WO2011068080A1 - Clock signal error detection system - Google Patents

Clock signal error detection system Download PDF

Info

Publication number
WO2011068080A1
WO2011068080A1 PCT/JP2010/071156 JP2010071156W WO2011068080A1 WO 2011068080 A1 WO2011068080 A1 WO 2011068080A1 JP 2010071156 W JP2010071156 W JP 2010071156W WO 2011068080 A1 WO2011068080 A1 WO 2011068080A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
serial communication
abnormality detection
detection system
bit
Prior art date
Application number
PCT/JP2010/071156
Other languages
French (fr)
Japanese (ja)
Inventor
健二 今本
景示 前川
柴田 直樹
洋一 杉田
竹原 剛
秀夫 作山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to GB1208385.3A priority Critical patent/GB2508788B/en
Publication of WO2011068080A1 publication Critical patent/WO2011068080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • H04L7/0083Receiver details taking measures against momentary loss of synchronisation, e.g. inhibiting the synchronisation, using idle words or using redundant clocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/044Speed or phase control by synchronisation signals using special codes as synchronising signal using a single bit, e.g. start stop bit

Definitions

  • the present invention relates to a clock abnormality detection system that accepts serial communication from an external device and detects abnormal operation of a clock based on the communication.
  • a clock is a periodic signal used to synchronize a plurality of electronic circuits when a computer or a digital circuit operates. If the clock operates abnormally, the electronic circuit may not be synchronized and may cause an unexpected malfunction. Therefore, a clock abnormality detection system for diagnosing whether the clock operation is normal is necessary.
  • a clock abnormality is detected by comparing the frequency of a wobble signal used in an optical disk with the clock frequency.
  • a wobble signal refers to a signal resulting from a change in the intensity of reflected light from a minute groove having a predetermined amplitude and period provided on an optical disc.
  • the frequency of the wobble signal is used as a carrier wave for reading data from the optical disk.
  • the value obtained by counting the period of the wobble signal detected from the optical disc by the clock signal is compared with the value obtained by counting the period when the wobble signal is normally obtained. If there is a difference between the two, it is determined that the wobble signal frequency is abnormal or the clock operation is abnormal.
  • Patent Document 1 discloses a technique for determining a clock abnormality if a communication completion time is different from a normal communication completion time in a serial input circuit
  • Patent Document 2 discloses a period of a received signal. Is counted with the clock signal, and if the count value deviates from the count value in the normal state, it is determined that the clock is abnormal. If the count number is extremely small, the received signal is regarded as being affected by noise and the clock is not abnormal.
  • Technology is disclosed.
  • Patent Document 3 discloses a case where a plurality of digital data converted by an AD converter are acquired until one external clock period elapses, and even if the acquired digital data is different from one another. A technique for determining that the AD converter has failed (failure of the AD converter due to disconnection of the clock line) is disclosed.
  • the above system is an optical disk recording / reproducing apparatus, it can use a wobble signal.
  • a signal having a predetermined amplitude and period cannot be obtained like a wobble signal.
  • the above-described system can use serial communication instead of the wobble signal, since the amplitude and period are predetermined, the transmitter needs to transmit a test signal for diagnosis. Further, the conventional method has a problem that when communication noise is superimposed on a signal, the period of the received signal is erroneously counted, and it is erroneously determined that the clock operation is abnormal.
  • the present invention is a system that detects a clock abnormality by accepting serial communication from an external device even in an environment where a signal having a predetermined amplitude and period cannot be obtained, and noise is superimposed on the communication. Even in such a case, an object of the present invention is to provide a clock abnormality detection system that determines the influence of noise and the influence of clock abnormal operation.
  • the clock abnormality refers to a state where the clock operates at a speed higher or lower than the predetermined clock operating speed at the normal time.
  • a first feature of the present invention is a clock abnormality detection that detects a clock abnormality by comparing a clock generation device, a serial communication reception device, and a received serial communication cycle with a clock cycle.
  • the gist of the present invention is a clock abnormality detection system having a device.
  • the clock abnormality detection device is characterized by having a noise identification function that identifies the influence of communication noise and clock abnormality by analyzing the tendency of occurrence of the detected abnormality.
  • a clock abnormality can be detected by accepting serial communication from an external device even in an environment where a signal having a predetermined amplitude and period cannot be obtained. Even when noise is superimposed on serial communication, the influence of noise and the influence of abnormal clock operation can be identified.
  • FIG. 1 is a diagram showing an example of the configuration of a clock abnormality detection system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a configuration of a clock abnormality detection system according to a second embodiment of the present invention (a configuration in which a plurality of transmitters are used and an abnormal clock specifying device is added to the configuration illustrated in FIG. 1).
  • FIG. 3 is a flowchart showing a procedure until a warning is output when a clock abnormality is detected by the receiver in the first and second embodiments of the present invention.
  • FIG. 4 is a flowchart showing a procedure until a warning is output when a clock abnormality is detected by the receiver according to the first and second embodiments of the present invention. In addition to the procedure of FIG.
  • FIG. 5 is a flowchart showing a procedure until a warning is output when a clock abnormality is detected by the receiver according to the first and second embodiments of the present invention.
  • a process for identifying a clock in which an abnormality has occurred is performed based on the failure occurrence rate of the transmitter / receiver that performed serial communication.
  • FIG. 6 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. In addition, it shows a state in which the received signal is correctly read by synchronizing the transmitter clock and the receiver clock.
  • FIG. 7 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. Since the receiver clock operates faster than the transmitter clock, the bit values read before and after the bit value separation are shown to be inconsistent.
  • FIG. 8 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. Since the receiver clock operates slower than the transmitter clock, the bit values read before and after the bit value separation are shown to be inconsistent.
  • FIG. 9 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. Although the transmitter clock and the receiver clock are operating at the same speed, the bit values read before and after the bit value separation are not matched due to communication noise.
  • FIG. 10 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. It shows how the reading range is changed in consideration of the allowable error range of the clock operation.
  • FIG. 1 shows the configuration of this embodiment.
  • a transmitter 1 that transmits serial communication and a receiver 2 that receives serial communication transmitted from the transmitter 1 via the network 3 and detects clock abnormality
  • the transmitter 1 includes a clock generator 11 and a serial communication transmitter 12.
  • the receiver 2 includes a clock generator 21, a serial communication receiver 22 for receiving serial communication sent from the serial communication device 12, and a clock abnormality detection device for detecting a clock abnormality based on serial communication reception data. 23.
  • the transmitter 1 When transmitting / receiving data, the transmitter 1 continuously transmits stop bits when there is no information. Before information transmission, 1 bit of the start bit is transmitted, then 7 to 8 bits of data and 1 bit of parity bit are transmitted, and finally 1 to 2 bits of stop bit are transmitted.
  • the start bit value is defined as 0 and the stop bit is defined as 1.
  • the transmitter 1 transmits each bit at regular intervals. At this time, the transmission cycle is measured using the clock generator 11 of the transmitter 1.
  • the receiver 2 uses the clock generator 21 to read the received signal at predetermined intervals and receive the signal as a bit string.
  • a clock abnormality detection system for serial communication using start-stop synchronization will be described, but the same can be applied to clock synchronous serial communication.
  • clock synchronous serial communication a clock signal that repeats 0 and 1 at a constant cycle is sent separately from the data signal. Therefore, a clock abnormality detection system similar to the system described below is configured by using this clock signal as a reception signal.
