WO2011066825A1 - Procédé servant à réaliser des mouvements de précision d'objets soumis à de fortes accélérations, et dispositif associé - Google Patents

Procédé servant à réaliser des mouvements de précision d'objets soumis à de fortes accélérations, et dispositif associé Download PDF

Info

Publication number
WO2011066825A1
WO2011066825A1 PCT/DE2010/001448 DE2010001448W WO2011066825A1 WO 2011066825 A1 WO2011066825 A1 WO 2011066825A1 DE 2010001448 W DE2010001448 W DE 2010001448W WO 2011066825 A1 WO2011066825 A1 WO 2011066825A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide
movement
force
axes
small
Prior art date
Application number
PCT/DE2010/001448
Other languages
German (de)
English (en)
Inventor
Knut Grossmann
Volker MÖBIUS
Hubert Höfer
Jens Müller
Bernd Kauschinger
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Priority to DE112010004644T priority Critical patent/DE112010004644A5/de
Publication of WO2011066825A1 publication Critical patent/WO2011066825A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/195Controlling the position of several slides on one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/545Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces
    • B23Q1/5462Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces with one supplementary sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • B23Q1/626Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair followed perpendicularly by a single sliding pair
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41264Driven by two motors

Definitions

  • the invention relates to a method for generating precision movements of objects in space relative to a reference point known in its coordinates in the directions x; y; z with high acceleration values for precise speed guidance as well as on a device designed for this purpose.
  • Actuators between rail and carriage can be adjusted by a vertical axis to the direction of travel. This structure is used to correct an angular position and caused by the use of hydraulically actuated actuators additional effort.
  • Linear motor with the vertical center of mass in a horizontal plane parallel to the direction of movement
  • Program for a positioning function is modified.
  • the calculated correction values for the entire working space are made available in a correction matrix for the specific positioning system.
  • the temperature-dependent behavior of the deviations is detected either by known material properties of the system geometry or by several reference measurements at different temperatures. A disadvantage of this
  • Procedures are the large amounts of data that must be processed in each positioning function.
  • DE 10 2005 012 105 A1 describes a method for compensating deformation-related positioning accuracies, in which, in order to avoid additional expenditure of time, the compensation values depend on at least one for the expiration of the
  • Motion program generated and recorded drive parameters are determined. Before the start of the movement program and thus not in the time-critical area is a
  • Deformationsparametersatz determined as a function of at least one drive parameter.
  • the compensation values are then determined during the execution of the exercise program.
  • Tolerance limits governed movement in the 6 degrees of freedom ⁇ ⁇ ).
  • ⁇ ⁇ limits governed movement in the 6 degrees of freedom ⁇ ⁇ ).
  • devices which, via 5 or 6 controlled axes, can control and move the object to be moved in a translatory and correspondingly rotational manner, but the functionalities required for such devices lead to relatively large masses and inertias, which in turn limit the acceleration capacity.
  • the object of the invention is therefore to provide a method and a device for generating precision movements of objects in the x-, y- and z-direction with high accelerations and relatively low masses and inertias of the system, thus guiding errors on the trajectory of an object in all six degrees of freedom can be corrected with the translatory axes x, yl, y2, z1, z2, z3, although the low masses of the system oppose this.
  • the object is achieved by a method having the features mentioned in claim 1.
  • Advantageous variants of the method are the subject of dependent subclaims.
  • the object is further achieved by a device having the features mentioned in claim 6.
  • Advantageous embodiments of the device are the subject of dependent subclaims.
  • Machine construction (with rectilinear translatory axes for the movements in x; y; z bei) the spatial arrangement of the axes of movement according to the invention (in axially parallel directions) via small path differences of the rectilinear translational axes additional angular movements in
  • the structure is consistently designed such that the force application always takes place in the center of gravity of the moving device and the reaction forces arising during acceleration in x and y are compensated by compensating forces acting in opposite directions in the same line of action and the same size, which allows a larger Error band after production and assembly to accept, since the currently detected with suitable methods motion errors can be corrected with a similar to the parallel kinematics control in 6 axes.
  • the structural design supports this objective with the arrangement and distribution of the 6 actuators: the x-carriage is accelerated by a drive, the y-carriages carrying the x-axis are also assigned to 2 drives and which also carries the x and y carriages z-slide is accelerated by 3 drives supported on a foundation in the vertical direction.
