an average particle diameter of 0.05 to 1.0 mm and a density of 0.8 to 1.2 g/cm 3 .
  • the particles are spherical particles.
  • the invention also relates to a well completion method for an oil and gas well, the method comprising the steps of: (1) placing a flow control filter string into a production section of the drilled wellbore; (2) controlling the flow in the downhole
  • the annular outer space of the filter tube column is filled with anti-turbulence sealing particles, and the anti-turbulence sealing particles are a polymer having an average particle diameter of 0.05-1.0 mm and a true density of 0.8-1.4 g/cm 3 . Polymer particles.
  • the present invention relates to an oil recovery method comprising the steps of: (1) drilling a wellbore in a formation; (2) placing a flow control filter string into a production section of the drilled wellbore; (3) filling the turbulent flow-blocking particles in the annular space radially outside the flow-control filter column; (4) producing or injecting fluid in the formed completion,
  • the turbulence prevention packing particles are high molecular polymer particles having an average particle diameter of 0.05 to 1.0 mm and a true density of 0.8 to 1.4 g/cm 3 .
  • the particle density of the present invention is the true density of the particles, not the particle packing density.
  • the carrier medium in the oil and gas well is generally water or an aqueous solution, the density of water is 1 g/cm 3 , and the density of the aqueous solution for oil and gas wells is also about 1 g/cm 3 . Therefore, the present invention is selected to be close to the density of water or aqueous solution.
  • the anti-turbulence sealing particles are filled with water or an aqueous solution and filled in the space required for filling and sealing of the oil and gas well, and there is almost no gutter.
  • the oil and gas well can be effectively separated into a plurality of relatively independent areas for oil and gas well production, achieving the purpose of flow segmentation control, facilitating flow segmentation management, and bringing good effects to oil and gas well production, such as Improve the production efficiency of oil and gas wells.
  • a part of the water returns to the ground through the flow control filter, and a part of the water penetrates into the ground layer, so that the turbulent flow blocking particles are piled up to fill the sump, thereby achieving a good turbulence prevention effect.
  • the turbulent flow blocking particles filled in the annulus radially outside the flow control filter column allow fluid to penetrate radially along the oil and gas well.
  • the flow of fluid in the turbulent barrier particles is a percolation.
  • the magnitude of seepage resistance is proportional to the seepage path and inversely proportional to the seepage area. Since the shape of the filled turbulent-blocking particles is a long cylindrical shape, the wall thickness is thin, the cross-section is small, and the axial length is large, the flow resistance of the formation fluid in the turbulent-flow blocking particles along the axial direction of the oil and gas well is large; The radial flow area along the oil and gas well is large, the distance is short, and the flow resistance is small.
  • the flow resistance of several meters to several tens of meters along the axial direction of the oil and gas well is several hundred times or even thousands of times larger than the flow resistance of several centimeters along the radial flow of the oil and gas well, flowing along the axial direction of the oil and gas well and flowing radially along the oil and gas well.
  • the large difference in flow resistance results in the flow in the axial direction of the oil and gas well being much smaller than the flow in the radial direction of the oil and gas well under the same differential pressure.
  • the difference in axial and radial flow resistance of the particles not only ensures the smooth flow of the fluid to the radial flow along the oil and gas well, but also restricts the flow of the fluid along the axial direction of the oil and gas well, thereby preventing the turbulence from being blocked. Segmented flow control production purposes.
  • the anti-turbulence sealing particles of the oil and gas well production section of the invention can be applied to horizontal wells, vertical wells and inclined wells, and can be filled in the annulus outside the downhole control flow filter, or can be filled in the underground well.
  • the space connecting the annulus outside the flow control filter functions to prevent turbulence and segregation, and the flow control filter is used to achieve the purpose of segmented flow control production.