  • the cycle per bit of received data is referred to as a basic cycle.
  • the received signal is constant during the basic period, and there is a break between bit values for each period. Since the received signal is created by the transmitter, the break position is determined by the clock generator 11 of the transmitter 1, and the timing for reading the received signal is determined by the clock generator 21 of the receiver 2.
  • the serial communication receiver 22 receives the serial communication transmitted from the serial communication transmitter 12 of the transmitter (S300).
  • the receiver 2 When the receiver 2 detects the fall of the received signal, it recognizes the time at that time as the start time of the start bit, and each bit transmitted for each basic period based on the clock generated by its own clock generator 21.
  • the received signals before and after the break are read and the bit values are recorded (S301).
  • the serial communication receiving device 22 stops reading after reading the stop bit, and sends the read bit value to the clock abnormality detecting device 23. If the stop bit is 0, a framing error occurs. Even in this case, the read bit value is sent to the clock abnormality detection device 23.
  • the clock abnormality detection device 23 checks the bit value immediately after the break position (S302).
  • the bit value before and after the break position is not judged as abnormal.
  • the fact that the bit value changes before and after the delimiter position means that the delimiter position obtained by the clock pulse generator 21 on the receiver side is the actual position because the clock on the transmitter side and the receiver side are shifted. It is estimated that the received signal deviates from the delimiter position. Therefore, the clock abnormality can be detected by verifying the match of the bit values.
  • the timing for reading the received signal may be determined according to the allowable range of clock deviation allowed by the system using the clock.
  • FIG. 10 shows the read timing when the read timing is determined in accordance with the system clock error allowable range.
  • the bit value break is the place where the bit value changes for the first time after the received signal starts to be read. If the same bit value continues and the bit break is not detected, the reception signal starts to be read after S seconds from the time when the reception signal was last read, and the time from when the reception signal was finally read is L Reads up to seconds later and tries to detect breaks. Thereafter, the same processing is performed until the stop bit is read.
  • the clock abnormality detection device 23 may determine a clock abnormality based on a tendency that a mismatch of bit values occurs. The mismatch of the bit values can be seen not only when an abnormality occurs in the clock operation but also at a location where communication noise occurs.
  • bit value mismatch occurs at a plurality of locations.
  • FIG. 4 shows a flowchart of the processing procedure to which this processing is added.
  • the serial communication receiver 22 receives the serial communication transmitted from the serial communication transmitter 12 of the transmitter (S400). After reading the start bit included at the beginning of the received signal, based on the clock generated by its own clock generator 21, the received signal before and after the break of each bit transmitted for each basic period is read and its bit value Is recorded (S401).
  • the serial communication receiving device 22 stops reading after reading the stop bit, and sends the read bit value to the clock abnormality detecting device 23.
  • the clock abnormality detection device 23 checks the bit value immediately after the delimiter position, and records a portion that does not match the bit value immediately before the delimiter position after one basic period (S402).
  • the cause of the mismatch is identified based on the state of the communication channel (bit error rate, etc.) when the received signal is sent (S404).
  • FIG. 7 shows an example of the occurrence of mismatch when the clock is abnormal and operates at a higher speed than normal
  • FIG. 8 shows an example of the operation at low speed
  • FIG. 9 shows an example of the occurrence of mismatch due to communication noise.
  • the clock abnormality detection device 23 checks parity bits added to received data, ECC (Error Correcting Code), CRC (Cyclic Redundancy) to identify communication noise.
  • ECC Error Correcting Code
  • CRC Cyclic Redundancy
  • a communication error detection method such as “Check” may be used to check whether the received data includes a communication error.
  • the clock abnormality detection device 23 may use only received data that does not include a bit error based on the result of error correction for clock abnormality detection.
  • the bit error rate may be measured according to the communication environment such as a plurality of transmitters, communication locations, and communication time zones, and whether or not abnormality detection is necessary or whether alarm output is necessary may be determined according to the bit error rate. For example, in an environment with a high bit error rate (a lot of communication noise), it may be determined that the detection accuracy of clock abnormality detection is low, and the received data at that time may be selected not to be used for abnormality detection.
  • the clock abnormality detection device 23 may determine that the clock is abnormal when a communication error of a predetermined number of times or more is detected in the processing for confirming the communication error. That is, in the method described above, two or more places before and after each bit break are read, but each bit is read once at a predetermined timing to check whether a received signal contains a communication error, and a clock error is determined. May be.
  • the timing for reading the received signal may be determined according to the allowable range of clock deviation allowed by the system using the clock. At this time, in order to identify the cause of the communication error, information regarding the bit location where the communication error has occurred may be used.
  • the second embodiment it is possible to specify the cause of bit mismatch and the source of clock abnormality by majority vote based on the received signals by serial communication from a plurality of transmitters. Signals are received from a plurality of transmitters using independent clock generators, and the deviation is verified, and an abnormal clock can be identified by majority vote.
  • the apparatus configuration in this case is shown in FIG.
  • the receiver receives signals from the transmitter 1a and the transmitter 1b and verifies the clock shift, no clock abnormality is detected from the signal of the transmitter 1a, but abnormality is detected from the signal 1b. think of.
  • the clocks of the transmitter 1a and the receiver are the same speed, and it is determined that only the transmitter 1b has a different speed. Therefore, it can be determined that the clock of the transmitter 1b is abnormal by majority vote.
  • the clock abnormality detection device 23 performs clock abnormality detection using each communication. Based on the result, the abnormal clock specifying device 24 specifies the clock in which an abnormality has occurred by majority vote.
  • the receiver 2 detects a clock abnormality using communication from the transmitter 1, the receiver 2 can determine that the probability that the clock generator 21 of the receiver 2 has failed is high.
  • an abnormal clock may be specified by weighting the evaluation based on the failure occurrence rate.
  • FIG. 5 shows a flowchart of clock abnormality detection when the evaluation is weighted based on the failure occurrence rate.
  • the procedure (S500 to S505) until the clock abnormality is detected is the same as that in the first embodiment.
  • evaluation is weighted based on the failure occurrence rate of each clock (S506), and the clock in which the abnormality has occurred is specified (S507).
  • the clock is not specified, serial communication sent from single or multiple transmitters will be continuously received to detect clock anomalies.
  • an alarm is output.
  • the alarm may include information on a clock in which an abnormality has occurred.
  • the number and frequency of alarm occurrences due to past clock abnormality detection may be recorded as a history.
  • the history may be recorded individually by each receiver, or all alarms output by each receiver may be centrally managed.
  • the failure occurrence rate of the clock generator may be a value guaranteed by the manufacturer that manufactured the device as an index.
  • control systems where safety is important such as train control systems, car controls, and elevator controls

Abstract

Disclosed is a clock signal error detection system, which prevents system faults that result from clock signal errors by using serial communications to detect same. A receiver (2) of the clock signal error detection system periodically reads signals received via serial (asynchronous) communications that are transmitted from a transmitter (1), and a clock signal error detection device (23) determines that a clock signal error has occurred, and outputs an alert, if the bit value that is read immediately after the delimiter of each respective bit differs from the bit value that is read immediately prior to the delimiter following thereafter.

