WO2011065418A1 - Hollow-fiber membrane module, water treatment device, membrane separation method, and water treatment method - Google Patents

Hollow-fiber membrane module, water treatment device, membrane separation method, and water treatment method Download PDF

Info

Publication number
WO2011065418A1
WO2011065418A1 PCT/JP2010/071009 JP2010071009W WO2011065418A1 WO 2011065418 A1 WO2011065418 A1 WO 2011065418A1 JP 2010071009 W JP2010071009 W JP 2010071009W WO 2011065418 A1 WO2011065418 A1 WO 2011065418A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
water
hollow
fixing member
Prior art date
Application number
PCT/JP2010/071009
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 水口
豊 石丸
弘伸 西尾
明宏 田路
昭博 森藤
一貴 高田
明 石山
克義 谷田
俊通 竹山
昌伸 野下
英樹 横山
晃彦 隅
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009269180A external-priority patent/JP2011110499A/en
Priority claimed from JP2009269178A external-priority patent/JP2011110498A/en
Priority claimed from JP2009269142A external-priority patent/JP2011110496A/en
Priority claimed from JP2010030198A external-priority patent/JP2011161417A/en
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Publication of WO2011065418A1 publication Critical patent/WO2011065418A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/046Hollow fibre modules comprising multiple hollow fibre assemblies in separate housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration

Definitions

  • the present invention relates to a hollow fiber membrane module, a water treatment device, a membrane separation method, and a water treatment method used for membrane separation. Specifically, for example, water purification treatment of river water, lake water, ground water, seawater, or the like, or The present invention relates to a hollow fiber membrane module, a water treatment apparatus, a membrane separation method, and a water treatment method used for membrane separation treatment of sewage and industrial wastewater.
  • the conventional hollow fiber membrane module is likely to deteriorate the permeation performance of the hollow fiber membrane by adhering to the hollow fiber membrane, such as floating solids or adhesive organic compounds in the treated water. If the permeation performance of the water treatment is lowered, there is a problem that the operation efficiency of the water treatment device is also lowered.
  • an object of the present invention is to obtain permeate efficiently.
  • the present invention has a plurality of hollow fiber membranes extending in the vertical direction, and is a hollow fiber membrane module used by being immersed in water, An air diffusion mechanism that can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and formed below the hollow fiber membrane A lower water passage communicating with a hollow region inside the hollow fiber membrane, and collects permeated water permeated from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage.
  • the hollow fiber membrane module is characterized by being formed so as to be able to.
  • the present invention is a water treatment apparatus comprising a plurality of hollow fiber membranes extending in the vertical direction and provided with a hollow fiber membrane module used by being immersed in water, An air diffusion mechanism in which the hollow fiber membrane module can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and the hollow fiber A lower water passage formed below the membrane and communicating with a hollow region inside the hollow fiber membrane, and is transmitted from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage.
  • the water treatment apparatus is characterized by being formed so as to collect collected permeated water.
  • the present invention is a water treatment method using a hollow fiber membrane module having a plurality of hollow fiber membranes extending in the vertical direction and being immersed in water, An air diffusion mechanism in which the hollow fiber membrane module can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, and the hollow fiber A lower water passage formed below the membrane and communicated with a hollow region inside the hollow fiber membrane, and is transmitted from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage.
  • the water treatment method is characterized by being formed so as to collect collected permeated water.
  • the present invention relating to the hollow fiber membrane module is configured so that a plurality of hollow fiber membranes can be immersed in the water to be treated in a state of extending in the vertical direction so that the membrane separation of the water to be treated can be performed.
  • the lower fixing member has a water collection chamber below a fixing portion for fixing the hollow fiber membrane, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collection chambers.
  • the hollow fiber membrane is further provided with an air diffusion mechanism that generates air bubbles at the lower end side of the hollow fiber membrane.
  • a module wherein the lower fixing member is located below the water collection chamber
  • a gas passage provided from the gas storage chamber to the upper surface side of the fixed portion, and gas is stored in the gas storage chamber.
  • the air diffusion mechanism is provided in which the gas that has been blown up through the bubble passage and bubbles are generated above the fixed portion.
  • the air diffusion mechanism for generating air bubbles is provided on the lower end side of the hollow fiber membrane, Compared to the case where bubbles are generated from the tip of the diffuser tube arranged in the direction orthogonal to the direction in which the hollow fiber membrane extends because the bubbles floating from the reservoir to the upper side of the fixed portion are diffused through the bubble passage. Thus, the risk of vigorously vibrating the hollow fiber membrane in the vicinity of the air holes due to the generation of bubbles can be suppressed.
  • the present invention according to the water treatment method includes an upper fixing member and a lower end for fixing the upper end portion of the hollow fiber membrane so that the membrane separation can be performed in a state where a plurality of hollow fiber membranes are extended in the vertical direction.
  • a lower fixing member for fixing the hollow fiber membrane and the upper fixing member has a water collection chamber above the fixing portion for fixing the hollow fiber membrane and the lower fixing member fixes the hollow fiber membrane.
  • a water collecting chamber is provided below the fixed portion, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collecting chambers so that the permeated water permeated from the outside to the inside of the hollow fiber membrane is
  • the hollow fiber membrane module is formed so that water can be collected from the lower end portion of the hollow fiber membrane, and further provided with an air diffusion mechanism for generating bubbles on the lower end side of the hollow fiber membrane.
  • the permeated water collected in the water collecting chamber and the lower water collecting chamber Membrane separation step of separating the water to be treated by suctioning out of the hollow fiber membrane module, and bubbles are generated by the air diffusion mechanism to remove deposits attached to the surface of the hollow fiber membrane from the surface.
  • the lower fixing member includes a gas storage chamber provided below the water collection chamber, and the gas storage chamber from the gas storage chamber.
  • the gas is stored in the gas storage chamber, and the stored gas is passed through the bubble passage. It is characterized in that the air bubbles are generated on the upper side of the fixed part by floating and the aeration process is carried out.
  • a water treatment method capable of performing efficient membrane separation while suppressing deterioration in water quality can be provided.
  • the present invention relating to the hollow fiber membrane module is configured so that a plurality of hollow fiber membranes can be immersed in the water to be treated in a state of extending in the vertical direction so that the membrane separation of the water to be treated can be performed.
  • the lower fixing member has a water collection chamber below a fixing portion for fixing the hollow fiber membrane, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collection chambers.
  • the permeated water permeated from the outside to the inside can be collected from both the upper and lower sides, and further, a diffuser member for generating bubbles on the lower end side of the hollow fiber membrane is provided.
  • the air diffusion member for generating bubbles is provided on the lower end side of the hollow fiber membrane, and the Since the air diffusion holes are opened upward on the upper side of the fixing portion fixing the lower end portion of the hollow fiber membrane, bubbles are generated from the air diffusion holes provided at the distal end portions of the air diffusion tubes arranged in the lateral direction. Compared to the case, it is possible to suppress the possibility that the hollow fiber membrane in the vicinity of the air diffusion holes is vibrated vigorously due to the generation of bubbles.
  • the present invention according to the water treatment method includes an upper fixing member and a lower end for fixing the upper end portion of the hollow fiber membrane so that the membrane separation can be performed in a state where a plurality of hollow fiber membranes are extended in the vertical direction.
  • a lower fixing member for fixing the hollow fiber membrane and the upper fixing member has a water collection chamber above the fixing portion for fixing the hollow fiber membrane and the lower fixing member fixes the hollow fiber membrane.
  • a water collecting chamber is provided below the fixed portion, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collecting chambers so that the permeated water permeated from the outside to the inside of the hollow fiber membrane is In a state where the hollow fiber membrane module is further immersed in the water to be treated, and is further provided with an air diffuser for generating bubbles on the lower end side of the hollow fiber membrane.
  • the water collected in the upper water collecting chamber and the lower water collecting chamber A membrane separation step of membrane-separating the water to be treated by sucking excess water out of the hollow fiber membrane module, and generating air bubbles in the air diffuser to vibrate the hollow fiber membrane.
  • a water treatment method for performing an air diffusion step of removing deposits attached to a surface from the surface wherein the air diffusion member has a hollow body provided with air diffusion holes, and the air diffusion holes are the lower fixing member.
  • the hollow body is provided so that the hollow body is arranged so as to open upward on the upper side of the fixing portion, and a tube body for supplying gas to the hollow body is connected to the hollow body.
  • the membrane separation step is performed using a membrane module, and in the air diffusion step, the gas is supplied from the tube body to the hollow body, and the supplied gas is generated as bubbles from the air diffusion holes to generate the gas. Removal of deposits It is characterized by carrying out the.
  • a water treatment method capable of performing efficient membrane separation while suppressing deterioration in water quality can be provided.
  • the present invention related to the hollow fiber membrane module includes a plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, A hollow fiber membrane module that is used by immersing in water with an air diffusion mechanism that can diffuse air into the hollow fiber membrane, wherein the air diffusion mechanism is fixed at both ends to the upper fixing member and the lower fixing member.
  • a tubular body extending between the upper fixing member and the lower fixing member, and a diffused hole capable of diffusing gas in the tube to the hollow fiber membrane is formed on a peripheral surface of the tubular body,
  • the upper and lower water collecting portions are provided with an upper water collecting portion and a lower water collecting portion in which upper and lower ends of the hollow fiber membrane are opened and permeated water that has permeated through the hollow fiber membrane is accommodated from the opened end of the hollow fiber membrane.
  • a derivation mechanism for deriving the permeated water contained in the lower water collection section It It is characterized.
  • the air diffusion mechanism of the hollow fiber module includes a tubular body that is fixed at both ends to the upper fixing member and the lower fixing member and extends between the upper fixing member and the lower fixing member. Therefore, the tip portions at both ends of the tubular body do not come into contact with the hollow fiber membrane, and damage to the hollow fiber membrane can be suppressed.
  • the air holes that can diffuse into the hollow fiber membrane are formed on the peripheral surface of the tubular body, horizontal air bubbles can flow near the air holes, and further, the air bubbles can flow upward due to buoyancy. Become. Therefore, the flow direction of the bubbles differs depending on where the bubbles come into contact with the hollow fiber membrane, and the hollow fiber membrane can be effectively shaken. The effect can be improved.
  • an upper water collection unit and a subordinate water collection unit are provided above and below the hollow fiber membrane, respectively, in which permeated water that has permeated the hollow fiber membrane from the membrane end portions exposed to the upper fixing member and the lower fixing member is accommodated.
  • the derivation mechanism for deriving the permeated water stored in the upper water collection unit and the subordinate water collection unit is formed, when the aeration mechanism as described above is provided, for air scrubbing Since the air diffusion mechanism does not interfere with the water collection from the lower end side, the permeated water can be easily collected from the upper and lower end sides of the hollow fiber membrane, and the permeation efficiency can be further improved.
  • the both-end water collecting hollow fiber membrane has an advantage that the pump power can be reduced because water can be absorbed at a lower pressure.
  • the support member when the support member is provided with a support member fixed at both ends to the upper fixing member and the lower fixing member, and the support member is the tubular body, the tubular body can also serve as the support member of the hollow fiber membrane. There is no need to separately provide a member for supporting the hollow fiber membrane.
  • a support member having both end sides fixed to the upper fixing member and the lower fixing member is provided, and the supporting member is the tubular body.
  • the present invention related to the membrane separation method includes a plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and the hollow A membrane separation method using a hollow fiber membrane module that is used by immersing in water with an aeration mechanism capable of diffusing the yarn membrane, wherein the aeration mechanism includes the upper fixing member and the lower fixing member And a tubular body extending between the upper fixing member and the lower fixing member, and gas in the tube is supplied to the hollow fiber membrane from a diffused hole formed in a peripheral surface of the tubular body.
  • the upper and lower ends of the hollow fiber membrane are opened, and the hollow fiber membrane module has an upper water collecting portion in which permeated water that has passed through the hollow fiber membrane is accommodated from the opened end of the hollow fiber membrane;
  • a lower water collecting part was provided, and was accommodated in the upper water collecting part and the lower water collecting part. It is characterized by having a derivation mechanism for deriving a peroxide.
  • the present invention related to the water treatment apparatus includes a plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and the hollow A water treatment apparatus in which a hollow fiber membrane module having an air diffusion mechanism capable of air diffusion is immersed in water to perform membrane separation, wherein the air diffusion mechanism includes the upper fixing member and the lower portion A tubular member having both ends fixed to a fixing member and extending between the upper fixing member and the lower fixing member is provided, and gas in the tube can be diffused to the hollow fiber membrane on the peripheral surface of the tubular body A hollow fiber membrane module in which air diffusion holes are formed is used, the upper and lower ends of the hollow fiber membrane are opened, and the hollow fiber membrane module is transmitted through the hollow fiber membrane from the opened end of the hollow fiber membrane.
  • the hollow fiber membrane module according to the present invention includes a plurality of hollow fiber membranes extending in the vertical direction, and an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane.
  • a hollow fiber membrane module that is formed to collect permeated water from both above and below via the upper water passage and the lower water passage, and is used in a plurality arranged in parallel,
  • An upper connecting member that covers the upper water flow chamber and connects the adjacent ones to each other; and a lower connecting member that covers the lower water flow chamber and the ventilation chamber and connects the adjacent ones to each other, When the member and the lower connecting member are connected to each other, the upper water passing chambers, the lower water passing chambers, and the venting chambers are formed to communicate with each other.
  • a plurality of hollow fiber membrane modules including hollow fiber membranes can be connected to each other by the upper connecting member and the lower connecting member. Therefore, a plurality of hollow fiber membrane modules can be arranged at a relatively high density.
  • the upper water passage, the lower water passage, and the vent chamber communicate with each other in a state where the hollow fiber membrane modules are connected. Accordingly, the permeated water can be collected from the plurality of modules through the upper water passage and the lower water passage provided in the module, and the air diffuser holes of the plurality of modules through the ventilation chamber provided in the module. Can supply gas.
  • the hollow fiber membrane module can perform membrane separation while arranging the hollow fiber membranes at a relatively high density.
  • the water treatment apparatus includes a plurality of hollow fiber membranes extending in the vertical direction, and an upper water passage chamber formed above the hollow fiber membranes and communicated with a hollow region inside the hollow fiber membranes.
  • a lower water passage formed below the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, a diffuser hole formed to generate bubbles on the lower end side of the hollow fiber membrane,
  • a hollow fiber membrane module that is formed below the hollow fiber membrane and has a ventilation chamber that supplies gas to the air diffusion holes is provided, and the membrane separation of the water to be treated is performed by immersing the hollow fiber membrane module in the water to be treated.
  • a plurality of hollow fibers configured to collect permeated water permeated from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage from both the upper and lower sides of the hollow fiber membrane module.
  • Water treatment equipment with membrane modules arranged in parallel The hollow fiber membrane module covers the upper water passing chamber and connects the adjacent ones to each other, and the upper connecting member that connects the adjacent ones to the lower water passing chamber and the venting chamber.
  • a lower connecting member and in a state where the upper connecting member and the lower connecting member are connected to each other, the upper water passing chambers, the lower water passing chambers, and the venting chambers communicate with each other. It is formed as follows.
  • the water treatment method according to the present invention includes a plurality of hollow fiber membranes extending in the vertical direction, and an upper water flow chamber formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane.
  • a plurality of hollow fiber membrane modules formed below the hollow fiber membrane and provided with a ventilation chamber for supplying gas to the air diffusion holes are arranged in parallel and immersed in the water to be treated, from the outside to the inside of the hollow fiber membrane.
  • a water treatment method for collecting permeated water permeated into the hollow fiber membrane module from both the upper and lower sides of the hollow fiber membrane module through the upper water passage and the lower water passage, and performing membrane separation of water to be treated Upper connecting member that covers the upper water flow chamber and connects adjacent ones to each other
  • the hollow fiber membrane module further comprising a lower connecting member that covers the lower water passage and the vent chamber and that connects adjacent ones to each other is connected to each other by the upper connecting member and the lower connecting member.
  • the membrane separation is performed in a state in which the upper water flow chambers, the lower water flow chambers, and the ventilation chambers are in communication with each other.
  • FIG. 2 is a top view of the fixing portion of the upper fixing member in the same embodiment (a cross-sectional view taken along line AA in FIG. 1).
  • FIG. 3 is a top view of the fixing portion of the lower fixing member in the same embodiment (a cross-sectional view taken along line BB in FIG. 1).
  • a bottom view of the fixing portion of the lower fixing member in the same embodiment cross-sectional view taken along line CC in FIG. 1)
  • FIG. 3 is a longitudinal sectional view showing a configuration of a second to first embodiment of a hollow fiber membrane module of the present invention.
  • FIG. 7 is a top view of the fixing portion of the upper fixing member in the same embodiment (a cross-sectional view taken along line AA in FIG. 6).
  • FIG. 7 is a top view of the fixing portion of the lower fixing member in the same embodiment (sectional view taken along line BB in FIG. 6).
  • the longitudinal direction sectional view (A) and the lateral direction sectional view (B) showing a mode in which the hollow body is changed in the same embodiment.
  • the longitudinal direction sectional view (A) and the lateral direction sectional view (B) showing a mode in which the hollow body is changed in the same embodiment.
  • FIG. 6 is a longitudinal sectional view (A), a transverse sectional view (B), and a modified example (A ′: longitudinal sectional view) showing a hollow fiber membrane module according to a 2-2 embodiment.
  • the partial cross section figure which shows the structure of 3rd Embodiment of the hollow fiber membrane module of this invention.
  • the top view which shows the upper surface of the hollow fiber membrane module in FIG. Sectional drawing which shows the attachment structure of the upper fixing member in FIG.
  • Sectional drawing which shows an example of the structure of the vicinity of a permeated water outlet
  • Sectional drawing which shows another example of the structure of the vicinity of a permeated water outlet.
  • Sectional drawing which shows the attachment structure of the lower fixing member in FIG.
  • Sectional drawing which shows the attachment structure of the tubular body in FIG.
  • the top view which shows the aeration state of a bubble.
  • Sectional drawing which shows another example of the attachment structure of a tubular body.
  • Sectional drawing which shows another example of the attachment structure of a tubular body.
  • Structure explanatory drawing which shows one Embodiment of the water treatment apparatus of this invention.
  • membrane separation of water to be treated is performed by immersing the hollow fiber membrane in a standing posture in which the hollow fiber membrane extends in the vertical direction and sucking the inside of the hollow fiber membrane into the water to be treated containing suspended substances.
  • An external pressure type hollow fiber membrane module is used to obtain permeated water by performing the above.
  • this conventional hollow fiber membrane module is easy to reduce the permeation performance of the hollow fiber membrane due to floating solids or adhesive organic compounds in the water to be treated. Since this leads to an increase in load, conventionally, a method for suppressing the decrease in transmission performance has been widely studied.
  • the hollow fiber membrane is vibrated by performing aeration on the lower end side of the hollow fiber membrane to It is known that a method called air scrubbing that removes deposits is effective in preventing deterioration in permeation performance.
  • the hollow fiber membrane module described in Patent Document 1 has an air diffuser inserted into a bundle of hollow fiber membranes from the lateral direction perpendicular to the vertical direction in which the hollow fiber membrane extends, and the air diffuser at the tip thereof. From this, bubbles are generated to remove deposits on the surface of the hollow fiber membrane.
  • the hollow fiber membrane in the vicinity of the diffuser in front of the diffuser is vibrated vigorously by the release of bubbles from the diffuser provided at the tip of the diffuser. Therefore, it may collide with the tip of the air diffuser and be damaged by, for example, an edge portion of the air diffuser. And when a hollow fiber membrane is damaged, to-be-processed water will mix in permeated water and will cause the water quality fall of permeated water.
  • the conventional hollow fiber membrane module and the water treatment method using the conventional hollow fiber membrane module have a problem that it is difficult to perform efficient membrane separation while suppressing deterioration of water quality. Have.
  • the first embodiment provides a hollow fiber membrane module that is capable of collecting water from both the upper and lower sides but has a low risk of damaging the hollow fiber membrane, and as a result, performs efficient membrane separation while suppressing water quality deterioration. It aims at providing the water treatment method which can be implemented.
  • FIG. 1 is a longitudinal cross-sectional view which shows a mode that the hollow fiber membrane module which concerns on embodiment of this invention was made to stand up like the time of use
  • (b) is the broken line X of (a).
  • (C) is an enlarged view of a region surrounded by a broken line Y in (a).
  • 2 is a cross-sectional view showing a cross section (cross section) of the hollow fiber membrane module taken along line AA in FIG. 1
  • FIG. 3 is a cross section of the hollow fiber membrane module taken along line BB in FIG.
  • FIG. 4 is a cross-sectional view of the hollow fiber membrane module taken along the line CC of FIG.
  • the hollow fiber membrane module 10 of the first embodiment has an appearance of a vertically long cylindrical shape as shown in this figure, and a plurality of hollow fiber membranes 11 are arranged in parallel in the middle in the vertical direction. Exposed.
  • the hollow fiber membrane module 10 of the first embodiment is arranged in a vertical direction in a state where a plurality of hollow fiber membranes 11 are aligned, and one end portion of both ends of the hollow fiber membrane 11 is set upward.
  • the fixing member hereinafter also referred to as “upper fixing member 20” and the fixing member (hereinafter also referred to as “lower fixing member 30”) for fixing the other end on the lower side are used.
  • a plurality of hollow fiber membranes 11 are fixed.
  • the hollow fiber membrane module 10 of 1st Embodiment further has an aeration mechanism which generates a bubble in the lower end part side of the hollow fiber membrane 11.
  • the hollow fiber membrane module 10 in the first embodiment extends in the vertical direction at a position outside the region where the hollow fiber membrane 11 is disposed, and is connected to the upper fixing member 20 and the lower fixing member 30. It has a hook-like support member S that fixes both ends and supports them with a predetermined distance therebetween.
  • a pair of support members S provided on the left and right sides of the area where the hollow fiber membrane 11 is disposed are tubular and are provided in the hollow fiber membrane module 10 in a state where the upper and lower water collecting chambers are communicated with each other. Yes.
  • the upper fixing member 20 has a plate-like body 21 (hereinafter also referred to as “upper plate-like body 21”) arranged substantially horizontally on the lower side thereof, and the plate-like body 21 is thick due to the polymer composition. It is formed in a disk shape.
  • the upper fixing member 20 is provided with a cap material 22 that covers the plate-like body 21 from above, and the cap material 22 includes a top surface portion 22c having substantially the same shape as the contour shape of the plate-like body 21 and the top surface portion 22c. And a peripheral wall portion 22w depending from the outer edge of the top surface portion 22c.
  • the cap member 22 has an opening 22d in the top surface portion 22c, and the top surface portion 22c is spaced apart from the upper surface 21a of the plate-like body 21 by a certain distance and is formed inside the peripheral wall portion 22w.
  • a space 20 a that communicates with the outside only through the opening 22 d is formed between the plate 21 and the peripheral surface 21 w of the plate 21 so as to be in close contact with the plate 21.
  • the plate-like body 21 has an upper end portion of the hollow fiber membrane 11 embedded and fixed by the polymer composition, and is provided to constitute a fixing portion for fixing the hollow fiber membrane 11 in the upper fixing member 20. It is a thing. More specifically, the plate-like body 21 has a cylindrical shape having an inner diameter that is slightly larger than the thickness of the hollow fiber membranes 11 in a state where all the hollow fiber membranes 11 are bundled together. A cylindrical cured body obtained by inserting an end of the hollow fiber membrane 11 into a container and filling and solidifying the curable liquid polymer in the container is formed at a portion inside the end of the hollow fiber membrane 11. The hollow fiber membrane 11 is formed into a disk shape by cutting the entire hollow fiber membrane 11 in a direction substantially orthogonal to the extending direction of the hollow fiber membrane 11.
  • the hollow fiber membrane 11 is fixed to the plate-like body 21 by being embedded in the polymer composition so as to penetrate the plate-like body 21 upward from below and open at the upper surface 21a of the plate-like body 21.
  • the hollow fiber membrane 11 has a polymer part 21r filled with a polymer composition.
  • the space portion 20a having the upper surface 21a of the plate-like body 21 as the bottom surface and the upper side thereof covered with the cap material 22 is a water collection chamber (hereinafter referred to as a collection chamber) in which permeated water permeated from the outside to the inside of the hollow fiber membrane 11 is collected.
  • the upper fixing member 20 is provided to function as an “upper water collecting chamber 20a”.
  • the tubular support member S is also fixed with its upper end embedded in the plate-like body 21 and opened on the upper surface 21 a of the plate-like body 21.
  • the lower fixing member 30 is common in that it has a plate-like body 31 similar to the upper fixing member 20. That is, the plate-like body 31 (hereinafter also referred to as “lower plate-like body 31”) constituting the fixing portion for fixing the hollow fiber membrane 11 in the lower fixing member 30 is a plate-like shape provided in the upper fixing member 20. Similarly to the body 21 (hereinafter also referred to as “upper plate-like body 21”), it is formed by curing a curable liquid polymer, and the lower end portion of the hollow fiber membrane 11 and the support member S is the lower plate-like body 31.
  • the lower fixing member 30 is provided so as to penetrate from the upper surface side to the lower surface side and open on the lower surface side.
  • the lower plate-like body 31 is different in that one or more through holes (four positions in the figure) are provided through the lower plate 31 in the thickness direction (vertical direction). It is provided as a diffused hole AO that opens to the upper surface 31a of the body 31 and discharges bubbles upward from the opening. Further, the lower plate-like body 31 is different from the upper plate-like body 21 in that an overhanging portion 31f having a flange-like structure is provided on the upper side in the thickness direction.
  • the projecting portion 31f has a tapered surface in which the upper surface side is gently lowered toward the outside, and the lower surface side is projected outward at a substantially right angle to the peripheral wall portion 31w on the lower side of the lower plate-like body 31. And is provided on the lower plate-like body 31.
  • a water collecting chamber 30a similar to the upper water collecting chamber 20a is formed in the lower fixing member 30, and the lower fixing member 30 A cylindrical member 33 is provided below the side water collection chamber 30a (hereinafter also referred to as “lower water collection chamber 30a”) to define a gas storage chamber 30b that stores the gas released from the air diffuser AO. This is also different from the upper fixing member 20.
  • the cylindrical member 33 includes a cylindrical peripheral side wall 33w having an inner diameter substantially the same as the diameter of the lower peripheral wall portion 31w of the lower plate-shaped body 31, and a partition wall 33p that vertically divides the interior of the peripheral side wall 33w.
  • the partition wall 33p is provided with a through-hole (aeration hole AO) of the lower plate 31 when the tubular member 33 is externally fitted to the lower plate 31 from below.
  • a projecting portion 33n that protrudes upward at a position that is the same position as that of the projecting position and that has a tip smaller in diameter than the through hole and a base end larger in diameter than the through hole is provided.
  • the tubular member 33 is brought into contact with the air diffuser hole AO of the lower plate-shaped body 31 from the lower side with the projecting portion 33n provided at a position corresponding to the air diffused hole AO.
  • the partition wall 33p is separated from the lower surface 31b of the lower plate-shaped body 31 to form a space portion surrounded by the peripheral side wall 33w, and the space portion is gathered on the lower side.
  • a water chamber 30a is formed below the partition wall 33p, the partition wall 33p is a ceiling wall, and a space surrounded by the peripheral side wall 33w is defined as the gas storage chamber 30b.
  • the projecting portion 33n is formed with a through hole 33h penetrating vertically.
  • One end of the through hole 33h opens at the upper end of the projecting portion, and the other end opens at the lower surface of the partition wall 33p.
  • the lower fixing member 30 according to the first embodiment is configured such that the cylindrical member 33 is inserted into the lower plate-like body in a state where the distal end portion of the projecting portion 33n is inserted into the air diffusion hole AO of the lower plate-like body 31 from below.
  • the through hole 33h formed in the projecting portion 33n and the diffuser hole AO of the lower plate-like body 31 pass through the lower water collection chamber 30a from the gas storage chamber 30b.
  • a bubble passage 33x extending to the upper surface side of the lower plate-like body 31 forming the fixing portion in the lower fixing member 30 is formed.
  • the through hole 33h With respect to the through hole 33h, by reducing the opening area and increasing the flow velocity of the air passing through the through hole 33h, it is possible to release the bubbles upwards vigorously and obtain a high adhering matter removing effect. Can do. On the other hand, if the opening area of the through-hole 33h is reduced, the through-hole 33h may be clogged while the aeration is stopped.
  • the through hole 33h is preferably formed so that the opening area per one of the through holes 33h is 0.5 to 5 cm 2.
  • the through hole 33h has a circular opening shape. In this case, it is preferable that the diameter is 8 to 25 mm.
  • FIG. 1C a modified example shown in FIG. 1C 'can also be adopted. That is, in the above, the air diffusion hole AO having a uniform inner diameter from the upper surface side to the lower surface side of the lower plate-like body 31 is illustrated, but in this modified example, a part of the lower surface side has a diameter compared to the upper surface side. It's great.
  • a step portion is formed between the large-diameter portion LD below and the small-diameter portion SD above the lower-diameter portion LD, and the tip of the protruding portion is brought into contact with the lower surface 31b1 of the step portion.
  • the projecting portion 33n ′ is also a cylindrical shape having an outer diameter slightly smaller than the inner diameter of the large diameter portion LD of the air diffusion hole AO ′ and larger than the inner diameter of the small diameter portion SD. In the point which is formed in this, it is different from the protrusion 33n of the shape which narrows upward in the above example.
  • the protrusion 33n ′ in this modification is formed such that the protrusion height from the upper surface of the partition wall 33p is longer than the length of the section in which the large diameter portion LD is formed, and the protrusion 33n ′. Is inserted into the air diffusion hole AO (large-diameter portion LD) from below, and when the tip is brought into contact with the lower surface 31b1 of the stepped portion, the lower surface 31b of the plate-like body 31 and the partition wall 33p Are separated from each other so that the water collecting chamber 30a can be formed.
  • the protrusion 33n ′ in this modified example has an inner diameter that is substantially the same as the inner diameter of the small-diameter portion SD of the air diffusion hole AO ′, and the tip portion is brought into contact with the lower surface 31b1 of the step portion.
  • the small diameter portion SD of the air diffusion hole AO and the through hole 33h of the protruding portion 33n ′ are continuous to form a bubble passage 33x having a substantially uniform inner diameter.
  • an annular groove is formed at a position where the tip of the projecting portion 33n ′ abuts on the lower surface 31b1 of the stepped portion, and the sealing material 31s ′ accommodated in this groove.
  • airtightness watertightness
  • the peripheral side wall 33 w has an upper inner diameter that is substantially the same as the outer diameter of the lower portion of the lower plate-shaped body 31, and corresponds to the lower surface of the overhanging portion 31 f of the lower plate-shaped body 31.
  • a flange portion 33w1 having a large upper surface is formed at the upper end portion.
  • the flange portion 33w1 has a shape that is substantially symmetric with respect to the projecting portion 31f of the lower plate-like body 31 and a horizontal plane, and the lower surface side faces outward while the upper surface is a horizontal plane. It has a tapered surface that gently rises (thickness gradually decreases outward).
  • the flange portion 33w1 protrudes outward with a width such that the position of the outer edge is substantially the same position as the outer edge of the overhang portion 31f.
  • the tubular member 33 has a height from the partition wall 33p to the flange portion 33w1 when the tubular member 33 is externally fitted to the lower plate 31 from the lower side. And the height at which the outer peripheral surface of the projecting portion 33n can be brought into contact with the opening edge on the lower surface side of the air diffusion hole AO via the seal member 31s immediately before contacting the lower surface of the protruding portion 31f of the lower plate-like body 31. It is formed to become.
  • the cylindrical member 33 and the lower plate-like body 31 are formed by lowering the screw hole formed in the central portion of the lower surface 31b of the lower plate-like body 31 and the central portion of the partition wall 33p of the cylindrical member 33.
  • a nut provided in a state penetrating from the side is screwed, and a certain amount of pressure acts on the seal member 31s sandwiched between the projecting portion 33n and the opening edge on the lower surface side of the air diffusion hole AO. Until then, the nut is tightened and fixed to each other.
  • tubular member 33 and the lower plate-like body 31 are opposed to each other with a protruding portion 31f of the lower plate-like body 31 and a flange portion of the tubular member 33 facing each other while being fixed by the nut.
  • 33w1 is surrounded by a clamp CL from the outside and fixed to the other side.
  • the sealing member 31s is made of an elastic member formed in an annular shape and has an L-shaped cross section.
  • the seal member 31s is configured such that a portion corresponding to the “L” -shaped vertical bar is brought into contact with the lower inner peripheral surface of the air diffuser hole AO, and a portion corresponding to the “L” -shaped horizontal bar is formed on the lower plate-like body.
  • 31 is formed so as to be attached to the opening on the lower surface side of the air diffuser hole AO in a state of being in contact with the lower surface 31b of 31 and is sandwiched between the lower plate-like body 31 and the protruding portion 33n. It is provided to give airtightness (watertightness) to the bubble passage 33x.
  • seal members are attached to the outer peripheral portion of the lower plate-like body 31 at two locations among the locations that come into contact with the peripheral side wall 33w when the tubular member 33 is externally fitted. Airtightness (watertightness) at the contact point is given. Specifically, grooves that are continuous in the circumferential direction are formed on the lower surface of the overhanging portion 31f, and grooves that are continuous in the circumferential direction are also formed on the outer peripheral surface on the lower side of the lower plate-like body 31. A rubber O-ring 30r is mounted as the seal member. Particularly, the O-ring 30r mounted on the lower surface of the overhang portion 31f is tightened in the direction in which the clamp CL shortens the circumferential length thereof.
  • the O-ring 30r and the L-shaped seal member 33s disposed between the projecting portion 33n and the lower plate-like body 31 are permeated through the hollow fiber membrane 11 like the upper water collection chamber 20a.
  • a lower catchment chamber 30a capable of collecting water is formed, and treated water or the like enters the lower catchment chamber 30a from the outside, or permeate leaks from the lower catchment chamber 30a to the outside. Will be suppressed.
  • a portion corresponding to the top surface of the lower water collecting chamber 30a is constituted by the lower surface 31b of the lower plate-like body 31, and the support member S is opened. That is, the upper water collection chamber 20a and the lower water collection chamber 30a are provided in the hollow fiber membrane module 10 in a state of being communicated by the support member S.
  • the hollow fiber membrane module 10 of 1st Embodiment makes the lower fixing member 30 form the water collection chamber 30a and the gas storage chamber 30b simply by combining the said cylindrical member 33 and the said lower plate-shaped body 31.
  • the permeated water is permeated from the outside to the inside of the hollow fiber membrane 11 by sucking the inside of the upper water collecting chamber 20a from the opening 22d formed in the cap material 22 of the upper water collecting chamber 20a. Water can be collected at once in both the upper and lower water collecting chambers 20a and 30a.
  • the hollow fiber membrane module 10 of 1st Embodiment introduce
  • the hollow fiber Permeated water permeates through the hollow fiber membrane 11 by the water pressure applied to the membrane 11 and the negative pressure by the suction pump. That is, suspended substances contained in the water to be treated are mainly captured on the surface of the hollow fiber membrane 11, and the purified permeate is permeated into the hollow fiber membrane 11 and collected in the water collection chamber. become.
  • the permeated water since the upper water collection chamber 20a and the lower water collection chamber 30a are sufficiently sealed, the permeated water having high cleanliness and low possibility of being mixed with water to be treated. Obtainable.
  • the negative pressure by the suction pump also acts on the lower water collecting chamber 30a side, so that both upper and lower water collecting chambers are collected. Water is collected at once in the water chambers 20a and 30a, and membrane separation of the water to be treated can be carried out efficiently.
  • the said gas storage chamber 30b is air from the air supply pipe
  • the gas is introduced into the gas storage chamber 30b by the buoyancy of the gas. That is, the gas introduced into the gas storage chamber 30b floats in the bubble passage 33x formed by the through-hole 33h provided at a location corresponding to the projecting portion 33n and the diffuser hole AO of the lower plate-like body 31. Then, the bubbles are discharged upward from the opening of the air diffusion hole AO on the upper surface side of the lower plate-like body 31.
  • the hollow fiber membrane 11 fixed around the air diffusion hole AO is vibrated by the striking force due to the collision of the bubbles AB or the water flow accompanying the rising of the bubbles, and the suspension adhered to the surface by membrane separation. Deposits such as substances are dropped off and removed.
  • the air diffusion holes AO opening upward are formed on the upper surface 31 a of the plate-like body 31 of the lower fixing member 30 as described above, and the conventional hollow fiber is formed on the upper surface side of the lower plate-like body 31. Since a member for air diffusion such as an air diffuser tube in the module is not provided, there is a possibility that the hollow fiber membrane 11 may be damaged when the deposits on the hollow fiber membrane 11 are removed. It is reduced as compared with the membrane module, and it is possible to suppress the deterioration of water quality due to the scratch of the hollow fiber membrane.
  • an air diffuser is inserted so as to sew the hollow fiber membrane from the horizontal direction perpendicular to the vertical direction in which the hollow fiber membrane extends, Since the air bubbles are generated from the air diffuser provided at the tip of the air diffuser, the hollow fiber membrane located in front of the air diffuser is greatly vibrated by the air bubbles emitted from the side, and the air diffuser is formed at the tip of the air diffuser. There is a possibility of collision.