  • Fig. 1 is a structural schematic view showing the turbulence-blocking particles of the oil and gas well production section used in the completion structure of the horizontal well in the oil and gas well production section of the present invention.
  • Fig. 2 is a structural schematic view showing the turbulence-blocking particles of the oil and gas well production section of the present invention used in the completion structure of the vertical well. detailed description '
  • the invention relates to an anti-turbulence sealing particle for a production section of an oil and gas well, wherein the anti-turbulence sealing particle is a high-density polyethylene particle having an average particle diameter of 0.10-0.15 mm and a density of 0.92-0.96 g/cm 3 .
  • the utility model relates to an anti-turbulence sealing particle for a production section of an oil and gas well, wherein the anti-turbulence sealing particles are polypropylene and polyvinyl chloride having an average particle diameter of 0.05-0.10 mm and a density of 0.97-1.10 g/cm 3 .
  • Molecular polymer spherical particles are polypropylene and polyvinyl chloride having an average particle diameter of 0.05-0.10 mm and a density of 0.97-1.10 g/cm 3 .
  • the invention relates to an anti-turbulence sealing particle for a production section of an oil and gas well, wherein the anti-turbulence sealing particle is a polypropylene having an average particle diameter of 0.3-0.7 mm and a density of 1.0-1.08 g/cm 3 and Butadiene polymer spherical particles.
  • the invention relates to an anti-turbulence sealing particle for a production section of an oil and gas well, wherein the anti-turbulence sealing particle is a polymer of polypropylene and butadiene having an average particle diameter of 0.3-0.5 mm and a density of 1.2 g/cm 3 . Spherical particles.
  • the utility model relates to an anti-turbulence sealing particle for a production section of an oil and gas well, wherein the anti-turbulence sealing particle is a styrene and a divinylbenzene cross-linkage having an average particle diameter of 0.3-0.5 mm and a density of 0.96-1.06 g/cm 3 . Copolymer particles.
  • FIG. 1 an overall structural diagram of an oil and gas well completion system for applying a high-density polyethylene particle-separated, subdivided section regulating formation fluid or injecting fluid according to Embodiment 1 of the present invention.
  • the method includes: a well wall 1 and a flow control filter column 2 and a suspension packer 4 for suspending the flow control filter column, first sending the flow control filter column to the downhole production section, the wall of the well Forming an annulus between the pipe and the flow control filter column, and then carrying the high density polyethylene particles described in Example 1 into the annulus outside the filter for accumulation with water or an aqueous solution, and a part of the water flows into the column of the flow control filter.
  • a filter string is a column in which one or more filters are connected in series.
  • the anti-turbulence sealing particles of the oil and gas well production section of the present invention can also be applied to vertical wells and inclined wells. as shown in picture 2.
  • reference numeral 1 indicates a well wall
  • Reference numeral 2 denotes a flow control filter column
  • reference numeral 4 denotes a suspension packer that suspends the flow control filter string
  • reference numeral 3 denotes a ring filled between the well wall and the flow control filter column The anti-turbulence inside the air seals the particle ring.
  • the production section of the present invention is a generalized production section in which there may be sections which are impermeable in the length of the production section, such as compartments, interlayers, sections which are not perforated after casing cementing.
  • the flow control filter column described in the present invention has a filter section and a blind section, and the filter section and the blind section are phase-to-phase.
  • a blind section is a tube with no holes in the wall.
  • the turbulent flow blocking outside the blind section acts as a primary anti-axial turbulence.
  • the blind segment is provided in two aspects. On the one hand, in practice, each filter has a filter segment and a blind segment.
  • the blind segment has a thread at both ends of the filter, and when the well is screwed to the filter, the blind segment is The place of the tongs. In another case, the blind segment is added between the two filters.
  • the flow control filter tube string is formed by connecting a plurality of flow control filters in series.
  • the turbulence preventing packer particles of the present invention are preferably spherical.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Filtering Materials (AREA)
  • Sealing Material Composition (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