Description

クロック異常検知システムClock error detection system
 本発明は、外部装置からシリアル通信を受け入れて、その通信を元にクロックの異常動作を検知するクロック異常検知システムに関する。 The present invention relates to a clock abnormality detection system that accepts serial communication from an external device and detects abnormal operation of a clock based on the communication.
 クロックとは、コンピュータやデジタル回路が動作する際、複数の電子回路の同期を取るために使用される周期的な信号である。クロックが異常動作した場合、電子回路の同期が取れず、予期せぬ誤動作を引き起こす可能性がある。そのため、クロック動作が正常であるか診断するためのクロック異常検知システムが必要となる。 A clock is a periodic signal used to synchronize a plurality of electronic circuits when a computer or a digital circuit operates. If the clock operates abnormally, the electronic circuit may not be synchronized and may cause an unexpected malfunction. Therefore, a clock abnormality detection system for diagnosing whether the clock operation is normal is necessary.
 例えば、光ディスクの記録再生装置における従来の異常検知システムでは、光ディスクで用いられるウォブル信号の周波数とクロック周波数を比較することで、クロック異常を検知する。ウォブル信号とは、光ディスクに設けられた所定の振幅および周期をもった微小な溝からの反射光の強度変化による信号を指す。ウォブル信号の周波数は光ディスクからデータを読み取るための搬送波として用いられる。 For example, in a conventional abnormality detection system in an optical disk recording / reproducing apparatus, a clock abnormality is detected by comparing the frequency of a wobble signal used in an optical disk with the clock frequency. A wobble signal refers to a signal resulting from a change in the intensity of reflected light from a minute groove having a predetermined amplitude and period provided on an optical disc. The frequency of the wobble signal is used as a carrier wave for reading data from the optical disk.
 従来手法では、光ディスクから検出したウォブル信号の周期をクロック信号によりカウントした値と、ウォブル信号が正常に得られた場合の周期をカウントした値とを比較する。両者に差がある場合、ウォブル信号の周波数異常、もしくはクロック動作異常と判断される。 In the conventional method, the value obtained by counting the period of the wobble signal detected from the optical disc by the clock signal is compared with the value obtained by counting the period when the wobble signal is normally obtained. If there is a difference between the two, it is determined that the wobble signal frequency is abnormal or the clock operation is abnormal.
 また、例えば、特許文献1には、シリアル入力回路において、通信完了時間と正常時の通信完了時間がずれていればクロック異常と判断する技術が開示され、特許文献2には、受信信号の周期をクロック信号でカウントし、そのカウント値が正常状態でのカウント数とずれていればクロック異常と判断し、カウント数が極端に小さい場合は、受信信号がノイズによる影響とみなし、クロック異常としない技術が開示されている。 Further, for example, Patent Document 1 discloses a technique for determining a clock abnormality if a communication completion time is different from a normal communication completion time in a serial input circuit, and Patent Document 2 discloses a period of a received signal. Is counted with the clock signal, and if the count value deviates from the count value in the normal state, it is determined that the clock is abnormal. If the count number is extremely small, the received signal is regarded as being affected by noise and the clock is not abnormal. Technology is disclosed.
 また、特許文献3には、外部クロックの周期が1周期経過するまでの間に、AD変換器の変換したデジタルデータを複数個取得し、その取得した複数のデジタルデータが1つでも異なる場合に、AD変換器の故障(クロック線の断線によるAD変換器の故障)と判断する技術が開示されている。 Further, Patent Document 3 discloses a case where a plurality of digital data converted by an AD converter are acquired until one external clock period elapses, and even if the acquired digital data is different from one another. A technique for determining that the AD converter has failed (failure of the AD converter due to disconnection of the clock line) is disclosed.
特開2002-27016号公報JP 2002-27016 A 特開2000-222829号公報JP 2000-2222829 A 特開2000-236388号公報JP 2000-236388 A
 上述のシステムは光ディスクの記録再生装置であるためウォブル信号を用いることができるが、一般の環境ではウォブル信号のように所定の振幅および周期をもった信号は得られないという問題点があった。 Since the above system is an optical disk recording / reproducing apparatus, it can use a wobble signal. However, in a general environment, there is a problem that a signal having a predetermined amplitude and period cannot be obtained like a wobble signal.
 また、上述のシステムはウォブル信号の代わりにシリアル通信を用いることもできるが、振幅や周期が所定のものであるため、送信機は診断のためにテスト用の信号を送信する必要がある。また従来手法では、信号に通信ノイズが重畳すると受信信号の周期を誤ってカウントしてしまい、クロック動作の異常と誤判断するという問題点があった。 In addition, although the above-described system can use serial communication instead of the wobble signal, since the amplitude and period are predetermined, the transmitter needs to transmit a test signal for diagnosis. Further, the conventional method has a problem that when communication noise is superimposed on a signal, the period of the received signal is erroneously counted, and it is erroneously determined that the clock operation is abnormal.
 本発明は上記の問題に鑑み、所定の振幅および周期をもった信号が得られない環境においても、外部装置からシリアル通信を受け入れることによりクロック異常を検知するシステムであり、通信にノイズが重畳した場合でもノイズによる影響とクロック異常動作の影響を判定するクロック異常検知システムを提供することを目的とする。 In view of the above problems, the present invention is a system that detects a clock abnormality by accepting serial communication from an external device even in an environment where a signal having a predetermined amplitude and period cannot be obtained, and noise is superimposed on the communication. Even in such a case, an object of the present invention is to provide a clock abnormality detection system that determines the influence of noise and the influence of clock abnormal operation.
 なお、クロック異常とは、正常時の所定クロック動作速度よりも高速もしくは低速に動作する状態を指す。 Note that the clock abnormality refers to a state where the clock operates at a speed higher or lower than the predetermined clock operating speed at the normal time.
 上記目的を達成するため、本発明の第一の特徴は、クロック発生装置と、シリアル通信受信装置と、受信したシリアル通信の周期とクロックの周期を比較することでクロック異常を検知するクロック異常検知装置とを有するクロック異常検知システムであることを要旨とする。 In order to achieve the above object, a first feature of the present invention is a clock abnormality detection that detects a clock abnormality by comparing a clock generation device, a serial communication reception device, and a received serial communication cycle with a clock cycle. The gist of the present invention is a clock abnormality detection system having a device.
 また、上記クロック異常検知装置は、検知した異常の発生傾向を解析することにより、通信ノイズによる影響とクロック異常を識別するノイズ識別機能を有することを特徴とする。 Further, the clock abnormality detection device is characterized by having a noise identification function that identifies the influence of communication noise and clock abnormality by analyzing the tendency of occurrence of the detected abnormality.
 本発明によれば、所定の振幅および周期をもった信号が得られない環境においても、外部装置からシリアル通信を受け入れることによりクロック異常を検知できる。またシリアル通信にノイズが重畳した場合でも、ノイズによる影響とクロック異常動作の影響を識別できる。 According to the present invention, a clock abnormality can be detected by accepting serial communication from an external device even in an environment where a signal having a predetermined amplitude and period cannot be obtained. Even when noise is superimposed on serial communication, the influence of noise and the influence of abnormal clock operation can be identified.
図1は本発明の実施例1によるクロック異常検知システムの構成の一例を示す図である。1 is a diagram showing an example of the configuration of a clock abnormality detection system according to a first embodiment of the present invention. 図2は本発明の実施例2によるクロック異常検知システムの構成の一例(図1記載の構成に複数の送信機利用、および異常クロック特定装置を追加した構成)を示す図である。FIG. 2 is a diagram illustrating an example of a configuration of a clock abnormality detection system according to a second embodiment of the present invention (a configuration in which a plurality of transmitters are used and an abnormal clock specifying device is added to the configuration illustrated in FIG. 1). 図3は本発明の実施例1および2での受信機によるクロック異常検知により警報を出力するまでの手順を示すフローチャートである。FIG. 3 is a flowchart showing a procedure until a warning is output when a clock abnormality is detected by the receiver in the first and second embodiments of the present invention. 図4は本発明の実施例1および2での受信機によるクロック異常検知により警報を出力するまでの手順を示すフローチャートである。図3の手順に加え、ビット値の不一致が発生した箇所の傾向を元に不一致が発生した要因(クロック異常、もしくは通信ノイズ)を特定する処理を行う。FIG. 4 is a flowchart showing a procedure until a warning is output when a clock abnormality is detected by the receiver according to the first and second embodiments of the present invention. In addition to the procedure of FIG. 3, a process for identifying the cause of the mismatch (clock abnormality or communication noise) based on the tendency of the location where the bit value mismatch occurred. 図5は本発明の実施例1および2での受信機によるクロック異常検知により警報を出力するまでの手順を示すフローチャートである。図4の手順に加え、シリアル通信を行った送信機・受信機の故障発生率を元に異常が発生したクロックを特定する処理を行う。