  • the hollow fiber membrane module in 1st Embodiment is not provided with the member which collides in the first place.
  • the support member S is illustrated as being installed in an accumulation portion where the hollow fiber membranes 11 are accumulated.
  • the support member S and the hollow fiber membrane 11 are illustrated. In order to further suppress the contact with the support member S, it is possible to dispose the support member S at the outer edge of the region where the hollow fiber membranes 11 are accumulated or at a position further away from the outer edge.
  • the hollow fiber membrane module of the first embodiment can reduce the damage given to the hollow fiber membrane 11.
  • a hollow fiber membrane module having the above-described effects can be easily produced by using the tubular member 33 as a constituent member.
  • the cylindrical member 33 is not necessarily required from the viewpoint that the lower fixing member 30 is formed from the gas storage chamber 30b provided below the lower water collection chamber 30a and the gas storage chamber 30b.
  • the hollow fiber membrane module 10 is formed so that the upper and lower water collection chambers 20a, 30a are communicated with each other by the support member S and the permeated water can be discharged only from the upper water collection chamber 20a side.
  • an opening is provided at a position above the partition wall 33p of the peripheral side wall 33w of the tubular member 33 to provide a lower water collecting chamber.
  • Permeated water may be discharged only from the side of 30a. It is also possible to provide openings on both the upper and lower sides to discharge the permeated water from both the upper and lower sides.
  • the support member S need not be tubular, and a solid housing may be employed as the support member.
  • the support member S as a member that communicates the upper and lower water collection chambers 20a, 30a.
  • the upper and lower water collecting chambers 20a and 30a can be communicated with each other by using a tubular body.
  • a conventionally well-known member can be employed in the hollow fiber membrane module of the present invention as long as the effects of the present invention are not significantly impaired as a constituent member of the hollow fiber membrane module.
  • a hollow cylindrical hollow fiber membrane module is exemplified, but the hollow fiber membrane module of the present invention is a shape in which hollow fiber membranes are integrated, upper and lower fixing members,
  • the opening shape and the like of the air holes provided in the lower fixing member are not limited to those illustrated above, and various modifications can be made.
  • FIG. 5 is an apparatus schematic diagram for explaining this water treatment method, and is a view showing an embodiment of a water treatment apparatus using the hollow fiber membrane module 10 according to the first embodiment.
  • the water treatment device 60 is configured to obtain a permeated water that can be supplied as clean water by membrane separation of water to be treated containing suspended solids.
  • the water treatment apparatus 60 includes a water tank 62 to be treated, to which water to be treated is supplied from a water supply line 61 to be treated.
  • the several hollow fiber membrane module 10 arrange
  • a membrane separation device having Furthermore, in the water treatment device 60 of the first embodiment, an air supply source 64a for carrying out air scrubbing by the air diffusion mechanism of the hollow fiber membrane module 10, and air supplied from the air supply source 64a to the air supply pipe
  • An air supply line 64 for supplying air to the gas storage chamber 30b through 40p (see FIG. 1 and the like) and a precipitate discharge line 65 for discharging the precipitate in the water tank 62 to be treated are provided.
  • the permeated water extraction line 63 in the water treatment apparatus of FIG. 5 includes a water collection pipe 63b connected to the opening 22s of the cap material 22 at the top of each hollow fiber membrane module 10, and a water collection header pipe communicating with each water collection pipe 63b. 63c and a permeate take-out pipe 63d.
  • the air supply line 64 includes an air supply source 64a, an air transport pipe 64b for supplying air pressurized by the air supply source 64a, an air transport branch pipe 64d branched from the air transport pipe 64b, Each air transport branch pipe 64d has a tip portion connected to the air supply pipe 40p.
  • each hollow fiber membrane module 10 is installed in the water treatment apparatus in a state in which the upper fixing member 20 is immersed entirely below the water surface.
  • the suction pump 63a sucks the upper water collection chamber 20a, and the upper water collection chamber 20a and the support member S communicate with each other.
  • the lower water collection chamber 30a is brought into a negative pressure state, whereby permeate is permeated from the outside to the inside of the hollow fiber membrane 11, and water is collected from both above and below.
  • the suction pump 63a the permeated water is discharged from the hollow fiber membrane module, and the membrane separation of the water to be treated by the hollow fiber membrane 11 is continued.
  • the air diffusion step of generating bubbles with the air diffusion mechanism is performed to Deposits can be removed. That is, air is supplied from the air supply source 64a to the gas storage chamber 30b through the air transport pipe 64b, the air transport branch pipe 64d, and the air supply pipe 50, and above the fixed portion that fixes the lower end of the hollow fiber membrane 11. Bubbles are generated upward from the provided air diffusion holes AO, and the hollow fiber membrane 11 is vibrated to remove the deposits.
  • the water collection chambers 20a and 30a are pressurized to perform reverse cleaning that allows permeate to permeate from the inside to the outside of the hollow fiber membrane 11. Also good.
  • the hollow fiber membrane 11 disposed in the vicinity of the air diffusion hole AO vibrates excessively by releasing the bubbles in the extending direction of the hollow fiber membrane 11.
  • the deposits are removed while the occurrence of damage to the hollow fiber membrane 11 is suppressed. Therefore, it is possible to implement an efficient water treatment method while suppressing the possibility that the quality of the permeated water is deteriorated.
  • This can provide a water treatment method particularly suitable for clean water treatment, which is demanding for water quality.
  • the water treatment method of the first embodiment is not limited to the case where the permeated water is taken out in a usable state as clean water, and can be widely applied to general water treatment.
  • membrane separation of water to be treated is carried out by immersing the hollow fiber membrane in a standing position in which the hollow fiber membrane is extended and held in the water to be treated containing suspended substances and the like, and sucking the inside of the hollow fiber membrane.
  • an external pressure type hollow fiber membrane module that obtains permeated water has been used.
  • the hollow fiber membrane module used for the conventional water treatment is liable to lower the permeation performance of the hollow fiber membrane due to floating solids or adhesive organic compounds in the water to be treated. Since this leads to an increase in the power load for the above, a method for suppressing the decrease in the permeation performance has been widely studied.
  • aeration is performed on the lower end side of the hollow fiber membrane.
  • a method called air scrubbing which removes surface deposits by vibrating the hollow fiber membrane with bubbles generated by the above, is effective in preventing a decrease in permeation performance.
  • the hollow fiber membrane module described in Patent Document 1 has an air diffuser inserted into a bundle of hollow fiber membranes from the lateral direction perpendicular to the vertical direction in which the hollow fiber membrane extends, and the air diffuser at the tip thereof. From this, bubbles are generated to remove deposits on the surface of the hollow fiber membrane.
  • the hollow fiber membrane in the vicinity of the diffuser in front of the diffuser is vibrated vigorously due to the release of bubbles from the diffuser provided at the tip of the diffuser. Therefore, it may collide with the tip of the air diffuser and be damaged by, for example, the opening edge of the air diffuser. And when a hollow fiber membrane is damaged, to-be-processed water will mix in permeated water and will cause the water quality fall of permeated water.
  • the conventional hollow fiber membrane module and the water treatment method using the conventional hollow fiber membrane module have a problem that it is difficult to perform efficient membrane separation while suppressing deterioration of water quality. .
  • the second embodiment provides a hollow fiber membrane module that can collect water from both the upper and lower sides but has a low risk of damaging the hollow fiber membrane, and as a result, performs efficient membrane separation while suppressing water quality deterioration. It aims at providing the water treatment method which can be implemented.
  • FIG. 6 is a longitudinal sectional view of the hollow fiber membrane module according to the 2-1 embodiment of the present invention as seen from the side, and FIG. It is sectional drawing which shows the cross section (cross section) of a thread membrane module.
  • FIG. 8 is a cross-sectional view of the hollow fiber membrane module taken along the line BB in FIG.
  • the hollow fiber membrane module 210 of the second embodiment has a vertically long cylindrical appearance as shown in FIG. 6, and a plurality of hollow fiber membranes 211 are arranged in parallel in the middle in the vertical direction. Is exposed.
  • the hollow fiber membrane module 210 of the 2-1 embodiment is arranged in a vertical direction with a plurality of hollow fiber membranes 211 aligned, and one end portion of both ends of the hollow fiber membrane 211 is arranged.
  • Two fixing members are used: a fixing member that fixes on the upper side (hereinafter also referred to as “upper fixing member 220”) and a fixing member that fixes the other end on the lower side (hereinafter also referred to as “lower fixing member 230”).
  • the hollow fiber membrane 211 is fixed.
  • the hollow fiber membrane module 210 of the 2-1 embodiment extends in the vertical direction through the center portion thereof, and both ends thereof are fixed to the upper fixing member 220 and the lower fixing member 230 so that these It has a bowl-shaped support member 200S that supports it with a predetermined interval therebetween. That is, in the hollow fiber membrane module 210 of the second embodiment, the upper fixing member 220 and the lower fixing member 230 are supported by a single support member 200S passing through the center portion thereof. Further, the hollow fiber membrane module 210 of the 2-1 embodiment is provided with an air diffuser for generating bubbles on the lower end side of the hollow fiber membrane 211 extending in the vertical direction.
  • the upper fixing member 220 has a plate-like body 221 (hereinafter also referred to as “upper plate-like body 221”) disposed substantially horizontally on the lower side thereof, and the plate-like body 221 has a thickness by a polymer composition. It is formed in a disk shape. Further, the upper fixing member 220 is provided with a cap material 222 that covers the plate-like body 221 from above, and the cap material 222 includes a top surface portion 222c that has substantially the same shape as the contour shape of the plate-like body 221, and the top surface portion 222c. And a peripheral wall portion 222w depending from the outer edge of the top surface portion 222c.
  • the cap material 222 has its top surface portion 222c spaced apart from the upper surface 221a of the plate-like body 221 by a certain distance, and the inner peripheral surface of the peripheral wall portion 222w is in close contact with the outer peripheral surface 221w of the plate-like body 221.
  • a space 220 a is formed between the plate-like body 221.
  • the plate-like body 221 has an upper end portion of the hollow fiber membrane 211 embedded and fixed with the polymer composition, and a fixing portion for fixing the hollow fiber membrane 211 in the upper fixing member 220 is formed. More specifically, the plate-like body 221 has a cylindrical shape having an inner diameter slightly larger than the thickness of the hollow fiber membranes 211 in a state where all the hollow fiber membranes 211 are bundled together. A cylindrical cured body obtained by inserting the end of the hollow fiber membrane 211 into a container and filling and solidifying the curable liquid polymer in the container is formed at a portion inside the end of the hollow fiber membrane 211.
  • the hollow fiber membrane 211 is formed into a disk shape by cutting the entire hollow fiber membrane 211 in a direction substantially orthogonal to the extending direction of the hollow fiber membrane 211. Accordingly, the hollow fiber membrane 211 is fixed to the upper fixing member 220 by being embedded in the polymer composition in a state of passing through the plate-like body 221 from below and opening on the upper surface 221a of the plate-like body 221. .
  • the lower fixing member 230 has the same configuration as that of the upper fixing member 220.
  • the lower fixing member 230 is disposed substantially horizontally above the upper fixing member 220, and is formed into a thick disk shape from the polymer composition.
  • lower plate-like body 231 a fixing portion for fixing the lower end portion of the hollow fiber membrane 211 is formed, and a cap material 232 externally fitted to the plate-like body 231 from below. In that a space is formed between the two. That is, the hollow fiber membrane 211 is opened on the upper surface 221 a of the plate-like body 221 on the upper fixing member 220 side, and the hollow fiber membrane is placed in the space 220 a between the plate-like body 221 and the cap material 222.
  • the hollow fiber membrane 211 is opened on the lower surface 231 b of the lower plate-like body 231 on the lower fixing member 230 side, and the inner space is connected to the lower plate-like body 231.
  • the space 230 a formed between the cap member 232 and the cap member 232 communicates with the space 230 a.
  • the plate-like bodies 221 and 231 are formed of a polymer composition around a gap between the hollow fiber membranes 211 at a place where the hollow fiber membrane 211 is fixed or around a place where the hollow fiber membrane 211 is fixed. Since the wall bodies 221r and 231r are formed by the above, the water-tightness is given to the space portions 220a and 230a surrounded by the plate-like bodies 221 and 231 and the cap materials 222 and 232, which is the second embodiment. When the hollow fiber membrane module 210 is immersed in the water to be membrane-separated, the water to be treated can be prevented from entering the spaces 220a and 230a. In addition, by this, both the upper and lower space parts 220a and 230a function as a water collection chamber in which permeated water permeated from the outside to the inside of the hollow fiber membrane 211 is collected.
  • the upper fixing member 220 has an opening 222 s in the top surface portion 222 c of the cap material 222 so that the permeated water collected in the space portion 220 a can be carried out of the hollow fiber membrane module 210.
  • the space 220a communicates with the outside only through the opening 222s.
  • no opening is formed in the cap member 232 in the lower fixing member 230.
  • the space portion 230a of the lower fixing member 230 hereinafter also referred to as “lower water collecting chamber 230a” and the upper fixing member 220 are formed.
  • a water pipe 200P is provided to communicate with the space 220a (hereinafter also referred to as “upper water collecting chamber 220a”).
  • the water pipe 200P is much larger in diameter than the hollow fiber membrane 211 and the like, and has a sufficiently reduced pressure loss when passing permeate from the lower water collecting chamber 230a to the upper water collecting chamber 220a.
  • the hollow fiber membrane module 210 in the second embodiment collects water in both the upper and lower water collecting chambers 220a and 230a when sucking permeate from the opening 222s. Is formed.
  • the hollow fiber membrane module 210 is further provided with an air diffuser member 240 for generating air bubbles on the lower end side of the hollow fiber membrane 211, and the air diffuser member 240 contains the air bubbles. It is provided so as to be able to remove deposits attached to the surface when membrane separation of the water to be treated is carried out by generating and vibrating the hollow fiber membrane 211.
  • the air diffuser 240 has a hollow body 241 in which air bubbles 200AO for generating the bubbles are opened, and gas is supplied to the hollow body 241 from a tube connected to the hollow body to generate the bubbles. It is comprised so that it can be made.
  • the hollow body 241 is embedded in a state of being horizontally placed on the plate-like body 231 of the lower fixing member 230, and includes four tubular portions 241p extending radially from the center of the plate-like body 231; A tubular rising portion 241e that rises from the distal end portion of the tubular portion 241p, and the rising portion 241e opens the distal end portion upward on the upper surface 231a of the plate-like body 231, thereby forming the air diffusion hole 200AO. It is formed.
  • the support member 200S is a hollow tube 240p (hereinafter also referred to as “air supply tube 240p”), and is provided to supply gas to the hollow body 241.
  • the air supply tube 240p is embedded and fixed at the lower end of the polymer composition at the center of the plate-like body 231 in which the tubular portion 241p of the hollow body 241 is assembled at one end thereof.
  • the tubular portion 241p is connected to the pipe wall of the supply pipe 240p with one end thereof opened. That is, four tubular portions 241p arranged in a cross shape in a top view are gathered, and the air supply tube 240p and the hollow body 241 are connected at the central portion of the cross.
  • the air supply pipe 240p and the hollow body 241 are connected to each other at a lower end portion of the air supply pipe 240p in a state in which gas for aeration can be supplied to the hollow body, while an upper end portion of the air supply pipe 240p is an upper fixing member 220.
  • the plate-like body 221 is embedded and fixed in the center.
  • the hollow fiber membrane module 210 of the second embodiment includes an extension pipe 200Se that is connected to the upper end portion of the air supply pipe 240p and extends further upward from the upper end portion of the air supply pipe 240p, and the extension pipe 200Se. Is extended above the top surface portion 222c of the cap material 222 through the upper water collection chamber 220a.
  • a sufficient seal is provided between the connecting portion of the extension pipe 200Se and the air supply pipe 240p and between the extension pipe 200Se and the cap member 222 (the top surface portion 222c), and the extension pipe 200Se and the air supply pipe 240p.
  • the permeated water is prevented from entering the connecting portion with the gas, or the gas is prevented from leaking into the upper water collecting chamber 220a and the treated water is prevented from flowing into the upper water collecting chamber 220a. Yes.
  • a gas such as air for supplying air to the extension pipe 200Se by air supply means such as a blower is supplied. Further, the gas is supplied to the hollow body 241 through the air supply pipe 240p, and the gas divided into four by the tubular portions 241p is discharged as air bubbles 200AB from the air diffusion holes 200AO provided on the distal end side of each tubular portion 241p. Is formed.
  • the hollow fiber 241 is divided into several parts to form a hollow fiber membrane bundle 211a, and the lower end of the hollow fiber membrane bundle 211a is embedded between the radially extending hollow bodies 241 and fixed to the lower plate-like body 231. It is preferable. For example, as shown in FIG. 8, avoiding interference between the hollow body 241 and the like by embedding eight hollow fiber membrane bundles 211a bundled so as to have a fan-shaped cross section between adjacent tubular portions 241p. It is preferable to fix the lower end portion of the hollow fiber membrane 211 to the lower plate-like body 231.
  • FIG. 9A is a sectional view showing a longitudinal section of the hollow fiber membrane module 210, showing only the lower fixing member 230
  • FIG. 9B is a position along the line CC in FIG. 9A).
  • FIG. 9 is a cross-sectional view showing a cross section of the hollow fiber membrane module 210 of FIG. 9. As shown in FIG.
  • a plurality of rising portions 241e are provided in the direction in which the tubular portion 241p extends to provide a plurality of air holes 200AO.
  • the rising portion 241e is not formed only at the distal end portion of the tubular portion 241p, but a plurality of rising portions 241e are formed before reaching the distal end portion, and the distal ends thereof are directed upward on the upper surface 231a of the plate-like body 231. It is also possible to form a large number of diffuser holes 200AO by opening them.
  • the plurality of rising portions 241e in one tubular portion 241p and providing the plurality of air diffusion holes 200AO, air diffusion to the hollow fiber membrane bundle 211a can be performed more evenly.
  • a hollow body 241 having a flat cylindrical appearance as seen in FIG. 10 can also be adopted as the air diffuser 240 in the hollow fiber membrane module 210 of the second embodiment.
  • a hollow body 241 shown in FIG. 10 has a circular ceiling wall 241r and a bottom wall 241b having a diameter smaller than that of the plate-like body 231, and a cylindrical peripheral side wall having a height lower than the thickness of the plate-like body 231.
  • FIG. 10B which shows a cross section taken along the line DD of FIG. 10A, a plurality of rising portions 241e are formed in the hollow body 241, and the upper end of the rising portion 241e is formed.
  • diffused holes 200AO are opened upward on the upper surface 231a of the plate-like body 231.
  • this hollow body is also connected with an air supply tube 240p for introducing gas into its internal space, and the above-mentioned supply to the center position of the ceiling wall 241r of the circular base portion 241c.
  • the lower end of the trachea 240p is connected.
  • the hollow fiber membrane module 210 having a part of the structure shown in FIG. 10, the hollow fiber membrane bundle 211a bundled in a fan shape is fixed around the circular base portion 241c.
  • the air diffusion hole 200AO opening upward is formed on the upper surface 231a of the plate-like body 231 of the lower fixing member 230, and the hollow body 241 is not exposed to the upper surface side of the plate-like body 231.
  • the hollow fiber membrane 211 constituting the diffuser member 240 can be prevented from colliding with the hollow fiber membrane 211 that has been vibrated, Damage to the hollow fiber membrane 211 can be prevented.
  • the rising portion 241e is further extended and its tip end portion is positioned above the upper surface 231a of the plate-like body 231, the bubbles are opened upward on the upper surface side of the plate-like body 231.
  • the direction of bubble release and the direction in which the hollow fiber membrane 211 extends are substantially parallel, and therefore the vibration of the hollow fiber membrane 211 in the vicinity of the air diffusion hole 200AO is excessively large.
  • the protruding direction of the rising portion 241e and the extending direction of the hollow fiber membrane 211 are substantially parallel to each other. Compared with the case where the diffuser tube is arranged orthogonal to the hollow fiber membrane 211, it is possible to suppress the local application of impact at the time of contact.
  • the air diffuser is normally connected to the hollow fiber membrane 211. Even if the rising portion 241e protrudes upward, the contact between the rising portion 241e and the hollow fiber membrane 211 can be suppressed.
  • the air supply pipe 240p when the air supply pipe 240p is connected to the hollow body 241 embedded in the plate-like body 231 constituting the fixing portion for fixing the hollow fiber membrane 211, the air supply pipe 240p Thus, the function as the support member 200S originally expected is more suitably exhibited. For example, even if the support member 200S and the lower plate-like body 231 are peeled off because the adhesive force between the outer surface of the support member 200S (air supply tube 240p) and the surrounding polymer composition is low, the support member 200S Since the lower end portion is connected to the hollow body 241, the support member 200S can be prevented from being detached from the lower plate-like body 231. Therefore, it is possible to prevent the constituent material of the support member 200S from being restricted in terms of compatibility with the polymer composition for fixing the hollow fiber membrane 211, and to improve the degree of freedom in designing the hollow fiber membrane module. sell.
  • a method for embedding the hollow body 241 in the lower plate-like body 231 is not particularly limited, but when the hollow fiber membrane 211 is integrated with a curable liquid polymer, the hollow body 241 is embedded together. At this time, even if the support member 200S (air supply tube 240p) is embedded in advance in a state of being connected to the hollow body 241, if necessary, the support member 200S ( An air supply pipe 240p) may be connected.
  • the support member as a tube for supplying air to the hollow body as in the 2-1 embodiment is not an essential configuration in the present invention. Accordingly, aspects such as the 2-2 embodiment described below are also within the scope of the present invention.
  • FIG. 11 shows a 2-2 embodiment of the present invention.
  • FIG. 11 (A) is a sectional view showing a longitudinal section of the hollow fiber membrane module.
  • FIG. 11 (B) is a cross-sectional view showing a cross section of the hollow fiber membrane module 210 at the position along the line EE in FIG. 11 (A). is there.
  • the pipe body supply pipe
  • the supply body A trachea 250 is provided separately.
  • the hollow fiber membrane module shown in FIG. 11 six straight tubular hollow bodies 241 penetrating the plate-like body 231 of the lower fixing member 230 in the vertical direction are embedded, and the bottom surface of the cap member 232 of the lower fixing member 230 is embedded.
  • the air supply pipe 250 introduced into the lower water collecting chamber 230a through the bottom surface part 232b from below the center part of the part 232b is branched into six narrow pipes (branch pipe part 251), and through the branched pipe body, It is connected to the lower end of the hollow body 241.
  • the upper ends of the six narrow tubes of the branch pipe portion 251 are connected to the lower ends of the six hollow bodies 241 respectively.
  • the hollow fiber membrane module 210 in the 2-1 embodiment is formed in that the air diffusion hole 200AO opening upward is formed on the upper surface 231a of the plate-like body 231 of the lower fixing member 230.
  • the hollow body 241 is not exposed on the upper surface side of the plate-like body 231, so that the collision between the hollow body 241 and the hollow fiber membrane 211 can be avoided and damage to the hollow fiber membrane 211 can be prevented. The same.
  • the air diffuser 240 ′ is configured by the hollow body 241 having a very simple structure called a straight pipe, and the lower surface 231b of the plate-like body 231 is formed. Since the tube body for supplying air and the hollow body 241 are connected to each other at the exposed portion, the hollow fiber membrane module illustrated in the embodiment 2-1 can be easily manufactured.
  • the second to third embodiments described below are used.
  • the case where a plurality of support members are used and a part or all of the support members are used as the air supply pipe is also within the scope of the present invention.
  • FIG. 12 shows a second to third embodiment of the present invention.
  • FIG. 12A is a sectional view showing a longitudinal section of the hollow fiber membrane module.
  • FIG. 12B shows only the lower fixing member 230, and
  • FIG. 12B is a cross-sectional view showing a cross section of the hollow fiber membrane module 210 at the position along the line FF in FIG. 12A. is there.
  • the single support member that also serves as the air supply pipe is arranged at the center of the hollow fiber membrane module.
  • four saddle-shaped members are used.
  • the supporting members 200S are used for supporting both ends of the supporting member 200S by fixing them to the upper fixing member 220 and the lower fixing member.
  • the four support members 200S are arranged such that the fixing position of the lower fixing member 230 in the plate-like body 231 and the fixing position of the upper fixing member 220 are substantially squares connecting the respective positions.
  • the center of this square is arranged so as to be located at the center of the hollow fiber membrane module.
  • a hollow tube is adopted as the support member 200S, and all four support members 200S are used as the supply pipe 240p. Tubes are used for all four support members 200S in order to function.
  • the four support members 200S are fixed with their lower ends embedded in the plate-like body 231 and connected by four hollow tubes at the embedded locations.
  • hollow tubes are embedded and fixed at positions corresponding to the four sides of the square in the form along the respective sides.
  • the hollow tube is provided as a hollow body 241 constituting the diffuser member 240, and one hollow tube has its both ends connected to another support member 200S (air supply tube 240p). That is, in the point that the hollow body (hollow pipe) is connected to the pipe body (air supply pipe) and the hollow regions communicate with each other, the air diffusion member 240 "of the second embodiment is also the same as that of the 2-1 embodiment.
  • the hollow body 241 'in the second to third embodiments is exemplified in the second to first embodiments in that it is a connecting pipe that communicates between the two air supply pipes 240p. It is different from the embodiment.
  • the connecting pipe 241 ′ communicating between the two air supply pipes 240 p has an embedding depth of about the diameter of the connecting pipe 241 ′, and the pipe wall is slightly on the upper surface 231 a of the lower plate-like body 231. Embedded in the polymer composition in an exposed state.
  • the connecting pipe 241 ′ is exposed to the upper surface 231a of the lower plate-like body 231 as an air diffusion hole 200AO for diffusing gas introduced from the air supply pipe 240p into the connecting pipe 241 ′.
  • a plurality of through holes are formed in the tube wall at locations along the length direction of the connecting tube 241 ′.
  • the through holes are provided in all four connecting pipes 241 ′.
  • the lower plate-like body 231 has a plurality of air diffusion holes 200AO facing upward. Are arranged in a square on the upper surface 231a.
  • the collision between the hollow body 241 and the hollow fiber membrane 211 is caused by generating bubbles from the air diffusion holes 200AO opened upward on the upper surface 231a of the plate-like body 231 of the lower fixing member 230.
  • gas can be supplied from a plurality of air supply pipes 240p to one hollow body (connecting pipe 241 ′). For example, a failure occurs in one air supply pipe 240p. Even so, it is possible to continue the aeration using the other air supply pipe 240p.
  • the hollow fiber membrane module of the present invention is a module in which the whole of the connecting pipe 241 ′ is not embedded in the plate-like body 231 but part or all of the connecting pipe 241 ′ is exposed in view of the above effects.
  • the possibility that the hollow fiber membrane module and the connecting pipe 241 ′ come into contact with each other is increased. Therefore, if the connection pipe is arranged in a state where it is completely exposed above the plate-like body 231, and the bubbles are generated from the diffused holes opened upward, this connection pipe is used. It is preferable to use a flexible material such as a rubber hose instead of a hard material.
  • At least the projecting portion is made of a soft rubber member. It is the same that the damage of the hollow fiber membrane can be further reduced by setting.
  • FIG. 12 (A ′), FIG. 12 (B ′) cross-sectional view taken along the line GG in FIG. 12A ′. It is also possible to adopt a modification example as shown in FIG. (A ′) and (B ′) in FIG. 12 are grooves that are orthogonal to the upper surface side of the lower plate-like body 231 through the center thereof, and that are equal to or larger than the thickness of the connecting pipe 241 ′.
  • a cross-shaped groove 200AL having a depth is formed, and the tubular support member 200S (air supply pipe) is formed in a state where the lower end portions are embedded in the lower plate-like body 231 and fixed to four ends of the cross-shaped groove 200AL. 240p), and a hollow fiber membrane module having an air diffusion mechanism in which the four support members are connected by a cross-shaped connecting pipe 241 ′ arranged in the groove 200AL. That is, the hollow fiber membrane module shown in FIGS. 12A ′ and 12B ′ can receive gas supply from four support members 200S to one hollow body (connecting tube 241 ′). Is formed so that air bubbles can be generated from the air diffusion holes 200AO opened in the upper surface of the connecting pipe 241 ′.
  • one or more of the four support members 200S may be a pipe body to serve as the supply pipe 240p, and the rest may be a solid casing.
  • the hollow fiber membrane 211 that is vibrated by aeration while being easy to replace the hollow body is provided.
  • the possibility of collision with the connecting pipe 241 ′ can be suppressed.
  • the connecting pipe 241 ′ can be exposed from the surface of the plate-like body 231.
  • the depth of the groove 200AL is preferably not less than 1/3 of the thickness of the connecting pipe 241 ′, and more preferably equal to or greater than the thickness of the connecting pipe 241 ′.
  • each member constituting the hollow fiber membrane module of the present invention can be formed using a conventionally known member.
  • a resin tube, a metal tube, or the like can be used.
  • upper and lower cap materials, hollow fiber membranes, and the like can also be formed using conventionally known members.
  • the hollow fiber membrane module having a vertically cylindrical appearance is illustrated, but the hollow fiber membrane module of the present invention has a substantially cylindrical shape as a whole. It is not limited.
  • the hollow fiber membrane module having a structure in which the permeated water is collected from both the upper and lower sides by discharging the permeated water from only the upper water collecting chamber is exemplified, but only the lower water collecting chamber is illustrated. From both the upper and lower water collection chambers without a hollow fiber membrane module that collects water from both the upper and lower sides by discharging permeated water from the upper and lower water collecting pipes.
  • the hollow fiber membrane modules configured to discharge the permeated water independently of each other are also within the intended scope of the present invention. Furthermore, a conventionally well-known member can be employed in the hollow fiber membrane module of the present invention as long as the effects of the present invention are not significantly impaired as a constituent member of the hollow fiber membrane module.
  • FIG. 13 is an apparatus schematic diagram for explaining this water treatment method, and is a view showing an embodiment of a water treatment apparatus using the hollow fiber membrane module 210 of the 2-2 embodiment.
  • the water treatment apparatus 260 is configured to obtain permeated water in a state in which water to be treated containing suspended solids can be membrane-separated and supplied as clean water.
  • the water treatment device 260 is provided with a water tank 262 to which water to be treated is supplied from a water supply line 261 to be treated.
  • the water treatment apparatus 260 of the second embodiment includes a plurality of hollow fiber membrane modules 210 arranged so as to be immersed in the standing water in the water to be treated in the water tank 262 to be treated, and these hollow fiber membrane modules 210.
  • a permeated water extraction line 263 that has a suction pump 263a and sucks the inside of the hollow fiber membrane by the suction pump 263a to perform solid-liquid separation by membrane filtration of the water to be treated to take out the permeated water;
  • a membrane separation apparatus having Furthermore, in the water treatment device 260 of the second embodiment, an air supply source 264a for performing air scrubbing by the air diffuser of the hollow fiber membrane module 210, and air is conveyed from the air supply source 264a, and the air supply pipe
  • the air supply line 264 for supplying air to the said hollow body 241 through 240p (refer FIG. 6 etc.) and the deposit discharge line 265 for discharging the deposit in the to-be-processed water tank 262 are provided.
  • the permeated water extraction line 263 in the water treatment apparatus of FIG. 13 includes a water collection pipe 263b connected to the opening 222s of the cap member 222 at the top of each hollow fiber membrane module 210, and a water collection header pipe communicating with each water collection pipe 263b. 263c and a permeate take-out pipe 263d.
  • the air supply line 264 includes an air supply source 264a, an air transport pipe 264b that supplies air pressurized by the air supply source 264a, an air transport branch pipe 264d that branches from the air transport pipe 264b, A tip portion of each pneumatic transport branch pipe 264d is configured to be connected to an air supply pipe 250 (see FIG. 11) of each hollow fiber membrane module 210.
  • each hollow fiber membrane module 210 is installed in the water treatment apparatus in a state in which the upper fixing member 220 is immersed entirely below the water surface.
  • the suction pump 263a sucks the upper water collection chamber 220a and communicates with the upper water collection chamber 220a and the water pipe 200P.
  • the lower water collecting chamber 230a is brought into a negative pressure state, thereby allowing permeate to permeate from the outside to the inside of the hollow fiber membrane 211 to collect water from both the upper and lower sides.
  • the suction pump 263a By continuing the suction by the suction pump 263a, the permeated water is discharged from the hollow fiber membrane module, and the membrane separation of the water to be treated by the hollow fiber membrane 211 is continued.
  • suspended substances contained in the water to be treated are mainly captured on the surface of the hollow fiber membrane 211, and clean water permeates inside the hollow fiber membrane. Permeated as water. And the suspended substance adhering to the surface of the hollow fiber membrane 211 becomes a factor which reduces the permeability
  • the diffuser step of generating bubbles in the diffuser member 240 ′ is performed. It can be carried out to remove the deposits. That is, air is supplied from the air supply source 264a to the hollow body 241 through the air transport pipe 264b, the air transport branch pipe 264d, and the air supply pipe 250, and is provided above the fixing portion that fixes the lower end of the hollow fiber membrane 211. Bubbles are generated upward from the diffused air holes 200AO, and the hollow fiber membrane 211 is vibrated by the striking force caused by the collision of the bubbles against the hollow fiber membrane 211 and the water flow generated by the bubble rising, and the deposits are removed and removed.
  • the water collection chambers 220a and 230a are pressurized to perform reverse cleaning that allows permeate to permeate from the inside to the outside of the hollow fiber membrane 211. Also good.
  • the hollow fiber membrane 211 disposed in the vicinity of the air diffusion holes 200AO vibrates excessively by releasing the bubbles in the extending direction of the hollow fiber membrane 211.
  • the deposits are removed while the occurrence of damage to the hollow fiber membrane 211 is suppressed. Therefore, it is possible to implement an efficient water treatment method while suppressing the possibility that the quality of the permeated water is deteriorated.
  • This can provide a water treatment method particularly suitable for clean water treatment, which is demanding for water quality.
  • the water treatment method of the second embodiment is not limited to the water treatment, and can be widely applied to general water treatment.
  • hollow fiber membranes have been extended and retained in the water to be treated.
  • Hollow fiber membrane modules that perform permeation of water to be treated by dipping in a standing posture and sucking the inside of the hollow fiber membrane to obtain permeated water have been used.
  • This type of conventional hollow fiber membrane module used for membrane separation of water to be treated has a structure in which hollow fiber membranes are adhered to the hollow fiber membrane by adhering substances such as floating solids and adhesive organic compounds in the water to be treated. Since the permeation performance is likely to be reduced, and the permeation performance of the hollow fiber membrane is lowered, the operation efficiency of the water treatment apparatus is also lowered. Conventionally, methods for suppressing this permeation performance decline have been widely studied.
  • a hollow fiber membrane module that performs membrane separation by extending the hollow fiber membrane in the vertical direction, it is generated by performing aeration at the lower end side of the hollow fiber membrane.
  • a method called air scrubbing is known, in which deposits on the surface of the hollow fiber membrane are removed with the generated bubbles.
  • both ends of the hollow fiber membrane are fixed to fixing members that are spaced apart from each other in the vertical direction, and bubbles are generated from the upper surface side of the lower fixing member to perform membrane separation while removing deposits in the same manner.
  • the method of performing is known.
  • a hollow fiber membrane module having an air diffusion mechanism for carrying out such air diffusion it is described in Japanese Patent Application Laid-Open No. 2003-326140 (Patent Document 2) and International Publication WO 2004/112944 (Patent Document 3). Things are known.
  • the hollow fiber membrane modules described in Patent Documents 2 and 3 fix one end (upper end) of both ends of the hollow fiber membrane so that a plurality of hollow fiber membranes can be held in a standing posture.
  • An upper fixing member and a lower fixing member for fixing the other end (lower end) are provided, and air scrubbing can be performed on the hollow fiber membrane by generating bubbles from the lower fixing member side in the water to be treated. It has a diffuser mechanism.
  • Patent Document 1 a filtration device for deriving permeated water from both upper and lower sides of a hollow fiber membrane module is described in Japanese Patent Application Laid-Open No. 2006-305443 (Patent Document 1).
  • permeated water is led out from a processing liquid take-out pipe by a pump through a water collecting portion having upper and lower ends of the hollow fiber membrane open. Since the permeated water can be derived from both the upper and lower sides in this way, there is an advantage that the permeated water can be efficiently recovered as compared with the water treatment apparatus that derives the permeated water only from the upper side.
  • Patent Document 1 a water treatment device that performs air scrubbing by inserting a tubular body into a hollow fiber membrane so as to sew between the hollow fiber membranes from the horizontal direction and causing air bubbles to diffuse from the tip of the tubular body. Is described.
  • the third embodiment is a hollow fiber membrane module and a membrane separation method capable of suppressing damage to the hollow fiber membrane while effectively performing air scrubbing and suppressing deterioration in permeation performance in membrane separation. It is another object of the present invention to provide a water treatment apparatus.