油气井生产段防窜流封隔颗粒、 使用 这种颗粒的完井方法及采油方法 技术领域
本发明涉及石油和天然气开采领域, 具体地说, 涉及一种油 气井生产段防窜流封隔颗粒, 以及使用这种防窜流封隔颗粒的完 井方法和采油方法。 这里的油气井是指油气田开发中广义的生产 井, 包括油井、 气井天然气井、 注入井等。
背景技术
在油气井生产过程中, 无论是直井还是水平井, 由于油藏的 非均质特性等原因, 都需要将油气井封隔成多个相对独立的区域 来进行生产。 这里的油气井生产包括油气井生产过程中流体的产 出和注入, 如石油开采, 或者, 如通过油气井向地层注入酸液进 行酸化等作业。
将油气井封隔成多个相对独立的区域来进行生产通常采用封 隔器将油气井的生产段沿油气井轴向分隔成独立的流动单元、 并 在每个流动单元安装控制流量的装置, 如控制流量的装置可以是 控流过滤器等。
本申请人长期致力于油气井生产^:的控流和封隔的研究, 发 现使用封隔器存在很多问题,申请人于 2002年 12月 23日申请了 一项发明专利, 专利号为 02158107.X, 发明名称为"细分区段调 控地层流体或注入流体流动的油气井完井系统"。 (说明: 该专利 的申请人为北京海能海特石油科技发展有限公司, 现北京海能海 特石油科技发展有限公司已并入安东石油技术(集团 )有限公司。) 该专利详细地分析了传统的封隔器的缺陷, 在此基础上, 公开了 一种细分区段调控地层流体或注入流体流动的油气井完井系统。 所述完井系统至少由设在油气井内的调流管柱和孔隙介质组成; 其中一种调流管柱是具有调控流量装置的过滤器。 孔隙介质设在 调流管柱外壁和井壁所形成的环形空间内, 调流过滤器上设有集 流孔和集流空腔, (集流空腔也称为导流层), 该集流孔设在集流 空腔的内侧, 用于地层流体或注入流体在调流过滤器的内、 外侧 流动; 该集流孔的内侧设有流量调控装置, 用于调控地层流体或 注入流体从该集流孔的通过。 该发明用于对油藏不同位置进行定 区段流动状态调控; 与传统的封隔器法相比, 封隔区段的数量可 大幅度增加, 封隔的区段更加细化, 分层注采、 测试、 封堵和调 剖等井下生产的控制精度提高, 特别适用于非均质、 多产层油藏 的开发, 以及其他需要细分井下区段调控流量的场合。
该专利中所述的孔隙介质填充于调流过滤器与井壁之间的空 间, 起到阻止流体轴向窜流的作用, 也就是一定程度上起到封隔 作用, 就是我们现在所提出的油气井生产段防窜流封隔颗粒。
该专利还公开了所述孔隙介质为松散介质或非松散的多孔介 质或其结合。 所述的松散介质为地层砂或砾石颗粒或陶瓷颗粒或 塑料颗粒或其组合堆积而成。 所述的非松散的多孔介盾为纤维体 或颗粒胶结体或固结的多孔水泥或多孔塑料或其组合形成的胶结 介质体。 所述的孔隙介质的渗透率为 300μιη2-10·5μιη2
实际上, 在当时的条件下, 该专利中只是对孔隙介质的选择 提出了一种概念性设想而并没有做出具体的选择, 从该专利的 3 个具体实施例也可以看出这一点, 尤其是该专利中虽然提及塑料 颗粒及多孔塑料可以作为孔隙介质, 但由于塑料的种类繁多、 其 性能差别很大, 塑料加工工艺是否能够满足油气井对生产段防窜 流封隔颗粒的性能需求等等, 该专利中均未提及。
申请人于 2008年 8月 12 日, 提出了一项新专利, 专利号为 200810118109.X,专利名称为"一种具有控流功能的水平注采井完 井结构",该专利对申请人在 2002年到 2008年之间的实验做了一 个总结, 详细地分析了现有水平井中环形封隔器的缺陷, 及以砂 子或陶粒作为防窜封隔介质的缺陷, 由于砂子或陶粒密度大, 在 水平注采井中由于控流装置的限流作用, 充填流量小填充砂子或 陶粒难度大、 存在填充不实的问题、 达不到防止水或气的轴向窜 流的目的。
该专利公开了一种具有控流功能的水平注采井完井结构, 包 括井壁和控流过滤器, 井壁由上升段和水平段组成, 控流过滤器 位于井壁的水平段内并与井壁固定连接, 控流过滤器与井壁之间 的空腔内充满有玻璃质的空心颗粒。 该专利中所述的玻璃质的空 心颗粒即为油气井用防窜封隔介质, 该专利还公开了玻璃质的空 心颗粒的填充度为 80%到 100%。 玻璃质的空心颗粒为燃烧后形 成的粉煤灰中的空心珠或者为人造空心玻璃球。 玻璃质的空心颗 粒的密度为 0.5 1.8 g/cm3„ 玻璃质的空心颗粒的粒径为 30μηι-1000μιη。
由于封隔颗粒对密度和粒径都有着较高的要求, 人造空心玻 璃球的造价太大, 难以应用于实际中。 因而, 本申请人随后对粉 煤灰中的空心珠作为封隔介质做了大量的实验, 实验发现用粉煤 灰中的空心珠作为封隔介质仍存在如下问题:
1、 实际空心珠的密度大多为 0.6g/cm3左右, 和水的密度 lg/cm3相差约 0.4, 由于控流过滤器限流量太小,造成携带空心珠 的水流动力太小, 大多数情况下仍然不能够满足让空心珠充填满 的要求。
2、 空心珠的耐压性差, 空心珠在打压时, 会造成 50%左右 的空心珠破裂, 破裂后的空心珠比重大大增加, 这样破裂的空心 珠会严重地影响油气井生产段防窜流封隔效果。