FIG. 5 is a flowchart showing a procedure until a warning is output when a clock abnormality is detected by the receiver according to the first and second embodiments of the present invention. In addition to the procedure shown in FIG. 4, a process for identifying a clock in which an abnormality has occurred is performed based on the failure occurrence rate of the transmitter / receiver that performed serial communication. 図6は本発明の実施例1および2での受信信号を読み込むタイミングを表した図である。併せて、送信機クロックと受信機クロックが同期することで正しく受信信号が読み取られる様子を示している。FIG. 6 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. In addition, it shows a state in which the received signal is correctly read by synchronizing the transmitter clock and the receiver clock. 図7は本発明の実施例1および2での受信信号を読み込むタイミングを表した図である。受信機クロックが送信機クロックよりも早く動作しているため、ビット値の区切り前後で読み込んだビット値が不一致となる様子を示している。FIG. 7 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. Since the receiver clock operates faster than the transmitter clock, the bit values read before and after the bit value separation are shown to be inconsistent. 図8は本発明の実施例1および2での受信信号を読み込むタイミングを表した図である。受信機クロックが送信機クロックよりも遅く動作しているため、ビット値の区切り前後で読み込んだビット値が不一致となる様子を示している。FIG. 8 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. Since the receiver clock operates slower than the transmitter clock, the bit values read before and after the bit value separation are shown to be inconsistent. 図9は本発明の実施例1および2での受信信号を読み込むタイミングを表した図である。送信機クロックと受信機クロックは同一速度で動作しているが、通信ノイズによりビット値の区切り前後で読み込んだビット値が不一致となる様子を示している。FIG. 9 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. Although the transmitter clock and the receiver clock are operating at the same speed, the bit values read before and after the bit value separation are not matched due to communication noise. 図10は本発明の実施例1および2での受信信号を読み込むタイミングを表した図である。クロック動作の誤差許容範囲を考慮して読み込む範囲を変更している様子を示している。FIG. 10 is a diagram showing the timing of reading the received signal in the first and second embodiments of the present invention. It shows how the reading range is changed in consideration of the allowable error range of the clock operation.
 以下、本発明の実施の形態について、図面を参照して説明する。ただし、図面は模式的なものであることに留意すべきである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, it should be noted that the drawings are schematic.
 図1に本実施例の構成を示す。本実施例では、シリアル通信を送信する送信機1と、送信機1からネットワーク3を介して送られてきたシリアル通信を受信してクロック異常を検知する受信機2が利用される。送信機1は、クロック発生装置11、シリアル通信送信装置12により構成される。また受信機2は、クロック発生装置21、シリアル通信装置12から送られてきたシリアル通信を受信するためのシリアル通信受信装置22、シリアル通信の受信データを元にクロック異常を検知するクロック異常検知装置23により構成される。 FIG. 1 shows the configuration of this embodiment. In the present embodiment, a transmitter 1 that transmits serial communication and a receiver 2 that receives serial communication transmitted from the transmitter 1 via the network 3 and detects clock abnormality are used. The transmitter 1 includes a clock generator 11 and a serial communication transmitter 12. The receiver 2 includes a clock generator 21, a serial communication receiver 22 for receiving serial communication sent from the serial communication device 12, and a clock abnormality detection device for detecting a clock abnormality based on serial communication reception data. 23.
 図6を用いて調歩同期によるシリアル通信について説明する。データを送受信する場合、無情報の時には送信機1はストップビットを連続送信する。情報送信の前には、スタートビットを1ビット送信し、その後にデータを7~8ビット、パリティビットを1ビット送信し、最後にストップビットを1~2ビット送信する。 The serial communication by start-stop synchronization will be described with reference to FIG. When transmitting / receiving data, the transmitter 1 continuously transmits stop bits when there is no information. Before information transmission, 1 bit of the start bit is transmitted, then 7 to 8 bits of data and 1 bit of parity bit are transmitted, and finally 1 to 2 bits of stop bit are transmitted.
 スタートビットの値は0、ストップビットは1と規定されている。送信機1は各ビットを一定周期おきに送信する。このとき、送信する周期は送信機1のクロック発生装置11を用いて測定する。受信機2側も同様にクロック発生装置21を用い、受信した信号を所定周期おきに読み取り、ビット列として信号を受信する。 The start bit value is defined as 0 and the stop bit is defined as 1. The transmitter 1 transmits each bit at regular intervals. At this time, the transmission cycle is measured using the clock generator 11 of the transmitter 1. Similarly, the receiver 2 uses the clock generator 21 to read the received signal at predetermined intervals and receive the signal as a bit string.
 以下では、調歩同期を用いたシリアル通信を行う場合のクロック異常検知システムについて記述するが、クロック同期型シリアル通信でも同様に実施できる。クロック同期型シリアル通信の場合、データ信号と別に一定周期で0と1を繰り返すクロック信号が送付される。そのため、このクロック信号を受信信号として用いることで、下記記載のシステムと同様のクロック異常検知システムが構成される。 In the following, a clock abnormality detection system for serial communication using start-stop synchronization will be described, but the same can be applied to clock synchronous serial communication. In the case of clock synchronous serial communication, a clock signal that repeats 0 and 1 at a constant cycle is sent separately from the data signal. Therefore, a clock abnormality detection system similar to the system described below is configured by using this clock signal as a reception signal.
 次に、図6を用いてクロックの異常検知動作について説明する。検知処理手順のフローチャート図を図3に示す。以下、受信データ1ビット当たりの周期を基本周期と呼ぶ。基本周期中は受信信号が一定であり、周期ごとにビット値の区切り目がある。受信信号は送信機により作成されるため、区切り位置は送信機1のクロック発生装置11により決定され、受信信号を読み込むタイミングは受信機2のクロック発生装置21により決定される。 Next, the clock abnormality detection operation will be described with reference to FIG. A flowchart of the detection processing procedure is shown in FIG. Hereinafter, the cycle per bit of received data is referred to as a basic cycle. The received signal is constant during the basic period, and there is a break between bit values for each period. Since the received signal is created by the transmitter, the break position is determined by the clock generator 11 of the transmitter 1, and the timing for reading the received signal is determined by the clock generator 21 of the receiver 2.
 該シリアル通信受信装置22は送信機のシリアル通信送信装置12から送信されるシリアル通信を受信する(S300)。 The serial communication receiver 22 receives the serial communication transmitted from the serial communication transmitter 12 of the transmitter (S300).
 該受信機2は受信信号の立下りを検知したら、そのときの時間をスタートビットの開始時間と認識し、自身のクロック発生装置21により発生したクロックに基づき、基本周期ごとに送信される各ビットの区切り目の前後の受信信号を読み込み、そのビット値を記録する(S301)。 When the receiver 2 detects the fall of the received signal, it recognizes the time at that time as the start time of the start bit, and each bit transmitted for each basic period based on the clock generated by its own clock generator 21. The received signals before and after the break are read and the bit values are recorded (S301).
 該シリアル通信受信装置22はストップビットを読み込んだら読み込みを停止し、読み込んだビット値をクロック異常検知装置23へ送る。ストップビットが0の場合はフレーミングエラーとなるが、その場合でも読み込んだビット値をクロック異常検知装置23へ送る。該クロック異常検知装置23は、区切り位置の直後のビット値をチェックする(S302)。 The serial communication receiving device 22 stops reading after reading the stop bit, and sends the read bit value to the clock abnormality detecting device 23. If the stop bit is 0, a framing error occurs. Even in this case, the read bit value is sent to the clock abnormality detection device 23. The clock abnormality detection device 23 checks the bit value immediately after the break position (S302).
 1基本周期後の区切り位置の直前のビット値が一致した場合はクロック異常なしと判断し、所定時間経過後、再度診断を実施する。ビット値が不一致となる場合はクロック異常と判断し(S303)、警報を出力する。 ¡If the bit value immediately before the delimiter position after one basic cycle matches, it is determined that there is no clock error, and the diagnosis is performed again after a predetermined time. If the bit values do not match, it is determined that the clock is abnormal (S303), and an alarm is output.
 あるビットの区切り位置から次の区切り位置の間は本来ビット値が変化することはないため、区切り位置前後のビット値が一致している場合は異常と判断されない。しかしビット値が区切り位置前後で変化しているということは、送信機側と受信機側のクロックがずれて動作したことで、受信機側のクロックパルス発生装置21により求められる区切り位置が実際の受信信号の区切り位置からずれたと推定される。よってビット値の一致検証をすることによりクロック異常を検出できる。 Since the bit value originally does not change from one bit break position to the next, the bit value before and after the break position is not judged as abnormal. However, the fact that the bit value changes before and after the delimiter position means that the delimiter position obtained by the clock pulse generator 21 on the receiver side is the actual position because the clock on the transmitter side and the receiver side are shifted. It is estimated that the received signal deviates from the delimiter position. Therefore, the clock abnormality can be detected by verifying the match of the bit values.