  • FIG. 14 is a partial cross-sectional view of the hollow fiber membrane module according to the third embodiment of the present invention in an upright state, as viewed from the side
  • FIG. 15 is a plan view of the hollow fiber module of FIG. It is.
  • symbol 310 in a figure represents the hollow fiber membrane module.
  • the hollow fiber membrane module 310 of the third embodiment is formed in a vertically long cylindrical shape, and is provided in a state in which a plurality of hollow fiber membranes 311 are exposed at an intermediate portion in the vertical direction.
  • the hollow fiber membrane module 310 of the third embodiment includes a lower fixing member 320 that fixes one end of both ends of the plurality of hollow fiber membranes 311 on the lower side, and an upper fixing that fixes the other end on the upper side. Two fixing members of the member 330 are used.
  • the plurality of hollow fiber membranes 311 are provided in the hollow fiber membrane module 310 with their longitudinal ends extending in the vertical direction with both ends aligned.
  • a microfiltration membrane or an ultrafiltration membrane can be used as the hollow fiber membrane 311 constituting the hollow fiber membrane module 310.
  • the upper fixing member 330 includes a cylindrical body 331, a permeated water outlet 332a, and a circular upper plate 332 attached to the upper side of the cylindrical body 331 having a tubular body mounting hole 332b provided at the center.
  • FIG. 16 is an enlarged cross-sectional view of a part of the upper fixing member 330. As shown in FIG. 16, a flange portion 331a is formed on the lower peripheral edge of the cylindrical body 331. As shown in FIG. A plate-like body 334 is provided inside the upper fixing member 330. The plate-like body 334 is formed into a plate shape by solidifying the adhesive, and the hollow fiber membrane 311 has its end penetrated from the lower surface side to the upper surface side of the plate-like body 334 so that the plate-like body 334 is fixed.
  • a flange 334a is formed at the lower peripheral edge of the plate-like body 334, and the flange 334a of the plate-like body 334 and the flange 331a of the cylindrical body 331 of the upper fixing member 330 are O-rings as shown in FIG. It is joined in close contact via 336a. Further, the inner peripheral surface of the cylindrical body 331 and the outer peripheral surface of the plate-like body 334 are also joined in close contact with each other via an O-ring 336b, and an annular fixing member 337 is fitted to the outside of the joined portion, so that the upper fixing member 330 and the plate The state body 334 is fixed in a sealed state.
  • the hollow fiber membrane 311 is fixed by the adhesive in a state where all of the hollow fiber membranes 311 are bundled, and the upper edge of the hollow fiber membrane 311 is fixed so as to be flush with the upper surface 334b of the plate-like body 334.
  • an adhesive portion formed by the adhesive and a portion where the end of the hollow fiber membrane 311 is opened are formed on the upper surface side of the plate-like body 334 in a relatively uniform manner. Moreover, it is formed on the entire upper surface 334b of the plate-like body 334.
  • the adhesive for fixing the hollow fiber membrane 311 is filled and solidified to a substantially constant depth from the upper surface side to the lower surface side of the plate-like body 334, so that the plate-like body 334 has a substantially constant thickness. Is formed.
  • An upper water collecting portion 335 that stores permeated water is formed in the upper portion of the upper fixing member 330 and on the upper side of the plate-like body 334. It communicates with the opening at the upper end of the.
  • a permeate outlet 332 a connected to the upper water collecting part 335 is connected to a pipe connected to a suction pump installed outside the hollow fiber membrane module 310.
  • the upper fixing member 330 and the plate-like body 334 are in close contact with the flange portions 331a and 334a, the inner peripheral surface of the cylindrical body 331, and the outer peripheral surface of the plate-like body 334 via the O-rings 336a and 336b. Since it is attached, the upper water collecting portion 335 is a space isolated from the outside except for the opening of the hollow fiber membrane 311 and the permeate outlet 332a.
  • Arbitrary joining means can be adopted as the means for connecting the permeated water outlet 332a and the pipe.
  • the permeated water outlet 332a can be connected via a socket 300S as shown in FIG.
  • a socket 300S By fitting the socket 300S on the outer periphery of the permeate outlet 332a and bonding the outer peripheral surface 332c of the permeate outlet 332a and the inner peripheral surface of the socket 300S, it is possible to connect the pipe 300 in a sealed state.
  • piping may be connected via a valve socket 300BS as shown in FIG.
  • a screw thread is formed on the outer periphery of one opening of the valve socket 300BS, and this thread part is screwed into the permeate outlet 332a to attach the permeate outlet 332a and the valve socket 300BS. In this case, it is necessary to form a thread groove on the inner peripheral surface 332d of the permeate outlet 332a.
  • the lower fixing member 320 includes a cylindrical body 321 having the same inner diameter as the cylindrical body 331 of the upper fixing member 330, and a circular lower plate 322 having a disk shape attached to the lower end side in the cylindrical body 321.
  • ing. 18 is an enlarged cross-sectional view of a part of the lower fixing member 320. As shown in FIG. 18, a flange portion 321a is formed at the upper peripheral edge of the cylindrical body 321 as in the case of the upper fixing member 330.
  • a plate-like body 324 is provided inside the lower fixing member 320.
  • the plate-like body 324 is formed into a plate shape by solidifying an adhesive, and the hollow fiber membrane 311 is formed by penetrating the lower end portion from the upper surface side to the lower surface side of the plate-like body 324. It is fixed to the body 324.
  • the lower fixing member 320 and the plate-like body 324 are attached in the same manner as the attachment means for the upper fixing member 330 and the plate-like body 334. That is, as shown in FIG. 18, a flange portion 324 a is formed at the upper peripheral edge of the plate-like body 324, and the flange portion 324 a of the plate-like body 324 and the flange portion of the cylindrical body 321 of the lower fixing member 320. 321a is joined in close contact via an O-ring 326a as shown in FIG. 17, and the inner peripheral surface of the cylindrical body 321 and the outer peripheral surface of the plate-like body 324 are also joined in close contact via an O-ring 326b.
  • An annular fixing member 327 is fitted to the outside of the joint portion, and the lower fixing member 320 and the plate-like body 324 are fixed in a sealed state.
  • the cylindrical bodies 331 and 321 and the circular upper plates 332 and 322 of the upper fixing member 330 and the lower fixing member 320 are integrally formed by a known method such as molding or cutting out from any material such as metal or resin. Can do.
  • a lower water collecting part 325 that stores permeated water is formed below the plate-like body 324 at a lower part in the lower fixing member 320, and the lower water collecting part 325 is formed of each hollow fiber membrane 311. It communicates with the opening at the lower end.
  • the hollow fiber membrane module 310 has a permeate pipe 340 that passes through the upper plate 334 and the lower plate 324 and whose upper and lower ends open to the upper water collecting portion 335 and the lower water collecting portion 325, respectively.
  • the three permeated water tubes 340a, 340b, 340c are extended in the vertical direction in parallel with the hollow fiber membrane 311, and the end portions thereof are circular plates when viewed from the upper fixing member 330 side as shown in FIG. Arranged so as to be equidistant from the radial center of the circular plate 332 on the radiation centering on the radial center of the 332 (on the three radiations 300L1 to 300L3 each having an opening angle of 120 degrees).
  • the number and arrangement of the permeate pipes 340 are not limited to this, and may be installed outside the plate-like bodies 324 and 334, for example.
  • the plate-like body 324 and the cylindrical body 321 are respectively connected to the flange portions 321a and 324a, the inner peripheral surface of the cylindrical body 321 and the outer peripheral surface of the plate-like 324 are O-rings. Since they are closely attached via 326a and 326b, they are spaces isolated from the outside except for the lower end of the hollow fiber membrane 311 and the opening of the permeate pipe 340.
  • the inside of the hollow fiber membrane 311 is sucked by a suction pump connected to the upper water collecting part 335 via a pipe, and the hollow fiber membrane 311 performs membrane separation of the water to be treated.
  • the permeated water that has permeated through the hollow fiber membrane 311 by membrane separation is recovered from the upper end of the hollow fiber membrane 311 to the upper water collecting part 335.
  • the suction pump since it is sucked by the suction pump from the lower part of the hollow fiber membrane 311 through the permeate pipe 340, the permeate is collected in the lower water collecting part 325.
  • the permeated water collected in the lower water collecting section 325 is transferred to the upper water collecting section 335 by the suction force of the suction pump transmitted through the permeated water pipe 340, and here the permeated water collected in the upper water collecting section 335. And is led out of the hollow fiber membrane module 310 from the permeate outlet 332a.
  • the hollow fiber membrane module 310 is provided with a tubular body 351 extending between the upper fixing member 330 and the lower fixing member 320.
  • the tubular body 351 is formed of a material having some strength such as metal or synthetic resin, and its upper end is inserted into the tubular body mounting hole 332b of the circular plate 332, and its lower end is a plate of the lower fixing member 320.
  • the hollow fiber membrane 311 is disposed at the center of the hollow fiber membrane 311 by being embedded and fixed in the cylindrical body 324.
  • An air supply line capable of supplying air from the blower provided outside the hollow fiber membrane module 310 to the inside of the tubular body 351 is connected to the tubular body mounting hole 332b into which the upper end portion of the tubular body 351 is inserted.
  • An air diffusion mechanism 350 for air diffusion to the hollow fiber membrane 311 is configured.
  • the tubular body 351 has its upper end inserted into the tubular body mounting hole 332b of the upper fixing member 330 and its lower end embedded and fixed in the plate-like body 324 of the lower fixing member 320. Does not come into contact with the hollow fiber membrane 311.
  • the tubular body 351 is formed of a material having a certain degree of strength, such as metal or synthetic resin, and the upper and lower ends thereof are fixed to the upper fixing member 330 and the lower fixing member 320, so that the hollow fiber membrane 311 is supported. It also functions as a support member.
  • a conventional attachment method can be adopted as appropriate.
  • it is provided on the outer peripheral surface of the fitting portion of the tubular body 351.
  • a sealing tape 300T is wound around the threaded groove portion (also referred to as a “threaded portion”) 351a, and is screwed into the tubular body mounting hole 332b of the circular plate 332 via the sealing tape, thereby the tubular body 351.
  • the position where the air diffuser holes 352 are provided in the tubular body 351 can be arbitrarily set.
  • the air diffuser 352 can be provided on the peripheral surface on the lower side so that the entire hollow fiber membrane 311 can be effectively subjected to air scrubbing. It can be provided on the upper side with emphasis on removal.
  • FIG. 20 shows a state where air bubbles are diffused from the tubular body 351.
  • the air in the tubular body 351 is diffused as air bubbles from the diffuser holes 352 by the blower.
  • the tubular body 351 extends in the vertical direction, the air diffused formed on the peripheral surface of the tubular body 351. Bubbles are diffused in the horizontal direction from the pores 352. The bubbles rise from bottom to top by buoyancy, and a water flow is formed as the bubbles rise. Accordingly, air scrubbing is effectively performed by the swinging of the hollow fiber membrane 311 caused by bubbles and water flowing in contact with the hollow fiber membrane 311.
  • the number of air holes 352 provided can be set as appropriate so that air bubbles can be distributed throughout the hollow fiber membrane 311.
  • the positions where the air diffusion holes 352 are formed can be arbitrarily set as appropriate.
  • Aeration holes 352 may be formed on the surface. In this case, since the bubbles can be diffused in various directions, the bubbles can be spread in a wider direction of the hollow fiber membrane 311.
  • the opening area of the air diffusion holes 352 With respect to the opening area of the air diffusion holes 352, by reducing the opening area and increasing the flow velocity of the air passing through the air diffusion holes 352, it is possible to bring the bubbles into contact with the surface of the hollow fiber membrane 311 with high vigorous removal. An effect can be obtained. On the other hand, if the opening area of the air diffuser hole 352 is reduced, the air diffuser hole 352 may be clogged while the air diffuser is stopped.
  • the air diffusion holes 352 are preferably formed to have a diameter of 3 to 25 mm when the shape of the air diffusion holes is circular, for example.
  • the effective length of the hollow fiber membrane 311 (the length of the portion where the hollow fiber membrane is in contact with water) is preferably 800 to 5000 mm, although it depends on the inner diameter of the hollow fiber membrane, for example, the inner diameter of the hollow fiber membrane is In the case of 0.5 to 1.2 mm, 1000 to 3000 mm is preferable from the viewpoint of transmission efficiency.
  • the hollow fiber membrane module 310 of the third embodiment can adopt a module in which various improvements are added in addition to the above-described example.
  • the number of permeate pipes 340 is not limited to three according to the amount of permeate collected, etc., and can be arbitrarily set, two or four or more, or one It may be.
  • the inner diameter of the permeated water pipe 340 can also be appropriately set according to the amount of water collected and the number of permeated water pipes 340.
  • the means for attaching the tubular body 351 to the tubular body attachment hole 332b may be any means as long as the means can attach the tubular body 351 to the tubular body attachment hole 332b in a sealed state.
  • the caulking agent 300C is filled in the tubular body attachment hole 332b in advance, and the threaded portion 351a of the tubular body 351 is screwed into the hole to be attached in a sealed state. Good.
  • the caulking agent 300C is used in this way, the caulking agent 300C is screwed into the tubular body mounting hole 332b by filling the inside of the tubular body mounting hole 332b and then screwing the tubular body 351 while maintaining a negative pressure state.
  • the tubular body 351 is filled with no gap.
  • the tubular body 351 may be inserted into the tubular body attachment hole 332b and attached in a sealed state by attaching a nut 300N via the packing 300P.
  • the number of the tubular bodies 351 can be arbitrarily set, and is not limited to one, and may be two or more.
  • the shape of the hollow fiber membrane module can be arbitrarily set, and is not limited to a vertically long cylindrical shape, and may be, for example, a polygonal column shape such as a triangular column shape, a quadrangular column shape, or a hexagonal column shape.
  • tubular body attaching hole 332 b is not limited to being formed in the upper fixing member 330.
  • a tubular body attachment hole may be provided in the circular lower plate 322 of the lower fixing member 320, and air from the blower may be blown into the tubular body 351 from the lower fixing member 320 side.
  • the upper water collecting part 335 and the lower water collecting part 325 are provided in the up-and-down both sides, and the permeated water pipe 340 which both ends are open to the up-and-down water collecting part is provided.
  • the permeated water is collected from both end sides, the permeated water may be collected from only one of the upper and lower sides.
  • FIG. 23 is a configuration explanatory view showing an embodiment of a water treatment apparatus using the hollow fiber membrane module 310 of the third embodiment.
  • the water treatment apparatus 360 is provided with a water tank 362 to which water to be treated is supplied from a water supply line 361 to be treated. Further, the water treatment apparatus 360 of the third embodiment includes a plurality of hollow fiber membrane modules 310 arranged so as to be immersed in standing water in the water to be treated in the water tank 362 to be treated, and these hollow fiber membrane modules 310.
  • the permeated water take-out line 363 has a suction pump 363a and sucks the inside of the hollow fiber membrane by the suction pump 363a to perform solid-liquid separation by membrane filtration of the water to be treated to derive permeated water.
  • a membrane separation apparatus having Furthermore, in the water treatment device 360 of the third embodiment, a blower 364a for sending air to the tubular body 351 of the hollow fiber membrane module 310 and a sediment discharge line for discharging the sediment in the water tank 362 to be treated. 365.
  • the permeated water extraction line 363 includes a water collecting pipe 363b connected to the permeated water outlet 332a of each hollow fiber membrane module 310, a water collecting header pipe 363c communicating with each water collecting pipe 363b, and a permeated water extracting pipe 363d.
  • the blower 364a is connected to an air transport pipe 364b that supplies air pressurized by the blower 364a, and the air transport pipe 364b is a tubular tube that is inserted vertically into each hollow fiber membrane module.
  • the body 351 is connected to the air supply pipe 364c.
  • the lower end portion of the tubular body 351 is embedded and fixed in the plate-like body 324 of each hollow fiber membrane module 310.
  • Each hollow fiber membrane module 310 is installed such that the entire upper fixing member 330 is positioned below the water surface.
  • the water to be treated is membrane-separated (filtered) by the hollow fiber membrane by sucking the inside of the hollow fiber membrane by the suction pump 363a, and the permeated water is permeated.
  • Membrane separation that is led out through the water withdrawal line 363 can be performed.
  • air scrubbing for removing suspended matters and the like attached to the surface of the hollow fiber membrane can be performed by air sent from the blower 364a.
  • the precipitate in the water tank 362 of the water treatment device 360 is discharged from the precipitate discharge line 365.
  • the membrane separation device when the inside of the hollow fiber is sucked by the suction pump 363a, the water to be treated is filtered by the hollow fiber membrane, and the permeated water is provided at the upper and lower positions of the hollow fiber membrane module 311.
  • the upper and lower water collecting portions 335 and 325 (shown in FIG. 14) are respectively collected.
  • the permeated water accommodated in the lower water collecting part 325 is transferred to the upper water collecting part 335 by the permeated water pipe 340, and the collected water attached to the permeated water outlet 332a together with the permeated water collected in the upper water collecting part 335.
  • the water pipe 363b is taken out through the water collection header pipe 363c and the permeated water take-out pipe 363d.
  • air is supplied from the blower 364a to the lower part of the tubular body 351 extending into the hollow fiber membrane module 310 through the air transport pipe 364b, and bubbles are diffused from the air diffuser holes 352 to the hollow fiber membrane 311.
  • the air diffusion holes 352 are formed on the peripheral surface of the tubular body 351, a flow of bubbles is generated in the horizontal direction in the vicinity of the air diffusion holes 352, and thereafter, the flow of the bubbles changes in a direction of rising by buoyancy ( (Shown in FIG. 20). That is, the hollow fiber membrane 311 is shaken by the bubbles flowing in various directions depending on the position in contact with the bubbles, and air scrubbing is performed more effectively.
  • the water treatment device 360 of the third embodiment can collect the permeated water from both the upper and lower sides of the hollow fiber membrane as described above and can diffuse into the hollow fiber membrane 311 without disturbing the collection of the permeated water, Air scrubbing can be done effectively.
  • hollow fiber membrane modules For example, a plurality of hollow fiber membranes extending in the vertical direction, and formed inside the hollow fiber membranes above the hollow fiber membranes. An upper water passage communicating with the hollow region, a lower water passage formed below the hollow fiber membrane and communicated with the hollow region inside the hollow fiber membrane, and bubbles are generated at the lower end side of the hollow fiber membrane. And a ventilation chamber formed below the hollow fiber membrane for supplying gas to the air diffusion hole, and immersed in the water to be treated to perform membrane separation of the water to be treated.
  • Such a hollow fiber membrane module is provided with a permeated water extraction line for collecting permeated water taken from both the upper and lower sides of the hollow fiber membrane.
  • a gas supply line for supplying gas to the vent chamber communicating with the air diffuser is attached to generate bubbles from the air diffuser and remove the deposits attached to the outer surface of the hollow fiber membrane.
  • the fourth embodiment has an object to provide a hollow fiber membrane module in which the hollow fiber membranes can be arranged at a relatively high density in view of the above-described problems. It is another object of the present invention to provide a water treatment apparatus that can dispose hollow fiber membranes at a relatively high density. It is another object of the present invention to provide a water treatment method capable of membrane separation by arranging hollow fiber membranes at a relatively high density.
  • FIG. 24 is a longitudinal cross-sectional view of the hollow fiber membrane module 401 according to the 4-1 embodiment in the same standing state as in use.
  • FIG. 25 is an enlarged view of a portion surrounded by a broken line in FIG. 26 is a cross-sectional view showing a cross section (transverse cross section) of the hollow fiber membrane module 401 taken along the line AA in FIG.
  • the hollow fiber membrane module 401 includes a plurality of hollow fiber membranes 402 extending in the vertical direction and upper and lower ends of the hollow fiber membranes 402 in an open state.
  • a vent chamber 413 that is formed below and supplies gas to the air diffuser hole 410.
  • a plurality of the hollow fiber membrane modules 401 are arranged and used in parallel, and penetrate from the outside to the inside of the hollow fiber membrane 402 so as to be immersed in the water to be treated and to perform membrane separation of the water to be treated.
  • the permeated water is collected from both above and below via the upper water passage 407 and the lower water passage 408.
  • the hollow fiber membrane module 401 includes an upper connecting member 403 that covers the upper fixing member 405 and the upper water passage chamber 407 and connects the adjacent ones to each other, the lower fixing member 406, and the lower water passage chamber 408. And an upper connecting member 404 that covers the ventilation chamber 413 and connects the adjacent ones to each other. In a state where the upper connecting members 403 and the upper connecting members 404 are connected to each other, the upper water passing chambers 407, the lower water passing chambers 408, and the venting chambers 413 are connected to each other. Is formed.
  • the upper connecting member 403 is formed in a hollow cubic shape opened downward by an upper surface portion having a substantially square shape when viewed from above and a side wall portion extending downward from the outer periphery thereof.
  • the upper fixing member 405 and the upper water flow chamber 407 are disposed in a space surrounded by the upper surface portion and the side wall portion of the upper connecting member 403. That is, the upper connecting member 403 is disposed so as to cover the upper fixing member 405 and the upper water flow chamber 407 from above and from the side.
  • the upper connecting member 404 is formed in a hollow cubic shape opened upward by a lower surface portion having a substantially square shape when viewed from the lower surface and a side wall portion extending upward from the outer periphery thereof.
  • the lower fixing member 406, the lower water flow chamber 408, and the ventilation chamber 413 are disposed in a space surrounded by the lower surface portion and the side wall portion of the upper connecting member 404. That is, the upper connecting member 404 is disposed so as to cover the lower fixing member 406, the lower water flow chamber 408, and the ventilation chamber 413 from below and from the side.
  • a plurality of hollow fiber membranes 402 are fixed so that the upper end side is fixed by the upper fixing member 405 and the lower end side is fixed by the lower fixing member 406. Arranged in the direction.
  • a cylindrical upper cap portion 418 having a circular shape when viewed from above and opened downward is disposed inside the upper connecting member 403.
  • the upper cap portion 418 is fixed to the upper connecting member 403 inside the upper connecting member 403.
  • the upper fixing member 405 is arranged and fixed inside the upper cap portion 418 so that a space exists above the upper end surface of the upper fixing member 405 formed in a substantially columnar shape. Further, the outer peripheral surface of the upper fixing member 405 is joined to the inner surface of the upper cap portion 418 in a close contact state. Therefore, the space surrounded by the inner surface of the upper cap portion 418 and the upper end surface of the upper fixing member 405 has water tightness. Thus, when the hollow fiber membrane module 401 is immersed in the water to be membrane-separated, the water to be treated is prevented from entering the space.
  • the upper fixing member 405 is formed in a substantially cylindrical shape by the upper end portion of the hollow fiber membrane 402 and the solidified adhesive. Moreover, the hollow fiber membranes 402 bundled so as to be bundled together are formed so as to be fixed so that the edge of the upper end portion is flush. That is, as shown in FIG. 25, the upper fixing member 405 is formed such that the upper end portion of the hollow fiber membrane 402 penetrates in the vertical direction and the hollow fiber membrane 402 opens at the upper surface.
  • the hollow fiber membrane 402 is open on the upper surface of the upper fixing member 405, the hollow fiber membrane is surrounded by a hollow region inside the hollow fiber membrane, the inner surface of the upper cap portion 418, and the upper end surface of the upper fixing member 405. It communicates with the space.
  • the space has water tightness as described above and functions as the upper water flow chamber 407.
  • the upper water flow chamber 407 As shown in FIG. 26, at least two water flow ports 409 for discharging the permeated water that has passed through the hollow fiber membrane 402 from the hollow fiber membrane module 401 and collecting the water are formed. ing.
  • the water inlet 409 is formed so as to penetrate the side wall portion of the upper connecting member 403 and the side wall portion of the upper cap portion 418 in the horizontal direction. Further, in a state where the upper connecting members 403 are connected to each other, the water to be treated enters the upper water passage chamber 407 and the permeated water in the upper water passage chamber 407 is prevented from leaking to the outside. It is formed to have water tightness.
  • the lower cap portion 419 is formed in the same manner as the upper cap portion 418, and is disposed inside the upper connecting member 404 with the upper cap portion 418 having a reverse vertical direction. Specifically, it is formed in a circular shape in a bottom view and opened upward, and is arranged inside the upper connecting member 404 and fixed to the upper connecting member 404. Further, the lower fixing member 406 is arranged and fixed inside the lower cap portion 419 so that a space exists below the lower end surface of the lower fixing member 406 formed in a substantially columnar shape. . Further, the outer peripheral surface of the lower fixing member 406 is joined to the inner surface of the lower cap portion 419 in close contact. Therefore, the space surrounded by the inner surface of the lower cap portion 419 and the upper end surface of the upper fixing member 405 has water tightness, and the treated water is prevented from entering the space.
  • the lower fixing member 406 is different from the upper fixing member 405 in that the direction in the vertical direction is reversed, but is formed in a substantially cylindrical shape by the lower end portion of the hollow fiber membrane 402 and the solidified adhesive.
  • the hollow fiber membranes 402 bundled so as to be bundled together are fixed so that the edge of the lower end portion is flush with the lower end portion of the hollow fiber membrane 402. It is formed in the same manner as the upper fixing member 405 in that it penetrates in the vertical direction and the hollow fiber membrane 402 is formed in an open state on the lower surface.
  • the lower water flow chamber 408 is formed in a hollow, substantially cylindrical shape using metal, synthetic resin, or the like. Further, as shown in FIG. 24, it is disposed in a space surrounded by the inner surface of the lower cap part 419 and the lower surface of the lower fixing member 406, that is, below the lower fixing member 406.
  • the lower water flow chamber 408 as shown in FIG. 26, at least two water flow ports 409 for discharging the permeated water that has permeated through the hollow fiber membrane 402 from the hollow fiber membrane module 401 and collecting the water are formed. ing.
  • the water inlet 409 is formed to penetrate the side wall portion of the upper connecting member 404 and the side wall portion of the lower cap portion 419 in the horizontal direction.
  • the vent chamber 413 includes a vent chamber main body 414 formed in a hollow cylindrical shape having a circular shape when viewed from above, and a hollow that extends outward from a side surface of the vent chamber main body 414 and communicates with an internal space of the vent chamber main body 414. 24, and is formed of metal, synthetic resin, or the like. Further, as shown in FIG. 24, the inner surface of the lower cap portion 419 and the lower end surface of the lower fixing member 406 are formed. It is arranged below the lower water passage 408 in the enclosed space.
  • vent chamber communication pipes 415 of the vent chamber 413 are arranged along the diameter direction of the vent chamber body 414 that is circular when viewed from above.
  • the vent chamber communication pipe 415 of the vent chamber 413 is used for taking in the supplied gas or sending the gas supplied to the vent chamber 413 to the vent chamber 413 of the adjacent module.
  • a vent 416 is formed.
  • the vent hole 416 is formed to penetrate the side wall portion of the upper connecting member 404 and the side wall portion of the lower cap portion 419 in the horizontal direction. Further, in a state where the adjacent upper connecting members 404 are connected to each other, it is formed to have a sealing property so that the gas does not leak into the water to be treated and the water to be treated does not enter the ventilation chamber 413. Yes.
  • the water flow port 409 of the lower water flow chamber 408 and the air flow port 416 of the ventilation chamber 413 are arranged at positions where they overlap when the hollow fiber membrane module 401 is viewed from above.
  • the plurality of hollow fiber membrane modules 401 are linearly viewed in the horizontal direction so that the water passages 409 and the air vents 416 formed in the side wall portions of the upper connecting member 404 face each other.
  • the hollow fiber membrane module 401 when the hollow fiber membrane module 401 is connected and is a connected body as will be described later, in the hollow fiber membrane module positioned at the end of the connected body, the water inlets 409 of the upper and lower water passing chambers and the vent chambers The vent 416 can be open. In this case, the watertightness of the water flow chamber and the airtightness of the air flow chamber can be maintained by closing the water flow port 409 and the vent hole 416 with an appropriate means.
  • the ventilation chamber 413 is provided with a diffusion tube 412 for sending gas to the diffusion hole 410, and the internal space of the ventilation chamber 413 through the internal space of the diffusion tube 412. Communicates with the diffuser holes 410.
  • the ventilation chamber 413 functions to supply the supplied gas to the diffuser holes 410 via the diffuser pipe 412.
  • the air diffuser 412 is formed so as to penetrate the lower water flow chamber 408 and the lower fixing member 406 in the vertical direction and reach the air diffuser hole 410.
  • the air diffusion hole 410 is generally formed in an annular shape when viewed from above, and is formed so as to diffuse the gas supplied from the ventilation chamber 413 through the air diffusion tube 412 as bubbles 411.
  • the air diffusion hole 410 is usually formed near the upper end surface of the lower fixing member 406.
  • the number of the air diffusion holes 410 can be set as appropriate so that the bubbles 411 are distributed throughout the hollow fiber membrane 402, and it is preferable that the number of the air diffusion holes 410 is plural as shown in FIG. In the case where a plurality of air diffusion holes 410 are formed, the position of each air diffusion hole 410 can be appropriately set.
  • Each air diffusion hole 410 has a square shape when viewed from above, for example, as shown in FIG. It can arrange
  • the size of the air diffusion hole 410 is not particularly limited, and examples thereof include a diameter of 3 to 25 mm.
  • the flow velocity of the gas passing through the air diffuser 410 can be increased, and the bubbles 411 can be brought into contact with the outer surface of the hollow fiber membrane 402 more vigorously.
  • FIG. 27 is a cross-sectional view showing a horizontal cross section (transverse cross section) of the hollow fiber membrane module 401 of the 4-2 embodiment.
  • the hollow fiber membrane module of the 4-1 embodiment is formed at four locations so that each air diffusion hole 410 is located at the apex of a square as shown in FIG. 26 when viewed from above.
  • the hollow fiber membrane module 401 of the 4-2 embodiment is different in that a plurality of air diffusion holes 410 are arranged so as to draw “X” as shown in FIG.
  • the hollow fiber membrane module according to the fourth to fourth embodiments is formed at a position where the water flow port 409 of the lower water flow chamber 408 and the gas supply port of the air flow chamber 413 overlap when viewed from above.
  • the hollow fiber membrane module 401 of the 4-2 embodiment as shown in FIG. 27, when viewed from above, the penetration direction of the water passage 409 and the penetration direction of the gas supply port intersect at right angles. Is different.
  • a plurality of modules can be connected vertically and horizontally so as to draw a square lattice, for example.
  • FIG. 28 is a longitudinal cross-sectional view of the hollow fiber membrane module 401 according to the fourth to third embodiments in the same standing state as in use.
  • FIG. 29 is a cross-sectional view showing a horizontal cross section (transverse cross section) of the hollow fiber membrane module 401 taken along the line BB of FIG.
  • the hollow fiber membrane module 401 of the fourth to third embodiment is a tubular support member that extends in the vertical direction and is fixed at both ends by the upper fixing member 405 and the lower fixing member 406, respectively. It differs from the hollow fiber membrane module of the above-mentioned 4-1 embodiment in that two 417 are provided. As shown in FIG. 29, the support member 417 is provided as a pair at a position closer to the outer side of the circular region where the hollow fiber membrane 402 is disposed when the hollow fiber membrane module 401 is viewed from above. Yes. The support member 417 is fixed in an open state on the upper end surface of the upper fixing member 405 and on the lower end surface of the lower fixing member 406. The upper water passage 407 and the lower water passage 408 communicate with each other through a hollow region inside the support member.
  • the support member 417 Since the upper water passage 407, the upper fixing member 405, and the upper connecting member 403 are supported by the upper connecting member 404 and the lower fixing member 406 by the support member 417, the support for supporting the upper fixing member 405 and the like. The need for providing a separate means is reduced. Further, since the upper water flow chamber 407 and the lower water flow chamber 408 are communicated with each other by the support member 417, the permeated water can be collected more smoothly.
  • the hollow fiber membrane module 401 may be provided with a valve that opens the air diffuser hole 410 when the gas supplied to the air diffuser hole 410 exceeds a predetermined pressure. Specifically, for example, by providing a check valve in the diffuser hole 410, bubbles can be generated intermittently, and the impact force of the bubbles against the hollow fiber membrane can be increased or decreased.
  • FIG. 30 is a schematic view showing a water treatment device 430 of the fourth embodiment provided with the hollow fiber membrane module 401.
  • FIG. 31 is a schematic plan view illustrating a modification of the water treatment device 430 according to the fourth embodiment as viewed from above.
  • the water treatment apparatus 430 of the fourth embodiment includes a treated water supply line 425 that supplies the treated water 420 and a treated water tank 424 that stores the supplied treated water 420. Is provided.
  • 401 are arranged so as to be adjacent to each other.
  • the plurality of hollow fiber membrane modules 401 are arranged and connected so as to be arranged in a straight line (in parallel) in a straight line when viewed from above, and are installed as a connected body.
  • the upper connection member 403 and the upper connection member 404 of each hollow fiber membrane module 401 are fixed by holding means (not shown). Has been.
  • the water treatment device 430 is connected to a suction pump 440 for sucking the inside of the hollow fiber membrane so as to obtain permeated water by filtering the water to be treated 420 through the hollow fiber membrane.
  • a sediment discharge line 423 connected to the bottom of the water tank 424 to discharge the sediment in the water tank 424 to be treated.
  • One of the permeated water extraction lines 421 is connected to the suction pump 440, and the other is connected to the water flow ports 409 of the upper and lower water flow chambers 407 and 408 in the hollow fiber membrane module 401, and the permeation in the water flow chambers 407 and 408. It is configured to collect water.
  • the other of the permeated water extraction line 421 does not need to be connected to the water passage ports 409 of all the hollow fiber membrane modules. For example, among the plurality of hollow fiber membrane modules 401 connected as shown in FIG. What is necessary is just to be connected to the water flow port 409 of the hollow fiber membrane module 401 located in the end.
  • permeated water can be collected through the water flow chambers 407 and 408 of a plurality of modules communicating with each other inside the upper and lower connecting members in the module connection body.
  • the water passage port 409 on the other side of the coupling body (the side where the permeated water extraction line 421 is not connected) is sealed to have water tightness by an appropriate means.
  • the gas supply line 422 has one end connected to the blower 450 and the other end connected to the vent 416 of the vent chamber 413 in the hollow fiber membrane module 401 so as to supply gas to the vent chamber 413.
  • the other of the gas supply lines 422 need not be connected to the vents 416 of all the hollow fiber membrane modules.
  • the most of the plurality of hollow fiber membrane modules 401 connected as shown in FIG. What is necessary is just to be connected to the vent 416 of the hollow fiber membrane module 401 located in the end.
  • air can be simultaneously supplied to the air diffusion holes of the plurality of modules through the plurality of ventilation chambers 413 communicating inside the upper and lower connection members in the connection body of the modules.
  • the vent 416 on the other side of the coupling body (the side to which the gas supply line 422 is not connected) is sealed so as to have a sealing property by an appropriate means.
  • suction pump 440 and the blower 450 conventionally known general ones can be adopted.
  • a plurality of connectors may be arranged in a direction orthogonal to the direction in which the connected bodies are arranged.
  • the water treatment device 430 may be configured such that the pressure of the gas supplied to the air diffuser hole 410 can be changed to change the size or ejection strength of the bubbles 411.
  • a blower configured to change the pressure of the gas to be supplied while being controlled by inverter control can be employed as the blower 450.
  • the blower 450 set to repeat the operation and the stop can be employed.
  • the gas supply line 422 may be configured so that gas supply can be intermittently performed by opening and closing a valve installed in the line. Since the water treatment device 430 is configured to change the size or the jetting strength of the bubbles 411, the deposits attached to the outer surface of the hollow fiber membrane 402 are more easily removed by the bubbles 411. obtain.
  • FIG. 32 shows a plurality of hollow fiber membrane units in the water treatment apparatus of the present embodiment and a plurality of air diffusion units formed so as to diffuse into the hollow fiber membranes so that they are arranged in a straight line in the horizontal direction. It is the perspective view which looked at the mode connected to No. 2 from the slanting upper part.
  • the water treatment apparatus of the present embodiment has a hollow formed in the same manner as the hollow fiber membrane module 401 of the above-mentioned 4-1 embodiment except that it has a ventilation chamber 413 but does not have a diffuser hole 410 and a diffuser pipe 412.
  • a thread membrane unit 431 is provided.
  • an air diffusion unit 432 formed in the same manner as the hollow fiber membrane module 401 of the above-described fourth to third embodiments is provided except that it does not have a hollow fiber membrane and has one support member 417.
  • the air diffusion unit 432 may include a plurality of support members 417.
  • the water treatment apparatus of the present embodiment includes a continuous body formed by the hollow fiber membrane unit 431 and the air diffusion unit 432 adjacent to each other.
  • the embodiment described above is used.
  • the water to be treated 420 is separated by the hollow fiber membrane, and the permeated water that has permeated the hollow fiber membrane can be collected.
  • the air diffusion hole 410 is not formed in the hollow fiber membrane unit 431 constituting the device, and the hollow fiber membrane is not fixed to the air diffusion unit 432.