  • the axle assembly is chosen so that the direction of the resultant force always runs through the Massensch point of the moving objects.
  • the correction values for a compensation should be measured here only for the upcoming technological trajectory and not for the entire working space. This limits the amount of data to be processed.
  • the trajectory formulated for the programmed work task is timed off shortly before the actual processing, so that the
  • Marginal conditions differ only slightly during measurement and processing. In the measurement, missing machining forces are assumed to be negligibly small in the finish area in this approach or can be taken into account with additional corrections.
  • Error components in 6 degrees of freedom (geometric errors, errors due to gravity and inertia, thermally induced deformations) detected. An assignment of the error components to their causes is not required.
  • the structural design of the device is due to low moving masses, repeatability of trajectories and low vibrational excitations of the structure through the Driving forces directed, resulting from manufacturing and assembly path deviations are still accepted, unless they are constructively defined as permissible
  • Fig. 1 is an illustration of the device
  • Fig. 2 is an illustration of the assignment of the adjusting axes to the axes of movement
  • Fig. 3 is a representation of the structure of the device
  • Fig. 4 is an illustration of the x-slide with drives and balancing mass
  • Fig. 5 is an illustration of the y-carriage with drives
  • Fig. 6 is a representation of the measurement and correction method
  • Fig. 7 is an illustration of the frame columns
  • Fig. 8 is an illustration of the mounting of a z-spindle
  • Fig. 9 is an illustration of the adjustment of the z-carriage to the frame
  • Fig. 10 is an illustration of the connection of the z-carriage with the z-guide
  • Fig. 12 is an illustration of the solid state joints on the y-carriage
  • Fig. 13 is a representation of the tension of the y-carriage with the pivot point near y-carriages
  • Fig. 15 is an illustration of design examples for the tension of the plate structure on the moving carriage
  • Fig. 1 shows the representation of a device according to the invention on a
  • the object 1 to be moved for example a workpiece, is fastened on the table 2 of the x-carriage 4 which is moved by the drive device x 3 and which in turn is supported by the drive axis y ! 6 and 7 moving y 2 y-slide 5 is arranged, which is located on the moving through three driving means for 8 z 2 z 3 9 10 z-carriage.
  • the z-carriage 11 is guided on a frame 12 connected to the foundation, which is connected to the foundation 13.
  • a support structure 14 is arranged, for example, a arranged in a motor spindle 15 tool 16 at a fixed point perpendicular to the table 2 and centered to the table movements in the x and y direction.
  • Fig. 2 supplements to Fig. 1, the assignment of the 6 translatory adjusting axes to the 6 degrees of freedom to be controlled: the x-slide 4 is driven by a drive device x 3, the y-carriage 5 is by the parallel arranged two drive means yi 6 and y 2 7, which at the same time a manipulated variable as position difference Ay 17 for a
  • Angle correction ⁇ ⁇ 18 by position differences between y ⁇ 6 and y 2 7 can generate.
  • FIG. 3 shows the structure of the frame 12 realized on the exemplary embodiment.
  • the z-slide 11 is provided with guide systems on three columns 23; 24; 25 guided and supported there in the x and y direction.
  • the columns are connected via the cover plate 26 and the bottom plate 27 and provide the foundation 13 mounted on the frame 12.
  • the drive means z ⁇ z 8 z 2 9 3 10 are also supported directly on the foundation.
  • the associated with the x-slide balancing weights 32 are provided. These can bring the center of gravity of the x-slide 4 in the desired position with constant proportions and if necessary with additional variable proportions of the balancing weights 32 the x-slide 4 with a clamped on the table 2 workpiece 29 currently with respect to the balance of center of gravity and force attack tare.
  • Fig. 5 shows the z-carriage 11 and arranged thereon y-carriage 5 with the
  • FIG. 6 schematically illustrates the measurement and correction methods associated with the device.
  • a technologically motivated movement task is mathematically formulated on the workpiece by means of suitable geometry descriptions and thus also includes the relative movement between the tool and the workpiece required for the production of molded elements on the workpiece
  • a hole in a workpiece 35 is to be made by moving it relative to the fixed position rotating drill 36 at the position Pi 37 and moved for the drilling process with the technologically justified speed in the direction of the drill axis to the position P 2 38 becomes.
  • a protocol for changing the poses of a point of the workpiece considered as a rigid body during this z-movement always shows changes in all 6 degrees of freedom with each resolution, as in protocol 39 over the course of
  • )y; ⁇ t> z are listed in the time steps At. If such a protocol is present and the movement is controllable in 6 degrees of freedom, the best possible default for the desired movement in all 6 degrees of freedom can be determined mathematically.