 受信信号を読み込むタイミングは、クロック利用するシステムが許容するクロックずれの許容範囲に応じて決定しても良い。読込タイミングをシステムのクロック誤差許容範囲に応じて決定した場合の読込タイミングを図10に示す。 The timing for reading the received signal may be determined according to the allowable range of clock deviation allowed by the system using the clock. FIG. 10 shows the read timing when the read timing is determined in accordance with the system clock error allowable range.
 図10において、基本周期をT秒とし、クロックの許容誤差範囲を±Eパーセントとした場合、この許容誤差範囲内となる最短周期をS秒、最長周期をL秒とおく。このとき、S=T×(1-E/100)、L=T×(1+E/100)となる。 In FIG. 10, when the basic cycle is T seconds and the allowable error range of the clock is ± E percent, the shortest cycle within the allowable error range is S seconds and the longest cycle is L seconds. At this time, S = T × (1−E / 100) and L = T × (1 + E / 100).
 クロック異常検知処理を行う場合、スタートビットを検出してからS秒待機し、その後L-S秒間受信信号を読み込む。読込の間に受信信号にビットの区切り目が検出された場合、その検出した時間からS秒間待機し、その後L-S秒間受信信号を読み込んで区切り目の検出を試みる。 When performing the clock abnormality detection process, wait for S seconds after detecting the start bit, and then read the received signal for LS seconds. If a bit break is detected in the received signal during reading, the process waits for S seconds from the detected time, and then reads the received signal for LS seconds to try to detect the break.
 ビット値の区切り目は、受信信号を読み込み始めてから初めてビット値が変化した場所とする。同一ビット値が続き、ビットの区切り目が検出されない場合は、最後に受信信号の読み込みを開始した時間からS秒後に受信信号の読み込みを開始し、最後に受信信号の読み込みを終了した時間からL秒後まで読み込んで区切り目の検出を試みる。以降、ストップビットを読み込むまで同様の処理を行う。 The bit value break is the place where the bit value changes for the first time after the received signal starts to be read. If the same bit value continues and the bit break is not detected, the reception signal starts to be read after S seconds from the time when the reception signal was last read, and the time from when the reception signal was finally read is L Reads up to seconds later and tries to detect breaks. Thereafter, the same processing is performed until the stop bit is read.
 該クロック異常検知装置23は、ビット値の不一致が発生する傾向を元にクロック異常を判断しても良い。ビット値の不一致は、クロック動作に異常が発生した場合だけでなく、通信ノイズが発生した箇所でも見られる。 The clock abnormality detection device 23 may determine a clock abnormality based on a tendency that a mismatch of bit values occurs. The mismatch of the bit values can be seen not only when an abnormality occurs in the clock operation but also at a location where communication noise occurs.
 ただし、ビット値不一致が発生する箇所はその要因によって異なる。通信ノイズが要因の場合はノイズが発生した箇所でのみビット値が不一致となるのに対し、クロック異常の場合は区切り位置のずれが累積するためビット値不一致が複数箇所で発生する。 However, the location where the bit value mismatch occurs depends on the factor. When communication noise is the cause, the bit values are mismatched only at the location where the noise is generated, whereas when the clock is abnormal, the deviation of the delimiter positions is accumulated, so that bit value mismatch occurs at a plurality of locations.
 よって、ビット値不一致が発生した箇所の傾向を元に通信ノイズとクロック異常を識別した上で、警報を出力しても良い。この処理を加えた処理手順のフローチャート図を図4に示す。 Therefore, an alarm may be output after identifying communication noise and clock abnormality based on the tendency of the place where the bit value mismatch occurred. FIG. 4 shows a flowchart of the processing procedure to which this processing is added.
 該シリアル通信受信装置22は送信機のシリアル通信送信装置12から送信されるシリアル通信を受信する(S400)。受信した信号の最初に含まれるスタートビットを読み込んだら、自身のクロック発生装置21により発生したクロックに基づき、基本周期ごとに送信される各ビットの区切り目の前後の受信信号を読み込み、そのビット値を記録する(S401)。 The serial communication receiver 22 receives the serial communication transmitted from the serial communication transmitter 12 of the transmitter (S400). After reading the start bit included at the beginning of the received signal, based on the clock generated by its own clock generator 21, the received signal before and after the break of each bit transmitted for each basic period is read and its bit value Is recorded (S401).
 該シリアル通信受信装置22はストップビットを読み込んだら読み込みを停止し、読み込んだビット値をクロック異常検知装置23へ送る。該クロック異常検知装置23は、区切り位置の直後のビット値をチェックし、1基本周期後の区切り位置の直前のビット値と不一致となる箇所を記録する(S402)。 The serial communication receiving device 22 stops reading after reading the stop bit, and sends the read bit value to the clock abnormality detecting device 23. The clock abnormality detection device 23 checks the bit value immediately after the delimiter position, and records a portion that does not match the bit value immediately before the delimiter position after one basic period (S402).
 ビット値が全て一致した場合はクロック異常なしと判断し、所定時間経過後に再度診断を実施する(S403)。 If all the bit values match, it is determined that there is no clock abnormality, and the diagnosis is performed again after a predetermined time (S403).
 不一致となる箇所が検出された場合、該受信信号が送られた際の通信路の状況(ビット誤り率など)を元に不一致が発生した要因を特定する(S404)。 If a location that does not match is detected, the cause of the mismatch is identified based on the state of the communication channel (bit error rate, etc.) when the received signal is sent (S404).
 通信ノイズと推定される場合にはクロック異常なしと判断し、所定時間経過後に再度診断を実施する。それ以外の場合はクロック異常と判断し、警報を出力する(S405)。 When it is estimated that there is communication noise, it is judged that there is no clock abnormality, and the diagnosis is performed again after a predetermined time. Otherwise, it is determined that the clock is abnormal, and an alarm is output (S405).
 クロックに異常が発生し、正常時より高速動作した場合の不一致発生例を図7、低速動作した場合の例を図8、通信ノイズによる不一致発生の例を図9にそれぞれ示す。 FIG. 7 shows an example of the occurrence of mismatch when the clock is abnormal and operates at a higher speed than normal, FIG. 8 shows an example of the operation at low speed, and FIG. 9 shows an example of the occurrence of mismatch due to communication noise.
 通信ノイズがビット不一致の要因となる場合と比較して、クロック異常の場合はビット値が不一致となる箇所が複数回発生する確率が明らかに高くなるため、ベイズ推定やデータマイニングなどの統計学的手法を用いることで不一致発生要因の高精度な特定が可能となる。 Compared to the case where communication noise causes bit mismatch, the probability of multiple occurrences of bit mismatch in the case of clock anomalies is clearly higher, so statistical analysis such as Bayesian estimation and data mining By using this method, it is possible to specify the cause of the mismatch with high accuracy.
 該クロック異常検知装置23は、通信ノイズを識別するため、受信データに付加されたパリティビットのチェックやECC(Error Correcting Code)、CRC(Cyclic Redundancy
Check)などの通信エラー検知手法により、受信データに通信エラーが含まれていないか確認しても良い。
The clock abnormality detection device 23 checks parity bits added to received data, ECC (Error Correcting Code), CRC (Cyclic Redundancy) to identify communication noise.
A communication error detection method such as “Check” may be used to check whether the received data includes a communication error.
 該クロック異常検知装置23は、エラー訂正の結果を元にビット誤りを含まない受信データのみをクロック異常検知に用いても良い。 The clock abnormality detection device 23 may use only received data that does not include a bit error based on the result of error correction for clock abnormality detection.
 また複数の送信機や通信場所、通信時間帯など通信環境に応じてビット誤り率を測定し、ビット誤り率に応じて異常検知の実施要否や警報出力の要否を判断しても良い。例えばビット誤り率が高い(通信ノイズが多い)環境ではクロック異常検知の検知精度が低いと判断し、その時点での受信データを異常検知に用いないよう選別しても良い。 Also, the bit error rate may be measured according to the communication environment such as a plurality of transmitters, communication locations, and communication time zones, and whether or not abnormality detection is necessary or whether alarm output is necessary may be determined according to the bit error rate. For example, in an environment with a high bit error rate (a lot of communication noise), it may be determined that the detection accuracy of clock abnormality detection is low, and the received data at that time may be selected not to be used for abnormality detection.
 該クロック異常検知装置23は、上記の通信エラーを確認する処理において所定回数以上の通信エラーが検知された場合、クロック異常と判断しても良い。すなわち、上記記載の手法では各ビット区切りの前後2箇所以上を読み込むが、各ビットを所定のタイミングで1度ずつ読み込んで受信信号に通信エラーが含まれていないか確認し、クロック異常を判断しても良い。 The clock abnormality detection device 23 may determine that the clock is abnormal when a communication error of a predetermined number of times or more is detected in the processing for confirming the communication error. That is, in the method described above, two or more places before and after each bit break are read, but each bit is read once at a predetermined timing to check whether a received signal contains a communication error, and a clock error is determined. May be.