  • the hollow fiber membrane unit 431 and the aeration unit 432 are each formed with a relatively simple structure. In the water treatment apparatus in which such two types of units are alternately connected so as to be arranged in a straight line in the horizontal direction, the hollow fiber membranes can be arranged at a relatively high density, similarly to the water treatment apparatus of the above-described embodiment. . Further, not only the air diffusion unit 432 but also the hollow fiber membrane unit 431 can be supported and maintained in an upright state by the support member 417 provided in the air diffusion unit 432.
  • the water treatment apparatus preferably includes a bubble diffusion preventing plate 433 as shown in FIG. 32 in order to cause the bubbles 411 generated from the diffusion holes 410 of the diffusion unit 432 to collide with the hollow fiber membrane as much as possible.
  • the hollow fiber membrane unit 431 is provided with a ventilation chamber in a space surrounded by the inner surface of the lower cap portion 419 and the lower surface of the lower fixing member 406 so as to penetrate the space in the horizontal direction.
  • the form in which the part other than the chamber is a lower water passage may be used.
  • the air diffusion unit 432 adjacent to the hollow fiber membrane unit 431 is configured to pass the permeated water separated by the adjacent hollow fiber membrane unit 431 when the hollow fiber membrane unit 431 has such a configuration.
  • a water chamber is provided, and the water flow chamber can be configured to communicate with the water flow chamber of the adjacent hollow fiber membrane unit 431.
  • the space surrounding the tubular water flow chamber of the air diffusion unit 432 is formed to communicate with the air flow chamber of the adjacent hollow fiber membrane unit 431 and is configured to be a gas flow chamber that can supply gas to the air diffusion holes.
  • the hollow fiber membrane unit 431 has a permeated water supply pipe formed so as to pass through the adjacent air diffusion unit 432 and send the permeated water to another hollow fiber membrane unit 431 adjacent to the air diffusion unit 432. It may be a form provided.
  • the air diffusion unit 432 penetrates through the adjacent hollow fiber membrane unit 431 or passes through the outside thereof, and another air diffusion unit adjacent to the hollow fiber membrane unit 431.
  • the air diffuser unit 432 may be provided with a gas supply pipe formed to send gas to 432.
  • the hollow fiber membrane unit 431 having such a configuration most of the space surrounded by the inner surface of the lower cap portion 419 and the lower surface of the lower fixing member 406 is a lower water passage, and the lower water passage is adjacent to the lower water passage. It forms so that it may have the space which lets the gas supply pipe
  • the air diffuser unit 432 having such a configuration includes a vent chamber that is formed so as to communicate with the vent chamber of another air diffuser unit 432 via the gas supply pipe and can supply gas to the diffuser hole. However, it forms so that it may have the space which lets the permeated water supply pipe
  • FIG. 1 A schematic diagram of devices used in the water treatment method of the fourth embodiment is as shown in FIG. 1
  • the treated water 420 is supplied from the treated water supply line 425 to the treated water tank 424, and a plurality of hollow fiber membrane modules 401 immersed in and connected to the treated water 420 are used. Then, the treated water 420 is subjected to membrane separation (membrane filtration) with a hollow fiber membrane to obtain permeated water. Moreover, the deposit in the water tank 424 to be treated is discharged from the deposit discharge line 423.
  • the inside of the hollow fiber membrane is sucked by the suction pump 440 to separate the treated water 420 with the hollow fiber membrane (membrane filtration), and the permeate is collected through the permeate discharge line 421.
  • the water to be treated 420 is filtered through a hollow fiber membrane by sucking the inside of the hollow fiber membrane with the suction pump 440, and the filtered permeated water is passed through the hollow fiber membrane module 401.
  • the hollow fiber membrane module 401 To the upper water passage or the lower water passage provided at the upper and lower positions.
  • the gas supply may be performed continuously or intermittently.
  • air is supplied from the blower 450 to the part of the ventilation chambers 413 of the plurality of hollow fiber membrane modules 401 through the gas supply line 422.
  • air can be supplied also to the ventilation chamber of the adjacent hollow fiber membrane module 401. That is, air can be simultaneously supplied to the ventilation chambers of the plurality of hollow fiber membrane modules 401.
  • air bubbles are generated from the air diffusion holes by the air supplied from the ventilation chamber, and the adhering matter derived from the suspension adhering to the outer surface of the hollow fiber membrane is removed by the air bubbles.
  • the hollow fiber membrane module, water treatment apparatus and water treatment method of the above embodiment are as exemplified above, but the present invention is limited to the above exemplified hollow fiber membrane module, water treatment apparatus and water treatment method. is not. Moreover, the various aspects used in a general hollow fiber membrane module, a water treatment apparatus, and a water treatment method are employable in the range which does not impair the effect of this invention.

Abstract

A hollow-fiber membrane module which has a plurality of hollow fiber membranes extending vertically and which is used in the state of being immersed in water is provided in order to efficiently obtain filtrate water. The hollow-fiber membrane module is characterized by being equipped with an aeration mechanism by which the hollow-fiber membranes can be aerated, an upper water passage chamber which has been formed over the hollow-fiber membranes and communicates with the hollow region inside the hollow-fiber membranes, and a lower water passage chamber which has been formed under the hollow-fiber membranes and communicates with the hollow region inside the hollow-fiber membranes, and by having been configured so that filtrate water which has passed through the hollow-fiber membranes from the outer side to the inner side thereof can be collected via the upper water passage chamber and the lower water passage chamber.

Description

中空糸膜モジュール、水処理装置、膜分離方法、及び水処理方法Hollow fiber membrane module, water treatment apparatus, membrane separation method, and water treatment method
 本発明は、膜分離に用いられる中空糸膜モジュール、水処理装置、膜分離方法、及び水処理方法に関し、具体的には、例えば、河川水、湖沼水、地下水、海水などの浄水処理、あるいは下水、工業廃水などの膜分離処理などに用いられる中空糸膜モジュール、水処理装置、膜分離方法、及び水処理方法に関するものである。 The present invention relates to a hollow fiber membrane module, a water treatment device, a membrane separation method, and a water treatment method used for membrane separation. Specifically, for example, water purification treatment of river water, lake water, ground water, seawater, or the like, or The present invention relates to a hollow fiber membrane module, a water treatment apparatus, a membrane separation method, and a water treatment method used for membrane separation treatment of sewage and industrial wastewater.
 河川水、湖沼水、地下水、海水などの浄水処理、あるいは下水、工業廃水を処理する水処理装置などにおいて、近年、被処理水中に、中空糸膜を上下方向に延在させて保持した起立姿勢にて浸漬させて、中空糸膜内部を吸引することにより被処理水の膜分離を実施して透過水を得る外圧型の中空糸膜モジュールが用いられるようになってきている。 In the water treatment equipment that treats river water, lake water, groundwater, seawater, etc., or water treatment equipment that treats sewage and industrial wastewater, in recent years, the standing posture has been maintained by extending the hollow fiber membrane vertically in the treated water An external pressure type hollow fiber membrane module that performs membrane separation of water to be treated by sucking the inside of the hollow fiber membrane to obtain permeated water has been used.
 中空糸膜モジュールとしては、従来、中空糸膜の上端側のみから透過水を吸引するタイプのものが広く用いられてきた。 Conventionally, a hollow fiber membrane module that sucks permeate from only the upper end side of the hollow fiber membrane has been widely used.
 ところで、中空糸膜の端部から吸引して該中空糸膜の外側から内側に水を透過させる場合には、この吸引による負圧が作用しやすい中空糸膜の端部近傍においては単位時間に多量の水が膜を透過することになるがこの端部から離れるにつれて中空糸膜の内外の圧力差が減少するために膜を透過する水量が減少することになる。
 このようなことから片側から集水するタイプでは中空糸膜全体を膜分離に有効に作用させることが難しいという問題がある。
By the way, when sucking from the end of the hollow fiber membrane and allowing water to permeate from the outside to the inside of the hollow fiber membrane, in the vicinity of the end of the hollow fiber membrane where the negative pressure due to this suction tends to act, the unit time Although a large amount of water permeates the membrane, the pressure difference between the inside and outside of the hollow fiber membrane decreases as the distance from the end decreases, so the amount of water that permeates the membrane decreases.
For this reason, the type of collecting water from one side has a problem that it is difficult to effectively act the entire hollow fiber membrane for membrane separation.
 また、従来の中空糸膜モジュールは、被処理水中の浮遊性固形物や粘着性有機化合物などの付着物が中空糸膜に付着することで中空糸膜の透過性能を低下させやすく、中空糸膜の透過性能が低下すると水処理装置の運転効率をも低下させることとなるという問題がある。 In addition, the conventional hollow fiber membrane module is likely to deteriorate the permeation performance of the hollow fiber membrane by adhering to the hollow fiber membrane, such as floating solids or adhesive organic compounds in the treated water. If the permeation performance of the water treatment is lowered, there is a problem that the operation efficiency of the water treatment device is also lowered.
 そこで、本発明は、効率良く透過水を得ること課題とする。 Therefore, an object of the present invention is to obtain permeate efficiently.
 本発明は、上下方向に延在する複数本の中空糸膜を有し、水中に浸漬して用いられる中空糸膜モジュールであって、
 前記中空糸膜に散気し得る散気機構と、前記中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室とを備え、前記上部通水室及び前記下部通水室を介して、前記中空糸膜の外側から内側に透過された透過水を集水し得るように形成されてなることを特徴とする中空糸膜モジュールにある。
The present invention has a plurality of hollow fiber membranes extending in the vertical direction, and is a hollow fiber membrane module used by being immersed in water,
An air diffusion mechanism that can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and formed below the hollow fiber membrane A lower water passage communicating with a hollow region inside the hollow fiber membrane, and collects permeated water permeated from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage. The hollow fiber membrane module is characterized by being formed so as to be able to.
 また、本発明は、上下方向に延在する複数本の中空糸膜を有し、水中に浸漬して用いられる中空糸膜モジュールが備えられてなる水処理装置であって、
 前記中空糸膜モジュールが、前記中空糸膜に散気し得る散気機構と、前記中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室とを備え、前記上部通水室及び前記下部通水室を介して、前記中空糸膜の外側から内側に透過された透過水を集水し得るように形成されてなることを特徴とする水処理装置にある。
Further, the present invention is a water treatment apparatus comprising a plurality of hollow fiber membranes extending in the vertical direction and provided with a hollow fiber membrane module used by being immersed in water,
An air diffusion mechanism in which the hollow fiber membrane module can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and the hollow fiber A lower water passage formed below the membrane and communicating with a hollow region inside the hollow fiber membrane, and is transmitted from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage. The water treatment apparatus is characterized by being formed so as to collect collected permeated water.
 さらに、本発明は、上下方向に延在する複数本の中空糸膜を有し、水中に浸漬して用いられる中空糸膜モジュールを用いた水処理方法であって、
 前記中空糸膜モジュールが、前記中空糸膜に散気し得る散気機構と、前記中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室とを備え、前記上部通水室及び前記下部通水室を介して、前記中空糸膜の外側から内側に透過された透過水を集水し得るように形成されてなることを特徴とする水処理方法にある。
Furthermore, the present invention is a water treatment method using a hollow fiber membrane module having a plurality of hollow fiber membranes extending in the vertical direction and being immersed in water,
An air diffusion mechanism in which the hollow fiber membrane module can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, and the hollow fiber A lower water passage formed below the membrane and communicated with a hollow region inside the hollow fiber membrane, and is transmitted from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage. The water treatment method is characterized by being formed so as to collect collected permeated water.
 また、中空糸膜モジュールに係る本発明は、複数本の中空糸膜を上下方向に延在させた状態で被処理水に浸漬させて該被処理水の膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、前記中空糸膜の下端部側において気泡を発生させる散気機構がさらに備えられている中空糸膜モジュールであって、前記下部固定部材が、前記集水室の下方に設けられた気体貯留室と、該気体貯留室から前記集水室を通過して前記固定部の上面側にいたる気泡通路とをさらに備えており、前記気体貯留室に気体が貯留され、該貯留された前記気体が前記気泡通路を通って浮上されて前記固定部の上側に気泡が発生される前記散気機構が備えられていることを特徴としている。 Further, the present invention relating to the hollow fiber membrane module is configured so that a plurality of hollow fiber membranes can be immersed in the water to be treated in a state of extending in the vertical direction so that the membrane separation of the water to be treated can be performed. An upper fixing member that fixes the upper end portion of the yarn membrane and a lower fixing member that fixes the lower end portion, and the upper fixing member has a water collection chamber above the fixing portion that fixes the hollow fiber membrane. The lower fixing member has a water collection chamber below a fixing portion for fixing the hollow fiber membrane, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collection chambers. The hollow fiber membrane is further provided with an air diffusion mechanism that generates air bubbles at the lower end side of the hollow fiber membrane. A module, wherein the lower fixing member is located below the water collection chamber A gas passage provided from the gas storage chamber to the upper surface side of the fixed portion, and gas is stored in the gas storage chamber. The air diffusion mechanism is provided in which the gas that has been blown up through the bubble passage and bubbles are generated above the fixed portion.
 斯かる発明によれば、中空糸膜の上下両方から集水可能な中空糸膜モジュールにおいて、中空糸膜の下端部側において気泡を発生させるための散気機構が備えられており、しかも、気泡貯留部から固定部の上側に気泡通路を通じて浮上する気泡を散気することから中空糸膜の延在する方向に対して直交する方向に配された散気管の先端から気泡を発生させる場合に比べて気泡の発生によって散気孔の近傍の中空糸膜を激しく振動させてしまうおそれを抑制させ得る。 According to such an invention, in the hollow fiber membrane module capable of collecting water from both the upper and lower sides of the hollow fiber membrane, the air diffusion mechanism for generating air bubbles is provided on the lower end side of the hollow fiber membrane, Compared to the case where bubbles are generated from the tip of the diffuser tube arranged in the direction orthogonal to the direction in which the hollow fiber membrane extends because the bubbles floating from the reservoir to the upper side of the fixed portion are diffused through the bubble passage. Thus, the risk of vigorously vibrating the hollow fiber membrane in the vicinity of the air holes due to the generation of bubbles can be suppressed.
 したがって、斯かる発明によれば、上下両方からの集水が可能とされつつも中空糸膜が損傷されるおそれの低い中空糸膜モジュールが提供され得る。 Therefore, according to such an invention, it is possible to provide a hollow fiber membrane module that can collect water from both the upper and lower sides and has a low risk of damage to the hollow fiber membrane.
 さらに、水処理方法に係る本発明は、複数本の中空糸膜を上下方向に延在させた状態で膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、前記中空糸膜の下端部側において気泡を発生させる散気機構がさらに備えられている中空糸膜モジュールを被処理水中に浸漬させた状態で前記上部集水室と前記下部集水室とに集水された前記透過水を中空糸膜モジュール外に吸引することによって前記被処理水を膜分離する膜分離工程と、前記中空糸膜の表面に付着した付着物を前記表面から除去させるべく前記散気機構で気泡を発生させて前記中空糸膜を振動させる散気工程とを実施する水処理方法であって、前記下部固定部材が、前記集水室の下方に設けられた気体貯留室と、該気体貯留室から前記集水室を通過して前記固定部の上面側にいたる気泡通路とを備えている中空糸膜モジュールを用い、前記気体貯留室に気体を貯留させて、該貯留させた前記気体を前記気泡通路を通じて浮上させることにより前記固定部の上側に前記気泡を発生させて前記散気工程を実施することを特徴としている。 Furthermore, the present invention according to the water treatment method includes an upper fixing member and a lower end for fixing the upper end portion of the hollow fiber membrane so that the membrane separation can be performed in a state where a plurality of hollow fiber membranes are extended in the vertical direction. And a lower fixing member for fixing the hollow fiber membrane, and the upper fixing member has a water collection chamber above the fixing portion for fixing the hollow fiber membrane and the lower fixing member fixes the hollow fiber membrane. A water collecting chamber is provided below the fixed portion, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collecting chambers so that the permeated water permeated from the outside to the inside of the hollow fiber membrane is The hollow fiber membrane module is formed so that water can be collected from the lower end portion of the hollow fiber membrane, and further provided with an air diffusion mechanism for generating bubbles on the lower end side of the hollow fiber membrane. The permeated water collected in the water collecting chamber and the lower water collecting chamber Membrane separation step of separating the water to be treated by suctioning out of the hollow fiber membrane module, and bubbles are generated by the air diffusion mechanism to remove deposits attached to the surface of the hollow fiber membrane from the surface. And a diffuser step for vibrating the hollow fiber membrane, wherein the lower fixing member includes a gas storage chamber provided below the water collection chamber, and the gas storage chamber from the gas storage chamber. Using a hollow fiber membrane module including a bubble passage that passes through a water chamber and reaches the upper surface side of the fixed portion, the gas is stored in the gas storage chamber, and the stored gas is passed through the bubble passage. It is characterized in that the air bubbles are generated on the upper side of the fixed part by floating and the aeration process is carried out.
 斯かる発明によれば、水質低下が抑制されつつ効率の良い膜分離の実施が可能な水処理方法が提供され得る。 According to such an invention, a water treatment method capable of performing efficient membrane separation while suppressing deterioration in water quality can be provided.
 また、中空糸膜モジュールに係る本発明は、複数本の中空糸膜を上下方向に延在させた状態で被処理水に浸漬させて該被処理水の膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、さらに、前記中空糸膜の下端部側において気泡を発生させるための散気部材が備えられている中空糸膜モジュールであって、前記散気部材が、前記中空糸膜の下端部側に配されその上面側に散気孔が開口された中空体を有し、該中空体に接続された管体から前記中空体に気体が供給されて前記散気孔から気泡を発生させ得るように構成されており、前記散気孔が前記下部固定部材の固定部の上側において上向きに開口されていることを特徴としている。 Further, the present invention relating to the hollow fiber membrane module is configured so that a plurality of hollow fiber membranes can be immersed in the water to be treated in a state of extending in the vertical direction so that the membrane separation of the water to be treated can be performed. An upper fixing member that fixes the upper end portion of the yarn membrane and a lower fixing member that fixes the lower end portion, and the upper fixing member has a water collection chamber above the fixing portion that fixes the hollow fiber membrane. The lower fixing member has a water collection chamber below a fixing portion for fixing the hollow fiber membrane, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collection chambers. The permeated water permeated from the outside to the inside can be collected from both the upper and lower sides, and further, a diffuser member for generating bubbles on the lower end side of the hollow fiber membrane is provided. A hollow fiber membrane module, wherein the diffuser member is the hollow fiber membrane. It has a hollow body which is arranged on the lower end side and has an air diffusion hole opened on its upper surface side, and gas can be supplied from the tube connected to the hollow body to the hollow body to generate bubbles from the air diffusion hole The air diffusion hole is opened upward on the upper side of the fixing portion of the lower fixing member.
 斯かる発明によれば、中空糸膜の上下両方から集水可能な中空糸膜モジュールにおいて、中空糸膜の下端部側において気泡を発生させるための散気部材が備えられており、しかも、その散気孔が、中空糸膜の下端部を固定している固定部の上側において上方向に開口されていることから横方向に配された散気管の先端部に設けた散気孔から気泡を発生させる場合に比べて気泡の発生によって散気孔の近傍の中空糸膜を激しく振動させてしまうおそれを抑制させ得る。 According to such an invention, in the hollow fiber membrane module capable of collecting water from both the upper and lower sides of the hollow fiber membrane, the air diffusion member for generating bubbles is provided on the lower end side of the hollow fiber membrane, and the Since the air diffusion holes are opened upward on the upper side of the fixing portion fixing the lower end portion of the hollow fiber membrane, bubbles are generated from the air diffusion holes provided at the distal end portions of the air diffusion tubes arranged in the lateral direction. Compared to the case, it is possible to suppress the possibility that the hollow fiber membrane in the vicinity of the air diffusion holes is vibrated vigorously due to the generation of bubbles.
 すなわち、斯かる発明によれば、上下両方からの集水が可能とされつつも中空糸膜が損傷されるおそれの低い中空糸膜モジュールが提供され得る。 That is, according to such an invention, it is possible to provide a hollow fiber membrane module that can collect water from both the upper and lower sides and has a low risk of damaging the hollow fiber membrane.
 さらに、水処理方法に係る本発明は、複数本の中空糸膜を上下方向に延在させた状態で膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、前記中空糸膜の下端部側において気泡を発生させるための散気部材がさらに備えられている中空糸膜モジュールが被処理水中に浸漬された状態で前記上部集水室と前記下部集水室とに集水された前記透過水を中空糸膜モジュール外に吸引することによって前記被処理水を膜分離する膜分離工程と、前記散気部材で気泡を発生させて前記中空糸膜を振動させることにより該中空糸膜の表面に付着した付着物を前記表面から除去する散気工程とを実施する水処理方法であって、前記散気部材が散気孔を備えた中空体を有し、該散気孔が前記下部固定部材の固定部の上側において上向きに開口した状態となるように前記中空体が配されており、該中空体に気体を供給するための管体が前記中空体に接続されて備えられている中空糸膜モジュールを用いて前記膜分離工程を実施させるとともに前記散気工程においては、前記管体から前記中空体に気体を供給し、該供給された気体を気泡として前記散気孔から発生させることによって前記付着物の除去を実施することを特徴としている。 Furthermore, the present invention according to the water treatment method includes an upper fixing member and a lower end for fixing the upper end portion of the hollow fiber membrane so that the membrane separation can be performed in a state where a plurality of hollow fiber membranes are extended in the vertical direction. And a lower fixing member for fixing the hollow fiber membrane, and the upper fixing member has a water collection chamber above the fixing portion for fixing the hollow fiber membrane and the lower fixing member fixes the hollow fiber membrane. A water collecting chamber is provided below the fixed portion, and the hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collecting chambers so that the permeated water permeated from the outside to the inside of the hollow fiber membrane is In a state where the hollow fiber membrane module is further immersed in the water to be treated, and is further provided with an air diffuser for generating bubbles on the lower end side of the hollow fiber membrane. The water collected in the upper water collecting chamber and the lower water collecting chamber A membrane separation step of membrane-separating the water to be treated by sucking excess water out of the hollow fiber membrane module, and generating air bubbles in the air diffuser to vibrate the hollow fiber membrane. A water treatment method for performing an air diffusion step of removing deposits attached to a surface from the surface, wherein the air diffusion member has a hollow body provided with air diffusion holes, and the air diffusion holes are the lower fixing member. The hollow body is provided so that the hollow body is arranged so as to open upward on the upper side of the fixing portion, and a tube body for supplying gas to the hollow body is connected to the hollow body. The membrane separation step is performed using a membrane module, and in the air diffusion step, the gas is supplied from the tube body to the hollow body, and the supplied gas is generated as bubbles from the air diffusion holes to generate the gas. Removal of deposits It is characterized by carrying out the.
 斯かる発明によれば、水質低下が抑制されつつ効率の良い膜分離の実施が可能な水処理方法が提供され得る。 According to such an invention, a water treatment method capable of performing efficient membrane separation while suppressing deterioration in water quality can be provided.
 また、中空糸膜モジュールのエアスクラビングにおいて、中空糸膜に先端部が接触しない散気機構によって中空糸の損傷を抑制しうること、及び異なる方向へ流れる気泡を発生させることで中空糸膜を効果的に揺らして付着物除去効果や懸濁物等の付着抑制効果を向上させうることを見出して以下の発明を完成させるにいたった。 Also, in air scrubbing of hollow fiber membrane modules, damage to the hollow fiber can be suppressed by an air diffusion mechanism in which the tip part does not contact the hollow fiber membrane, and the hollow fiber membrane is effective by generating bubbles flowing in different directions The following invention was completed by finding out that the effect of removing deposits and the effect of suppressing adhesion of suspended solids can be improved by shaking.
 すなわち、中空糸膜モジュールに係る本発明は、上下方向に延在させた複数本の中空糸膜と、該中空糸膜の上下端部側をそれぞれ固定する上部固定部材及び下部固定部材と、前記中空糸膜に散気し得る散気機構とを備えた水中に浸漬して用いられる中空糸膜モジュールであって、前記散気機構が、前記上部固定部材及び前記下部固定部材に両端部側が固定されて前記上部固定部材及び前記下部固定部材の間に延設された管状体を備え、該管状体の周面に管内の気体を前記中空糸膜へ散気可能な散気孔が形成され、前記中空糸膜の上下端部が開口し、前記中空糸膜の開口した端部から中空糸膜を透過した透過水が収容される上部集水部及び下部集水部を備え、該上部集水部及び下部集水部に収容された透過水を導出する導出機構を備えたことを特徴としている。 That is, the present invention related to the hollow fiber membrane module includes a plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, A hollow fiber membrane module that is used by immersing in water with an air diffusion mechanism that can diffuse air into the hollow fiber membrane, wherein the air diffusion mechanism is fixed at both ends to the upper fixing member and the lower fixing member. A tubular body extending between the upper fixing member and the lower fixing member, and a diffused hole capable of diffusing gas in the tube to the hollow fiber membrane is formed on a peripheral surface of the tubular body, The upper and lower water collecting portions are provided with an upper water collecting portion and a lower water collecting portion in which upper and lower ends of the hollow fiber membrane are opened and permeated water that has permeated through the hollow fiber membrane is accommodated from the opened end of the hollow fiber membrane. And a derivation mechanism for deriving the permeated water contained in the lower water collection section It is characterized.
 斯かる発明によれば、中空糸モジュールの散気機構は、前記上部固定部材及び下部固定部材に両端部側が固定されて前記上部固定部材と下部固定部材の間に延設された管状体を備えているため、該管状体の両端の先端部が中空糸膜と接触することがなく、中空糸膜の損傷を抑制できる。
 また、前記管状体の周面に中空糸膜へ散気可能な散気孔が形成されているため、散気孔付近で水平方向の気泡の流れができ、さらに浮力により気泡はその後上方へ流れることになる。よって、気泡が中空糸膜に接触する場所によって気泡の流れる方向は異なり、中空糸膜を効果的に揺らすことができ、エアスクラビングによる中空糸膜の付着物除去効果や懸濁物等の付着抑制効果を向上させることができる。
According to such an invention, the air diffusion mechanism of the hollow fiber module includes a tubular body that is fixed at both ends to the upper fixing member and the lower fixing member and extends between the upper fixing member and the lower fixing member. Therefore, the tip portions at both ends of the tubular body do not come into contact with the hollow fiber membrane, and damage to the hollow fiber membrane can be suppressed.
In addition, since the air holes that can diffuse into the hollow fiber membrane are formed on the peripheral surface of the tubular body, horizontal air bubbles can flow near the air holes, and further, the air bubbles can flow upward due to buoyancy. Become. Therefore, the flow direction of the bubbles differs depending on where the bubbles come into contact with the hollow fiber membrane, and the hollow fiber membrane can be effectively shaken. The effect can be improved.
 従って、斯かる発明によれば中空糸膜の損傷を抑制しながら、且つ効果的なエアスクラビングによる中空糸膜の付着物除去効果や懸濁物等の付着抑制効果を向上させて膜分離における透過性能の低下を抑制できる。 Therefore, according to such an invention, while preventing damage to the hollow fiber membrane, and improving the effect of removing adhering matter from the hollow fiber membrane and the effect of suppressing adhesion of suspended matter by effective air scrubbing, the permeation in membrane separation is improved. A decrease in performance can be suppressed.
 また、前記中空糸膜の上下に、前記上部固定部材と下部固定部材に露出した膜端部から中空糸膜を透過した透過水が収容される上部集水及び部下集水部がそれぞれ設けられ、該上部集水及び部下集水部に収容された透過水を導出する導出機構が形成されている中空糸膜モジュールにおいて、前記のような散気機構を設けた場合には、エアスクラビングのための散気機構が下端側からの集水を邪魔することがないため、中空糸膜の上下両端側から透過水の集水を容易に行うことができ、より透過効率を高めることができる。
 また、同一長さの中空糸膜を使用した場合に、片端部側から集水する片端集水中空糸膜と両端部側から集水する両端集水中空糸膜を比較すると、膜面を透過した水が集水される端部へ到達するまでの最大移動距離は両端集水中空糸膜の方が短いので、中空糸内を集水端へ流れる透過水の通水抵抗は両端集水中空糸膜の方が小さくて済む。
 その結果、両端集水中空糸膜では、より小さい圧力で吸水を行えるためポンプ動力を低減できるというメリットもある。
Further, an upper water collection unit and a subordinate water collection unit are provided above and below the hollow fiber membrane, respectively, in which permeated water that has permeated the hollow fiber membrane from the membrane end portions exposed to the upper fixing member and the lower fixing member is accommodated. In the hollow fiber membrane module in which the derivation mechanism for deriving the permeated water stored in the upper water collection unit and the subordinate water collection unit is formed, when the aeration mechanism as described above is provided, for air scrubbing Since the air diffusion mechanism does not interfere with the water collection from the lower end side, the permeated water can be easily collected from the upper and lower end sides of the hollow fiber membrane, and the permeation efficiency can be further improved.
In addition, when hollow fiber membranes of the same length are used, a comparison is made between a single-end water collection hollow fiber membrane that collects water from one end side and a double-end water collection hollow fiber membrane that collects water from both end sides. The maximum travel distance until the collected water reaches the end where water is collected is shorter in the double-ended water collection hollow fiber membrane, so the permeate resistance of the permeate flowing through the hollow fiber to the water collection end is hollow at both ends. The thread membrane is smaller.
As a result, the both-end water collecting hollow fiber membrane has an advantage that the pump power can be reduced because water can be absorbed at a lower pressure.
 さらに、前記上部固定部材及び下部固定部材に両端部側を固定された支持部材を備え、該支持部材が前記管状体である場合には、管状体を中空糸膜の支持部材と兼ねることができ、中空糸膜を支持する部材を別途設ける必要がない。 Further, when the support member is provided with a support member fixed at both ends to the upper fixing member and the lower fixing member, and the support member is the tubular body, the tubular body can also serve as the support member of the hollow fiber membrane. There is no need to separately provide a member for supporting the hollow fiber membrane.
 また、前記中空糸膜モジュールに係る本発明において、前記上部固定部材及び下部固定部材に両端部側が固定された支持部材を備え、該支持部材が前記管状体であることが好ましい。 Further, in the present invention relating to the hollow fiber membrane module, it is preferable that a support member having both end sides fixed to the upper fixing member and the lower fixing member is provided, and the supporting member is the tubular body.
 また、膜分離方法に係る本発明は、上下方向に延在させた複数本の中空糸膜と、該中空糸膜の上下端部側をそれぞれ固定する上部固定部材及び下部固定部材と、前記中空糸膜に散気し得る散気機構とを備えた水中に浸漬して用いられる中空糸膜モジュールを用いた膜分離方法であって、前記散気機構が、前記上部固定部材及び前記下部固定部材に両端部側が固定されて前記上部固定部材及び前記下部固定部材の間に延設された管状体を備え、該管状体の周面に形成された散気孔から管内の気体を前記中空糸膜へ散気し、前記中空糸膜の上下端部が開口し、前記中空糸膜モジュールが、前記中空糸膜の開口した端部から中空糸膜を透過した透過水が収容される上部集水部及び下部集水部を備え、且つ該上部集水部及び下部集水部に収容された透過水を導出する導出機構を備えたことを特徴としている。 Further, the present invention related to the membrane separation method includes a plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and the hollow A membrane separation method using a hollow fiber membrane module that is used by immersing in water with an aeration mechanism capable of diffusing the yarn membrane, wherein the aeration mechanism includes the upper fixing member and the lower fixing member And a tubular body extending between the upper fixing member and the lower fixing member, and gas in the tube is supplied to the hollow fiber membrane from a diffused hole formed in a peripheral surface of the tubular body. The upper and lower ends of the hollow fiber membrane are opened, and the hollow fiber membrane module has an upper water collecting portion in which permeated water that has passed through the hollow fiber membrane is accommodated from the opened end of the hollow fiber membrane; A lower water collecting part was provided, and was accommodated in the upper water collecting part and the lower water collecting part. It is characterized by having a derivation mechanism for deriving a peroxide.
 また、水処理装置に係る本発明は、上下方向に延在させた複数本の中空糸膜と、該中空糸膜の上下端部側をそれぞれ固定する上部固定部材及び下部固定部材と、前記中空糸膜に散気し得る散気機構とを備えた中空糸膜モジュールが水中に浸漬されて膜分離が実施される水処理装置であって、前記散気機構が、前記上部固定部材及び前記下部固定部材に両端部側が固定されて前記上部固定部材及び前記下部固定部材の間に延設された管状体を備え、該管状体の周面に管内の気体を前記中空糸膜へ散気可能な散気孔が形成されている中空糸膜モジュールが用いられ、前記中空糸膜の上下端部が開口し、前記中空糸膜モジュールが、前記中空糸膜の開口した端部から中空糸膜を透過した透過水が収容される上部集水部及び下部集水部を備え、且つ該上部集水部及び下部集水部に収容された透過水を導出する導出機構を備えたことを特徴としている。 Further, the present invention related to the water treatment apparatus includes a plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and the hollow A water treatment apparatus in which a hollow fiber membrane module having an air diffusion mechanism capable of air diffusion is immersed in water to perform membrane separation, wherein the air diffusion mechanism includes the upper fixing member and the lower portion A tubular member having both ends fixed to a fixing member and extending between the upper fixing member and the lower fixing member is provided, and gas in the tube can be diffused to the hollow fiber membrane on the peripheral surface of the tubular body A hollow fiber membrane module in which air diffusion holes are formed is used, the upper and lower ends of the hollow fiber membrane are opened, and the hollow fiber membrane module is transmitted through the hollow fiber membrane from the opened end of the hollow fiber membrane. An upper water collecting portion and a lower water collecting portion in which permeated water is accommodated; and It is characterized by having a derivation mechanism for deriving an upper water collecting portions and permeated water contained in the lower water collecting unit.
 さらに、本発明に係る中空糸膜モジュールは、上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを備え、被処理水に浸漬させて該被処理水の膜分離を実施させるべく中空糸膜の外側から内側へ透過される透過水を上下両方から前記上部通水室及び前記下部通水室を介して集水するように形成され、複数が並列するように配置されて用いられる中空糸膜モジュールであって、
 前記上部通水室を覆い且つ隣接するもの同士互いに連結する上部連結部材と、前記下部通水室及び前記通気室を覆い且つ隣接するもの同士互いに連結する下部連結部材とをさらに備え、前記上部連結部材及び前記下部連結部材同士がそれぞれ互いに連結した状態では、前記上部通水室同士、前記下部通水室同士及び前記通気室同士が、それぞれ互いに連通するように形成されていることを特徴とする。
Further, the hollow fiber membrane module according to the present invention includes a plurality of hollow fiber membranes extending in the vertical direction, and an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane. A lower water passage formed below the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and a diffuser hole formed so as to generate bubbles on the lower end side of the hollow fiber membrane, A ventilation chamber that is formed below the hollow fiber membrane and supplies gas to the diffuser holes, and is permeated from the outside to the inside of the hollow fiber membrane so as to be immersed in the water to be treated and to perform membrane separation of the water to be treated. A hollow fiber membrane module that is formed to collect permeated water from both above and below via the upper water passage and the lower water passage, and is used in a plurality arranged in parallel,
An upper connecting member that covers the upper water flow chamber and connects the adjacent ones to each other; and a lower connecting member that covers the lower water flow chamber and the ventilation chamber and connects the adjacent ones to each other, When the member and the lower connecting member are connected to each other, the upper water passing chambers, the lower water passing chambers, and the venting chambers are formed to communicate with each other. .
 上記構成からなる中空糸膜モジュールによれば、中空糸膜を備えた中空糸膜モジュールの複数を上部連結部材及び下部連結部材でそれぞれ互いに連結させることができる。従って、複数の中空糸膜モジュールを比較的高密度で配置することができる。
 しかも、中空糸膜モジュールが連結した状態で、前記上部通水室、前記下部通水室及び前記通気室が、それぞれ互いに連通する。従って、モジュールに備えられた前記上部通水室及び前記下部通水室を介し複数のモジュールから透過水を集水でき、且つ、モジュールに備えられた前記通気室を介し複数のモジュールの前記散気孔へ気体を供給できる。よって、透過水を集水するための手段又は気体を供給するための手段を別途設ける必要性が抑えられ、該手段を設けない分、モジュールをさらに設置することができる。
 このように、前記中空糸膜モジュールは、中空糸膜を比較的高密度で配置しつつ膜分離を実施することができる。
According to the hollow fiber membrane module having the above-described configuration, a plurality of hollow fiber membrane modules including hollow fiber membranes can be connected to each other by the upper connecting member and the lower connecting member. Therefore, a plurality of hollow fiber membrane modules can be arranged at a relatively high density.
In addition, the upper water passage, the lower water passage, and the vent chamber communicate with each other in a state where the hollow fiber membrane modules are connected. Accordingly, the permeated water can be collected from the plurality of modules through the upper water passage and the lower water passage provided in the module, and the air diffuser holes of the plurality of modules through the ventilation chamber provided in the module. Can supply gas. Therefore, it is possible to suppress the necessity of separately providing a means for collecting permeate water or a means for supplying gas, and a module can be further installed as much as the means is not provided.
Thus, the hollow fiber membrane module can perform membrane separation while arranging the hollow fiber membranes at a relatively high density.