  • the device according to the invention operates with a new accuracy strategy.
  • the intended nominal trajectory traversed without tools intervention thereby capturing the pose protocol and from this the current motion specification of the technological trajectory for the 6 degrees of freedom is generated.
  • Auxiliary bracing 46 between the top plate 47 and the base plate 48 is applied.
  • the guide column 23 on the foundation plate 28 can be made vertical with the adjustment adjusting devices 50 between the base plate 44 and the foundation plate 28 screwed to the column 23 zl guide rail.
  • Fig. 8 shows the design of the storage of a z-spindle 51 using the example of the drive device zl 8. The storage is clamped directly on the with the foundation plate 28
  • Tilting discs 54 are designed so that two narrow noses on the top and bottom are mounted centrally on these discs, which are offset from top to bottom by 90 ° and thus despite high Axial stiffness similar to a gimbal bearing react with the intended inclinations in the work area only small reaction moments generate and limit these reaction moments in the extended operating range.
  • Fig. 9 shows the prepared for mounting in the frame 12 z-slide 11.
  • the z-carriage 11 is inserted from above and with suitable tools - for example
  • Fig. 10 shows the execution of the joints between the carriage of a z-guide 55 and the z-slide 11.
  • About a strong clamping screw 56 of the z-carriage 11 and the guide carriage 55 are connected via an intermediate tilting disk 57 so that a sufficient stiffness for entrainment of the guide carriage 55 in z-movement of the carriage 11 and a high stiffness in the x-direction and y-direction, at small angles ⁇ ⁇ 20 and ⁇ 22 but only small reaction moments arise and they are limited by the tilting disks 57.
  • Fig. 11 shows the example of the drive means zl 8, the compound of the spindle nut 53 with the z-carriage 11.
  • the upper flange 58 is centrally placed on the aligned spindle 51 on the z-carriage 11 and the lower flange 59 with the z-slide 11 is clamped by the outer tie rods 60, wherein it is controlled that does not change in the application of the clamping forces, the position of the z-spindle 51.
  • the spindle nut 53 is tensioned with the inner tie rods 61 on the clamping disk 62 to the upper flange 58, wherein here between the upper flange 58 and the spindle nut 53, the first tilting disk 63 and disposed between the spindle nut 53 and the clamping disk 62, a second tilting disk 64 are, and thus the resulting small inclinations of the carriage 11 bending moment is limited to the z-spindle 51.
  • the mode of action of these tilting discs is like that
  • Fig. 12 shows the embodiment of the connection of the y-carriage 5 with the z-carriage 11 for performing small angular movements in ⁇ ⁇ 13.
  • Fig. 12 shows the embodiment of the connection of the y-carriage 5 with the z-carriage 11 for performing small angular movements in ⁇ ⁇ 13.
  • the lower plate of the y-carriage 5 are at the areas of screw-on y-carriages 66 and Incorporated solid body joints, wherein the solid state joints in the vicinity of the y-drives 6 and 7 located rear guide carriage 66, as shown in 67, only allow angular mobility and react rigidly in the x and y direction.
  • the other guide dare 68 are the
  • the joints 69 operating in the x-direction are designed so that a dimensioning path corresponding gap 70 is incorporated into the joint geometry and limits the possible displacement on the gap and thus protects the joint from overloading.
  • Fig. 13 shows the tension of the structure of the y-carriage 5 with the rear guide carriage y 66 in the region of the solid joints 67 in the z-direction, which is designed so that the rotation by the angle ⁇ ⁇ on the directionally fixed guide carriage 66 via tilting or Bending the slotted in the contact area supporting ribs 63 with relatively small reaction forces is possible.
  • Fig. 14 shows the distortion of the structure of the y-carriage 5 on the front guide carriage 68.
  • a pendulum tension 74 the pressure force from the carriage structure on the guide carriage fixed area of the solid-state joint 69 with tilting plates 73 on the
  • Fig. 15 shows examples of the design as well as the bracing of the structure.
  • the elements of the support structures are made of light metal plates and assembled in the main into box-shaped structures.
  • According to the required power line support ribs 78 are arranged between the cover plate 76 and the base plate 77 of a structural element, for example, at a thickness of 6 mm and a distance of the cover plate and base plate corresponding rib height of 200 mm already the desired stiffness, for example, for the bedding of a guide rail 79 can deliver.
  • the corresponding bracing by a plurality of slim tie rods 80 - for example .Gewindestäbe M6 with more than 200 mm in length - ensures dynamically stable and temporally constant clamping forces with almost exclusive pressure load of the contact points and little unwanted bending.
  • the bracing is symmetrical either via single-row tie rods between two tight support ribs 81 or double row tie rods next to a support rib 82. At the power line crossing points of support ribs 83, these can each have a slot, for example, up to half the rib height and a slot width corresponding to the rib thickness of the other received crossing rib.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