 また、上記記載の手法と同様、受信信号を読み込むタイミングはクロックを利用するシステムが許容するクロックずれの許容範囲に応じて決定しても良い。このとき、通信エラーの原因を識別するため、通信エラーが発生したビットの箇所に関する情報を用いても良い。 Also, as with the above-described method, the timing for reading the received signal may be determined according to the allowable range of clock deviation allowed by the system using the clock. At this time, in order to identify the cause of the communication error, information regarding the bit location where the communication error has occurred may be used.
 通信エラーが発生する原因は通信ノイズとクロック異常の2つがありうるが、その原因が通信ノイズである場合、受信したビット列のうちどのビットに対しても等しくエラーが発生しうる。 There are two possible causes of communication errors: communication noise and clock anomalies. When the cause is communication noise, errors can occur equally for any bit in the received bit string.
 一方、クロック異常が原因の場合、受信信号と受信側の該クロック発生装置21の同期は累積的にずれるため、最初に受信するスタートビットでエラーが発生する確率は最も低く、後方のビットほど高くなる。そのため、エラーが発生したビットの箇所を元に、統計学的手法を用いることで通信エラー発生要因の高精度な特定が可能となる。 On the other hand, when the clock error is the cause, the synchronization between the received signal and the clock generator 21 on the receiving side is cumulatively shifted, so the probability that an error will occur at the first received start bit is the lowest, and the higher the bit behind. Become. Therefore, it is possible to specify the cause of communication error with high accuracy by using a statistical method based on the location of the bit where the error has occurred.
 実施例2では、複数の送信機からのシリアル通信による受信信号を元に、多数決によるビット不一致要因の特定、クロック異常発生元の特定を行っても良い。独立なクロック発生装置を利用している複数の送信機から信号を受信し、そのずれを検証して多数決により異常なクロックの特定が可能となる。この場合の装置構成を図2に示す。 In the second embodiment, it is possible to specify the cause of bit mismatch and the source of clock abnormality by majority vote based on the received signals by serial communication from a plurality of transmitters. Signals are received from a plurality of transmitters using independent clock generators, and the deviation is verified, and an abnormal clock can be identified by majority vote. The apparatus configuration in this case is shown in FIG.
 例えば、受信機が送信機1aおよび送信機1bから信号を受信してクロックのずれを検証した結果、送信機1aの信号からはクロック異常が検出されないが1bの信号からは異常が検出された場合を考える。この場合、送信機1aと受信機のクロックは同一速度であり、送信機1bのみ異なる速度と判断されるため、多数決により送信機1bのクロック異常と判断できる。 For example, when the receiver receives signals from the transmitter 1a and the transmitter 1b and verifies the clock shift, no clock abnormality is detected from the signal of the transmitter 1a, but abnormality is detected from the signal 1b. think of. In this case, the clocks of the transmitter 1a and the receiver are the same speed, and it is determined that only the transmitter 1b has a different speed. Therefore, it can be determined that the clock of the transmitter 1b is abnormal by majority vote.
 また、送信機1a、1bの両方の信号からクロック異常が検出された場合、受信機のクロック異常と判断できる。受信機2は複数の送信機1a、1b、・・・からのシリアル通信を受信したら、それぞれの通信を用いてクロック異常検知装置23によりクロック異常検知を行う。その結果を元に、異常クロック特定装置24は多数決により異常が発生したクロックを特定する。 In addition, when a clock abnormality is detected from both signals of the transmitters 1a and 1b, it can be determined that the clock of the receiver is abnormal. When the receiver 2 receives serial communication from the plurality of transmitters 1a, 1b,..., The clock abnormality detection device 23 performs clock abnormality detection using each communication. Based on the result, the abnormal clock specifying device 24 specifies the clock in which an abnormality has occurred by majority vote.
 また、上記システムでは各クロック発生装置の故障発生率が同一と想定しているが、クロックごとに故障発生率が異なる場合、そのクロックの故障発生率を元に異常が発生したクロックを特定しても良い。 In the above system, it is assumed that the failure rate of each clock generator is the same. However, if the failure rate is different for each clock, the clock where the abnormality occurred is identified based on the failure rate of that clock. Also good.
 例えば、送信機1のクロック発生装置11の故障発生確率が受信機2と比較して非常に小さいとする。この場合、受信機2が送信機1からの通信を用いてクロック異常が検知された場合、受信機2は自身のクロック発生装置21が故障した確率が高いと判断できる。 For example, assume that the failure occurrence probability of the clock generator 11 of the transmitter 1 is very small compared to the receiver 2. In this case, when the receiver 2 detects a clock abnormality using communication from the transmitter 1, the receiver 2 can determine that the probability that the clock generator 21 of the receiver 2 has failed is high.
 複数の送信機を用いて多数決を行う場合も、この故障発生率を元に評価を重みづけして異常クロックを特定しても良い。故障発生率を元に評価を重みづけした場合のクロック異常検知のフローチャート図を図5に示す。 Even when a majority vote is performed using a plurality of transmitters, an abnormal clock may be specified by weighting the evaluation based on the failure occurrence rate. FIG. 5 shows a flowchart of clock abnormality detection when the evaluation is weighted based on the failure occurrence rate.
 クロック異常を検出するまでの手順(S500~S505)は実施例1と同一である。
異常が検出された場合、各クロックの故障発生率を元に評価の重みづけを行い(S506)、異常が発生したクロックの特定を行う(S507)。
The procedure (S500 to S505) until the clock abnormality is detected is the same as that in the first embodiment.
When an abnormality is detected, evaluation is weighted based on the failure occurrence rate of each clock (S506), and the clock in which the abnormality has occurred is specified (S507).
 クロックが特定されない場合、引き続き単一もしくは複数の送信機から送られるシリアル通信を受信し、クロック異常検知を行う。異常クロックが特定された場合、警報を出力する。この場合、警報には異常が発生しているクロックの情報を含んでも良い。 If the clock is not specified, serial communication sent from single or multiple transmitters will be continuously received to detect clock anomalies. When an abnormal clock is specified, an alarm is output. In this case, the alarm may include information on a clock in which an abnormality has occurred.
 異常クロック特定装置24により異常動作するクロックを特定する際に用いられる故障発生率を算出するため、過去のクロック異常検知による警報発生回数や頻度を履歴として記録しても良い。履歴は、各受信機が個別に記録しても良いし、各受信機が出力した全ての警報を集中管理しても良い。またクロック発生装置の故障発生率は、その装置を製造したメーカが保証する値を指標として用いても良い。 In order to calculate the failure occurrence rate used when the abnormal clock specifying device 24 specifies a clock that operates abnormally, the number and frequency of alarm occurrences due to past clock abnormality detection may be recorded as a history. The history may be recorded individually by each receiver, or all alarms output by each receiver may be centrally managed. The failure occurrence rate of the clock generator may be a value guaranteed by the manufacturer that manufactured the device as an index.
 列車制御システムや自動車制御、エレベータ制御など安全性が重要となる制御システムにおいて、システム内部で用いられるクロックの動作異常を高精度に検知することにより、異常が発生した場合でもシステムを安全に停止、もしくは復旧することが出来る。 In control systems where safety is important, such as train control systems, car controls, and elevator controls, it is possible to safely stop the system even if an abnormality occurs, by detecting the abnormal operation of the clock used inside the system with high accuracy. Or it can be restored.
 1 送信機
 2 受信機
 3 ネットワーク
 11 クロック発生装置
 12 シリアル通信送信装置
 21 クロック発生装置
 22 シリアル通信受信装置
 23 クロック異常検知装置
 24 異常クロック特定装置
 S300 シリアル通信受信手順
 S301 受信信号読込手順
 S302 ビット値一致検証手順
 S303 ビット値不一致検証手順
 S400 シリアル通信受信手順
 S401 受信信号読込手順
 S402 ビット値一致検証手順
 S403 ビット値不一致検証手順
 S404 ビット値不一致発生要因特定手順
 S405 クロック異常有無検証手順
 S500 シリアル通信受信手順
 S501 受信信号読込手順
 S502 ビット値一致検証手順
 S503 ビット値不一致検証手順
 S504 ビット値不一致発生要因特定手順
 S505 クロック異常有無検証手順
 S506 故障発生率に基づいた評価の重みづけ手順
 S507 異常クロック特定可否検証手順
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Receiver 3 Network 11 Clock generator 12 Serial communication transmitter 21 Clock generator 22 Serial communication receiver 23 Clock abnormality detection device 24 Abnormal clock identification device S300 Serial communication reception procedure S301 Received signal reading procedure S302 Bit value coincidence Verification procedure S303 Bit value mismatch verification procedure S400 Serial communication reception procedure S401 Received signal reading procedure S402 Bit value match verification procedure S403 Bit value mismatch verification procedure S404 Bit value mismatch generation factor identification procedure S405 Clock error presence verification procedure S500 Serial communication reception procedure S501 Reception signal reading procedure S502 Bit value match verification procedure S503 Bit value mismatch verification procedure S504 Bit value mismatch occurrence factor identification procedure S505 Clock error presence verification procedure Order S506 Evaluation Weighting Procedure Based on Failure Incidence Rate S507 Abnormal Clock Specific Availability Verification Procedure