 また、本発明に係る水処理装置は、上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを有する中空糸膜モジュールが備えられ、該中空糸膜モジュールを被処理水に浸漬させて被処理水の膜分離を実施させるべく中空糸膜の外側から内側へ透過される透過水を中空糸膜モジュールの上下両方から前記上部通水室及び前記下部通水室を介して集水するように構成され、複数の中空糸膜モジュールが並列するように配置されている水処理装置であって、前記中空糸膜モジュールは、前記上部通水室を覆い且つ隣接するもの同士互いに連結する上部連結部材と、前記下部通水室及び前記通気室を覆い且つ隣接するもの同士互いに連結する下部連結部材とをさらに備え、前記上部連結部材及び前記下部連結部材同士がそれぞれ互いに連結した状態では、前記上部通水室同士、前記下部通水室同士及び前記通気室同士が、それぞれ互いに連通するように形成されていることを特徴とする。 Further, the water treatment apparatus according to the present invention includes a plurality of hollow fiber membranes extending in the vertical direction, and an upper water passage chamber formed above the hollow fiber membranes and communicated with a hollow region inside the hollow fiber membranes. A lower water passage formed below the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, a diffuser hole formed to generate bubbles on the lower end side of the hollow fiber membrane, A hollow fiber membrane module that is formed below the hollow fiber membrane and has a ventilation chamber that supplies gas to the air diffusion holes is provided, and the membrane separation of the water to be treated is performed by immersing the hollow fiber membrane module in the water to be treated. A plurality of hollow fibers configured to collect permeated water permeated from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage from both the upper and lower sides of the hollow fiber membrane module. Water treatment equipment with membrane modules arranged in parallel The hollow fiber membrane module covers the upper water passing chamber and connects the adjacent ones to each other, and the upper connecting member that connects the adjacent ones to the lower water passing chamber and the venting chamber. A lower connecting member, and in a state where the upper connecting member and the lower connecting member are connected to each other, the upper water passing chambers, the lower water passing chambers, and the venting chambers communicate with each other. It is formed as follows.
 さらに、本発明に係る水処理方法は、上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを備えた中空糸膜モジュールの複数を並列するように配置して被処理水に浸漬させ、中空糸膜の外側から内側へ透過される透過水を中空糸膜モジュールの上下両方から前記上部通水室及び前記下部通水室を介して集水し、被処理水の膜分離を実施する水処理方法であって、前記上部通水室を覆い且つ隣接するもの同士互いに連結する上部連結部材と、前記下部通水室及び前記通気室を覆い且つ隣接するもの同士互いに連結する下部連結部材とをさらに備えた前記中空糸膜モジュールを、前記上部連結部材及び前記下部連結部材同士でそれぞれ互いに連結し、前記上部通水室同士、前記下部通水室同士及び前記通気室同士をそれぞれ互いに連通させた状態で膜分離を実施することを特徴とする。 Furthermore, the water treatment method according to the present invention includes a plurality of hollow fiber membranes extending in the vertical direction, and an upper water flow chamber formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane. A lower water passage formed below the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, a diffuser hole formed to generate bubbles on the lower end side of the hollow fiber membrane, A plurality of hollow fiber membrane modules formed below the hollow fiber membrane and provided with a ventilation chamber for supplying gas to the air diffusion holes are arranged in parallel and immersed in the water to be treated, from the outside to the inside of the hollow fiber membrane. A water treatment method for collecting permeated water permeated into the hollow fiber membrane module from both the upper and lower sides of the hollow fiber membrane module through the upper water passage and the lower water passage, and performing membrane separation of water to be treated, Upper connecting member that covers the upper water flow chamber and connects adjacent ones to each other The hollow fiber membrane module further comprising a lower connecting member that covers the lower water passage and the vent chamber and that connects adjacent ones to each other is connected to each other by the upper connecting member and the lower connecting member. The membrane separation is performed in a state in which the upper water flow chambers, the lower water flow chambers, and the ventilation chambers are in communication with each other.
 以上のように、本発明によれば、効率良く透過水を得ることができる。 As described above, according to the present invention, permeate can be obtained efficiently.
(a)本発明の中空糸膜モジュールの第1実施形態の構成を示す縦方向断面図。(b)破線X部拡大図。(c)破線Y部拡大図。(c’)破線Y部の変更例。(A) The longitudinal direction sectional view showing the composition of a 1st embodiment of the hollow fiber membrane module of the present invention. (B) Enlarged view of broken line X part. (C) Broken line Y part enlarged view. (C ′) A modification example of the broken line Y part. 同実施形態における、上部固定部材の固定部の上面図(図1のA-A線断面図)。FIG. 2 is a top view of the fixing portion of the upper fixing member in the same embodiment (a cross-sectional view taken along line AA in FIG. 1). 同実施形態における、下部固定部材の固定部の上面図(図1のB-B線断面図)。FIG. 3 is a top view of the fixing portion of the lower fixing member in the same embodiment (a cross-sectional view taken along line BB in FIG. 1). 同実施形態における、下部固定部材の固定部の下面図(図1のC-C線断面図)A bottom view of the fixing portion of the lower fixing member in the same embodiment (cross-sectional view taken along line CC in FIG. 1) 水処理方法を説明するための装置構成概要図。The apparatus structure schematic diagram for demonstrating the water treatment method. 本発明の中空糸膜モジュールの第2―1実施形態の構成を示す縦方向断面図。FIG. 3 is a longitudinal sectional view showing a configuration of a second to first embodiment of a hollow fiber membrane module of the present invention. 同実施形態における、上部固定部材の固定部の上面図(図6のA-A線断面図)。FIG. 7 is a top view of the fixing portion of the upper fixing member in the same embodiment (a cross-sectional view taken along line AA in FIG. 6). 同実施形態における、下部固定部材の固定部の上面図(図6のB-B線断面図)。FIG. 7 is a top view of the fixing portion of the lower fixing member in the same embodiment (sectional view taken along line BB in FIG. 6). 同実施形態において中空体を変更した態様を示す縦方向断面図(A)ならびに横方向断面図(B)。The longitudinal direction sectional view (A) and the lateral direction sectional view (B) showing a mode in which the hollow body is changed in the same embodiment. 同実施形態において中空体を変更した態様を示す縦方向断面図(A)ならびに横方向断面図(B)。The longitudinal direction sectional view (A) and the lateral direction sectional view (B) showing a mode in which the hollow body is changed in the same embodiment. 第2-2実施形態の中空糸膜モジュールを示す縦方向断面図(A)、横方向断面図(B)、及び、一変更例(A’:縦方向断面図)。FIG. 6 is a longitudinal sectional view (A), a transverse sectional view (B), and a modified example (A ′: longitudinal sectional view) showing a hollow fiber membrane module according to a 2-2 embodiment. 第2-3実施形態の中空糸膜モジュールを示す縦方向断面図(A)、横方向断面図(B)、及び、一変更例(A’:縦方向断面図、B’:横方向断面図)。Longitudinal sectional view (A), lateral sectional view (B), and one modified example (A ′: longitudinal sectional view, B ′: lateral sectional view) showing the hollow fiber membrane module of the 2-3 embodiment ). 水処理方法を説明するための装置構成概要図。The apparatus structure schematic diagram for demonstrating the water treatment method. 本発明の中空糸膜モジュールの第3実施形態の構成を示す一部断面図。The partial cross section figure which shows the structure of 3rd Embodiment of the hollow fiber membrane module of this invention. 図14における中空糸膜モジュールの上面を示す平面図。The top view which shows the upper surface of the hollow fiber membrane module in FIG. 図14における上部固定部材の取り付け構造を示す断面図。Sectional drawing which shows the attachment structure of the upper fixing member in FIG. (a)透過水出口付近の構造の一例を示す断面図、(b)透過水出口付近の構造の他の一例を示す断面図。(A) Sectional drawing which shows an example of the structure of the vicinity of a permeated water outlet, (b) Sectional drawing which shows another example of the structure of the vicinity of a permeated water outlet. 図14における下部固定部材の取り付け構造を示す断面図。Sectional drawing which shows the attachment structure of the lower fixing member in FIG. 図14における管状体の取り付け構造を示す断面図。Sectional drawing which shows the attachment structure of the tubular body in FIG. 気泡の散気状態を示す平面図。The top view which shows the aeration state of a bubble. 管状体の取り付け構造の他の一例を示す断面図。Sectional drawing which shows another example of the attachment structure of a tubular body. 管状体の取り付け構造の他の一例を示す断面図。Sectional drawing which shows another example of the attachment structure of a tubular body. 本発明の水処理装置の一実施形態を示す構成説明図。Structure explanatory drawing which shows one Embodiment of the water treatment apparatus of this invention. 第4-1実施形態の中空糸膜モジュールの縦断面図。The longitudinal cross-sectional view of the hollow fiber membrane module of 4th-1 embodiment. 第4-1実施形態の中空糸膜モジュールの縦断面図における一部を拡大した図。The figure which expanded a part in the longitudinal cross-sectional view of the hollow fiber membrane module of 4th-1 embodiment. 第4-1実施形態の中空糸膜モジュールの横断面図。The cross-sectional view of the hollow fiber membrane module of 4th-1 embodiment. 第4-2実施形態の中空糸膜モジュールの横断面図。The cross-sectional view of the hollow fiber membrane module of 4-2 embodiment. 第4-3実施形態の中空糸膜モジュールの縦断面図。The longitudinal cross-sectional view of the hollow fiber membrane module of 4th-3 embodiment. 第4-3実施形態の中空糸膜モジュールの横断面図。The cross-sectional view of the hollow fiber membrane module of the 4-3 embodiment. 水処理装置の実施形態の概要を表した概要図。The schematic diagram showing the outline | summary of embodiment of a water treatment apparatus. 水処理装置の実施形態の平面概要図。The plane schematic diagram of an embodiment of a water treatment equipment. 水処理装置の参考形態の斜視図。The perspective view of the reference form of a water treatment apparatus.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1実施形態
 まず、第1実施形態の中空糸膜モジュール及び水処理方法について説明する。
1st Embodiment First, the hollow fiber membrane module and water treatment method of 1st Embodiment are demonstrated.
 ところで、従来、懸濁物質等を含有する被処理水に、中空糸膜を上下方向に延在させた起立姿勢にて浸漬させて該中空糸膜内部を吸引することにより被処理水の膜分離を実施して透過水を得る外圧型の中空糸膜モジュールが用いられている。 By the way, conventionally, membrane separation of water to be treated is performed by immersing the hollow fiber membrane in a standing posture in which the hollow fiber membrane extends in the vertical direction and sucking the inside of the hollow fiber membrane into the water to be treated containing suspended substances. An external pressure type hollow fiber membrane module is used to obtain permeated water by performing the above.
 そして、この従来の中空糸膜モジュールは、被処理水中の浮遊性固形物や粘着性有機化合物などによって中空糸膜の透過性能を低下させやすく、該透過性能の低下は、膜分離のための動力負荷増大につながるため、従来、この透過性能の低下を抑制させる方法が広く検討されている。 And this conventional hollow fiber membrane module is easy to reduce the permeation performance of the hollow fiber membrane due to floating solids or adhesive organic compounds in the water to be treated. Since this leads to an increase in load, conventionally, a method for suppressing the decrease in transmission performance has been widely studied.
 例えば、中空糸膜を上下方向に延在させ膜分離を実施するタイプの中空糸膜モジュールでは、この中空糸膜の下端部側で散気を実施することによって中空糸膜を振動させて表面の付着物を除去するエアスクラビングと呼ばれる方法が透過性能低下の防止に有効であることが知られている。 For example, in a hollow fiber membrane module of a type in which the hollow fiber membrane is extended in the vertical direction to perform membrane separation, the hollow fiber membrane is vibrated by performing aeration on the lower end side of the hollow fiber membrane to It is known that a method called air scrubbing that removes deposits is effective in preventing deterioration in permeation performance.
 ところで、この種の中空糸膜モジュールとしては、従来、中空糸膜の上端側のみから透過水を吸引するタイプのものが広く用いられてきたが、特開2006-305443号公報(特許文献1)に示すように、近年、中空糸膜の上下両方から透過水を吸引するタイプの中空糸膜モジュールの使用が検討されるようになってきている。
 中空糸膜の端部から吸引して該中空糸膜の外側から内側に水を透過させる場合には、この吸引による負圧が作用しやすい中空糸膜の端部近傍においては単位時間に多量の水が膜を透過することになるがこの端部から離れるにつれて中空糸膜の内外の圧力差が減少するために膜を透過する水量が減少することになる。
 このようなことから片側から集水するタイプでは中空糸膜全体を膜分離に有効に作用させることが難しいが、上下両方から吸引(集水)するタイプの中空糸膜モジュールは、中空糸膜全体を有効活用させやすくコンパクトで効率の良い膜分離を実施させ得る。
By the way, as this type of hollow fiber membrane module, a type of sucking permeate from only the upper end side of the hollow fiber membrane has been widely used. However, JP 2006-305443 A (Patent Document 1). In recent years, the use of a hollow fiber membrane module of the type that sucks permeate from both the upper and lower sides of the hollow fiber membrane has been studied.
When sucking from the end of the hollow fiber membrane and allowing water to permeate from the outside to the inside of the hollow fiber membrane, a large amount of the negative pressure due to this suction tends to act near the end of the hollow fiber membrane per unit time. Although water will permeate the membrane, the pressure difference between the inside and outside of the hollow fiber membrane decreases as the distance from the end decreases, so the amount of water permeating the membrane decreases.
For this reason, it is difficult for the type that collects water from one side to effectively act on the entire hollow fiber membrane for membrane separation, but the hollow fiber membrane module that sucks (collects water) from both the top and bottom It is easy to make effective use of the membrane, and it is possible to carry out compact and efficient membrane separation.
 なお、特許文献1に記載されている中空糸膜モジュールは、中空糸膜の延在する上下方向に対して直交する横方向から中空糸膜の束に散気管を挿入し、その先端の散気孔から気泡を発生させて中空糸膜表面の付着物除去を行うべく構成されている。
 しかし、このような散気管で散気を行うと散気孔の前方においてこの散気管に近接する箇所の中空糸膜は、散気管の先端に設けられた散気孔からの気泡の放出によって激しく振動されることになり、この散気管の先端に衝突して、例えば、散気管の先端のエッジ部などによって損傷されるおそれを有する。
 そして、中空糸膜に損傷が生じると透過水に被処理水が混入して透過水の水質低下を招いてしまうことになる。
The hollow fiber membrane module described in Patent Document 1 has an air diffuser inserted into a bundle of hollow fiber membranes from the lateral direction perpendicular to the vertical direction in which the hollow fiber membrane extends, and the air diffuser at the tip thereof. From this, bubbles are generated to remove deposits on the surface of the hollow fiber membrane.
However, when air is diffused with such a diffuser, the hollow fiber membrane in the vicinity of the diffuser in front of the diffuser is vibrated vigorously by the release of bubbles from the diffuser provided at the tip of the diffuser. Therefore, it may collide with the tip of the air diffuser and be damaged by, for example, an edge portion of the air diffuser.
And when a hollow fiber membrane is damaged, to-be-processed water will mix in permeated water and will cause the water quality fall of permeated water.
 このようなことから、従来の中空糸膜モジュールや従来の中空糸膜モジュールを用いた水処理方法においては、水質低下を抑制しつつ効率の良い膜分離を実施させることが困難であるという問題を有している。 For this reason, the conventional hollow fiber membrane module and the water treatment method using the conventional hollow fiber membrane module have a problem that it is difficult to perform efficient membrane separation while suppressing deterioration of water quality. Have.
 第1実施形態は、上下両方からの集水が可能とされつつも中空糸膜が損傷されるおそれの低い中空糸膜モジュールの提供を図り、ひいては水質低下を抑制しつつ効率の良い膜分離を実施し得る水処理方法の提供を図ることを課題としている。 The first embodiment provides a hollow fiber membrane module that is capable of collecting water from both the upper and lower sides but has a low risk of damaging the hollow fiber membrane, and as a result, performs efficient membrane separation while suppressing water quality deterioration. It aims at providing the water treatment method which can be implemented.
 図1の(a)は、本発明の実施形態に係る中空糸膜モジュールを使用時と同じ起立状態にさせた様子を示す縦断面図であり、(b)は、(a)の破線Xで囲まれた領域を拡大した図であり(c)は(a)の破線Yで囲まれた領域を拡大した図である。
 また、図2は図1のA-A線における中空糸膜モジュールの断面(横断面)を示す断面図で、図3は図1のB-B線における中空糸膜モジュールの横断面を示した図である。
 さらに、図4は図1のC-C線における中空糸膜モジュールの横断面を示した図である。
(A) of FIG. 1 is a longitudinal cross-sectional view which shows a mode that the hollow fiber membrane module which concerns on embodiment of this invention was made to stand up like the time of use, (b) is the broken line X of (a). (C) is an enlarged view of a region surrounded by a broken line Y in (a).
2 is a cross-sectional view showing a cross section (cross section) of the hollow fiber membrane module taken along line AA in FIG. 1, and FIG. 3 is a cross section of the hollow fiber membrane module taken along line BB in FIG. FIG.
FIG. 4 is a cross-sectional view of the hollow fiber membrane module taken along the line CC of FIG.
 第1実施形態の中空糸膜モジュール10は、この図にも示されているように縦長円筒状の外観を有しており、その上下方向中間部に複数本の中空糸膜11が並列状態で露出されている。
 第1実施形態の中空糸膜モジュール10は、複数本の中空糸膜11が引き揃えられた状態で上下方向に配されており、この中空糸膜11の両端部の内の一端部を上方側で固定する固定部材(以下「上部固定部材20」ともいう)と、他端部を下方側で固定する固定部材(以下「下部固定部材30」ともいう)の2つの固定部材が用いられて前記複数本の中空糸膜11が固定されている。
 そして、第1実施形態の中空糸膜モジュール10は、中空糸膜11の下端部側において気泡を発生させる散気機構をさらに有している。
The hollow fiber membrane module 10 of the first embodiment has an appearance of a vertically long cylindrical shape as shown in this figure, and a plurality of hollow fiber membranes 11 are arranged in parallel in the middle in the vertical direction. Exposed.
The hollow fiber membrane module 10 of the first embodiment is arranged in a vertical direction in a state where a plurality of hollow fiber membranes 11 are aligned, and one end portion of both ends of the hollow fiber membrane 11 is set upward. The fixing member (hereinafter also referred to as “upper fixing member 20”) and the fixing member (hereinafter also referred to as “lower fixing member 30”) for fixing the other end on the lower side are used. A plurality of hollow fiber membranes 11 are fixed.
And the hollow fiber membrane module 10 of 1st Embodiment further has an aeration mechanism which generates a bubble in the lower end part side of the hollow fiber membrane 11. FIG.
 また、第1実施形態における中空糸膜モジュール10は、中空糸膜11が配されている領域の外寄りの位置において上下方向に延在し、前記上部固定部材20と前記下部固定部材30とに両端部を固定させてこれらの間に所定の間隔を保持させて支持する杆状の支持部材Sを有している。
 この中空糸膜11が配されている領域の左右に一対設けられた支持部材Sは、後述するように管状であり上下の集水室を連通させた状態で中空糸膜モジュール10に備えられている。
Further, the hollow fiber membrane module 10 in the first embodiment extends in the vertical direction at a position outside the region where the hollow fiber membrane 11 is disposed, and is connected to the upper fixing member 20 and the lower fixing member 30. It has a hook-like support member S that fixes both ends and supports them with a predetermined distance therebetween.
A pair of support members S provided on the left and right sides of the area where the hollow fiber membrane 11 is disposed are tubular and are provided in the hollow fiber membrane module 10 in a state where the upper and lower water collecting chambers are communicated with each other. Yes.
 この上部固定部材20は、その下方側において略水平に配された板状体21(以下「上部板状体21」ともいう)を有し、該板状体21はポリマー組成物によって厚みのある円板状に形成されている。
 また、上部固定部材20には、前記板状体21を上側から覆うキャップ材22が備えられ、該キャップ材22は、前記板状体21の輪郭形状と略同一形状を有する天面部22cと該天面部22cの外縁から垂下する周壁部22wとを有している。
 そして、前記キャップ材22は、その天面部22cに開口部22dを有しており、該天面部22cを前記板状体21の上面21aから上方に一定距離だけ離間させるとともに前記周壁部22wの内周面を前記板状体21の外周面21wに密着させて前記板状体21との間に前記開口部22dを通じてのみ外部に連通する空間部20aを形成させている。
The upper fixing member 20 has a plate-like body 21 (hereinafter also referred to as “upper plate-like body 21”) arranged substantially horizontally on the lower side thereof, and the plate-like body 21 is thick due to the polymer composition. It is formed in a disk shape.
The upper fixing member 20 is provided with a cap material 22 that covers the plate-like body 21 from above, and the cap material 22 includes a top surface portion 22c having substantially the same shape as the contour shape of the plate-like body 21 and the top surface portion 22c. And a peripheral wall portion 22w depending from the outer edge of the top surface portion 22c.
The cap member 22 has an opening 22d in the top surface portion 22c, and the top surface portion 22c is spaced apart from the upper surface 21a of the plate-like body 21 by a certain distance and is formed inside the peripheral wall portion 22w. A space 20 a that communicates with the outside only through the opening 22 d is formed between the plate 21 and the peripheral surface 21 w of the plate 21 so as to be in close contact with the plate 21.
 前記板状体21は、前記中空糸膜11の上端部を前記ポリマー組成物によって埋設させて固定させており、前記上部固定部材20において中空糸膜11を固定する固定部を構成すべく備えられたものである。
 より具体的には、前記板状体21は、全ての中空糸膜11を一纏りにさせた状態でこの中空糸膜11が纏められたものの太さよりも一回り大きな内径を有する円筒状の容器に前記中空糸膜11の端部を挿入し、該容器内に硬化性の液状ポリマーを充填固化させて得られた円柱状の硬化体を前記中空糸膜11の末端よりも内側の部分で中空糸膜11の延在する方向と略直交する方向に中空糸膜11ごと切断することによって円板状に形成されたものである。
The plate-like body 21 has an upper end portion of the hollow fiber membrane 11 embedded and fixed by the polymer composition, and is provided to constitute a fixing portion for fixing the hollow fiber membrane 11 in the upper fixing member 20. It is a thing.
More specifically, the plate-like body 21 has a cylindrical shape having an inner diameter that is slightly larger than the thickness of the hollow fiber membranes 11 in a state where all the hollow fiber membranes 11 are bundled together. A cylindrical cured body obtained by inserting an end of the hollow fiber membrane 11 into a container and filling and solidifying the curable liquid polymer in the container is formed at a portion inside the end of the hollow fiber membrane 11. The hollow fiber membrane 11 is formed into a disk shape by cutting the entire hollow fiber membrane 11 in a direction substantially orthogonal to the extending direction of the hollow fiber membrane 11.
 したがって、前記板状体21には、前記中空糸膜11が、前記板状体21を下方から上方に貫通し板状体21の上面21aにおいて開口する状態で前記ポリマー組成物に埋設されて固定されており、この中空糸膜11が固定されている領域においては、中空糸膜11の間にポリマー組成物が充填されてなるポリマー部21rを有している。
 この板状体21の上面21aを底面としその上側がキャップ材22で覆われた前記空間部20aは、中空糸膜11の外側から内側に透過した透過水が集水される集水室(以下「上部集水室20a」ともいう)として機能させるべく上部固定部材20に備えられている。
 なお、前記管状の支持部材Sも、この板状体21にその上端部が埋設されて固定されており、前記板状体21の上面21aにおいて開口した状態で固定されている。
Therefore, the hollow fiber membrane 11 is fixed to the plate-like body 21 by being embedded in the polymer composition so as to penetrate the plate-like body 21 upward from below and open at the upper surface 21a of the plate-like body 21. In the region where the hollow fiber membrane 11 is fixed, the hollow fiber membrane 11 has a polymer part 21r filled with a polymer composition.
The space portion 20a having the upper surface 21a of the plate-like body 21 as the bottom surface and the upper side thereof covered with the cap material 22 is a water collection chamber (hereinafter referred to as a collection chamber) in which permeated water permeated from the outside to the inside of the hollow fiber membrane 11 is collected. The upper fixing member 20 is provided to function as an “upper water collecting chamber 20a”.
The tubular support member S is also fixed with its upper end embedded in the plate-like body 21 and opened on the upper surface 21 a of the plate-like body 21.
 上部固定部材20が上記のように構成されているのに対して、前記下部固定部材30は、前記上部固定部材20と同様の板状体31を有する点において共通している。
 すなわち、下部固定部材30において中空糸膜11を固定する固定部を構成している板状体31(以下「下部板状体31」ともいう)は、上部固定部材20に備えられている板状体21(以下「上部板状体21」ともいう)と同様に、硬化性の液状ポリマーを硬化させて形成されており、中空糸膜11及び支持部材Sの下端部が当該下部板状体31の上面側から下面側に貫通し、該下面側において開口させた状態で下部固定部材30に備えられている。
Whereas the upper fixing member 20 is configured as described above, the lower fixing member 30 is common in that it has a plate-like body 31 similar to the upper fixing member 20.
That is, the plate-like body 31 (hereinafter also referred to as “lower plate-like body 31”) constituting the fixing portion for fixing the hollow fiber membrane 11 in the lower fixing member 30 is a plate-like shape provided in the upper fixing member 20. Similarly to the body 21 (hereinafter also referred to as “upper plate-like body 21”), it is formed by curing a curable liquid polymer, and the lower end portion of the hollow fiber membrane 11 and the support member S is the lower plate-like body 31. The lower fixing member 30 is provided so as to penetrate from the upper surface side to the lower surface side and open on the lower surface side.
 ただし、この下部板状体31には、その厚み方向(上下方向)に貫通する貫通孔が1以上(図では4箇所)設けられている点において相違しており、該貫通孔は、下部板状体31の上面31aに開口し、該開口から上方に向けて気泡を放出させるための散気孔AOとして備えられたものである。
 また、下部板状体31は、フランジ状の構造を有する張出し部31fが厚み方向上方に設けられている点においても上部板状体21と相違している。
 この張出し部31fは、上面側が外側に向かって緩やかに下がるテーパー面となっており、下面側は、下部板状体31の下方側の周壁部31wに対して略直角に外側向けて張り出した構造となって下部板状体31に設けられている。
However, the lower plate-like body 31 is different in that one or more through holes (four positions in the figure) are provided through the lower plate 31 in the thickness direction (vertical direction). It is provided as a diffused hole AO that opens to the upper surface 31a of the body 31 and discharges bubbles upward from the opening.
Further, the lower plate-like body 31 is different from the upper plate-like body 21 in that an overhanging portion 31f having a flange-like structure is provided on the upper side in the thickness direction.
The projecting portion 31f has a tapered surface in which the upper surface side is gently lowered toward the outside, and the lower surface side is projected outward at a substantially right angle to the peripheral wall portion 31w on the lower side of the lower plate-like body 31. And is provided on the lower plate-like body 31.
 また、下部固定部材30には、上部固定部材20のキャップ材22に代えて、前記上部集水室20aと同様の集水室30aをこの下部固定部材30に形成させるとともにこの下部固定部材30の側の集水室30a(以下「下部集水室30a」ともいう)の下方に前記散気孔AOから放出させる気体を貯留する気体貯留室30bを画成するための筒状部材33が備えられている点においても上部固定部材20と相違している。 Further, in the lower fixing member 30, instead of the cap material 22 of the upper fixing member 20, a water collecting chamber 30a similar to the upper water collecting chamber 20a is formed in the lower fixing member 30, and the lower fixing member 30 A cylindrical member 33 is provided below the side water collection chamber 30a (hereinafter also referred to as “lower water collection chamber 30a”) to define a gas storage chamber 30b that stores the gas released from the air diffuser AO. This is also different from the upper fixing member 20.
 該筒状部材33には、前記下部板状体31の下部側の周壁部31wの直径と略同じ内径を有する筒状の周側壁33wと該周側壁33wの内部を上下に区分する仕切り壁33pとが備えられており、該仕切り壁33pには、前記下部板状体31に前記筒状部材33を下方から外嵌した場合に下部板状体31の貫通孔(散気孔AO)が配されている位置と同じ位置になる箇所において上方に向けて突出し且つ先端が前記貫通孔よりも小径で基端が前記貫通孔よりも大径な突出部33nが備えられている。 The cylindrical member 33 includes a cylindrical peripheral side wall 33w having an inner diameter substantially the same as the diameter of the lower peripheral wall portion 31w of the lower plate-shaped body 31, and a partition wall 33p that vertically divides the interior of the peripheral side wall 33w. The partition wall 33p is provided with a through-hole (aeration hole AO) of the lower plate 31 when the tubular member 33 is externally fitted to the lower plate 31 from below. A projecting portion 33n that protrudes upward at a position that is the same position as that of the projecting position and that has a tip smaller in diameter than the through hole and a base end larger in diameter than the through hole is provided.
 該筒状部材33は、前記下部板状体31の散気孔AOに、該散気孔AOに相当する位置に設けられた前記突出部33nを下方から当接させて前記下部板状体31に前記筒状部材33を外嵌させることによって前記仕切り壁33pを前記下部板状体31の下面31bから離間させて前記周側壁33wで包囲された空間部を形成させ、該空間部を下部側の集水室30aとし、且つ前記仕切り壁33pの下方において前記仕切り壁33pを天井壁とし、前記周側壁33wによって包囲された空間を前記気体貯留室30bとして画成するものである。 The tubular member 33 is brought into contact with the air diffuser hole AO of the lower plate-shaped body 31 from the lower side with the projecting portion 33n provided at a position corresponding to the air diffused hole AO. By fitting the tubular member 33 outwardly, the partition wall 33p is separated from the lower surface 31b of the lower plate-shaped body 31 to form a space portion surrounded by the peripheral side wall 33w, and the space portion is gathered on the lower side. A water chamber 30a is formed below the partition wall 33p, the partition wall 33p is a ceiling wall, and a space surrounded by the peripheral side wall 33w is defined as the gas storage chamber 30b.
 なお、前記突出部33nには上下に貫通する貫通孔33hが形成されており、該貫通孔33hは、一端がこの突出部の上端において開口し、他端が仕切り壁33pの下面において開口されている。
 すなわち、第1実施形態における前記下部固定部材30は、前記突出部33nの先端部を前記下部板状体31の散気孔AOに下方から挿入させた状態で前記筒状部材33を下部板状体31に外嵌させた際に、前記突出部33nに穿設された貫通孔33hと前記下部板状体31の散気孔AOとによって前記気体貯留室30bから前記下部集水室30aを通過して当該下部固定部材30における固定部を形成している下部板状体31の上面側にいたる気泡通路33xが形成されるように構成されている。
The projecting portion 33n is formed with a through hole 33h penetrating vertically. One end of the through hole 33h opens at the upper end of the projecting portion, and the other end opens at the lower surface of the partition wall 33p. Yes.
That is, the lower fixing member 30 according to the first embodiment is configured such that the cylindrical member 33 is inserted into the lower plate-like body in a state where the distal end portion of the projecting portion 33n is inserted into the air diffusion hole AO of the lower plate-like body 31 from below. When the outer fitting portion 31 is fitted, the through hole 33h formed in the projecting portion 33n and the diffuser hole AO of the lower plate-like body 31 pass through the lower water collection chamber 30a from the gas storage chamber 30b. A bubble passage 33x extending to the upper surface side of the lower plate-like body 31 forming the fixing portion in the lower fixing member 30 is formed.
 この貫通孔33hについては、その開口面積を小さくして、貫通孔33hを通過する空気の流速を高めることによって、勢い良く気泡を上方に向けて放出させることができ高い付着物除去効果を得ることができる。
 一方で、貫通孔33hの開口面積を小さくすると、散気を停止させている間等において貫通孔33hの目詰まりを発生させるおそれがある。
 このような点において、貫通孔33hは、その一個あたりの開口面積が0.5~5cm2となるように形成されていることが好ましく、具体的には、貫通孔33hの開口形状が円形の場合は、直径8~25mmとなるように形成されていることが好ましい。
With respect to the through hole 33h, by reducing the opening area and increasing the flow velocity of the air passing through the through hole 33h, it is possible to release the bubbles upwards vigorously and obtain a high adhering matter removing effect. Can do.
On the other hand, if the opening area of the through-hole 33h is reduced, the through-hole 33h may be clogged while the aeration is stopped.
In this respect, the through hole 33h is preferably formed so that the opening area per one of the through holes 33h is 0.5 to 5 cm 2. Specifically, the through hole 33h has a circular opening shape. In this case, it is preferable that the diameter is 8 to 25 mm.
 この気泡通路33xの形成方法に関しては、図1(C’)に示す変更例も採用が可能である。
 すなわち、上記においては下部板状体31の上面側から下面側まで均一な内径を有する散気孔AOを例示していたが、この変更例においては、下面側の一部を上面側に比べて径大なものとしている。そして、この変更例においては、この下方の大径部LDとその上部の小径部SDとの間に段差部を形成させ、該段差部の下面31b1に突出部の先端を当接させている。
 また、この変更例においては、突出部33n’も、前記散気孔AO’の大径部LDの内径よりも僅かに小さく、且つ前記小径部SDの内径よりも径大な外径を有する円柱状に形成されている点において、上記例示の上向きに細る形状の突出部33nと相違させている。
With respect to the method of forming the bubble passage 33x, a modified example shown in FIG. 1C 'can also be adopted.
That is, in the above, the air diffusion hole AO having a uniform inner diameter from the upper surface side to the lower surface side of the lower plate-like body 31 is illustrated, but in this modified example, a part of the lower surface side has a diameter compared to the upper surface side. It's great. In this modified example, a step portion is formed between the large-diameter portion LD below and the small-diameter portion SD above the lower-diameter portion LD, and the tip of the protruding portion is brought into contact with the lower surface 31b1 of the step portion.
In this modified example, the projecting portion 33n ′ is also a cylindrical shape having an outer diameter slightly smaller than the inner diameter of the large diameter portion LD of the air diffusion hole AO ′ and larger than the inner diameter of the small diameter portion SD. In the point which is formed in this, it is different from the protrusion 33n of the shape which narrows upward in the above example.
 また、この変更例における突出部33n’は、仕切り壁33pの上面からの突出高さが大径部LDの形成されている区間の長さよりも長くなるように形成されており、突出部33n’の先端部を前記散気孔AO(の大径部LD)に下側から挿入し、その先端を前記段差部の下面31b1に当接させた際に、板状体31の下面31bと仕切り壁33pとが離間されて集水室30aを形成させ得るようになっている。
 さらに、この変更例における突出部33n’は、その内径が前記散気孔AO’の小径部SDの内径と略同径とされており、前記段差部の下面31b1にその先端部を当接させた際に前記散気孔AOの小径部SDと突出部33n’の貫通孔33hが連続され内径が略統一された気泡通路33xが形成されるようになっている。
 このような変更例においては、図に示すように、前記段差部の下面31b1において突出部33n’の先端が当接される位置において環状溝を形成し、この溝に収容させたシール材31s’によって気泡通路33xに気密性(水密性)を付与させればよい。
Further, the protrusion 33n ′ in this modification is formed such that the protrusion height from the upper surface of the partition wall 33p is longer than the length of the section in which the large diameter portion LD is formed, and the protrusion 33n ′. Is inserted into the air diffusion hole AO (large-diameter portion LD) from below, and when the tip is brought into contact with the lower surface 31b1 of the stepped portion, the lower surface 31b of the plate-like body 31 and the partition wall 33p Are separated from each other so that the water collecting chamber 30a can be formed.
Furthermore, the protrusion 33n ′ in this modified example has an inner diameter that is substantially the same as the inner diameter of the small-diameter portion SD of the air diffusion hole AO ′, and the tip portion is brought into contact with the lower surface 31b1 of the step portion. At this time, the small diameter portion SD of the air diffusion hole AO and the through hole 33h of the protruding portion 33n ′ are continuous to form a bubble passage 33x having a substantially uniform inner diameter.
In such a modified example, as shown in the figure, an annular groove is formed at a position where the tip of the projecting portion 33n ′ abuts on the lower surface 31b1 of the stepped portion, and the sealing material 31s ′ accommodated in this groove. Thus, airtightness (watertightness) may be imparted to the bubble passage 33x.
 なお、前記周側壁33wは、その上部の内径が前記下部板状体31の下側部分の外径と略同径であり、且つ、前記下部板状体31の張出し部31fの下面に相当する大きさの上面を有するフランジ部33w1がその上端部に形成されている。
 該フランジ部33w1は、前記下部板状体31の張出し部31fと水平面に対して略対称となる形状を有し、その上面が水平面となっているのに対して下面側は外方に向けて緩やかに上昇(外方に向けて緩やかに厚みを減少)するテーパー面となっている。
 しかも、フランジ部33w1は、その外縁の位置が前記張出し部31fの外縁と略同じ位置となる幅で外方に突出している。
The peripheral side wall 33 w has an upper inner diameter that is substantially the same as the outer diameter of the lower portion of the lower plate-shaped body 31, and corresponds to the lower surface of the overhanging portion 31 f of the lower plate-shaped body 31. A flange portion 33w1 having a large upper surface is formed at the upper end portion.