3、如果要求空心珠的耐压性达到要求,空心珠的粒径就太小, 现实中这种空心珠很少, 难以满足大多数情况的要求。 申请人为对上述构思进行验证, 建立了较适宜的实验装置, 并用很多介质进行充填封隔实验, 如用石英砂等进行充填封隔实 验, 在实验过程中申请人发现: 由于控流装置的限流作用, 石英 砂等颗粒充填不实, 形成很大的空缺和窜槽。
寻求的材料需要满足井下高温、 高压、 高强度挤压力的作用, 还需要耐油、 耐水, 很多情况下还要求耐强酸, 而且还要求具有 数年到十几年的稳定性。而且还需要便于制造出达到要求的粒径。 多年来, 申请人一直在坚持不懈地努力着, 实验证明绝大多数塑 料满足不了油气井对防窜封隔介质的要求。
由于油气井生产的特点, 其对封隔介质还有其它苛刻要求: 一方面, 封隔介质不能堵塞油气井, 否则会造成油气井不产液而 报废。 另一方面, 封隔介质的渗透率不能太大、 又不能太小, 这 样才能达到径向阻力小、 轴向阻力大而达到阻碍地层流体或注入 流体沿油气井轴向流动、 同时允许地层流体或注入流体沿油气井 径向渗流的目的。 这就要求粒径在需要的范围之内。 发明内容
本发明需要解决的技术问题就在于克服现有封隔器或生产段 防窜流封隔颗粒存在的缺陷, 提供一种油气井生产段防窜流封隔 颗粒, 它在油气井存在控流过滤器时, 能够被携粒液填充到需要 封隔的空间内, 并且充填紧实, 几乎没有窜槽, 结合控流过滤器 可有效地将油气井封隔成多个相对独立的区域来进行油气井生 产, 达到分段流量控制目的, 便于流量分段管理, 对油气井生产 带来好的效果, 如提高油气井生产效率等。 而且, 即使如果有窜 槽,生产中的很小流量的窜流就会带动防窜流封隔颗粒产生移动, 往窜槽方向堆积从而堵塞窜槽, 从而达到很好的控流、 防窜流封 隔效果。 在此, 申请人提出采用与常用携载液密度接近的颗粒材料来 作为防窜流封隔颗粒的构思, 以实现解决上述问题的目的, 因为 当封隔介质和携带介质具有相接近的密度等性质时, 封隔介质就 很容易地实现封隔目的。
为解决上述问题, 本发明采用如下技术方案:
本发明一种油气井生产段防窜流封隔颗粒, 所述防窜流封隔 颗粒为平均粒径为 0.05-1.0mm、 密度为 0.8-1.4 g/cm3的高分子聚 合物颗粒。
优选地, 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 密 度为 0.94-1.06 g/cm3的高分子聚合物颗粒。
优选地, 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 密 度为 0.90-0.98g/cm3的聚乙烯颗粒。
进一步优选地, 所述聚乙烯为高密度聚乙烯。
或者, 所述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、 密度 为 0.96-1.06g/cm3的苯乙烯和二乙烯苯交联共聚物颗粒。
或者, 所述防窜流封隔颗粒为平均粒径为 0.05-1.0 mm、 密度 为 0.8-1.2 g/cm3的聚丙烯和聚氯乙烯高分子聚合物颗粒。
优选的, 所述颗粒为球形颗粒。
本发明还涉及一种油气井的完井方法,该方法包括下述步骤: ( 1 )将控流过滤器管柱下入所钻出的井眼的生产段中; ( 2 )在下 入的控流过滤器管柱径向外部的环空内充填防窜流封隔颗粒, 所 述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、真实密度为 0.8-1.4 g/cm3的高分子聚合物颗粒。
此外, 本发明还涉及一种采油方法, 该方法包括下述步骤: ( 1 )在地层中钻出井眼; ( 2 )将控流过滤器管柱下入所钻出的井 眼的生产段中; (3 )在下入的控流过滤器管柱径向外部的环空内 充填防窜流封隔颗粒; (4 )在所形成的完井中采出或注入流体, 所述防窜流封隔颗粒为平均粒径为 0.05-1.0mm、 真实密度为 0.8-1.4 g/cm3的高分子聚合物颗粒。
本发明所述颗粒密度为颗粒的真实密度,不是颗粒堆积密度。 油气井中的携带介质一般为水或水溶液, 水的密度为 1 g/cm3, 一般油气井用水溶液的密度也是在 1 g/cm3左右, 因而, 本发明选择与水或水溶液的密度相接近的防窜流封隔颗粒, 由水 或水溶液携带在油气井所需填充封隔的空间内充填紧实, 几乎没 有窜槽。 结合控流过滤器可有效地将油气井封隔成多个相对独立 的区域来进行油气井生产, 达到流量分段控制目的, 便于流量分 段管理,对油气井生产带来好的效果,如提高油气井生产效率等。 充填过程中, 一部分水通过控流过滤器返回地面, 一部分水渗入 地层, 这样, 防窜流封隔颗粒堆积满窜槽, 从而达到很好的防窜 流封隔效果。
而且, 生产后即使如果有窜槽, 很小流量的轴向窜流就会带 动防窜流封隔颗粒产生移动, 往窜槽方向堆积并堵塞窜槽, 结合 控流过滤器实现油气井控流生产目的。