Claims (6)

  1.  シリアル通信を送信する1台もしくは複数台の送信機と、シリアル通信を受信する受信機と、ネットワークとにより構成されたクロック異常検知システムにおいて、
     該送信機は、他受信機とシリアル通信を行うためのシリアル通信送信装置とシリアル通信による送信信号を作成するためのクロックを発生するクロック発生装置とを有し、
     該受信機は、該シリアル通信を受信するためのシリアル通信受信装置と、該シリアル通信を読み込むタイミングを決定するためのクロックを発生するクロック発生装置と、該シリアル通信受信装置が受信した受信信号における各ビットの基本周期の区切り前後の信号を読み込み、各ビットの基本周期の区切りの直後に読み込んだビット値がその次の基本周期の区切りの直前に読み込んだビット値と不一致となる場合、クロック異常と判定して警報を出力するクロック異常検知装置とを有することを特徴とするクロック異常検知システム。
    In a clock abnormality detection system composed of one or more transmitters for transmitting serial communication, a receiver for receiving serial communication, and a network,
    The transmitter has a serial communication transmitter for performing serial communication with other receivers and a clock generator for generating a clock for generating a transmission signal by serial communication,
    The receiver includes: a serial communication receiver for receiving the serial communication; a clock generator for generating a clock for determining the timing for reading the serial communication; and a received signal received by the serial communication receiver. If a signal is read before and after the basic period break of each bit, and the bit value read immediately after the break of the basic period of each bit does not match the bit value read immediately before the break of the next basic period, a clock error And a clock abnormality detection device that outputs a warning upon determination.
  2.  請求項1に記載のクロック異常検知システムにおいて、
     該クロック異常検知装置は、基本周期の区切り前後でビット値が不一致となった場合に、その不一致が発生した傾向や通信環境の特性を元に不一致が発生した要因を特定し、通信ノイズが要因であると推定される場合はクロックが正常と判断して警報を出力しない機能を有することを特徴とするクロック異常検知システム。
    The clock abnormality detection system according to claim 1,
    When the bit values do not match before and after the division of the basic period, the clock abnormality detection device identifies the cause of the mismatch based on the tendency of the mismatch and the characteristics of the communication environment, and the communication noise causes A clock abnormality detection system having a function of judging that the clock is normal and not outputting an alarm when it is estimated that the clock is normal.
  3.  請求項1に記載のクロック異常検知システムにおいて、
     該シリアル通信受信装置は、該クロック発生装置を利用する外部システムが許容するクロックの誤差範囲を元に受信信号を読み込むタイミングを決定する機能を有することを特徴とするクロック異常検知システム。
    The clock abnormality detection system according to claim 1,
    The serial communication receiver has a function of determining a timing for reading a received signal based on an error range of a clock allowed by an external system using the clock generator.
  4.  請求項1に記載のクロック異常検知システムにおいて、
     複数の送信機から受信したシリアル通信を元に異常が発生したクロックを多数決により特定する異常クロック特定装置を有することを特徴とするクロック異常検知システム。
    The clock abnormality detection system according to claim 1,
    What is claimed is: 1. A clock abnormality detection system comprising: an abnormal clock identification device that identifies a clock in which an abnormality has occurred based on serial communication received from a plurality of transmitters by majority vote.
  5.  請求項4に記載のクロック異常検知システムにおいて、
     該異常クロック特定装置は、各クロックの故障発生率を元に各クロックの評価を重みづけして異常が発生したクロックを特定する機能を有することを特徴とするクロック異常検知システム。
    The clock abnormality detection system according to claim 4,
    The abnormal clock identification device has a function of identifying a clock in which an abnormality has occurred by weighting the evaluation of each clock based on the failure occurrence rate of each clock.
  6.  請求項1に記載のクロック異常検知システムにおいて、
     該シリアル通信受信装置が受信した受信信号に含まれるビット値を読み込み、該ビット値では通信異常となる場合、クロック異常ではないと判定して警報を出力しないクロック異常検知装置を有することを特徴とするクロック異常検知システム。
    The clock abnormality detection system according to claim 1,
    It has a clock abnormality detection device that reads a bit value included in a reception signal received by the serial communication reception device, and determines that the clock is not abnormal when the communication value is abnormal, and does not output an alarm. Clock anomaly detection system.
PCT/JP2010/071156 2009-12-04 2010-11-26 Clock signal error detection system WO2011068080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1208385.3A GB2508788B (en) 2009-12-04 2010-11-26 Clock signal error detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-276394 2009-12-04
JP2009276394A JP5161196B2 (en) 2009-12-04 2009-12-04 Clock error detection system