The flange portion 33w1 has a shape that is substantially symmetric with respect to the projecting portion 31f of the lower plate-like body 31 and a horizontal plane, and the lower surface side faces outward while the upper surface is a horizontal plane. It has a tapered surface that gently rises (thickness gradually decreases outward).
Moreover, the flange portion 33w1 protrudes outward with a width such that the position of the outer edge is substantially the same position as the outer edge of the overhang portion 31f.
 そして、前記筒状部材33は、仕切り壁33pから前記フランジ部33w1までの高さが、当該筒状部材33を下部板状体31に下方側から外嵌させた場合に前記フランジ部33w1の上面を前記下部板状体31の張出し部31fの下面に当接させる直前において前記突出部33nの外周面を前記散気孔AOの下面側の開口縁にシール部材31sを介して当接させ得る高さとなるように形成されている。 The tubular member 33 has a height from the partition wall 33p to the flange portion 33w1 when the tubular member 33 is externally fitted to the lower plate 31 from the lower side. And the height at which the outer peripheral surface of the projecting portion 33n can be brought into contact with the opening edge on the lower surface side of the air diffusion hole AO via the seal member 31s immediately before contacting the lower surface of the protruding portion 31f of the lower plate-like body 31. It is formed to become.
 なお、前記筒状部材33と前記下部板状体31とは、下部板状体31の下面31bの中央部に穿設されたネジ孔と、筒状部材33の仕切り壁33pの中央部を下側から貫通した状態で設けられたナットとが螺合され、しかも、前記突出部33nと散気孔AOの下面側の開口縁部との間に挟まれた前記シール部材31sにある程度の圧力が作用するまで前記ナットによる締め付けが行われてそれぞれ相手方に固定されている。
 さらに、前記筒状部材33と前記下部板状体31とは、前記ナットによる固定された状態で僅かに離れて対面している下部板状体31の張出し部31fと筒状部材33のフランジ部33w1とが外側からクランプCLで包囲されてそれぞれ相手方に固定されている。
The cylindrical member 33 and the lower plate-like body 31 are formed by lowering the screw hole formed in the central portion of the lower surface 31b of the lower plate-like body 31 and the central portion of the partition wall 33p of the cylindrical member 33. A nut provided in a state penetrating from the side is screwed, and a certain amount of pressure acts on the seal member 31s sandwiched between the projecting portion 33n and the opening edge on the lower surface side of the air diffusion hole AO. Until then, the nut is tightened and fixed to each other.
Furthermore, the tubular member 33 and the lower plate-like body 31 are opposed to each other with a protruding portion 31f of the lower plate-like body 31 and a flange portion of the tubular member 33 facing each other while being fixed by the nut. 33w1 is surrounded by a clamp CL from the outside and fixed to the other side.
 なお、前記シール部材31sは、環状に形成された弾性部材からなり、断面L字状となるように形成されたものである。
 そして、前記シール部材31sは、“L”字のたて棒に相当する箇所を散気孔AOの下部内周面に当接させるとともに“L”字の横棒に相当する箇所を下部板状体31の下面31bに当接させた状態で散気孔AOの下面側の開口に装着させ得るように形成されたものであり、前記下部板状体31と前記突出部33nとの間に挟持されて前記気泡通路33xに対する気密性(水密性)を付与させるべく設けられたものである。
The sealing member 31s is made of an elastic member formed in an annular shape and has an L-shaped cross section.
The seal member 31s is configured such that a portion corresponding to the “L” -shaped vertical bar is brought into contact with the lower inner peripheral surface of the air diffuser hole AO, and a portion corresponding to the “L” -shaped horizontal bar is formed on the lower plate-like body. 31 is formed so as to be attached to the opening on the lower surface side of the air diffuser hole AO in a state of being in contact with the lower surface 31b of 31 and is sandwiched between the lower plate-like body 31 and the protruding portion 33n. It is provided to give airtightness (watertightness) to the bubble passage 33x.
 また、前記下部板状体31の外周部には、前記筒状部材33が外嵌された際に前記周側壁33wに当接される箇所の内の2箇所にシール部材が装着されてこの当接箇所における気密性(水密性)が付与されている。
 具体的には、前記張出し部31fの下面において周方向に連続する溝を有するとともに下部板状体31の下方側の外周面にも周方向に連続する溝が形成されており、これらの溝に前記シール部材としてゴム製のOリング30rが装着されており、特に張出し部31fの下面において装着されているOリング30rは、前記クランプCLが、その周長を短くさせる方向に締め付けられることにより該締め付けによる力を、その内面と前記張出し部31fのテーパー面との間の圧力、及び前記フランジ部33w1のテーパー面と間の圧力に転化させた際にこの圧力が作用する位置に配されているために優れたシール性能が発揮されるものである。
In addition, seal members are attached to the outer peripheral portion of the lower plate-like body 31 at two locations among the locations that come into contact with the peripheral side wall 33w when the tubular member 33 is externally fitted. Airtightness (watertightness) at the contact point is given.
Specifically, grooves that are continuous in the circumferential direction are formed on the lower surface of the overhanging portion 31f, and grooves that are continuous in the circumferential direction are also formed on the outer peripheral surface on the lower side of the lower plate-like body 31. A rubber O-ring 30r is mounted as the seal member. Particularly, the O-ring 30r mounted on the lower surface of the overhang portion 31f is tightened in the direction in which the clamp CL shortens the circumferential length thereof. When the force by tightening is converted into the pressure between the inner surface and the taper surface of the overhanging portion 31f and the pressure between the taper surface of the flange portion 33w1, the pressure is arranged at a position where this pressure acts. Therefore, excellent sealing performance is exhibited.
 なお、このOリング30r及び前記突出部33nと下部板状体31との間に配されたL字状のシール部材33sとによって前記上部集水室20aと同様に中空糸膜11を透過した透過水を集水可能な下部集水室30aが形成され、該下部集水室30aに外部から被処理水などが浸入したり、この下部集水室30aから透過水が外部に漏洩したりすることが抑制されることになる。
 また、この下部集水室30aの天面にあたる部分は、前記下部板状体31の下面31bによって構成されており、前記支持部材Sが開口されている。
 すなわち、上部集水室20aと下部集水室30aとは、この支持部材Sによって連通された状態となって中空糸膜モジュール10に備えられている。
The O-ring 30r and the L-shaped seal member 33s disposed between the projecting portion 33n and the lower plate-like body 31 are permeated through the hollow fiber membrane 11 like the upper water collection chamber 20a. A lower catchment chamber 30a capable of collecting water is formed, and treated water or the like enters the lower catchment chamber 30a from the outside, or permeate leaks from the lower catchment chamber 30a to the outside. Will be suppressed.
Further, a portion corresponding to the top surface of the lower water collecting chamber 30a is constituted by the lower surface 31b of the lower plate-like body 31, and the support member S is opened.
That is, the upper water collection chamber 20a and the lower water collection chamber 30a are provided in the hollow fiber membrane module 10 in a state of being communicated by the support member S.
 第1実施形態の中空糸膜モジュール10は、前記筒状部材33と前記下部板状体31とを組み合わせることによって簡便に集水室30aと気体貯留室30bとを下部固定部材30に形成させることができ、しかも、上部集水室20aのキャップ材22に形成された開口部22dから上部集水室20aの内部を吸引することによって前記中空糸膜11の外部から内側に透過水を透過させて上下両方の集水室20a,30aにて一度に集水を行わせることができる。
 また、第1実施形態の中空糸膜モジュール10は、前記気体貯留室30bに例えば空気などの気体を導入させるだけで、下部板状体31の上面31aに開口した散気孔AOから上向きに気泡を発生させる得る散気機構を有していることから該気泡による打力や気泡の上昇に伴う水流によって中空糸膜11を振動させて付着物の除去を行うことができる。
The hollow fiber membrane module 10 of 1st Embodiment makes the lower fixing member 30 form the water collection chamber 30a and the gas storage chamber 30b simply by combining the said cylindrical member 33 and the said lower plate-shaped body 31. FIG. In addition, the permeated water is permeated from the outside to the inside of the hollow fiber membrane 11 by sucking the inside of the upper water collecting chamber 20a from the opening 22d formed in the cap material 22 of the upper water collecting chamber 20a. Water can be collected at once in both the upper and lower water collecting chambers 20a and 30a.
Moreover, the hollow fiber membrane module 10 of 1st Embodiment introduce | transduces a bubble upward from the diffuser hole AO opened to the upper surface 31a of the lower plate-shaped body 31 only by introduce | transducing gas, such as air, into the said gas storage chamber 30b. Since it has an aeration mechanism that can be generated, it is possible to vibrate the hollow fiber membrane 11 by the striking force of the bubbles and the water flow accompanying the rising of the bubbles, thereby removing the deposits.
 このことについてより具体的に説明すると、第1実施形態の中空糸膜モジュール10を被処理水中に浸漬させ、前記開口部22dから吸引ポンプなどによって上部集水室20aの内部を吸引すると、中空糸膜11に加わる水圧、ならびに吸引ポンプによる負圧によって中空糸膜11を透過水が透過することになる。
 すなわち、被処理水に含まれている懸濁物質は、主として中空糸膜11の表面において捕捉され、浄化された透過水が中空糸膜11の内部に透過され集水室に集水されることになる。
 第1実施形態における中空糸膜モジュール10は、上部集水室20aと下部集水室30aとが十分にシールされているために、被処理水の混入するおそれが低く清浄度の高い透過水を得ることができる。
More specifically, when the hollow fiber membrane module 10 of the first embodiment is immersed in the water to be treated and the inside of the upper water collection chamber 20a is sucked from the opening 22d by a suction pump or the like, the hollow fiber Permeated water permeates through the hollow fiber membrane 11 by the water pressure applied to the membrane 11 and the negative pressure by the suction pump.
That is, suspended substances contained in the water to be treated are mainly captured on the surface of the hollow fiber membrane 11, and the purified permeate is permeated into the hollow fiber membrane 11 and collected in the water collection chamber. become.
In the hollow fiber membrane module 10 according to the first embodiment, since the upper water collection chamber 20a and the lower water collection chamber 30a are sufficiently sealed, the permeated water having high cleanliness and low possibility of being mixed with water to be treated. Obtainable.
 また、上部集水室20aと下部集水室30aとは支持部材Sによって連通されていることから、この吸引ポンプによる負圧は、下部集水室30aの側にも作用し、上下両方の集水室20a,30aにて一度に集水されることになり被処理水の膜分離を効率良く実施させることができる。 Further, since the upper water collecting chamber 20a and the lower water collecting chamber 30a are communicated with each other by the support member S, the negative pressure by the suction pump also acts on the lower water collecting chamber 30a side, so that both upper and lower water collecting chambers are collected. Water is collected at once in the water chambers 20a and 30a, and membrane separation of the water to be treated can be carried out efficiently.
 そして、前記気体貯留室30bは、その天面に相当する箇所が前記仕切り壁33pの下面によって形成されていることから、この気体貯留室30bの下方に端部を配した給気管40p等から空気などの気体を放出させることにより、その気体の浮力によってこの気体貯留室30bに気体が導入されることになる。
 すなわち、気体貯留室30bに導入された気体は、前記突出部33nに相当する箇所に設けられた貫通孔33hと前記下部板状体31の散気孔AOとによって構成されている気泡通路33xを浮上して、下部板状体31の上面側における前記散気孔AOの開口から上向きに気泡として放出されることになる。
 このことによって前記散気孔AOの周囲において固定されている中空糸膜11は、気泡ABの衝突による打力や、あるいは、気泡の浮上に伴う水流によって振動され、膜分離によって表面に付着した懸濁物質などの付着物が脱落されて除去されることになる。
And since the location corresponding to the top | upper surface is formed by the lower surface of the said partition wall 33p, the said gas storage chamber 30b is air from the air supply pipe | tube 40p etc. which distribute | arranged the edge part under this gas storage chamber 30b. The gas is introduced into the gas storage chamber 30b by the buoyancy of the gas.
That is, the gas introduced into the gas storage chamber 30b floats in the bubble passage 33x formed by the through-hole 33h provided at a location corresponding to the projecting portion 33n and the diffuser hole AO of the lower plate-like body 31. Then, the bubbles are discharged upward from the opening of the air diffusion hole AO on the upper surface side of the lower plate-like body 31.
As a result, the hollow fiber membrane 11 fixed around the air diffusion hole AO is vibrated by the striking force due to the collision of the bubbles AB or the water flow accompanying the rising of the bubbles, and the suspension adhered to the surface by membrane separation. Deposits such as substances are dropped off and removed.
 第1実施形態においては、このように下部固定部材30の板状体31の上面31aにおいて上向きに開口している散気孔AOを形成させ、下部板状体31の上面側には従来の中空糸モジュールにおける散気管のような散気のための部材が設けられていないことから中空糸膜11の付着物を除去させる際にこの中空糸膜11に傷を付けてしまう可能性が従来の中空糸膜モジュールに比べて低減され、中空糸膜の傷付きによる水質低下の抑制を図ることができる。 In the first embodiment, the air diffusion holes AO opening upward are formed on the upper surface 31 a of the plate-like body 31 of the lower fixing member 30 as described above, and the conventional hollow fiber is formed on the upper surface side of the lower plate-like body 31. Since a member for air diffusion such as an air diffuser tube in the module is not provided, there is a possibility that the hollow fiber membrane 11 may be damaged when the deposits on the hollow fiber membrane 11 are removed. It is reduced as compared with the membrane module, and it is possible to suppress the deterioration of water quality due to the scratch of the hollow fiber membrane.
 このことについて、より詳細に説明すると、従来の中空糸膜モジュールにおいては、中空糸膜の延在する上下方向に対して直交する水平方向から中空糸膜を縫うように散気管を挿入し、該散気管の先端に設けた散気孔から気泡を発生させているために、この散気管の先端前方に位置する中空糸膜が略真横から放出される気泡によって大きく振動され、前記散気管の先端に衝突する可能性がある。
 一方で、第1実施形態における中空糸膜モジュールは、そもそも衝突する部材が設けられていない。
 仮に支持部材Sなどに中空糸膜11が衝突されたとしても、支持部材Sは中空糸膜11と並列した状態で備えられていることから衝突による衝撃が局所に集中することが抑制され従来の中空糸膜モジュールの散気管のように中空糸膜と直交する状態で配されたものに比べて中空糸膜が傷付けられる可能性が低い。
 なお、図に例示の中空糸膜モジュール10においては、支持部材Sを中空糸膜11が集積されている集積部内に設置されている態様を例示しているが、支持部材Sと中空糸膜11との接触をさらに抑制させるべく、中空糸膜11が集積されている領域の外縁部又は外縁部よりもさらに外側に離れた箇所に支持部材Sを配置することも可能である。
This will be described in more detail. In the conventional hollow fiber membrane module, an air diffuser is inserted so as to sew the hollow fiber membrane from the horizontal direction perpendicular to the vertical direction in which the hollow fiber membrane extends, Since the air bubbles are generated from the air diffuser provided at the tip of the air diffuser, the hollow fiber membrane located in front of the air diffuser is greatly vibrated by the air bubbles emitted from the side, and the air diffuser is formed at the tip of the air diffuser. There is a possibility of collision.
On the other hand, the hollow fiber membrane module in 1st Embodiment is not provided with the member which collides in the first place.
Even if the hollow fiber membrane 11 collides with the support member S or the like, since the support member S is provided in parallel with the hollow fiber membrane 11, the impact caused by the collision is suppressed from being concentrated locally. There is a low possibility that the hollow fiber membrane is damaged as compared with the case where the hollow fiber membrane module is arranged in a state orthogonal to the hollow fiber membrane, such as the air diffuser.
In the hollow fiber membrane module 10 illustrated in the figure, the support member S is illustrated as being installed in an accumulation portion where the hollow fiber membranes 11 are accumulated. However, the support member S and the hollow fiber membrane 11 are illustrated. In order to further suppress the contact with the support member S, it is possible to dispose the support member S at the outer edge of the region where the hollow fiber membranes 11 are accumulated or at a position further away from the outer edge.
 また、第1実施形態においては、自然な浮力によって中空糸膜11が延在する方向に向けて気泡を発生させるため、散気管から中空糸膜が延在する方向と直交する方向に強制的に気体を噴出させている従来の中空糸膜モジュールに比べてソフトな振動を中空糸膜に与えることができる。
 このことからも第1実施形態の中空糸膜モジュールは、中空糸膜11に与えるダメージを低減可能であるといえる。
Further, in the first embodiment, since air bubbles are generated in the direction in which the hollow fiber membrane 11 extends by natural buoyancy, the air is forced in the direction orthogonal to the direction in which the hollow fiber membrane extends from the air diffuser. Soft vibration can be given to the hollow fiber membrane as compared with the conventional hollow fiber membrane module in which gas is jetted.
From this, it can be said that the hollow fiber membrane module of the first embodiment can reduce the damage given to the hollow fiber membrane 11.
 なお、第1実施形態においては、前記筒状部材33を構成部材として用いることによって上記のような効果を有する中空糸膜モジュールを簡便に作製することができるものではあるが、上記のような効果を発揮させ得る点からは、前記筒状部材33が必ずしも必要ではなく、前記下部固定部材30が、前記下部集水室30aの下方に設けられた気体貯留室30bと、該気体貯留室30bから前記下部集水室30aを通過して前記中空糸膜11が固定されている固定部(下部板状体31)の上面側にいたる気泡通路33xとを備えており、前記気体貯留室30bに気体が貯留され、該貯留された前記気体が前記気泡通路33xを通って浮上されて前記固定部の上側に気泡が発生される機構(散気機構)が備えられていれば、上記のような効果が得られるものである。 In the first embodiment, a hollow fiber membrane module having the above-described effects can be easily produced by using the tubular member 33 as a constituent member. The cylindrical member 33 is not necessarily required from the viewpoint that the lower fixing member 30 is formed from the gas storage chamber 30b provided below the lower water collection chamber 30a and the gas storage chamber 30b. A bubble passage 33x that passes through the lower water collection chamber 30a and reaches the upper surface side of the fixing portion (lower plate-like body 31) to which the hollow fiber membrane 11 is fixed, and gas is supplied to the gas storage chamber 30b. If the mechanism (air diffusion mechanism) that the stored gas floats up through the bubble passage 33x and bubbles are generated on the upper side of the fixed portion is provided, the above effects are obtained. It is obtained.
 なお、第1実施形態においては、支持部材Sによって上下の集水室20a,30aを連通させて上部集水室20aの側のみから透過水を排出し得るように形成された中空糸膜モジュール10を例示しているが、上部側のキャップ材22に開口部22dを設ける代わりに、前記筒状部材33の周側壁33wの前記仕切り壁33pよりも上方位置に開口部を設けて下部集水室30aの側のみから透過水を排出させるようにしてもよく上下両方に開口部を設けて上下両方から透過水を排出させることも可能である。
 その場合には、支持部材Sを管状とする必要はなく中実の杆体を支持部材として採用しても良い。
 また、部品点数を省略して中空糸膜モジュールの製造を容易にさせ得る点においては、支持部材Sを上下の集水室20a,30aを連通させる部材として採用することが好ましいが、支持部材とは別に管体を用いて上下の集水室20a,30aを連通させることも可能である。
 さらに、中空糸膜モジュールの構成部材として従来公知の部材を、本発明の効果が著しく損なわれない範囲において本発明の中空糸膜モジュールにも採用することが可能なものである。
 例えば、第1実施形態においては、縦長円筒形の中空糸膜モジュールを例示しているが、本発明の中空糸膜モジュールは、中空糸膜の集積されている形状や、上下の固定部材や、下部固定部材に設けられた散気孔の開口形状等を上記例示のものに限定するものではなく種々の変更が加えられ得るものである。
In the first embodiment, the hollow fiber membrane module 10 is formed so that the upper and lower water collection chambers 20a, 30a are communicated with each other by the support member S and the permeated water can be discharged only from the upper water collection chamber 20a side. However, instead of providing the opening 22d in the cap member 22 on the upper side, an opening is provided at a position above the partition wall 33p of the peripheral side wall 33w of the tubular member 33 to provide a lower water collecting chamber. Permeated water may be discharged only from the side of 30a. It is also possible to provide openings on both the upper and lower sides to discharge the permeated water from both the upper and lower sides.
In that case, the support member S need not be tubular, and a solid housing may be employed as the support member.
Further, in that the manufacturing of the hollow fiber membrane module can be facilitated by omitting the number of parts, it is preferable to employ the support member S as a member that communicates the upper and lower water collection chambers 20a, 30a. Alternatively, the upper and lower water collecting chambers 20a and 30a can be communicated with each other by using a tubular body.
Furthermore, a conventionally well-known member can be employed in the hollow fiber membrane module of the present invention as long as the effects of the present invention are not significantly impaired as a constituent member of the hollow fiber membrane module.
For example, in the first embodiment, a hollow cylindrical hollow fiber membrane module is exemplified, but the hollow fiber membrane module of the present invention is a shape in which hollow fiber membranes are integrated, upper and lower fixing members, The opening shape and the like of the air holes provided in the lower fixing member are not limited to those illustrated above, and various modifications can be made.
 なお、本発明の中空糸膜モジュールは、以下のような水処理に好適に用いられ得る。
 図5は、この水処理方法を説明するための装置概要図であり、第1実施形態に係る中空糸膜モジュール10が用いられた水処理装置の一実施形態を示す図である。
In addition, the hollow fiber membrane module of this invention can be used suitably for the following water treatments.
FIG. 5 is an apparatus schematic diagram for explaining this water treatment method, and is a view showing an embodiment of a water treatment apparatus using the hollow fiber membrane module 10 according to the first embodiment.
 この水処理装置60は、第1実施形態では懸濁物質を含有する被処理水を膜分離して例えば上水として供給可能な状態の透過水を得られるように構成されたものである。
 図5に示すように、水処理装置60には、被処理水供給ライン61からの被処理水が供給される被処理水槽62が備えられている。
 また、第1実施形態の水処理装置60には、この被処理水槽62内の被処理水中に起立姿勢で浸漬されて配置された複数の中空糸膜モジュール10と、これらの中空糸膜モジュール10に接続され、吸引ポンプ63aを有して該吸引ポンプ63aによって中空糸膜内部を吸引することにより被処理水の膜ろ過による固液分離を行って透過水を取り出すための透過水取出しライン63とを有する膜分離装置が備えられている。
 さらに、第1実施形態の水処理装置60には、中空糸膜モジュール10の散気機構によるエアスクラビングを実施させるための空気供給源64aと、該空気供給源64aから空気を搬送し前記給気管40p(図1等参照)を通じて前記気体貯留室30bに空気を供給するための空気供給ライン64と、被処理水槽62内の沈殿物を排出するための沈殿物排出ライン65とを備えている。
In the first embodiment, the water treatment device 60 is configured to obtain a permeated water that can be supplied as clean water by membrane separation of water to be treated containing suspended solids.
As shown in FIG. 5, the water treatment apparatus 60 includes a water tank 62 to be treated, to which water to be treated is supplied from a water supply line 61 to be treated.
Moreover, in the water treatment apparatus 60 of 1st Embodiment, the several hollow fiber membrane module 10 arrange | positioned by being immersed in the to-be-processed water in this to-be-treated water tank 62 in the standing posture, and these hollow fiber membrane modules 10 A permeated water take-out line 63 for taking out permeated water by performing solid-liquid separation by membrane filtration of the water to be treated by suctioning the inside of the hollow fiber membrane with the suction pump 63a. A membrane separation device having
Furthermore, in the water treatment device 60 of the first embodiment, an air supply source 64a for carrying out air scrubbing by the air diffusion mechanism of the hollow fiber membrane module 10, and air supplied from the air supply source 64a to the air supply pipe An air supply line 64 for supplying air to the gas storage chamber 30b through 40p (see FIG. 1 and the like) and a precipitate discharge line 65 for discharging the precipitate in the water tank 62 to be treated are provided.
 また、図5の水処理装置における透過水取出しライン63は、各中空糸膜モジュール10の上部のキャップ材22の開口22sに接続された集水管63b、各集水管63bに連通する集水ヘッダー管63c、透過水取出し管63dを有している。
 また、空気供給ライン64は、空気供給源64aと、該空気供給源64aによって加圧された空気を供給する空気輸送管64bと、該空気輸送管64bから分岐した空気輸送分岐管64dと、その各空気輸送分岐管64dの先端部分が前記給気管40pに接続されて構成されている。
 なお、各中空糸膜モジュール10は、その上部固定部材20がその全体を水面下に浸漬させる状態で水処理装置に設置されている。
Moreover, the permeated water extraction line 63 in the water treatment apparatus of FIG. 5 includes a water collection pipe 63b connected to the opening 22s of the cap material 22 at the top of each hollow fiber membrane module 10, and a water collection header pipe communicating with each water collection pipe 63b. 63c and a permeate take-out pipe 63d.
The air supply line 64 includes an air supply source 64a, an air transport pipe 64b for supplying air pressurized by the air supply source 64a, an air transport branch pipe 64d branched from the air transport pipe 64b, Each air transport branch pipe 64d has a tip portion connected to the air supply pipe 40p.
In addition, each hollow fiber membrane module 10 is installed in the water treatment apparatus in a state in which the upper fixing member 20 is immersed entirely below the water surface.
 このように構成される水処理装置60を用いた水処理方法においては、前記吸引ポンプ63aによって上部集水室20aに対して吸引を行い、この上部集水室20aならびに支持部材Sで連通された下部集水室30aを負圧状態にさせ、そのことによって中空糸膜11の外部から内側に透過水を透過させて上下両方からの集水を実施する。
 そして、この吸引ポンプ63aによる吸引を継続させることによって透過水が中空糸膜モジュールから排出されて前記中空糸膜11による被処理水の膜分離が継続されることになる。
In the water treatment method using the water treatment device 60 configured as described above, the suction pump 63a sucks the upper water collection chamber 20a, and the upper water collection chamber 20a and the support member S communicate with each other. The lower water collection chamber 30a is brought into a negative pressure state, whereby permeate is permeated from the outside to the inside of the hollow fiber membrane 11, and water is collected from both above and below.
Then, by continuing the suction by the suction pump 63a, the permeated water is discharged from the hollow fiber membrane module, and the membrane separation of the water to be treated by the hollow fiber membrane 11 is continued.
 このような工程(膜分離工程)中においては、被処理水に含まれている懸濁物質は、主として中空糸膜11の表面において捕捉され、中空糸膜の内部には、清浄な水が透過水として透過されることになる。
 そして、中空糸膜11の表面に付着した懸濁物質は中空糸膜11の透過性を低下させる要因となって、吸引ポンプ63aの動力負荷を増大させる要因となる。
 したがって、この膜分離工程の効率低下を図る上では、中空糸膜11の表面に付着した付着物を除去することが好ましい。
In such a process (membrane separation process), suspended substances contained in the water to be treated are mainly captured on the surface of the hollow fiber membrane 11, and clean water permeates inside the hollow fiber membrane. Permeated as water.
And the suspended substance adhering to the surface of the hollow fiber membrane 11 becomes a factor which reduces the permeability | transmittance of the hollow fiber membrane 11, and becomes a factor which increases the power load of the suction pump 63a.
Therefore, in order to reduce the efficiency of the membrane separation step, it is preferable to remove the deposits attached to the surface of the hollow fiber membrane 11.
 第1実施形態においては、先述のような散気機構を有する中空糸膜モジュール10が水処理装置に採用されているために、当該散気機構で気泡を発生させる散気工程を実施して前記付着物を除去させることができる。
 すなわち、前記空気供給源64aから、空気輸送管64b、空気輸送分岐管64d及び給気管50を通じて気体貯留室30bに空気を供給し、中空糸膜11の下端を固定している固定部の上側に設けた散気孔AOから上向きに気泡を発生させ、中空糸膜11に振動を与え付着物の脱落除去を行う。
 なお、このとき必要であれば、前記吸引ポンプ63aによる吸引とは逆に、前記集水室20a,30aを加圧して中空糸膜11の内側から外側に透過水を透過させる逆洗浄を行ってもよい。
In the first embodiment, since the hollow fiber membrane module 10 having the air diffusion mechanism as described above is employed in the water treatment apparatus, the air diffusion step of generating bubbles with the air diffusion mechanism is performed to Deposits can be removed.
That is, air is supplied from the air supply source 64a to the gas storage chamber 30b through the air transport pipe 64b, the air transport branch pipe 64d, and the air supply pipe 50, and above the fixed portion that fixes the lower end of the hollow fiber membrane 11. Bubbles are generated upward from the provided air diffusion holes AO, and the hollow fiber membrane 11 is vibrated to remove the deposits.
In addition, if necessary at this time, contrary to the suction by the suction pump 63a, the water collection chambers 20a and 30a are pressurized to perform reverse cleaning that allows permeate to permeate from the inside to the outside of the hollow fiber membrane 11. Also good.
 この散気工程においては、先述のように、中空糸膜11の延在方向に向けて気泡の放出が行われることで散気孔AOの近傍に配された中空糸膜11が過度に振動することを防止でき、中空糸膜11に損傷が生じることが抑制されつつ付着物の除去が行われる。
 したがって、透過水の水質低下が生じるおそれを抑制しつつ効率の良い水処理方法を実施することができる。
 このことによって、特に、水質に対して要求の厳しい上水処理に好適な水処理方法が提供されうる。
 なお、第1実施形態の水処理方法としては、透過水を上水として利用可能な状態で取り出す場合に限定されるものではなく、広く一般の水処理に応用が可能なものである。
In this air diffusion process, as described above, the hollow fiber membrane 11 disposed in the vicinity of the air diffusion hole AO vibrates excessively by releasing the bubbles in the extending direction of the hollow fiber membrane 11. The deposits are removed while the occurrence of damage to the hollow fiber membrane 11 is suppressed.
Therefore, it is possible to implement an efficient water treatment method while suppressing the possibility that the quality of the permeated water is deteriorated.
This can provide a water treatment method particularly suitable for clean water treatment, which is demanding for water quality.
The water treatment method of the first embodiment is not limited to the case where the permeated water is taken out in a usable state as clean water, and can be widely applied to general water treatment.
第2実施形態
 次に、第2実施形態の中空糸膜モジュール及び水処理方法について説明する。
Second Embodiment Next, a hollow fiber membrane module and a water treatment method according to a second embodiment will be described.
 ところで、懸濁物質等を含有する被処理水に中空糸膜を上下方向に延在させて保持した起立姿勢にて浸漬させて該中空糸膜内部を吸引することにより被処理水の膜分離を実施して、透過水を得る外圧型の中空糸膜モジュールが用いられるようになってきている。 By the way, membrane separation of water to be treated is carried out by immersing the hollow fiber membrane in a standing position in which the hollow fiber membrane is extended and held in the water to be treated containing suspended substances and the like, and sucking the inside of the hollow fiber membrane. In practice, an external pressure type hollow fiber membrane module that obtains permeated water has been used.
 そして、従来の水処理に用いられる中空糸膜モジュールは、被処理水中の浮遊性固形物や粘着性有機化合物などによって中空糸膜の透過性能を低下させやすく、該透過性能の低下は、膜分離のための動力負荷増大につながるため、従来、この透過性能の低下を抑制させる方法が広く検討されている。 And the hollow fiber membrane module used for the conventional water treatment is liable to lower the permeation performance of the hollow fiber membrane due to floating solids or adhesive organic compounds in the water to be treated. Since this leads to an increase in the power load for the above, a method for suppressing the decrease in the permeation performance has been widely studied.
 例えば、中空糸膜を上下方向に延在させて被処理水中に浸漬させた状態で膜分離を実施するタイプの中空糸膜モジュールでは、この中空糸膜の下端部側で散気を実施することによって発生させた気泡で中空糸膜を振動させて表面の付着物を除去するエアスクラビングと呼ばれる方法が透過性能低下の防止に有効であることが知られている。 For example, in a hollow fiber membrane module that performs membrane separation with the hollow fiber membrane extending in the vertical direction and immersed in the water to be treated, aeration is performed on the lower end side of the hollow fiber membrane. It is known that a method called air scrubbing, which removes surface deposits by vibrating the hollow fiber membrane with bubbles generated by the above, is effective in preventing a decrease in permeation performance.
 ところで、この種の中空糸膜モジュールとしては、従来、中空糸膜の上端側のみから透過水を吸引するタイプのものが広く用いられてきたが、特開2006-305443号公報(特許文献1)に示すように、近年、中空糸膜の上下両方から透過水を吸引するタイプの中空糸膜モジュールの使用が検討されるようになってきている。
 中空糸膜の端部において吸引して該中空糸膜の外側から内側に水を透過させる場合には、この吸引による負圧が作用しやすい端部近傍においては単位時間に多量の水が膜を透過することになるがこの端部から離れるにつれて中空糸膜の内外の圧力差が減少するために膜を透過する水量が減少することになる。
 このようなことから片側から集水するタイプでは中空糸膜全体を膜分離に有効に作用させることが難しいが、上下両方から集水するタイプの中空糸膜モジュールは、中空糸膜全体を有効活用させやすくコンパクトで効率の良い膜分離を実施させ得る。
By the way, as this type of hollow fiber membrane module, a type of sucking permeate from only the upper end side of the hollow fiber membrane has been widely used. However, JP 2006-305443 A (Patent Document 1). In recent years, the use of a hollow fiber membrane module of the type that sucks permeate from both the upper and lower sides of the hollow fiber membrane has been studied.
When suction is made at the end of the hollow fiber membrane to allow water to permeate from the outside to the inside of the hollow fiber membrane, a large amount of water per unit time passes through the membrane near the end where negative pressure due to this suction is likely to act. Although it permeates, the pressure difference between the inside and outside of the hollow fiber membrane decreases as the distance from the end portion decreases, so that the amount of water permeating the membrane decreases.
For this reason, it is difficult for the type that collects water from one side to effectively act on the entire hollow fiber membrane for membrane separation, but the hollow fiber membrane module that collects water from both the upper and lower sides effectively utilizes the entire hollow fiber membrane. Easy and compact membrane separation can be carried out efficiently.
 なお、特許文献1に記載されている中空糸膜モジュールは、中空糸膜の延在する上下方向に対して直交する横方向から中空糸膜の束に散気管を挿入し、その先端の散気孔から気泡を発生させて中空糸膜表面の付着物除去を行うべく構成されている。
 しかし、このような散気管で散気を行うと散気孔の前方においてこの散気管に近接する箇所の中空糸膜は、散気管の先端に設けられた散気孔からの気泡の放出によって激しく振動されることになり、この散気管の先端に衝突して、例えば、散気孔の開口縁などによって損傷されるおそれを有する。
 そして、中空糸膜に損傷が生じると透過水に被処理水が混入して透過水の水質低下を招いてしまうことになる。
The hollow fiber membrane module described in Patent Document 1 has an air diffuser inserted into a bundle of hollow fiber membranes from the lateral direction perpendicular to the vertical direction in which the hollow fiber membrane extends, and the air diffuser at the tip thereof. From this, bubbles are generated to remove deposits on the surface of the hollow fiber membrane.
However, when air is diffused with such a diffuser, the hollow fiber membrane in the vicinity of the diffuser in front of the diffuser is vibrated vigorously due to the release of bubbles from the diffuser provided at the tip of the diffuser. Therefore, it may collide with the tip of the air diffuser and be damaged by, for example, the opening edge of the air diffuser.
And when a hollow fiber membrane is damaged, to-be-processed water will mix in permeated water and will cause the water quality fall of permeated water.
 すなわち、従来の中空糸膜モジュールや従来の中空糸膜モジュールを用いた水処理方法においては、水質低下を抑制しつつ効率の良い膜分離を実施させることが困難であるという問題を有している。 That is, the conventional hollow fiber membrane module and the water treatment method using the conventional hollow fiber membrane module have a problem that it is difficult to perform efficient membrane separation while suppressing deterioration of water quality. .
 第2実施形態は、上下両方からの集水が可能とされつつも中空糸膜が損傷されるおそれの低い中空糸膜モジュールの提供を図り、ひいては水質低下を抑制しつつ効率の良い膜分離を実施し得る水処理方法の提供を図ることを課題としている。 The second embodiment provides a hollow fiber membrane module that can collect water from both the upper and lower sides but has a low risk of damaging the hollow fiber membrane, and as a result, performs efficient membrane separation while suppressing water quality deterioration. It aims at providing the water treatment method which can be implemented.
 図6は、本発明の第2-1実施形態に係る中空糸膜モジュールを起立状態にさせた様子を側面方向から見た縦断面図であり、図7は図6のA-A線における中空糸膜モジュールの断面(横断面)を示す断面図である。
 また、図8は図6のB-B線における中空糸膜モジュールの横断面を示した図である。
FIG. 6 is a longitudinal sectional view of the hollow fiber membrane module according to the 2-1 embodiment of the present invention as seen from the side, and FIG. It is sectional drawing which shows the cross section (cross section) of a thread membrane module.
FIG. 8 is a cross-sectional view of the hollow fiber membrane module taken along the line BB in FIG.