L'invention concerne un procédé servant à réaliser des mouvements de précision d'objets soumis à de fortes accélérations, le mouvement des objets (1) s'effectuant dans 6 axes de translation au moyen d'un traîneau z, d'un traîneau y et d'un traîneau x. Le mouvement de l'axe de cote sur le traîneau z s'effectue par 3 axes parallèles z1 (8), z2 (9) et z3 (10) et, outre la coordonnée z, il est encore ajusté au moyen de petits angles en ϕx (20) et ϕy (22) par des différences de course appropriées entre les axes z1 (8), z2 (9) et z3 (10). Un traîneau y (5) déplacé sur le traîneau z (11) et portant le traîneau x (4) est déplacé par 2 axes de translation parallèles y1 (6) et y2 (7) et, outre le décalage dans la direction y, il est aussi déplacé d'une spécification d'angle en petites valeurs absolues pour ϕz (18) via des spécifications de différence entre y1 (6) et y2 (7), de telle sorte qu'un objet (1) disposé sur le traîneau x (4) est déplacé de façon définie selon 6 degrés de liberté sur une trajectoire de guidage. Une commande spécifie toujours la position [x ; y ; z ; ϕx ; ϕy ; ϕz] de l'objet (1) à déplacer par les coordonnées de longueur correspondantes des 6 axes de translation x (3) ; y1 (6) ; y2 (7) ; z2 (8) ; z2 (9) ; z3 (10).
PCT/DE2010/001448 2009-12-02 2010-12-02 Procédé servant à réaliser des mouvements de précision d'objets soumis à de fortes accélérations, et dispositif associé WO2011066825A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112010004644T DE112010004644A5 (de) 2009-12-02 2010-12-02 Verfahren zum erzeugen von präzisionsbewegungen von objekten mit hohen beschleunigungen sowie einrichtung hierzu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910057207 DE102009057207A1 (de) 2009-12-02 2009-12-02 Einrichtung zum Erzeugen von Präzisionsbewegungen von Objekten mit hohen Beschleunigungen
DE102009057207.4 2009-12-02