填充在控流过滤器管柱径向外部的环空内的防窜流封隔颗粒 使流体可以沿着油气井径向渗透。 流体在防窜流封隔颗粒中的流 动是一种渗流。 根据渗流力学原理, 渗流阻力的大小与渗流路程 成正比, 与渗流面积成反比。 由于填充防窜流封隔颗粒的形状为 长圆筒型, 壁厚薄、 横断面小、 轴向长度大, 地层流体在防窜流 封隔颗粒中沿油气井轴向窜流的流动阻力很大; 而沿油气井径向 流动面积大、 距离短、 流动阻力很小。 沿油气井轴向流动数米至 数十米的流动阻力比沿油气井径向流动几厘米的流动阻力要大几 百倍甚至数千倍, 沿油气井轴向流动和沿油气井径向流动的流动 阻力的巨大差异, 导致在相同压差作用下, 沿油气井轴向流动的 流量远远小于沿油气井径向流动的流量。 这样利用防窜流封隔颗 粒在轴向和径向流动阻力的差异性, 既能保证流体向沿油气井径 向流动的畅通, 又限制了流体沿油气井轴向的流动, 起到防窜流 封隔的作用, 达到分段控流生产目的。
本发明所述油气井生产段防窜流封隔颗粒既可以应用于水平 井, 也可以应用于直井、 斜井中, 可以填充于井下控流过滤器外 的环空内, 也可以填充于和井下控流过滤器外的环空相连通的空 间, 起到防窜流封隔的作用, 配合控流过滤器达到分段控流生产 的目的。 附图说明
图 1为本发明所迷油气井生产段防窜流封隔颗粒用于水平井 的完井结构中的结构示意图。
图 2为本发明所述油气井生产段防窜流封隔颗粒用于直井的 完井结构中的结构示意图。 具体实施方式 '
实施例 1
本发明一种油气井生产段防窜流封隔颗粒, 所述防窜流封隔 颗粒为平均粒径为 0.10-0.15mm、密度为 0.92-0.96g/cm3的高密度 聚乙烯颗粒。
实施例 2
本发明一种油气井生产段防窜流封隔颗粒, 所述防窜流封隔 颗粒为平均粒径为 0.05-0.10mm、密度为 0.97-1.10g/cm3的聚丙烯 和聚氯乙烯高分子聚合物球形颗粒。
实施例 3
本发明一种油气井生产段防窜流封隔颗粒, 所述防窜流封隔 颗粒为平均粒径为 0.3-0.7mm、 密度为 1.0-1.08g/cm3的聚丙烯和 丁二烯高分子聚合物球形颗粒。
实施例 4
本发明一种油气井生产段防窜流封隔颗粒, 所述防窜流封隔 颗粒为平均粒径为 0.3-0.5mm、 密度为 1.2g/cm3的聚丙烯和丁二 烯高分子聚合物球形颗粒。
实施例 5
本发明一种油气井生产段防窜流封隔颗粒, 所述防窜流封隔 颗粒为平均粒径为 0.3-0.5mm、密度为 0.96-1.06g/cm3的苯乙烯和 二乙烯苯交联共聚物颗粒。
实施例 6 应用例
如图 1所示, 为应用本发明实施例 1所述高密度聚乙烯颗粒 封隔的、 细分区段调控地层流体或注入流体的油气井完井系统的 整体结构示意图。
如图 1所示, 包括: 井壁 1和控流过滤器管柱 2及悬挂控流 过滤器管柱的悬挂封隔器 4, 先将控流过滤器管柱送到井下生产 段, 井壁和控流过滤器管柱之间形成环空, 然后用水或水溶液将 实施例 1所述高密度聚乙烯颗粒携带到过滤器外的环空内进行堆 积, 一部分水流入控流过滤器管柱内带到地面, 一部分水渗入地 层, 高密度聚乙烯颗粒在井壁和控流过滤器管柱之间形成的环空 内形成比较紧实的防窜流封隔颗粒环 3, 将悬挂封隔器座封, 防 止防窜流封隔颗粒随生产时流体的流动流出悬挂封隔器以外。 防 窜流封隔颗粒环 3用于阻碍地层流体或注入流体在该环形空间内 沿油气井轴向流动, 同时允许地层流体或注入流体沿油气井径向 渗流。 过滤器管柱是指有一个或多于一个的过滤器串接而成的管 柱。
同样, 本发明所述油气井生产段防窜流封隔颗粒也可以应用 于直井、 斜井中。 如图 2所示。 图 2中, 附图标记 1指示井壁, 附图标记 2指示控流过滤器管柱, 附图标记 4指示悬挂控流过滤 器管柱的悬挂封隔器, 附图标记 3指示填充于井壁和控流过滤器 管柱之间的环空内的防窜流封隔颗粒环。
本申请人通过实验装置实验暴露问题,找到解决问题的方法, 验证解决的效果, 达到生产要求。 本申请人的实验是一个艰难而 漫长的过程, 自 2002年至今, 一直在坚持不懈地努力着, 本申请 人在实验过程中所遇到的问题不是众所周知的问题, 找到的可行 的方法也不是众所周知的方法。 目前国内外就申请人一家在做、 并一直坚持着做这方面的研究, 期求寻找到最佳油气井生产段防 窜流封隔颗粒。
本发明所述的生产段是一种广义的生产段, 生产段的长度范 围中可能存在不能流动的区段, 如隔层, 夹层, 套管固井后未射 孔的区段。
本发明中所述的控流过滤器管柱上有过滤段和盲段, 过滤段和 盲段是相间的。 盲段是壁面上没有孔的管子。 盲段外的防窜流封隔 颗粒环起主要的防轴向窜流的作用。 盲段的提供来源于两个方面, 一方面实际中每一个过滤器就有过滤段和盲段, 盲段在过滤器两端 并带有丝扣, 井上拧扣连接过滤器时, 盲段是卡钳子的地方。 另一 种情况盲段是在两过滤器之间加接的。对于控流过滤器管柱较长的 情况, 控流过滤器管柱是多个控流过滤器串接而成的。
本发明所述的防窜流封隔颗粒优选为球形。
最后应说明的是: 显然, 上述实施例仅仅是为清楚地说明本 发明所作的举例, 而并非对实施方式的限定。 对于所属领域的普 通技术人员来说, 在上述说明的基础上还可以做出其它不同形式 的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而 由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围 之中。