 第2実施形態の中空糸膜モジュール210は、この図6にも示されているように縦長円筒状の外観を有しており、その上下方向中間部に複数本の中空糸膜211が並列状態で露出されている。
 この第2-1実施形態の中空糸膜モジュール210は、複数本の中空糸膜211が引き揃えられた状態で上下方向に配されておりこの中空糸膜211の両端部の内の一端部を上方側で固定する固定部材(以下「上部固定部材220」ともいう)と、他端部を下方側で固定する固定部材(以下「下部固定部材230」ともいう)の2つの固定部材が用いられて中空糸膜211が固定されている。
 そして、第2-1実施形態の中空糸膜モジュール210は、その中心部を通って上下方向に延在し、前記上部固定部材220と前記下部固定部材230とに両端部を固定させてこれらの間に所定の間隔を保持させて支持する杆状の支持部材200Sを有している。
 すなわち、第2実施形態の中空糸膜モジュール210は、その中心部を通る単一の支持部材200Sによって上部固定部材220と下部固定部材230とが支持されている。
 また、第2―1実施形態の中空糸膜モジュール210は、上下方向に延在された前記中空糸膜211の下端部側において気泡を発生させるための散気部材が備えられている。
The hollow fiber membrane module 210 of the second embodiment has a vertically long cylindrical appearance as shown in FIG. 6, and a plurality of hollow fiber membranes 211 are arranged in parallel in the middle in the vertical direction. Is exposed.
The hollow fiber membrane module 210 of the 2-1 embodiment is arranged in a vertical direction with a plurality of hollow fiber membranes 211 aligned, and one end portion of both ends of the hollow fiber membrane 211 is arranged. Two fixing members are used: a fixing member that fixes on the upper side (hereinafter also referred to as “upper fixing member 220”) and a fixing member that fixes the other end on the lower side (hereinafter also referred to as “lower fixing member 230”). The hollow fiber membrane 211 is fixed.
Then, the hollow fiber membrane module 210 of the 2-1 embodiment extends in the vertical direction through the center portion thereof, and both ends thereof are fixed to the upper fixing member 220 and the lower fixing member 230 so that these It has a bowl-shaped support member 200S that supports it with a predetermined interval therebetween.
That is, in the hollow fiber membrane module 210 of the second embodiment, the upper fixing member 220 and the lower fixing member 230 are supported by a single support member 200S passing through the center portion thereof.
Further, the hollow fiber membrane module 210 of the 2-1 embodiment is provided with an air diffuser for generating bubbles on the lower end side of the hollow fiber membrane 211 extending in the vertical direction.
 前記上部固定部材220は、その下方側において略水平に配された板状体221(以下「上部板状体221」ともいう)を有し、該板状体221はポリマー組成物によって厚みのある円板状に形成されている。
 また、上部固定部材220には、前記板状体221を上側から覆うキャップ材222が備えられ、該キャップ材222は、前記板状体221の輪郭形状と略同一形状となる天面部222cと該天面部222cの外縁から垂下する周壁部222wとを有している。
 そして、前記キャップ材222が、その天面部222cを前記板状体221の上面221aから上方に一定距離だけ離間させるとともに前記周壁部222wの内周面を前記板状体221の外周面221wに密着させて前記板状体221との間に空間部220aを形成させている。
The upper fixing member 220 has a plate-like body 221 (hereinafter also referred to as “upper plate-like body 221”) disposed substantially horizontally on the lower side thereof, and the plate-like body 221 has a thickness by a polymer composition. It is formed in a disk shape.
Further, the upper fixing member 220 is provided with a cap material 222 that covers the plate-like body 221 from above, and the cap material 222 includes a top surface portion 222c that has substantially the same shape as the contour shape of the plate-like body 221, and the top surface portion 222c. And a peripheral wall portion 222w depending from the outer edge of the top surface portion 222c.
Then, the cap material 222 has its top surface portion 222c spaced apart from the upper surface 221a of the plate-like body 221 by a certain distance, and the inner peripheral surface of the peripheral wall portion 222w is in close contact with the outer peripheral surface 221w of the plate-like body 221. Thus, a space 220 a is formed between the plate-like body 221.
 前記板状体221は、前記中空糸膜211の上端部を前記ポリマー組成物によって埋設させて固定させており、前記上部固定部材220において中空糸膜211を固定する固定部を形成させている。
 より具体的には、前記板状体221は、全ての中空糸膜211を一纏りにさせた状態でこの中空糸膜211が纏められたものの太さよりも僅かに大きな内径を有する円筒状の容器に前記中空糸膜211の端部を挿入し、該容器内に硬化性の液状ポリマーを充填固化させて得られた円柱状の硬化体を前記中空糸膜211の末端よりも内側の部分で中空糸膜211の延在する方向と略直交する方向に中空糸膜211ごと切断することによって円板状に形成されたものである。
 したがって、前記中空糸膜211は、前記板状体221を下方から上方に貫通し板状体221の上面221aにおいて開口する状態で前記ポリマー組成物に埋設されて上部固定部材220に固定されている。
The plate-like body 221 has an upper end portion of the hollow fiber membrane 211 embedded and fixed with the polymer composition, and a fixing portion for fixing the hollow fiber membrane 211 in the upper fixing member 220 is formed.
More specifically, the plate-like body 221 has a cylindrical shape having an inner diameter slightly larger than the thickness of the hollow fiber membranes 211 in a state where all the hollow fiber membranes 211 are bundled together. A cylindrical cured body obtained by inserting the end of the hollow fiber membrane 211 into a container and filling and solidifying the curable liquid polymer in the container is formed at a portion inside the end of the hollow fiber membrane 211. The hollow fiber membrane 211 is formed into a disk shape by cutting the entire hollow fiber membrane 211 in a direction substantially orthogonal to the extending direction of the hollow fiber membrane 211.
Accordingly, the hollow fiber membrane 211 is fixed to the upper fixing member 220 by being embedded in the polymer composition in a state of passing through the plate-like body 221 from below and opening on the upper surface 221a of the plate-like body 221. .
 そして、下部固定部材230も前記上部固定部材220と同様の構成を有しており、その上方側において略水平に配され、ポリマー組成物によって厚みのある円板状に形成された板状体231(以下「下部板状体231」ともいう)で前記中空糸膜211の下端部を固定する固定部が形成されている点、及び、前記板状体231に下方から外嵌されたキャップ材232との間に空間部が形成されている点において共通している。
 すなわち、前記上部固定部材220の側において前記中空糸膜211が前記板状体221の上面221aに開口されて該板状体221と前記キャップ材222との間の空間部220aに前記中空糸膜211の内部空間が連通されているのと同様に、当該下部固定部材230の側においても中空糸膜211が下部板状体231の下面231bにおいて開口されその内部空間が前記下部板状体231とキャップ材232との間に形成された空間部230aに連通されている。
The lower fixing member 230 has the same configuration as that of the upper fixing member 220. The lower fixing member 230 is disposed substantially horizontally above the upper fixing member 220, and is formed into a thick disk shape from the polymer composition. (Hereinafter also referred to as “lower plate-like body 231”), a fixing portion for fixing the lower end portion of the hollow fiber membrane 211 is formed, and a cap material 232 externally fitted to the plate-like body 231 from below. In that a space is formed between the two.
That is, the hollow fiber membrane 211 is opened on the upper surface 221 a of the plate-like body 221 on the upper fixing member 220 side, and the hollow fiber membrane is placed in the space 220 a between the plate-like body 221 and the cap material 222. Similarly to the communication of the inner space 211, the hollow fiber membrane 211 is opened on the lower surface 231 b of the lower plate-like body 231 on the lower fixing member 230 side, and the inner space is connected to the lower plate-like body 231. The space 230 a formed between the cap member 232 and the cap member 232 communicates with the space 230 a.
 なお、前記板状体221,231は、中空糸膜211が固定されている箇所における中空糸膜211どうしの間の隙間部や、中空糸膜211が固定されている箇所の周りにポリマー組成物によって壁体221r,231rが形成されることから該板状体221,231とキャップ材222,232とによって囲まれた空間部220a,230aには水密性が付与されており、第2実施形態の中空糸膜モジュール210を、膜分離を行う被処理水に浸漬させた際に、前記空間部220a,230aに被処理水が浸入することを防止し得るように構成されている。
 また、このことによって、上下両方の空間部220a,230aは、中空糸膜211の外側から内側に透過された透過水が集水される集水室として機能することになる。
The plate- like bodies 221 and 231 are formed of a polymer composition around a gap between the hollow fiber membranes 211 at a place where the hollow fiber membrane 211 is fixed or around a place where the hollow fiber membrane 211 is fixed. Since the wall bodies 221r and 231r are formed by the above, the water-tightness is given to the space portions 220a and 230a surrounded by the plate- like bodies 221 and 231 and the cap materials 222 and 232, which is the second embodiment. When the hollow fiber membrane module 210 is immersed in the water to be membrane-separated, the water to be treated can be prevented from entering the spaces 220a and 230a.
In addition, by this, both the upper and lower space parts 220a and 230a function as a water collection chamber in which permeated water permeated from the outside to the inside of the hollow fiber membrane 211 is collected.
 また、第2実施形態における前記上部固定部材220は、前記空間部220aに集水された透過水を中空糸膜モジュール210の外部に搬出させ得るようにキャップ材222の天面部222cに開口222sを有しており、前記空間部220aは当該開口222sのみで外部と連通している。
 一方で、下部固定部材230にはキャップ材232に開口が形成されておらず、代わりに、この下部固定部材230の空間部230a(以下「下部集水室230a」ともいう)と上部固定部材220の空間部220a(以下「上部集水室220a」ともいう)とを連通させる通水管200Pが設けられている。
 この通水管200Pは、中空糸膜211などに比べて遥かに大径で前記下部集水室230aから前記上部集水室220aへ透過水を通過させる際の圧損が十分低減されたものである。
 このような構成を有することにより、第2実施形態における中空糸膜モジュール210は、前記開口222sから透過水を吸引した際に上下両方の集水室220a,230aで一度に集水されるように形成されている。
In the second embodiment, the upper fixing member 220 has an opening 222 s in the top surface portion 222 c of the cap material 222 so that the permeated water collected in the space portion 220 a can be carried out of the hollow fiber membrane module 210. The space 220a communicates with the outside only through the opening 222s.
On the other hand, no opening is formed in the cap member 232 in the lower fixing member 230. Instead, the space portion 230a of the lower fixing member 230 (hereinafter also referred to as “lower water collecting chamber 230a”) and the upper fixing member 220 are formed. A water pipe 200P is provided to communicate with the space 220a (hereinafter also referred to as “upper water collecting chamber 220a”).
The water pipe 200P is much larger in diameter than the hollow fiber membrane 211 and the like, and has a sufficiently reduced pressure loss when passing permeate from the lower water collecting chamber 230a to the upper water collecting chamber 220a.
By having such a configuration, the hollow fiber membrane module 210 in the second embodiment collects water in both the upper and lower water collecting chambers 220a and 230a when sucking permeate from the opening 222s. Is formed.
 第2実施形態における中空糸膜モジュール210には、前記中空糸膜211の下端部側において気泡を発生させるための散気部材240がさらに備えられており、該散気部材240は、前記気泡を発生させて中空糸膜211を振動させることによって前記被処理水の膜分離を実施した際に表面に付着した付着物を除去し得るように備えられたものである。
 該散気部材240は、前記気泡を発生させる散気孔200AOが開口された中空体241を有し、該中空体に接続された管体から前記中空体241に気体が供給されて前記気泡を発生させ得るように構成されている。
 具体的には、前記中空体241は、下部固定部材230の板状体231に横置された状態で埋設され、該板状体231の中心から放射状に延びる4本の管状部241pと、該管状部241pの先端部から立ち上がる筒状の立上り部241eとを有しており、該立上り部241eが、その先端部を板状体231の上面231aにおいて上方に向けて開口させて散気孔200AOを形成させている。
The hollow fiber membrane module 210 according to the second embodiment is further provided with an air diffuser member 240 for generating air bubbles on the lower end side of the hollow fiber membrane 211, and the air diffuser member 240 contains the air bubbles. It is provided so as to be able to remove deposits attached to the surface when membrane separation of the water to be treated is carried out by generating and vibrating the hollow fiber membrane 211.
The air diffuser 240 has a hollow body 241 in which air bubbles 200AO for generating the bubbles are opened, and gas is supplied to the hollow body 241 from a tube connected to the hollow body to generate the bubbles. It is comprised so that it can be made.
Specifically, the hollow body 241 is embedded in a state of being horizontally placed on the plate-like body 231 of the lower fixing member 230, and includes four tubular portions 241p extending radially from the center of the plate-like body 231; A tubular rising portion 241e that rises from the distal end portion of the tubular portion 241p, and the rising portion 241e opens the distal end portion upward on the upper surface 231a of the plate-like body 231, thereby forming the air diffusion hole 200AO. It is formed.
 そして、第2実施形態においては、前記支持部材200Sが中空の管体240p(以下「給気管240p」ともいう)であり、前記中空体241に気体を供給すべく備えられている。
 該給気管240pは、その下端部を中空体241の管状部241pがその一端部を集合させている板状体231の中心部において前記ポリマー組成物に埋設されて固定されており、該埋設されている部分において当該給気管240pの管壁に前記管状部241pがその一端部を開口させて接続されている。
 すなわち、上面視において十字となる形状に配された4本の管状部241pが集合している、この十字の中央部分において給気管240pと中空体241が接続されている。
 給気管240pの下端部で当該給気管240pと前記中空体241が散気のための気体を前記中空体に供給可能な状態で接続されている一方で給気管240pの上端部は上部固定部材220の板状体221の中心部に埋設されて固定されている。
 そして、第2実施形態の中空糸膜モジュール210は、該給気管240pの上端部に接続され、前記給気管240pの上端部からさらに上方に延びる延設管200Seを有し、該延設管200Seが前記上部集水室220aを通って前記キャップ材222の天面部222cよりも上方に延設されている。
 なお、この延設管200Seと給気管240pとの接続箇所や延設管200Seとキャップ材222(天面部222c)との間においては、十分なシールが施され、延設管200Seと給気管240pとの接続箇所に透過水が入り込んだり、あるいは逆に上部集水室220aに気体が漏洩したりすることが防止されているとともに被処理水が上部集水室220aに流入することが防止されている。
In the second embodiment, the support member 200S is a hollow tube 240p (hereinafter also referred to as “air supply tube 240p”), and is provided to supply gas to the hollow body 241.
The air supply tube 240p is embedded and fixed at the lower end of the polymer composition at the center of the plate-like body 231 in which the tubular portion 241p of the hollow body 241 is assembled at one end thereof. The tubular portion 241p is connected to the pipe wall of the supply pipe 240p with one end thereof opened.
That is, four tubular portions 241p arranged in a cross shape in a top view are gathered, and the air supply tube 240p and the hollow body 241 are connected at the central portion of the cross.
The air supply pipe 240p and the hollow body 241 are connected to each other at a lower end portion of the air supply pipe 240p in a state in which gas for aeration can be supplied to the hollow body, while an upper end portion of the air supply pipe 240p is an upper fixing member 220. The plate-like body 221 is embedded and fixed in the center.
The hollow fiber membrane module 210 of the second embodiment includes an extension pipe 200Se that is connected to the upper end portion of the air supply pipe 240p and extends further upward from the upper end portion of the air supply pipe 240p, and the extension pipe 200Se. Is extended above the top surface portion 222c of the cap material 222 through the upper water collection chamber 220a.
It should be noted that a sufficient seal is provided between the connecting portion of the extension pipe 200Se and the air supply pipe 240p and between the extension pipe 200Se and the cap member 222 (the top surface portion 222c), and the extension pipe 200Se and the air supply pipe 240p. The permeated water is prevented from entering the connecting portion with the gas, or the gas is prevented from leaking into the upper water collecting chamber 220a and the treated water is prevented from flowing into the upper water collecting chamber 220a. Yes.
 第2実施形態における中空糸膜モジュール210は、上記のような構成部材を有することによって、前記延設管200Seにブロア等の給気手段で散気を行うための空気などの気体を供給した際に、給気管240pを通じて前記気体が中空体241に供給され、管状部241pによって4分割された気体が各々の管状部241pの先端側に設けられた散気孔200AOから気泡200ABとして放出されるように形成されている。 When the hollow fiber membrane module 210 according to the second embodiment has the above-described constituent members, a gas such as air for supplying air to the extension pipe 200Se by air supply means such as a blower is supplied. Further, the gas is supplied to the hollow body 241 through the air supply pipe 240p, and the gas divided into four by the tubular portions 241p is discharged as air bubbles 200AB from the air diffusion holes 200AO provided on the distal end side of each tubular portion 241p. Is formed.
 なお、この中空体241が埋設されている箇所は、通常、該中空体241を貫通させて中空糸膜211を下部板状体231の下面231bにまで到達させることが困難であるため、中空糸膜211をいくつかに小分けして中空糸膜束211aを形成させ、該中空糸膜束211aの下端部を放射状に広がる前記中空体241の間に埋設させて前記下部板状体231に固定させることが好ましい。
 例えば、図8に示すように、断面が扇型となるように束ねた8つの中空糸膜束211aを隣接する管状部241pどうしの間に埋設させて中空体241などと干渉することを避けて中空糸膜211の下端部を下部板状体231に固定させることが好ましい。
In addition, since the location where this hollow body 241 is embedded usually makes it difficult to penetrate the hollow body 241 and allow the hollow fiber membrane 211 to reach the lower surface 231b of the lower plate-like body 231, the hollow fiber 241 The membrane 211 is divided into several parts to form a hollow fiber membrane bundle 211a, and the lower end of the hollow fiber membrane bundle 211a is embedded between the radially extending hollow bodies 241 and fixed to the lower plate-like body 231. It is preferable.
For example, as shown in FIG. 8, avoiding interference between the hollow body 241 and the like by embedding eight hollow fiber membrane bundles 211a bundled so as to have a fan-shaped cross section between adjacent tubular portions 241p. It is preferable to fix the lower end portion of the hollow fiber membrane 211 to the lower plate-like body 231.
 このように放射状に形成された中空体241の間に中空糸膜束211aを固定することで、散気孔200AOと中空糸膜束211aとを周方向に交互に配置することができ、中空糸膜束211aへの散気をムラ無く行うことができる。
 また、図9A)は、中空糸膜モジュール210の縦断面を示す断面図で、下部固定部材230の部分のみを示したもので、図9B)は、図9A)のC-C線における位置での中空糸膜モジュール210の横断面を示した断面図であるが、この図9に示すように、管状部241pが延在する方向に複数の立上り部241eを設けて散気孔200AOを複数設けることも可能である。
 すなわち、管状部241pの先端部においてのみ立上り部241eを形成させるのではなくこの先端部に至るまでの間に複数の立上り部241eを形成させてその先端を板状体231の上面231aにおいて上方に向けて開口させて多数の散気孔200AOを形成させることも可能である。
 このように一つの管状部241pに複数の立上り部241eを形成させて複数の散気孔200AOを備えさせることによって、中空糸膜束211aへの散気をより一層ムラ無く行うことができる。
By fixing the hollow fiber membrane bundle 211a between the radially formed hollow bodies 241 in this manner, the air diffusion holes 200AO and the hollow fiber membrane bundle 211a can be alternately arranged in the circumferential direction, and the hollow fiber membrane Aeration to the bundle 211a can be performed without unevenness.
FIG. 9A) is a sectional view showing a longitudinal section of the hollow fiber membrane module 210, showing only the lower fixing member 230, and FIG. 9B) is a position along the line CC in FIG. 9A). FIG. 9 is a cross-sectional view showing a cross section of the hollow fiber membrane module 210 of FIG. 9. As shown in FIG. 9, a plurality of rising portions 241e are provided in the direction in which the tubular portion 241p extends to provide a plurality of air holes 200AO. Is also possible.
That is, the rising portion 241e is not formed only at the distal end portion of the tubular portion 241p, but a plurality of rising portions 241e are formed before reaching the distal end portion, and the distal ends thereof are directed upward on the upper surface 231a of the plate-like body 231. It is also possible to form a large number of diffuser holes 200AO by opening them.
As described above, by forming the plurality of rising portions 241e in one tubular portion 241p and providing the plurality of air diffusion holes 200AO, air diffusion to the hollow fiber membrane bundle 211a can be performed more evenly.
 さらには、図10に見られるような扁平な円筒状の外観を有する中空体241も第2実施形態の中空糸膜モジュール210における散気部材240として採用可能である。
 この図10に示す中空体241は、板状体231よりも径小な円形の天井壁241rと底壁241bとを有し、板状体231の厚みよりも低い高さの円筒状の周側壁241wによって底壁241bと天井壁241rの外縁が連結された中空の円形基体部241cと該円形基体部241cの天井壁241rの開口から立ち上がりその上端を板状体231の上面231aに到達させた筒状の立上り部241eとを有している。
 この立上り部241eは、図10(A)のD-D線断面を示す図10(B)にも示されているように、前記中空体241に複数形成されており、この立上り部241eの上端が散気孔200AOとされ、該散気孔200AOが板状体231の上面231aにおいて上向きに開口されている。
Furthermore, a hollow body 241 having a flat cylindrical appearance as seen in FIG. 10 can also be adopted as the air diffuser 240 in the hollow fiber membrane module 210 of the second embodiment.
A hollow body 241 shown in FIG. 10 has a circular ceiling wall 241r and a bottom wall 241b having a diameter smaller than that of the plate-like body 231, and a cylindrical peripheral side wall having a height lower than the thickness of the plate-like body 231. A hollow circular base portion 241c in which the outer edges of the bottom wall 241b and the ceiling wall 241r are connected by 241w, and a cylinder whose upper end rises from the opening of the ceiling wall 241r of the circular base portion 241c and reaches the upper surface 231a of the plate-like body 231. And a rising portion 241e.
As shown in FIG. 10B, which shows a cross section taken along the line DD of FIG. 10A, a plurality of rising portions 241e are formed in the hollow body 241, and the upper end of the rising portion 241e is formed. Are diffused holes 200AO, and the diffused holes 200AO are opened upward on the upper surface 231a of the plate-like body 231.
 この中空体も、これまでに述べた中空体と同様に、その内部空間に気体を導入させるべく給気管240pが接続されており、前記円形基体部241cの前記天井壁241rの中心位置に前記給気管240pの下端部が接続されている。
 なお、この図10に一部の構造を示す中空糸膜モジュール210では、前記円形基体部241cの周囲において扇形に束ねられた中空糸膜束211aが固定されている。
Similarly to the hollow body described so far, this hollow body is also connected with an air supply tube 240p for introducing gas into its internal space, and the above-mentioned supply to the center position of the ceiling wall 241r of the circular base portion 241c. The lower end of the trachea 240p is connected.
In the hollow fiber membrane module 210 having a part of the structure shown in FIG. 10, the hollow fiber membrane bundle 211a bundled in a fan shape is fixed around the circular base portion 241c.
 このように下部固定部材230の板状体231の上面231aにおいて上向きに開口している散気孔200AOを形成させ、前記中空体241を板状体231の上面側に露出させない態様とすることで散気孔200AOから気泡を放出させて中空糸膜211を振動させても、散気部材240を構成している中空体241に振動された前記中空糸膜211が衝突することを回避することができ、中空糸膜211の損傷防止を図ることができる。
 なお、前記立上り部241eをさらに延長させて、その先端部を板状体231の上面231aよりも上方に位置させたとしても、この板状体231の上面側において気泡が上向きに開口された散気孔から放出される場合には、気泡の放出方向と中空糸膜211の延在する方向とが略平行となるために、散気孔200AOの近傍における中空糸膜211の振動が過度に大きなものとなることが抑制され、しかも、仮に中空糸膜211が前記立上り部241eと接触したとしても、立上り部241eの突出方向と中空糸膜211の延在する方向とが略平行となることから、従来の散気管が中空糸膜211に直交して配置されている場合に比べて接触時の衝撃が局所的に加えられることを抑制させ得る。
In this manner, the air diffusion hole 200AO opening upward is formed on the upper surface 231a of the plate-like body 231 of the lower fixing member 230, and the hollow body 241 is not exposed to the upper surface side of the plate-like body 231. Even if air bubbles are discharged from the pores 200AO to vibrate the hollow fiber membrane 211, the hollow fiber membrane 211 constituting the diffuser member 240 can be prevented from colliding with the hollow fiber membrane 211 that has been vibrated, Damage to the hollow fiber membrane 211 can be prevented.
Even if the rising portion 241e is further extended and its tip end portion is positioned above the upper surface 231a of the plate-like body 231, the bubbles are opened upward on the upper surface side of the plate-like body 231. In the case of being released from the pores, the direction of bubble release and the direction in which the hollow fiber membrane 211 extends are substantially parallel, and therefore the vibration of the hollow fiber membrane 211 in the vicinity of the air diffusion hole 200AO is excessively large. In addition, even if the hollow fiber membrane 211 comes into contact with the rising portion 241e, the protruding direction of the rising portion 241e and the extending direction of the hollow fiber membrane 211 are substantially parallel to each other. Compared with the case where the diffuser tube is arranged orthogonal to the hollow fiber membrane 211, it is possible to suppress the local application of impact at the time of contact.
 なお、図8~10のように、中空糸膜211が小分けされた束211aが中空体241の埋設箇所と別の箇所において埋設される場合には、通常、散気口が中空糸膜211と離れた位置に形成され易く、立上り部241eを上方に突出させたとしても立上り部241eと中空糸膜211との接触が抑制され得る。 As shown in FIGS. 8 to 10, when the bundle 211a into which the hollow fiber membrane 211 is subdivided is embedded at a location different from the location where the hollow body 241 is embedded, the air diffuser is normally connected to the hollow fiber membrane 211. Even if the rising portion 241e protrudes upward, the contact between the rising portion 241e and the hollow fiber membrane 211 can be suppressed.
 また、図6~10のように、中空糸膜211を固定する固定部を構成している板状体231に埋設させた中空体241に給気管240pを接続させる場合には、この給気管240pに元来期待されている支持部材200Sとしての機能をより好適に発揮させることとなる。
 例えば、支持部材200S(給気管240p)の外表面と、その周囲のポリマー組成物との接着力が低く支持部材200Sと下部板状体231とが剥離してしまったとしても、支持部材200Sの下端部が中空体241に接続されていることによって下部板状体231から支持部材200Sが外れてしまうことを防止させ得る。
 そのため、中空糸膜211を固定するためのポリマー組成物との相性の点から支持部材200Sの構成材料が制約されたりすることも抑制させることができ中空糸膜モジュールの設計の自由度を向上させうる。
As shown in FIGS. 6 to 10, when the air supply pipe 240p is connected to the hollow body 241 embedded in the plate-like body 231 constituting the fixing portion for fixing the hollow fiber membrane 211, the air supply pipe 240p Thus, the function as the support member 200S originally expected is more suitably exhibited.
For example, even if the support member 200S and the lower plate-like body 231 are peeled off because the adhesive force between the outer surface of the support member 200S (air supply tube 240p) and the surrounding polymer composition is low, the support member 200S Since the lower end portion is connected to the hollow body 241, the support member 200S can be prevented from being detached from the lower plate-like body 231.
Therefore, it is possible to prevent the constituent material of the support member 200S from being restricted in terms of compatibility with the polymer composition for fixing the hollow fiber membrane 211, and to improve the degree of freedom in designing the hollow fiber membrane module. sell.
 前記中空体241を下部板状体231に埋設させる方法は、特に限定されるものではないが、前記中空糸膜211を硬化性の液状ポリマーで一体化させる際に、併せて中空体241を埋設させればよく、このとき、必要に応じて予め支持部材200S(給気管240p)を中空体241に接続させた状態で埋設を行っても、中空体241のみを埋設させた後に支持部材200S(給気管240p)を接続させても良い。 A method for embedding the hollow body 241 in the lower plate-like body 231 is not particularly limited, but when the hollow fiber membrane 211 is integrated with a curable liquid polymer, the hollow body 241 is embedded together. At this time, even if the support member 200S (air supply tube 240p) is embedded in advance in a state of being connected to the hollow body 241, if necessary, the support member 200S ( An air supply pipe 240p) may be connected.
 なお、この第2-1実施形態のように、支持部材を中空体に空気を供給するための管体として利用することは本発明における必須の構成ではない。
 したがって、下記に述べる第2-2実施形態のような態様も本発明が意図する範囲のものである。
It should be noted that the use of the support member as a tube for supplying air to the hollow body as in the 2-1 embodiment is not an essential configuration in the present invention.
Accordingly, aspects such as the 2-2 embodiment described below are also within the scope of the present invention.
(第2-2実施形態)
 図11は本発明の第2-2実施形態を示すもので第2-1実施形態における図9、図10と同様に図11(A)は、中空糸膜モジュールの縦断面を示す断面図で、下部固定部材230の部分のみを示したものであり、図11(B)は、図11(A)のE-E線における位置での中空糸膜モジュール210の横断面を示した断面図である。
 前記第2-1実施形態においては、中空体241に散気のための気体を供給する管体(給気管)が支持部材を兼用していたが、この第2-2実施形態においては、給気管250が別途設けられている。
(Second embodiment)
FIG. 11 shows a 2-2 embodiment of the present invention. Like FIG. 9 and FIG. 10 in the 2-1 embodiment, FIG. 11 (A) is a sectional view showing a longitudinal section of the hollow fiber membrane module. FIG. 11 (B) is a cross-sectional view showing a cross section of the hollow fiber membrane module 210 at the position along the line EE in FIG. 11 (A). is there.
In the 2-1 embodiment, the pipe body (supply pipe) that supplies the gas for air diffusion to the hollow body 241 also serves as the support member. However, in this 2-2 embodiment, the supply body A trachea 250 is provided separately.
 この図11に示す中空糸膜モジュールは、下部固定部材230の板状体231を上下方向に貫通する直管状の中空体241が6本埋設されており、下部固定部材230のキャップ材232の底面部232bの中心部下方から該底面部232bを貫通して下部集水室230aに導入された給気管250が6本の細管に分岐され(分岐配管部251)、該分岐された管体を通じて前記中空体241の下端部に接続されている。
 すなわち、分岐配管部251の6本の細管の上端をそれぞれ6本の中空体241の下端に接続させている。
In the hollow fiber membrane module shown in FIG. 11, six straight tubular hollow bodies 241 penetrating the plate-like body 231 of the lower fixing member 230 in the vertical direction are embedded, and the bottom surface of the cap member 232 of the lower fixing member 230 is embedded. The air supply pipe 250 introduced into the lower water collecting chamber 230a through the bottom surface part 232b from below the center part of the part 232b is branched into six narrow pipes (branch pipe part 251), and through the branched pipe body, It is connected to the lower end of the hollow body 241.
In other words, the upper ends of the six narrow tubes of the branch pipe portion 251 are connected to the lower ends of the six hollow bodies 241 respectively.
 この第2-2実施形態において、下部固定部材230の板状体231の上面231aにおいて上向きに開口している散気孔200AOが形成される点については第2-1実施形態における中空糸膜モジュール210と同じであり、中空体241が板状体231の上面側に露出されないことによって中空体241と中空糸膜211との衝突が回避されて中空糸膜211の損傷防止が図られ得る点においても同じである。 In the 2-2 embodiment, the hollow fiber membrane module 210 in the 2-1 embodiment is formed in that the air diffusion hole 200AO opening upward is formed on the upper surface 231a of the plate-like body 231 of the lower fixing member 230. The hollow body 241 is not exposed on the upper surface side of the plate-like body 231, so that the collision between the hollow body 241 and the hollow fiber membrane 211 can be avoided and damage to the hollow fiber membrane 211 can be prevented. The same.
 しかも、この第2-2実施形態にかかる中空糸膜モジュールは、直管という極めて単純な構造を有する中空体241で散気部材240’が構成されており、しかも、板状体231の下面231bに露出させた箇所で給気のための管体と前記中空体241とが接続されていることから第2-1実施形態において例示した中空糸膜モジュールに比べて容易に製造され得る。 In addition, in the hollow fiber membrane module according to the 2-2 embodiment, the air diffuser 240 ′ is configured by the hollow body 241 having a very simple structure called a straight pipe, and the lower surface 231b of the plate-like body 231 is formed. Since the tube body for supplying air and the hollow body 241 are connected to each other at the exposed portion, the hollow fiber membrane module illustrated in the embodiment 2-1 can be easily manufactured.
 なお、下部固定部材230の外部から下部板状体231の下方に前記給気管250を導入させる態様については、図11(A)に示すようなキャップ材232の下方から導入する場合に限定されるものではなく、例えば、図11(A’)に示すような変更例も採用可能である。
 すなわち、キャップ材232の側方から周壁部231wを貫通させて下部板状体231の下方で分岐配管部251に接続させる場合も本発明の中空糸膜モジュールとして意図する範囲のものである。
 この第2-2実施形態のように散気のための気体を中空体241に供給する管体と支持部材とを兼用させない態様とは逆に、下記に述べる第2-3実施形態のように複数本の支持部材を用い、しかも、その一部または全部の支持部材を給気管として用いる場合も本発明が意図する範囲である。
In addition, about the aspect which introduces the said air supply pipe | tube 250 to the downward direction of the lower plate-shaped body 231 from the exterior of the lower fixing member 230, it is limited to the case where it introduce | transduces from the downward direction of the cap material 232 as shown to FIG. 11 (A). For example, a modified example as shown in FIG. 11 (A ′) can also be employed.
That is, the case where the peripheral wall portion 231w is penetrated from the side of the cap member 232 and connected to the branch pipe portion 251 below the lower plate-like body 231 is also within the intended range of the hollow fiber membrane module of the present invention.
Contrary to the embodiment in which the tube body for supplying the gas for aeration to the hollow body 241 and the support member are not combined as in the second to second embodiments, the second to third embodiments described below are used. The case where a plurality of support members are used and a part or all of the support members are used as the air supply pipe is also within the scope of the present invention.
(第2-3実施形態)
 図12は、本発明の第2-3実施形態を示すもので第2-2実施形態において示した図11と同様に図12(A)が、中空糸膜モジュールの縦断面を示す断面図で、下部固定部材230の部分のみを示したものであり、図12(B)が、図12(A)のF-F線における位置での中空糸膜モジュール210の横断面を示した断面図である。
 前記第2-1実施形態においては、給気管を兼用した単一の支持部材が中空糸膜モジュールの中心部に配されていたが、この第2-2実施形態においては、4本の杆状の支持部材200Sがそれぞれ両端部を上部固定部材220と下部固定部材とに固定させてこれらの支持に用いられている。
(2-3 embodiment)
FIG. 12 shows a second to third embodiment of the present invention. Like FIG. 11 shown in the 2-2 embodiment, FIG. 12A is a sectional view showing a longitudinal section of the hollow fiber membrane module. FIG. 12B shows only the lower fixing member 230, and FIG. 12B is a cross-sectional view showing a cross section of the hollow fiber membrane module 210 at the position along the line FF in FIG. 12A. is there.
In the 2-1 embodiment, the single support member that also serves as the air supply pipe is arranged at the center of the hollow fiber membrane module. However, in the 2-2 embodiment, four saddle-shaped members are used. The supporting members 200S are used for supporting both ends of the supporting member 200S by fixing them to the upper fixing member 220 and the lower fixing member.
 この4本の支持部材200Sは、下部固定部材230の板状体231における固定位置ならびに上部固定部材220における固定位置が、それぞれの位置を結んだ直線が略正方形となるように配置されており、この正方形の中心が中空糸膜モジュールの中心部に位置するように配されている。
 そして、この第2-3実施形態においても、支持部材200Sを給気管240pとして用いるべく、前記支持部材200Sとして中空の管体が採用されており、4本全ての支持部材200Sを給気管240pとして機能させるべく4本全ての支持部材200Sに管体が使用されている。
The four support members 200S are arranged such that the fixing position of the lower fixing member 230 in the plate-like body 231 and the fixing position of the upper fixing member 220 are substantially squares connecting the respective positions. The center of this square is arranged so as to be located at the center of the hollow fiber membrane module.
Also in the second to third embodiments, in order to use the support member 200S as the supply pipe 240p, a hollow tube is adopted as the support member 200S, and all four support members 200S are used as the supply pipe 240p. Tubes are used for all four support members 200S in order to function.
 そして、この4本の支持部材200Sは、その下端部を前記板状体231に埋設させて固定されており、この埋設された箇所において4本の中空管で接続されている。
 具体的には、前記板状体231には、先の正方形の4辺に相当する位置にそれぞれの辺に沿った形で中空管が埋設固定されている。
 該中空管は散気部材240を構成する中空体241として備えられているものであり、一つの中空管はその両端をそれぞれ別の支持部材200S(給気管240p)に接続させている。
 すなわち、中空体(中空管)が管体(給気管)に接続されて互いの中空領域を連通させている点においては第2実施形態の散気部材240”も第2-1実施形態の散気部材240と共通しているが、この第2-3実施形態における中空体241’は2本の給気管240pの間を連通させる連結管である点において第2-1実施形態において例示している態様と相違している。
The four support members 200S are fixed with their lower ends embedded in the plate-like body 231 and connected by four hollow tubes at the embedded locations.
Specifically, in the plate-like body 231, hollow tubes are embedded and fixed at positions corresponding to the four sides of the square in the form along the respective sides.