Publications (1)

Publication Number Publication Date
WO2011066825A1 true WO2011066825A1 (fr) 2011-06-09

Family

ID=43797825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/001448 WO2011066825A1 (fr) 2009-12-02 2010-12-02 Procédé servant à réaliser des mouvements de précision d'objets soumis à de fortes accélérations, et dispositif associé

Country Status (2)

Country Link
DE (2) DE102009057207A1 (fr)
WO (1) WO2011066825A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111898302A (zh) * 2020-08-05 2020-11-06 东北大学 一种含间隙液压支架刚柔耦合动力学可视化仿真方法
CN115648249A (zh) * 2022-11-14 2023-01-31 北方民族大学 一种刚柔耦合驱动的3d打印机器人及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458442A (en) * 1987-08-31 1989-03-06 Toshiba Corp Correction of yawing of xy-stage
US5829932A (en) 1995-05-05 1998-11-03 Giddings & Lewis, Inc. Machine alignment compensation actuator system
US6325578B1 (en) 1998-08-18 2001-12-04 Unova Ip Corp. Method of error compensation for angular errors in machining (droop compensation)
US6698982B2 (en) 2001-11-15 2004-03-02 Mitsubishi Heavy Industries, Ltd. Machine tool
DE102005012105A1 (de) 2005-03-09 2006-09-21 Index-Werke Gmbh & Co. Kg Hahn & Tessky Verfahren und Steuerung zur Kompensation von Positionierungenauigkeiten
WO2007009481A1 (fr) * 2005-07-22 2007-01-25 Gebrüder Heller Maschinenfabrik Gmbh Procede d'usinage de precision d'arbres-manivelles et centre d'usinage correspondant
DE102006017599A1 (de) * 2006-04-15 2007-10-18 Schiess Gmbh Einrichtung zur Kompensation der Winkelabweichungen einer horizontalen Spindeleinheit
US7420298B2 (en) 2004-04-23 2008-09-02 Aerotech, Inc. Water cooled high precision z-theta stage
EP1967926A1 (fr) 2007-03-03 2008-09-10 AfM Technology GmbH Dispositif et procédé destinés à la correction d'un système de positionnement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458442A (en) * 1987-08-31 1989-03-06 Toshiba Corp Correction of yawing of xy-stage
US5829932A (en) 1995-05-05 1998-11-03 Giddings & Lewis, Inc. Machine alignment compensation actuator system
US6325578B1 (en) 1998-08-18 2001-12-04 Unova Ip Corp. Method of error compensation for angular errors in machining (droop compensation)
US6698982B2 (en) 2001-11-15 2004-03-02 Mitsubishi Heavy Industries, Ltd. Machine tool
US7420298B2 (en) 2004-04-23 2008-09-02 Aerotech, Inc. Water cooled high precision z-theta stage
DE102005012105A1 (de) 2005-03-09 2006-09-21 Index-Werke Gmbh & Co. Kg Hahn & Tessky Verfahren und Steuerung zur Kompensation von Positionierungenauigkeiten
WO2007009481A1 (fr) * 2005-07-22 2007-01-25 Gebrüder Heller Maschinenfabrik Gmbh Procede d'usinage de precision d'arbres-manivelles et centre d'usinage correspondant
DE102006017599A1 (de) * 2006-04-15 2007-10-18 Schiess Gmbh Einrichtung zur Kompensation der Winkelabweichungen einer horizontalen Spindeleinheit
EP1967926A1 (fr) 2007-03-03 2008-09-10 AfM Technology GmbH Dispositif et procédé destinés à la correction d'un système de positionnement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111898302A (zh) * 2020-08-05 2020-11-06 东北大学 一种含间隙液压支架刚柔耦合动力学可视化仿真方法
CN111898302B (zh) * 2020-08-05 2023-09-12 东北大学 一种含间隙液压支架刚柔耦合动力学可视化仿真方法
CN115648249A (zh) * 2022-11-14 2023-01-31 北方民族大学 一种刚柔耦合驱动的3d打印机器人及其控制方法
CN115648249B (zh) * 2022-11-14 2024-06-11 北方民族大学 一种刚柔耦合驱动的3d打印机器人及其控制方法