Claims

权 利 要 求
1. 一种油气井生产段防窜流封隔颗粒, 其特征在于: 所述防 窜流封隔颗粒为平均粒径为 0.05-1.0mm、 真实密度为 0.8-1.4 g/cm3的高分子聚合物颗粒。
2. 如权利要求 1所述的油气井生产段防窜流封隔颗粒, 其特 征在于: 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 真实密 度为 0.94-1.06 g/cm3的高分子聚合物颗粒。
3. 如权利要求 1所述的油气井生产段防窜流封隔颗粒, 其特 征在于: 所述防窜流封隔颗粒为平均粒径为 0.1-0.5mm、 真实密 度为 0.90-0.98g/cm3的聚乙烯颗粒。
4. 如权利要求 3所述的油气井生产段防窜流封隔颗粒, 其特 征在于: 所述聚乙烯为高密度聚乙烯。
5. 如权利要求 1所述的油气井生产段防窜流封隔颗粒, 其特 征在于: 所述防窜流封隔颗粒为下述材料颗粒之一: 1 )平均粒径 为 0.05-1.0mm、 真实密度为 0.96-1.06g/cm3的苯乙烯和二乙烯苯 交联共聚物颗粒; 2 )平均粒径为 0.05-1.0 mm、真实密度为 0.8-1.2 g/cm3的聚丙烯和氯乙烯高分子聚合物颗粒; 3 ) 平均粒径为 0.3-0.7mm、 真实密度为 1.0-1.08g/cm3的聚丙烯和丁二烯高分子 聚合物颗粒。
6. 如权利要求 1-5之任一所述的油气井生产段防窜流封隔颗 粒, 其特征在于: 所述颗粒为球形颗粒。
7. 一种油气井的完井方法, 该方法包括下述步骤: (1 ) 将控 流过滤器管柱下入所钻出的井眼的生产段中; (2 )在下入的控流 过滤器管柱径向外部的环空内充填防窜流封隔颗粒, 所述防窜流 封隔颗粒为平均粒径为 0.05-1.0mm、 真实密度为 0.8-1.4 g/cm3的 高分子聚合物颗粒。
8. 如权利要求 7所述的完井方法, 其特征在于: 所述防窜流 封隔颗粒为平均粒径为 0.1-0.5mm、 真实密度为 0.94-1.06 g/cm3 的高分子聚合物颗粒。
9. 如权利要求 7所述的完井方法, 其特征在于: 所述防窜流 封隔颗粒为平均粒径为 0.1-0.5mm、 真实密度为 0.90-0.98g/cm3 的聚乙烯颗粒。
10. 如权利要求 9所述的完井方法, 其特征在于: 所述聚乙烯 为高密度聚乙烯。
11. 如权利要求 7所述的完井方法, 其特征在于: 所述防窜流 封隔颗粒为下述材料颗粒之一: 1 ) 平均粒径为 0.05-1.0mm、 真 实密度为 0.96-1.06g/cm3的苯乙烯和二乙烯苯交联共聚物颗粒; 2 ) 平均粒径为 0.05-1.0 mm、真实密度为 0.8-1.2 g/cm3的聚丙烯和氯 乙烯高分子聚合物颗粒; 3 )平均粒径为 0.3-0.7mm、 真实密度为 1.0-1.08g/cm3的聚丙烯和丁二烯高分子聚合物颗粒。
12. 如权利要求 7 - 11之任一所述的完井方法, 其特征在于: 所述颗粒为球形。
13. 一种采油方法, 该方法包括下述步骤: (1 )在地层中钻出 井眼; (2 )将控流过滤器管柱下入所钴出的井眼的生产段中; (3 ) 在下入的控流过滤器管柱径向外部的环空内充填封隔颗粒; (4 ) 在所形成的完井中采出或注入流体, 所述防窜流封隔颗粒为平均 粒径为 0.05-1.0mm、 真实密度为 0.8-1.4 g/cm3的高分子聚合物颗 粒。
14. 如权利要求 13所述的采油方法, 其特征在于: 所述防窜 流封隔颗粒为平均粒径为 0.1-0.5mm、真实密度为 0.94-1.06 g/cm3 的高分子聚合物颗粒。
15. 如权利要求 13所述的采油方法, 其特征在于: 所述防窜 流封隔颗粒为平均粒径为 0.1-0.5mm、 真实密度为 0.90-0.98g/cm3 的聚乙烯颗粒。
16. 如权利要求 15所述的采油方法, 其特征在于: 所述聚乙 烯为高密度聚乙烯。
17. 如权利要求 13所述的采油方法, 其特征在于: 所述防窜 流封隔颗粒为下述材料颗粒之一: 1 ) 平均粒径为 0.05-1.0mm、 真实密度为 0.96-1.06g/cm3的苯乙烯和二乙烯苯交联共聚物颗粒; 2 ) 平均粒径为 0.05-1.0 mm、 真实密度为 0.8-1.2 g/cm3的聚丙烯 和氯乙烯高分子聚合物颗粒; 3 )平均粒径为 0.3-0.7mm、 真实密 度为 1.0-1.08g/cm3的聚丙烯和丁二烯高分子聚合物颗粒。
18. 如权利要求 13-17之任一所述的采油方法, 其特征在于: 所述防窜流封隔颗粒为球形颗粒。
PCT/CN2010/002014 2009-12-11 2010-12-10 油气井生产段防窜流封隔颗粒、使用这种颗粒的完井方法及采油方法 WO2011069339A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/514,494 US9080426B2 (en) 2009-12-11 2010-12-10 Anti-channeling pack-off particles used in a production section of an oil-gas well, and completion method and production method using such particles
NO20120797A NO347414B1 (no) 2009-12-11 2010-12-10 Antikanaliserings-tetningspartikler anvendt i en produksjonsseksjon i en olje-/gassbrønn, og fremgangsmåte for komplettering og fremgangsmåte for produksjon ved anvendelse av slike partikler
CA 2783389 CA2783389C (en) 2009-12-11 2010-12-10 Anti-channeling pack-off particles used in a production section of an oil-gas well, and completion method and production method using such particles
GB1211952.5A GB2489359B (en) 2009-12-11 2010-12-10 Anti-Channeling pack-off particles used in a production section of an oil-gas well, completion method and production method using such particles.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102507912A CN101705802B (zh) 2009-12-11 2009-12-11 一种油气井生产段防窜流封隔颗粒
CN200910250791.2 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011069339A1 true WO2011069339A1 (zh) 2011-06-16