Publications (1)

Publication Number Publication Date
WO2011068080A1 true WO2011068080A1 (en) 2011-06-09

Family

ID=44114927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071156 WO2011068080A1 (en) 2009-12-04 2010-11-26 Clock signal error detection system

Country Status (3)

Country Link
JP (1) JP5161196B2 (en)
GB (1) GB2508788B (en)
WO (1) WO2011068080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853862A1 (en) * 2013-09-25 2015-04-01 Dr. Johannes Heidenhain GmbH Position measuring device and method for checking a work cycle signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225867A1 (en) 2014-12-15 2016-06-16 Dr. Johannes Heidenhain Gmbh Device and method for checking a working clock signal of a position-measuring device
DE102017218767A1 (en) * 2017-10-20 2019-04-25 Dr. Johannes Heidenhain Gmbh Multi-turn rotary encoder and method for operating a multi-turn rotary encoder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221800A (en) * 1994-02-02 1995-08-18 Nec Corp Data identification regeneration circuit
JP2004507963A (en) * 2000-08-30 2004-03-11 シリコン イメージ インク Data recovery using data eye tracking
JP2004254324A (en) * 2003-02-20 2004-09-09 Samsung Electronics Co Ltd Data recovery device and its recovery method
JP2007142748A (en) * 2005-11-17 2007-06-07 Thine Electronics Inc Clock data recovery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221800A (en) * 1994-02-02 1995-08-18 Nec Corp Data identification regeneration circuit
JP2004507963A (en) * 2000-08-30 2004-03-11 シリコン イメージ インク Data recovery using data eye tracking
JP2004254324A (en) * 2003-02-20 2004-09-09 Samsung Electronics Co Ltd Data recovery device and its recovery method
JP2007142748A (en) * 2005-11-17 2007-06-07 Thine Electronics Inc Clock data recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853862A1 (en) * 2013-09-25 2015-04-01 Dr. Johannes Heidenhain GmbH Position measuring device and method for checking a work cycle signal
US9869547B2 (en) 2013-09-25 2018-01-16 Dr. Johannes Heidenhain Gmbh Position-measuring device and method for testing a clock signal

Also Published As

Publication number Publication date
GB2508788B (en) 2015-10-14
GB201208385D0 (en) 2012-06-27
JP5161196B2 (en) 2013-03-13
JP2011120059A (en) 2011-06-16
GB2508788A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US5727018A (en) Process for obtaining a signal indicating a synchronization error between a pseudo-random signal sequence from a transmitter and a reference pseudo-random signal sequence from a receiver
US8755285B2 (en) Method, system and apparatus for diagnosing physical downlink failure
US10578465B2 (en) Sensor bus system and unit with internal event verification
JP5161196B2 (en) Clock error detection system
US5528635A (en) Synchronization detecting circuit
WO2008001419A1 (en) Communication device
JP4954249B2 (en) Electronic terminal device and electronic interlocking device
JP2002252660A (en) Serial data communication apparatus and communication error detection method
KR100856400B1 (en) Synchronization code recovery circuit and method thereof
JP5000554B2 (en) Train detector
US20240088939A1 (en) Communication device and communication method
JP4962497B2 (en) Clock monitoring circuit, information processing apparatus, and clock monitoring method
JP6492885B2 (en) Diagnostic equipment
EP1698105A1 (en) Communication fault containment via indirect detection
CN117686941A (en) Communication device and communication method
JP2591455B2 (en) Communication device
JP2000092030A (en) Optical transmitter
KR20000009092U (en) Circuit inspection device in data transmission system
JP2024040104A (en) Communication device
JPH06169300A (en) Fault detection system
JP2014222372A (en) Field apparatus
US20040101078A1 (en) Synchronization control method for electronic device
JP2970690B2 (en) Synchronous control circuit
JPS5945304B2 (en) Line failure detection method in two-wire communication equipment
JPH04267631A (en) Parity bit addition system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1208385

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20101126

WWE Wipo information: entry into national phase

Ref document number: 1208385.3

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834530

Country of ref document: EP

Kind code of ref document: A1