Also Published As

Publication number Publication date
DE102009057207A1 (de) 2011-12-15
DE112010004644A5 (de) 2012-10-31

Similar Documents

Publication Publication Date Title
EP0874715B1 (fr) Dispositif pour des appareils de fabrication, manipulation ou mesure a commande numerique
DE4495551C2 (de) Z-Achsen-Antrieb für eine Werkzeugmaschine
DE102009014766B4 (de) Überlagerte Achsen bei einer Vorrichtung zur Bearbeitung eines Werkstücks mit einem Werkzeug
EP2637821B1 (fr) Dispositif de correction de position d'éléments d'une machine-outil
DE102012101979B4 (de) Verfahren und Vorrichtung zur Erzeugung einer Relativbewegung
DE102007020633A1 (de) Positioniervorrichtung
DE19859360A1 (de) Werkzeugmaschine mit piezoelektrischer Positionskorrektureinrichtung
WO2018115071A1 (fr) Dispositif destiné à être utilisé dans une machine-outil à commande numérique conçue pour être employée dans un procédé pour mesurer la machine-outil à commande numérique
EP1392471B1 (fr) Machine de production
DE10250326A1 (de) Werkzeugmaschine und Verfahren zur Justage der Spindelposition dieser Werkzeugmaschine
DE69912469T2 (de) Verfahren zur fehlerkompensation von winkelfehlern während eines bearbeitungsvorgangs (neigungskorrektur)
DE19853756C1 (de) Positioniervorrichtung für die Positionierung und Meßeinrichtung für die Positionsbestimmung eines Maschinenteils
WO2011066825A1 (fr) Procédé servant à réaliser des mouvements de précision d'objets soumis à de fortes accélérations, et dispositif associé
WO2005000507A1 (fr) Machine-outil a broches paralleles pouvant etre rapprochees
WO2008011970A2 (fr) Porte-pièce de position variable destiné à une machine et installation d'usinage comprenant un porte-pièce correspondant
EP0431114B1 (fr) Portique fixe pour un appareil de mesure de coordonnees de haute precision
WO2006056178A1 (fr) Systeme platine-objectif pour des microscopes
WO2015014398A1 (fr) Dispositif de retenue, ensemble contre-support et procédé de réglage d'un dispositif de retenue
DE102007063318B3 (de) Verfahren zum Justieren einer Profilbearbeitungsmaschine
DE19640769A1 (de) Einrichtung mit mindestens einer Bewegungseinheit
EP2623257B1 (fr) machine-outil avec un dispositif d'équilibrage de position
DE102007010580B4 (de) Vorrichtung zur Bewegung einer Arbeitsplattform einer Bearbeitungsmaschine sowie Verfahren zur Steuerung einer Bewegungsbahn dieser Arbeitsplattform
DE102019205042B4 (de) Vorrichtung und Verfahren zur Positionierung eines Sensors oder Sensorteils
DE19938058A1 (de) Bewegungseinrichtung zur Bewegung einer Halteeinrichtung
EP2380739B1 (fr) Systeme de positionnement d'un stencil d'impression pour une unité d'impression sérigraphique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010004644

Country of ref document: DE

Ref document number: 1120100046441

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010004644

Country of ref document: DE

Effective date: 20121031

122 Ep: pct application non-entry in european phase

Ref document number: 10809135

Country of ref document: EP

Kind code of ref document: A1