Family

ID=42376051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002014 WO2011069339A1 (zh) 2009-12-11 2010-12-10 油气井生产段防窜流封隔颗粒、使用这种颗粒的完井方法及采油方法

Country Status (6)

Country Link
US (1) US9080426B2 (zh)
CN (1) CN101705802B (zh)
CA (1) CA2783389C (zh)
GB (1) GB2489359B (zh)
NO (1) NO347414B1 (zh)
WO (1) WO2011069339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898414B2 (en) 2019-01-29 2024-02-13 Anton Bailin Oilfield Technology (Beijing) Co., Ltd Method for filling oil-gas well of fractured oil-gas reservoir with isolation particles to reduce water and increase oil production

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705808B (zh) * 2009-12-11 2012-05-30 安东石油技术(集团)有限公司 套管外存在窜槽的油气井的控流过滤器管柱分段控流方法
CN101705802B (zh) * 2009-12-11 2013-05-15 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
CN102689750B (zh) * 2012-06-11 2014-03-19 河北可耐特石油设备有限公司 双层储油罐及其制作方法
CN103726813B (zh) * 2014-01-13 2016-05-11 安东柏林石油科技(北京)有限公司 油气井过滤器管柱外充填环中建立封隔的方法
CN107384341A (zh) * 2017-07-24 2017-11-24 中国石油化工股份有限公司 一种油气井封隔颗粒及其制造方法
CN107880862B (zh) * 2017-11-07 2018-08-10 西南石油大学 一种提高承压能力的封堵剂及其制备方法
CN108266173B (zh) * 2018-01-22 2020-12-11 中国石油化工股份有限公司 一种分段改造完井的方法
CN108442895B (zh) * 2018-02-09 2022-04-12 安东柏林石油科技(北京)有限公司 一种强漏失油气井冲砂方法
CN112012703B (zh) * 2019-05-29 2022-08-30 中国海洋石油集团有限公司 逐层定点的流体注入装置及注入方法
CN110173230A (zh) * 2019-06-06 2019-08-27 安东柏林石油科技(北京)有限公司 防止泥岩层泥产出或窜流的人工井壁、形成方法及完井结构
CN110242264B (zh) * 2019-07-11 2024-04-30 安东柏林石油科技(北京)有限公司 一种用于同井注采的封隔方法及完井结构
CN111119787A (zh) * 2019-11-28 2020-05-08 中国海洋石油集团有限公司 一种水平井地层防窜流控水完井结构
CN113833437A (zh) * 2021-09-24 2021-12-24 安东柏林石油科技(北京)有限公司 一种提高井下环空中轴向防窜流能力的方法及结构
CN113756743B (zh) * 2021-09-29 2023-03-31 中海石油(中国)有限公司 一种复杂温度压力条件下水泥环微观结构实验装置及测试方法
CN117489296B (zh) * 2023-12-29 2024-03-22 克拉玛依市白碱滩区(克拉玛依高新区)石油工程现场(中试)实验室 一种井间防窜方法及模拟实验装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510249A (zh) * 2002-12-23 2004-07-07 北京海能海特石油科技发展有限公司 细分区段调控地层流体或注入流体流动的油气井完井系统
CN1918361A (zh) * 2004-02-12 2007-02-21 国际壳牌研究有限公司 抑制到或从井筒的流体连通
US20080142222A1 (en) * 2006-12-18 2008-06-19 Paul Howard Differential Filters for Stopping Water during Oil Production
CN101705808A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 套管外存在窜槽的油气井的控流过滤器管柱分段控流方法
CN101705810A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN101705802A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
CN101705809A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在防砂管油气井的控流过滤器管柱分段控流方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1379815A (en) 1920-07-30 1921-05-31 Hall James Robert Oil-well screen and liner cleaner
US2018283A (en) 1933-12-09 1935-10-22 Schweitzer Method and means for well development
US3460616A (en) 1967-07-26 1969-08-12 Dresser Ind Retrievable packer
US4733729A (en) 1986-09-08 1988-03-29 Dowell Schlumberger Incorporated Matched particle/liquid density well packing technique
US4793411A (en) 1988-06-29 1988-12-27 Halliburton Company Retrievable gravel packer and retrieving tool
US5623993A (en) 1992-08-07 1997-04-29 Baker Hughes Incorporated Method and apparatus for sealing and transfering force in a wellbore
GB2269840B (en) 1992-08-19 1996-05-01 Solinst Canada Ltd Injecting particulate material into boreholes
US5404951A (en) 1993-07-07 1995-04-11 Atlantic Richfield Company Well treatment with artificial matrix and gel composition
US5913365A (en) 1997-04-08 1999-06-22 Mobil Oil Corporation Method for removing a gravel pack screen
AU738914C (en) 1997-10-16 2002-04-11 Halliburton Energy Services, Inc. Methods and apparatus for completing wells in unconsolidated subterranean zones
US7527095B2 (en) 2003-12-11 2009-05-05 Shell Oil Company Method of creating a zonal isolation in an underground wellbore
US7845409B2 (en) * 2005-12-28 2010-12-07 3M Innovative Properties Company Low density proppant particles and use thereof
US20080041588A1 (en) * 2006-08-21 2008-02-21 Richards William M Inflow Control Device with Fluid Loss and Gas Production Controls
US7624802B2 (en) * 2007-03-22 2009-12-01 Hexion Specialty Chemicals, Inc. Low temperature coated particles for use as proppants or in gravel packs, methods for making and using the same
CN101338660B (zh) 2008-08-12 2013-02-13 安东石油技术(集团)有限公司 一种具有控流功能的水平注采井完井结构
CN101701517B (zh) 2009-12-11 2012-09-05 安东石油技术(集团)有限公司 一种从便于将井下过滤器管柱拔出的油气井中提出井下过滤器管柱的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510249A (zh) * 2002-12-23 2004-07-07 北京海能海特石油科技发展有限公司 细分区段调控地层流体或注入流体流动的油气井完井系统
CN1918361A (zh) * 2004-02-12 2007-02-21 国际壳牌研究有限公司 抑制到或从井筒的流体连通
US20080142222A1 (en) * 2006-12-18 2008-06-19 Paul Howard Differential Filters for Stopping Water during Oil Production
CN101705808A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 套管外存在窜槽的油气井的控流过滤器管柱分段控流方法
CN101705810A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在多孔管的油气井的控流过滤器管柱分段控流方法
CN101705802A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种油气井生产段防窜流封隔颗粒
CN101705809A (zh) * 2009-12-11 2010-05-12 安东石油技术(集团)有限公司 一种存在防砂管油气井的控流过滤器管柱分段控流方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898414B2 (en) 2019-01-29 2024-02-13 Anton Bailin Oilfield Technology (Beijing) Co., Ltd Method for filling oil-gas well of fractured oil-gas reservoir with isolation particles to reduce water and increase oil production

Also Published As

Publication number Publication date
GB2489359B (en) 2016-08-31
CN101705802B (zh) 2013-05-15
US20120247762A1 (en) 2012-10-04
NO20120797A1 (no) 2012-09-10
US9080426B2 (en) 2015-07-14
NO347414B1 (no) 2023-10-23
CA2783389A1 (en) 2011-06-16
CA2783389C (en) 2014-04-29
GB201211952D0 (en) 2012-08-15
GB2489359A (en) 2012-09-26
CN101705802A (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
WO2011069339A1 (zh) 油气井生产段防窜流封隔颗粒、使用这种颗粒的完井方法及采油方法
CA2783503C (en) Segmental flow-control method for flow-control filter string in oil-gas well and oil-gas well structure
US9664014B2 (en) Method and system for segmental flow control in oil-gas well
CA2783502C (en) Segmented flow-control method and structure for oil-gas wells
CN110242264B (zh) 一种用于同井注采的封隔方法及完井结构
CN210685949U (zh) 一种用于同井注采的完井结构
CN103874827A (zh) 用于井眼的流体过滤装置和完成井眼的方法
US20200095851A1 (en) Inflow Control Device, and Method for Completing a Wellbore to Decrease Water Inflow
CA2830621C (en) Inwardly swelling seal
CN215672154U (zh) 注水井
CN103867181B (zh) 利用半渗封隔环进行分段控流的方法
CN109464827B (zh) 一种油水分离装置及油水分离装置管串
CN110424923A (zh) 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构
CN113266303B (zh) 提高连续封隔体沿井筒轴向封隔效果的封隔器、方法及完井结构
CN113833437A (zh) 一种提高井下环空中轴向防窜流能力的方法及结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2783389

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13514494

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1211952

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20101210

WWE Wipo information: entry into national phase

Ref document number: 1211952.5

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 10835376

Country of ref document: EP

Kind code of ref document: A1