The hollow tube is provided as a hollow body 241 constituting the diffuser member 240, and one hollow tube has its both ends connected to another support member 200S (air supply tube 240p).
That is, in the point that the hollow body (hollow pipe) is connected to the pipe body (air supply pipe) and the hollow regions communicate with each other, the air diffusion member 240 "of the second embodiment is also the same as that of the 2-1 embodiment. Although common to the diffuser member 240, the hollow body 241 'in the second to third embodiments is exemplified in the second to first embodiments in that it is a connecting pipe that communicates between the two air supply pipes 240p. It is different from the embodiment.
 この2本の給気管240pの間を連通させる連結管241’は、その埋設深さが当該連結管241’の直径程度とされており、その管壁を下部板状体231の上面231aに僅かに露出させた状態でポリマー組成物中に埋設されている。
 そして、この連結管241’には、前記給気管240pからこの連結管241’の内部に導入された気体を散気するための散気孔200AOとして、この下部板状体231の上面231aに露出する箇所に該連結管241’の長さ方向に沿って複数の貫通孔が管壁に穿設されている。
 この貫通孔は4本全ての連結管241’に設けられており、第2実施形態の中空糸膜モジュールにおいては、複数の散気孔200AOがその開口を上方に向けた状態で下部板状体231の上面231aに正方形に並んで配置されている。
The connecting pipe 241 ′ communicating between the two air supply pipes 240 p has an embedding depth of about the diameter of the connecting pipe 241 ′, and the pipe wall is slightly on the upper surface 231 a of the lower plate-like body 231. Embedded in the polymer composition in an exposed state.
The connecting pipe 241 ′ is exposed to the upper surface 231a of the lower plate-like body 231 as an air diffusion hole 200AO for diffusing gas introduced from the air supply pipe 240p into the connecting pipe 241 ′. A plurality of through holes are formed in the tube wall at locations along the length direction of the connecting tube 241 ′.
The through holes are provided in all four connecting pipes 241 ′. In the hollow fiber membrane module of the second embodiment, the lower plate-like body 231 has a plurality of air diffusion holes 200AO facing upward. Are arranged in a square on the upper surface 231a.
 この第2-3実施形態において、下部固定部材230の板状体231の上面231aにおいて上向きに開口している散気孔200AOから気泡を発生させることで中空体241と中空糸膜211との衝突を回避しつつ中空糸膜211の付着物除去を行い得る点においては第2-1、第2-2実施形態における中空糸膜モジュールと同じである。
 しかも、この第2-3実施形態においては、複数の給気管240pから一つの中空体(連結管241’)に気体の供給が行われ得ることから、例え、一つの給気管240pに障害が生じたとしても、他の給気管240pを利用して散気を継続させることができる。
In this second to third embodiment, the collision between the hollow body 241 and the hollow fiber membrane 211 is caused by generating bubbles from the air diffusion holes 200AO opened upward on the upper surface 231a of the plate-like body 231 of the lower fixing member 230. It is the same as the hollow fiber membrane module in the 2-1 and 2-2 embodiments in that the deposits on the hollow fiber membrane 211 can be removed while avoiding it.
Moreover, in the second to third embodiments, gas can be supplied from a plurality of air supply pipes 240p to one hollow body (connecting pipe 241 ′). For example, a failure occurs in one air supply pipe 240p. Even so, it is possible to continue the aeration using the other air supply pipe 240p.
 なお、このような効果を奏する点において、前記連結管241’の全体を前記板状体231に埋設させるのではなく、その一部、又は全部を露出させたものも本発明の中空糸膜モジュールとして採用が可能ではあるが、その場合には、中空糸膜モジュールと連結管241’とが接触する可能性を高めることになる。
 したがって、仮に、板状体231の上側に完全に露出された状態で連結管を配して、上向きに開口させた散気孔から気泡を発生させるような態様とする場合には、この連結管を硬質のものとするのではなく、ゴムホースのような柔軟な素材で構成させることが好ましい。
 なお、第2-1、第2-2実施形態において板状体231の上面231から上方に中空体の一部を突出させるような場合についても、少なくとも、この突出箇所を軟質なゴム製の部材などとすることで中空糸膜の損傷をより一層低減できることについては同じである。
In addition, the hollow fiber membrane module of the present invention is a module in which the whole of the connecting pipe 241 ′ is not embedded in the plate-like body 231 but part or all of the connecting pipe 241 ′ is exposed in view of the above effects. However, in that case, the possibility that the hollow fiber membrane module and the connecting pipe 241 ′ come into contact with each other is increased.
Therefore, if the connection pipe is arranged in a state where it is completely exposed above the plate-like body 231, and the bubbles are generated from the diffused holes opened upward, this connection pipe is used. It is preferable to use a flexible material such as a rubber hose instead of a hard material.
Even in the case of projecting a part of the hollow body upward from the upper surface 231 of the plate-like body 231 in the 2-1 and 2-2 embodiments, at least the projecting portion is made of a soft rubber member. It is the same that the damage of the hollow fiber membrane can be further reduced by setting.
 また、連結管241’を被処理水に露出させつつ中空糸膜211との衝突を回避させる方法として、図12(A’)、図12(B’)(図12A’のG-G線断面)に示すような変更例を採用することも可能である。
 この図12の(A’)、(B’)は、下部板状体231の上面側にその中心部を通って直交し、しかも、前記連結管241’の太さと同等、又はそれ以上の溝深さを有する十字の溝200ALが形成され、該十字の溝200ALの4つの端部にそれぞれ下端部を前記下部板状体231に埋設させて固定させた状態で管状の支持部材200S(給気管240p)が配され、前記溝200ALに配した十字状の連結管241’でこの4本の支持部材間が連結された散気機構を有する中空糸膜モジュールを示している。
 すなわち、図12(A’)、(B’)に示す中空糸膜モジュールは、一つの中空体(連結管241’)に4本の支持部材200Sから気体の供給を受けることができ前記十字状の連結管241’の上面に開口された散気孔200AOから気泡を発生させ得るように形成されているものである。
 なお、要すれば、4本の支持部材200Sの内の1本以上を給気管240pとすべく管体とし、残りを中実の杆体としてもよい。
 また、十字形状によらず溝を設けて連結管241’を収容させる態様とすることで、中空体(連結管241’)の交換が容易でありながら散気によって振動された中空糸膜211が前記連結管241’に衝突するおそれを抑制させ得る。
 また、連結管241’は、板状体231の表面から露出させることも可能である。
 なお、溝200ALの深さは、連結管241’の太さの1/3以上であることが好ましく、連結管241’の太さと同等またはそれ以上であることがより好ましい。
Further, as a method of avoiding the collision with the hollow fiber membrane 211 while exposing the connecting pipe 241 ′ to the water to be treated, FIG. 12 (A ′), FIG. 12 (B ′) (cross-sectional view taken along the line GG in FIG. 12A ′). It is also possible to adopt a modification example as shown in FIG.
(A ′) and (B ′) in FIG. 12 are grooves that are orthogonal to the upper surface side of the lower plate-like body 231 through the center thereof, and that are equal to or larger than the thickness of the connecting pipe 241 ′. A cross-shaped groove 200AL having a depth is formed, and the tubular support member 200S (air supply pipe) is formed in a state where the lower end portions are embedded in the lower plate-like body 231 and fixed to four ends of the cross-shaped groove 200AL. 240p), and a hollow fiber membrane module having an air diffusion mechanism in which the four support members are connected by a cross-shaped connecting pipe 241 ′ arranged in the groove 200AL.
That is, the hollow fiber membrane module shown in FIGS. 12A ′ and 12B ′ can receive gas supply from four support members 200S to one hollow body (connecting tube 241 ′). Is formed so that air bubbles can be generated from the air diffusion holes 200AO opened in the upper surface of the connecting pipe 241 ′.
In addition, if necessary, one or more of the four support members 200S may be a pipe body to serve as the supply pipe 240p, and the rest may be a solid casing.
In addition, by adopting a mode in which a groove is provided regardless of the cross shape and the connecting pipe 241 ′ is accommodated, the hollow fiber membrane 211 that is vibrated by aeration while being easy to replace the hollow body (connecting pipe 241 ′) is provided. The possibility of collision with the connecting pipe 241 ′ can be suppressed.
Further, the connecting pipe 241 ′ can be exposed from the surface of the plate-like body 231.
The depth of the groove 200AL is preferably not less than 1/3 of the thickness of the connecting pipe 241 ′, and more preferably equal to or greater than the thickness of the connecting pipe 241 ′.
 以上に例示した第2実施形態においては中空体や支持部材、といった本発明の中空糸膜モジュールを構成させる各部材については、従来公知の部材を用いて形成させることができ、その形成部材としては、樹脂管、金属管といったものを採用することができる。
 また、上下のキャップ材や中空糸膜等についても同様に従来公知の部材を用いて形成させることができる。
In the second embodiment exemplified above, each member constituting the hollow fiber membrane module of the present invention, such as a hollow body or a support member, can be formed using a conventionally known member. A resin tube, a metal tube, or the like can be used.
Similarly, upper and lower cap materials, hollow fiber membranes, and the like can also be formed using conventionally known members.
 なお、上記第2-1から第2-3実施形態においては、縦長円筒状の外観を有する中空糸膜モジュールを例示しているが本発明の中空糸膜モジュールは、全体形状を略円筒状に限定するものではない。
 また、上記第2-1実施形態においては、上部集水室のみから透過水を排出させることによって上下両方で集水される構造の中空糸膜モジュールを例示しているが、下部集水室のみから透過水を排出させることによって上下両方で集水される構造の中空糸膜モジュールや、上下の集水室を連通させる通水管を設けることなく上部集水室と下部集水室との両方から、それぞれ独立して透過水を排出させ得るように構成された中空糸膜モジュールも本発明の意図する範囲である。
 さらに、中空糸膜モジュールの構成部材として従来公知の部材を、本発明の効果が著しく損なわれない範囲において本発明の中空糸膜モジュールにも採用することが可能なものである。
In the above-described embodiments 2-1 to 2-3, the hollow fiber membrane module having a vertically cylindrical appearance is illustrated, but the hollow fiber membrane module of the present invention has a substantially cylindrical shape as a whole. It is not limited.
Further, in the above-described 2-1 embodiment, the hollow fiber membrane module having a structure in which the permeated water is collected from both the upper and lower sides by discharging the permeated water from only the upper water collecting chamber is exemplified, but only the lower water collecting chamber is illustrated. From both the upper and lower water collection chambers without a hollow fiber membrane module that collects water from both the upper and lower sides by discharging permeated water from the upper and lower water collecting pipes. The hollow fiber membrane modules configured to discharge the permeated water independently of each other are also within the intended scope of the present invention.
Furthermore, a conventionally well-known member can be employed in the hollow fiber membrane module of the present invention as long as the effects of the present invention are not significantly impaired as a constituent member of the hollow fiber membrane module.
 なお、本発明の中空糸膜モジュールは、以下のような水処理に好適に用いられ得る。
 図13は、この水処理方法を説明するための装置概要図であり、第2-2実施形態の中空糸膜モジュール210が用いられた水処理装置の一実施形態を示す図である。
In addition, the hollow fiber membrane module of this invention can be used suitably for the following water treatments.
FIG. 13 is an apparatus schematic diagram for explaining this water treatment method, and is a view showing an embodiment of a water treatment apparatus using the hollow fiber membrane module 210 of the 2-2 embodiment.
 この水処理装置260は、第2実施形態では懸濁物質を含有する被処理水を膜分離して上水として供給可能な状態の透過水を得られるように構成されたものである。
 図13に示すように、水処理装置260には、被処理水供給ライン261からの被処理水が供給される被処理水槽262が備えられている。
 また、第2実施形態の水処理装置260には、この被処理水槽262内の被処理水中に起立姿勢で浸漬されて配置された複数の中空糸膜モジュール210と、これらの中空糸膜モジュール210に接続され、吸引ポンプ263aを有して該吸引ポンプ263aによって中空糸膜内部を吸引することにより被処理水の膜ろ過による固液分離を行って透過水を取り出すための透過水取出しライン263とを有する膜分離装置が備えられている。
 さらに、第2実施形態の水処理装置260には、中空糸膜モジュール210の散気部材によるエアスクラビングを実施させるための空気供給源264aと、該空気供給源264aから空気を搬送し前記給気管240p(図6等参照)を通じて前記中空体241に空気を供給するための空気供給ライン264と、被処理水槽262内の沈殿物を排出するための沈殿物排出ライン265とを備えている。
In the second embodiment, the water treatment apparatus 260 is configured to obtain permeated water in a state in which water to be treated containing suspended solids can be membrane-separated and supplied as clean water.
As shown in FIG. 13, the water treatment device 260 is provided with a water tank 262 to which water to be treated is supplied from a water supply line 261 to be treated.
Further, the water treatment apparatus 260 of the second embodiment includes a plurality of hollow fiber membrane modules 210 arranged so as to be immersed in the standing water in the water to be treated in the water tank 262 to be treated, and these hollow fiber membrane modules 210. A permeated water extraction line 263 that has a suction pump 263a and sucks the inside of the hollow fiber membrane by the suction pump 263a to perform solid-liquid separation by membrane filtration of the water to be treated to take out the permeated water; A membrane separation apparatus having
Furthermore, in the water treatment device 260 of the second embodiment, an air supply source 264a for performing air scrubbing by the air diffuser of the hollow fiber membrane module 210, and air is conveyed from the air supply source 264a, and the air supply pipe The air supply line 264 for supplying air to the said hollow body 241 through 240p (refer FIG. 6 etc.) and the deposit discharge line 265 for discharging the deposit in the to-be-processed water tank 262 are provided.
 また、図13の水処理装置における透過水取出しライン263は、各中空糸膜モジュール210の上部のキャップ材222の開口222sに接続された集水管263b、各集水管263bに連通する集水ヘッダー管263c、透過水取出し管263dを有している。
 また、空気供給ライン264は、空気供給源264aと、該空気供給源264aによって加圧された空気を供給する空気輸送管264bと、該空気輸送管264bから分岐した空気輸送分岐管264dと、その各空気輸送分岐管264dの先端部分が各中空糸膜モジュール210の給気管250(図11参照)に接続されて構成されている。
 なお、各中空糸膜モジュール210は、その上部固定部材220がその全体を水面下に浸漬させる状態で水処理装置に設置されている。
Further, the permeated water extraction line 263 in the water treatment apparatus of FIG. 13 includes a water collection pipe 263b connected to the opening 222s of the cap member 222 at the top of each hollow fiber membrane module 210, and a water collection header pipe communicating with each water collection pipe 263b. 263c and a permeate take-out pipe 263d.
The air supply line 264 includes an air supply source 264a, an air transport pipe 264b that supplies air pressurized by the air supply source 264a, an air transport branch pipe 264d that branches from the air transport pipe 264b, A tip portion of each pneumatic transport branch pipe 264d is configured to be connected to an air supply pipe 250 (see FIG. 11) of each hollow fiber membrane module 210.
In addition, each hollow fiber membrane module 210 is installed in the water treatment apparatus in a state in which the upper fixing member 220 is immersed entirely below the water surface.
 このように構成される水処理装置260を用いた水処理方法においては、前記吸引ポンプ263aによって上部集水室220aに対して吸引を行い、この上部集水室220aならびに通水管200Pで連通された下部集水室230aを負圧状態にさせ、そのことによって中空糸膜211の外部から内側に透過水を透過させて上下両方からの集水を実施する。
 そして、この吸引ポンプ263aによる吸引を継続させることによって透過水が中空糸膜モジュールから排出されて前記中空糸膜211による被処理水の膜分離が継続されることになる。
In the water treatment method using the water treatment device 260 configured as described above, the suction pump 263a sucks the upper water collection chamber 220a and communicates with the upper water collection chamber 220a and the water pipe 200P. The lower water collecting chamber 230a is brought into a negative pressure state, thereby allowing permeate to permeate from the outside to the inside of the hollow fiber membrane 211 to collect water from both the upper and lower sides.
By continuing the suction by the suction pump 263a, the permeated water is discharged from the hollow fiber membrane module, and the membrane separation of the water to be treated by the hollow fiber membrane 211 is continued.
 このような工程(膜分離工程)中においては、被処理水に含まれている懸濁物質は、主として中空糸膜211の表面において捕捉され、中空糸膜の内部には、清浄な水が透過水として透過されることになる。
 そして、中空糸膜211の表面に付着した懸濁物質は中空糸膜211の透過性を低下させる要因となって、吸引ポンプ263aの動力負荷を増大させる要因となる。
 したがって、この膜分離工程の効率低下を図る上では、中空糸膜211の表面に付着した付着物を除去することが好ましい。
In such a process (membrane separation process), suspended substances contained in the water to be treated are mainly captured on the surface of the hollow fiber membrane 211, and clean water permeates inside the hollow fiber membrane. Permeated as water.
And the suspended substance adhering to the surface of the hollow fiber membrane 211 becomes a factor which reduces the permeability | transmittance of the hollow fiber membrane 211, and becomes a factor which increases the power load of the suction pump 263a.
Therefore, in order to reduce the efficiency of the membrane separation step, it is preferable to remove the deposits attached to the surface of the hollow fiber membrane 211.
 第2実施形態においては、先述のような散気部材240’を有する中空糸膜モジュール210が水処理装置に採用されているために、当該散気部材240’で気泡を発生させる散気工程を実施して前記付着物を除去させることができる。
 すなわち、前記空気供給源264aから、空気輸送管264b、空気輸送分岐管264d及び給気管250を通じて中空体241に空気を供給し、中空糸膜211の下端を固定している固定部の上側に設けた散気孔200AOから上向きに気泡を発生させ、中空糸膜211に対する気泡の衝突による打力や、気泡の浮上によって生じる水流によって中空糸膜211に振動を与え付着物の脱落除去を行う。
 なお、このとき必要であれば、前記吸引ポンプ263aによる吸引とは逆に、前記集水室220a,230aを加圧して中空糸膜211の内側から外側に透過水を透過させる逆洗浄を行ってもよい。
In the second embodiment, since the hollow fiber membrane module 210 having the diffuser member 240 ′ as described above is employed in the water treatment apparatus, the diffuser step of generating bubbles in the diffuser member 240 ′ is performed. It can be carried out to remove the deposits.
That is, air is supplied from the air supply source 264a to the hollow body 241 through the air transport pipe 264b, the air transport branch pipe 264d, and the air supply pipe 250, and is provided above the fixing portion that fixes the lower end of the hollow fiber membrane 211. Bubbles are generated upward from the diffused air holes 200AO, and the hollow fiber membrane 211 is vibrated by the striking force caused by the collision of the bubbles against the hollow fiber membrane 211 and the water flow generated by the bubble rising, and the deposits are removed and removed.
In addition, if necessary at this time, contrary to the suction by the suction pump 263a, the water collection chambers 220a and 230a are pressurized to perform reverse cleaning that allows permeate to permeate from the inside to the outside of the hollow fiber membrane 211. Also good.
 この散気工程においては、先述のように、中空糸膜211の延在方向に向けて気泡の放出が行われることで散気孔200AOの近傍に配された中空糸膜211が過度に振動することを防止でき、中空糸膜211に損傷が生じることが抑制されつつ付着物の除去が行われる。
 したがって、透過水の水質低下が生じるおそれを抑制しつつ効率の良い水処理方法を実施することができる。
 このことによって、特に、水質に対して要求の厳しい上水処理に好適な水処理方法が提供されうる。
 なお、第2実施形態の水処理方法としては上水処理に限定されるものではなく、広く一般の水処理に応用が可能なものである。
In this air diffusion process, as described above, the hollow fiber membrane 211 disposed in the vicinity of the air diffusion holes 200AO vibrates excessively by releasing the bubbles in the extending direction of the hollow fiber membrane 211. The deposits are removed while the occurrence of damage to the hollow fiber membrane 211 is suppressed.
Therefore, it is possible to implement an efficient water treatment method while suppressing the possibility that the quality of the permeated water is deteriorated.
This can provide a water treatment method particularly suitable for clean water treatment, which is demanding for water quality.
The water treatment method of the second embodiment is not limited to the water treatment, and can be widely applied to general water treatment.
第3実施形態
 次に、第3実施形態の中空糸膜モジュール、水処理方法としての膜分離方法、及び水処理装置について説明する。
3rd Embodiment Next, the hollow fiber membrane module of 3rd Embodiment, the membrane separation method as a water treatment method, and a water treatment apparatus are demonstrated.
 ところで、河川水、湖沼水、地下水、海水などの浄水処理、あるいは下水、工業廃水を処理する水処理装置などにおいて、近年、被処理水中に、中空糸膜を上下方向に延在させて保持した起立姿勢にて浸漬させて、中空糸膜内部を吸引することにより被処理水の膜分離を実施して透過水を得る中空糸膜モジュールが用いられるようになってきている。 By the way, in recent years, in water treatment devices that treat river water, lake water, groundwater, seawater, etc., or water treatment equipment that treats sewage and industrial wastewater, hollow fiber membranes have been extended and retained in the water to be treated. Hollow fiber membrane modules that perform permeation of water to be treated by dipping in a standing posture and sucking the inside of the hollow fiber membrane to obtain permeated water have been used.
 この種の従来の被処理水の膜分離に用いられる中空糸膜モジュールは、被処理水中の浮遊性固形物や粘着性有機化合物などの付着物が中空糸膜に付着することで中空糸膜の透過性能を低下させやすく、中空糸膜の透過性能が低下すると水処理装置の運転効率をも低下させることとなるため、従来、この透過性能の低下を抑制させる方法が広く検討されている。 This type of conventional hollow fiber membrane module used for membrane separation of water to be treated has a structure in which hollow fiber membranes are adhered to the hollow fiber membrane by adhering substances such as floating solids and adhesive organic compounds in the water to be treated. Since the permeation performance is likely to be reduced, and the permeation performance of the hollow fiber membrane is lowered, the operation efficiency of the water treatment apparatus is also lowered. Conventionally, methods for suppressing this permeation performance decline have been widely studied.
 この透過性能の低下を抑制させる方法として、中空糸膜を上下方向に延在させて膜分離を実施する中空糸膜モジュールにおいては、中空糸膜の下端部側で散気を実施することによって発生させた気泡で中空糸膜表面の付着物を除去するエアスクラビングと呼ばれる方法が知られている。
 例えば、上下に離間されて配された固定部材に中空糸膜の両端部をそれぞれ固定させてこの下部側の固定部材の上面側から気泡を発生させて同様に付着物を除去しながら膜分離を実施する方法が知られている。
 このような散気を実施するための散気機構を有する中空糸膜モジュールとしては、特開2003-326140号公報(特許文献2)、国際公開WO2004/112944号公報(特許文献3)に記載のものが知られている。
As a method of suppressing this decrease in permeation performance, in a hollow fiber membrane module that performs membrane separation by extending the hollow fiber membrane in the vertical direction, it is generated by performing aeration at the lower end side of the hollow fiber membrane. A method called air scrubbing is known, in which deposits on the surface of the hollow fiber membrane are removed with the generated bubbles.
For example, both ends of the hollow fiber membrane are fixed to fixing members that are spaced apart from each other in the vertical direction, and bubbles are generated from the upper surface side of the lower fixing member to perform membrane separation while removing deposits in the same manner. The method of performing is known.
As a hollow fiber membrane module having an air diffusion mechanism for carrying out such air diffusion, it is described in Japanese Patent Application Laid-Open No. 2003-326140 (Patent Document 2) and International Publication WO 2004/112944 (Patent Document 3). Things are known.
 この特許文献2、3に記載の中空糸膜モジュールは、複数本の中空糸膜を起立姿勢にて保持させ得るように、中空糸膜の両端部の内の一端部(上端部)を固定する上部固定部材と、他端部(下端部)を固定する下部固定部材とが備えられており、この下部固定部材側から被処理水中に気泡を発生させて中空糸膜にエアスクラビングを実施し得るように散気機構を有する。 The hollow fiber membrane modules described in Patent Documents 2 and 3 fix one end (upper end) of both ends of the hollow fiber membrane so that a plurality of hollow fiber membranes can be held in a standing posture. An upper fixing member and a lower fixing member for fixing the other end (lower end) are provided, and air scrubbing can be performed on the hollow fiber membrane by generating bubbles from the lower fixing member side in the water to be treated. It has a diffuser mechanism.
 しかし、この特許文献2、3に記載のエアスクラビングの場合、下部固定部材から気泡を発生させるために、下から上への上昇方向の気泡の流れしか作ることができない。
 従って、中空糸膜が延設されている方向と平行にしか気泡が移動せず、中空糸膜の付着物を十分に除去できない場合もある。
However, in the case of air scrubbing described in Patent Documents 2 and 3, in order to generate bubbles from the lower fixing member, only a flow of bubbles in the upward direction from the bottom to the top can be created.
Therefore, there are cases where the bubbles move only in parallel with the direction in which the hollow fiber membrane is extended, and the adhered matter on the hollow fiber membrane cannot be sufficiently removed.
 一方、中空糸膜モジュールの上下両側から透過水を導出する濾過装置が特開2006-305443号公報(特許文献1)に記載されている。
 この特許文献1に記載の中空糸モジュールは、中空糸膜の上下端部が開口している集水部を介して、ポンプによって処理液取出管から透過水を導出するものである。
 このように上下両側から透過水を導出できるため、上側からのみ透過水を導出する水処理装置比べて効率よく透過水を回収できるという利点がある。
 この上下両側に集水部を設けた水処理装置においてエアスクラビングを実施しようとすると、前記のように下部固定部材側にも集水部が設けられているため、下部固定部材から気泡を発生させて中空糸膜に気泡を散気させることが難しい。
 そのため、特許文献1には、中空糸膜に水平方向から中空糸膜の間を縫うように管状体を差し込み、該管状体の先端部から気泡を散気させることでエアスクラビングを行う水処理装置が記載されている。
On the other hand, a filtration device for deriving permeated water from both upper and lower sides of a hollow fiber membrane module is described in Japanese Patent Application Laid-Open No. 2006-305443 (Patent Document 1).
In the hollow fiber module described in Patent Document 1, permeated water is led out from a processing liquid take-out pipe by a pump through a water collecting portion having upper and lower ends of the hollow fiber membrane open.
Since the permeated water can be derived from both the upper and lower sides in this way, there is an advantage that the permeated water can be efficiently recovered as compared with the water treatment apparatus that derives the permeated water only from the upper side.
When air scrubbing is attempted in the water treatment apparatus provided with water collecting portions on both the upper and lower sides, since the water collecting portion is also provided on the lower fixing member side as described above, bubbles are generated from the lower fixing member. It is difficult to diffuse air bubbles through the hollow fiber membrane.
Therefore, in Patent Document 1, a water treatment device that performs air scrubbing by inserting a tubular body into a hollow fiber membrane so as to sew between the hollow fiber membranes from the horizontal direction and causing air bubbles to diffuse from the tip of the tubular body. Is described.
 しかし、中空糸膜の間に前記のような管状体を挿入した場合には、管状体の先端部が露出しているため、先端部が中空糸膜に接触することで中空糸膜が損傷する可能性がある。
 このように管状体との接触により中空糸が損傷した場合には、破損部分から懸濁物質を吸い込んでしまい、その結果、良質の処理水が得られず、特に上水処理分野には不適となるという問題がある。
However, when the tubular body as described above is inserted between the hollow fiber membranes, the distal end portion of the tubular body is exposed, so that the hollow fiber membrane is damaged when the distal end portion contacts the hollow fiber membrane. there is a possibility.
When the hollow fiber is damaged due to contact with the tubular body in this way, the suspended matter is sucked from the broken portion, and as a result, high-quality treated water cannot be obtained, and is not particularly suitable for the field of water treatment. There is a problem of becoming.
 上記従来の問題点に鑑み、第3実施形態は、効果的にエアスクラビングを行い膜分離における透過性能の低下を抑制しつつ、中空糸膜の損傷を抑制させうる中空糸膜モジュール、膜分離方法及び水処理装置を提供することを課題とする。 In view of the above-described conventional problems, the third embodiment is a hollow fiber membrane module and a membrane separation method capable of suppressing damage to the hollow fiber membrane while effectively performing air scrubbing and suppressing deterioration in permeation performance in membrane separation. It is another object of the present invention to provide a water treatment apparatus.
 図14は本発明の第3実施形態の中空糸膜モジュールを起立状態にさせた様子を側面方向から見た一部断面図であり、図15は図14の中空糸モジュールを上部からみた平面図である。図中の符号310が中空糸膜モジュールを表している。
 第3実施形態の中空糸膜モジュール310は縦長円筒状に形成されており、その上下方向中間部に複数本の中空糸膜311が露出する状態で備えられている。
 第3実施形態の中空糸膜モジュール310は、複数本の中空糸膜311の両端部の内の一端部を下部側で固定する下部固定部材320と、他端部を上部側で固定する上部固定部材330の2つの固定部材が用いられている。
FIG. 14 is a partial cross-sectional view of the hollow fiber membrane module according to the third embodiment of the present invention in an upright state, as viewed from the side, and FIG. 15 is a plan view of the hollow fiber module of FIG. It is. The code | symbol 310 in a figure represents the hollow fiber membrane module.
The hollow fiber membrane module 310 of the third embodiment is formed in a vertically long cylindrical shape, and is provided in a state in which a plurality of hollow fiber membranes 311 are exposed at an intermediate portion in the vertical direction.
The hollow fiber membrane module 310 of the third embodiment includes a lower fixing member 320 that fixes one end of both ends of the plurality of hollow fiber membranes 311 on the lower side, and an upper fixing that fixes the other end on the upper side. Two fixing members of the member 330 are used.
 すなわち、複数本の中空糸膜311は、両端部が揃えられた状態でその長さ方向を上下方向に延在させて中空糸膜モジュール310に備えられている。
 なお、中空糸膜モジュール310を構成する中空糸膜311としては、精密ろ過膜又は限外濾過膜等が用いられうる。
That is, the plurality of hollow fiber membranes 311 are provided in the hollow fiber membrane module 310 with their longitudinal ends extending in the vertical direction with both ends aligned.
As the hollow fiber membrane 311 constituting the hollow fiber membrane module 310, a microfiltration membrane or an ultrafiltration membrane can be used.
 前記上部固定部材330は、円筒体331と、透過水出口332aおよび中央部に設けられた管状体取り付け孔332bを有して前記円筒体331上側に取り付けられる円形上板332が備えられている。
 図16は、上部固定部材330の一部を拡大した断面図であり、この図16に示すように前記円筒体331の下端周縁部にはフランジ部331aが形成されている。
 前記上部固定部材330の内側には板状体334が備えられている。
 板状体334は、接着剤が固化されて板状に形成されたものであり、前記中空糸膜311はその端部を前記板状体334の下面側から上面側に貫通させて板状体334に固定されている。
The upper fixing member 330 includes a cylindrical body 331, a permeated water outlet 332a, and a circular upper plate 332 attached to the upper side of the cylindrical body 331 having a tubular body mounting hole 332b provided at the center.
FIG. 16 is an enlarged cross-sectional view of a part of the upper fixing member 330. As shown in FIG. 16, a flange portion 331a is formed on the lower peripheral edge of the cylindrical body 331. As shown in FIG.
A plate-like body 334 is provided inside the upper fixing member 330.
The plate-like body 334 is formed into a plate shape by solidifying the adhesive, and the hollow fiber membrane 311 has its end penetrated from the lower surface side to the upper surface side of the plate-like body 334 so that the plate-like body 334 is fixed.
 板状体334の下端周縁部にはフランジ部334aが形成されており、板状体334のフランジ部334aと前記上部固定部材330の円筒体331のフランジ部331aが図16に示すようにOリング336aを介して密着状態で接合されている。
 さらに、円筒体331の内周面と板状体334の外周面もOリング336bを介して密着状態で接合され、該接合部分の外側に環状固定部材337を嵌めて、上部固定部材330と板状体334がシールされた状態で固定されている。
A flange 334a is formed at the lower peripheral edge of the plate-like body 334, and the flange 334a of the plate-like body 334 and the flange 331a of the cylindrical body 331 of the upper fixing member 330 are O-rings as shown in FIG. It is joined in close contact via 336a.
Further, the inner peripheral surface of the cylindrical body 331 and the outer peripheral surface of the plate-like body 334 are also joined in close contact with each other via an O-ring 336b, and an annular fixing member 337 is fitted to the outside of the joined portion, so that the upper fixing member 330 and the plate The state body 334 is fixed in a sealed state.
 前記中空糸膜311は、そのすべてが一束となるように束ねられた状態で前記接着剤により固定されており、その上端縁が前記板状体334の上面334bと面一となるように固定されている。
 従って、前記板状体334の上面側には、前記接着剤によって形成された接着剤部分と、前記中空糸膜311の端部が開口する部分とが比較的均一に分散された状態で形成されており、しかも、前記板状体334の上面334b全面に形成されている。
 また、前記中空糸膜311を固定する接着剤が、板状体334の上面側から下面側に向けて略一定の深さに充填固化されることにより、前記板状体334が略一定の厚みに形成されている。
The hollow fiber membrane 311 is fixed by the adhesive in a state where all of the hollow fiber membranes 311 are bundled, and the upper edge of the hollow fiber membrane 311 is fixed so as to be flush with the upper surface 334b of the plate-like body 334. Has been.
Accordingly, an adhesive portion formed by the adhesive and a portion where the end of the hollow fiber membrane 311 is opened are formed on the upper surface side of the plate-like body 334 in a relatively uniform manner. Moreover, it is formed on the entire upper surface 334b of the plate-like body 334.
Further, the adhesive for fixing the hollow fiber membrane 311 is filled and solidified to a substantially constant depth from the upper surface side to the lower surface side of the plate-like body 334, so that the plate-like body 334 has a substantially constant thickness. Is formed.
 前記上部固定部材330内の上部且つ前記板状体334の上方側には、透過水が収容される上部集水部335が形成されており、該上部集水部335は、各中空糸膜311の上端部の開口に連通している。
 上部集水部335に繋がる透過水出口332aには、中空糸膜モジュール310外部に設置された吸引ポンプに連結されている配管が接続される。
 上記のように、上部固定部材330と板状体334はそれぞれのフランジ部331a、334aと円筒体331の内周面と板状体334の外周面をOリング336a,336bを介して密着して取り付けられているため、上部集水部335は、中空糸膜311の開口および透過水出口332aを除いて外部とは隔離された空間となっている。
An upper water collecting portion 335 that stores permeated water is formed in the upper portion of the upper fixing member 330 and on the upper side of the plate-like body 334. It communicates with the opening at the upper end of the.
A permeate outlet 332 a connected to the upper water collecting part 335 is connected to a pipe connected to a suction pump installed outside the hollow fiber membrane module 310.
As described above, the upper fixing member 330 and the plate-like body 334 are in close contact with the flange portions 331a and 334a, the inner peripheral surface of the cylindrical body 331, and the outer peripheral surface of the plate-like body 334 via the O- rings 336a and 336b. Since it is attached, the upper water collecting portion 335 is a space isolated from the outside except for the opening of the hollow fiber membrane 311 and the permeate outlet 332a.
 前記透過水出口332aと配管の接続手段は任意の接合手段が採用できるが、例えば、図17(a)に示すようなソケット300Sを介して接続することができる。ソケット300Sを透過水出口332aの外周に嵌めて、透過水出口332aの外周面332cとソケット300S内周面を接着することで、シールされた状態で配管と接続することができる。
 あるいは、図17(b)に示すようなバルブソケット300BSを介して配管を接続してもよい。バルブソケット300BSの一方の開口外周にはネジ山が形成されており、このネジ山部分を前記透過水出口332a内に螺合させて、透過水出口332aとバルブソケット300BSを取り付ける。この場合には透過水出口332aの内周面332dにネジ溝を形成しておく必要がある。
Arbitrary joining means can be adopted as the means for connecting the permeated water outlet 332a and the pipe. For example, the permeated water outlet 332a can be connected via a socket 300S as shown in FIG. By fitting the socket 300S on the outer periphery of the permeate outlet 332a and bonding the outer peripheral surface 332c of the permeate outlet 332a and the inner peripheral surface of the socket 300S, it is possible to connect the pipe 300 in a sealed state.
Alternatively, piping may be connected via a valve socket 300BS as shown in FIG. A screw thread is formed on the outer periphery of one opening of the valve socket 300BS, and this thread part is screwed into the permeate outlet 332a to attach the permeate outlet 332a and the valve socket 300BS. In this case, it is necessary to form a thread groove on the inner peripheral surface 332d of the permeate outlet 332a.
 下部固定部材320は、上部固定部材330の円筒体331と同一寸法の内径を持つ円筒体321と、円筒体321内の下端側に取り付けられた円板状をなす円形下板322とを有している。
 図18は下部固定部材320の一部を拡大した断面図であるが、この図18に示すように前記上部固定部材330と同様に、前記円筒体321上端周縁部にはフランジ部321aが形成され、下部固定部材320の内側には板状体324が備えられている。
 該板状体324は、接着剤が固化されて板状に形成されたものであり、前記中空糸膜311は、その下端部を前記板状体324の上面側から下面側に貫通させて板状体324に固定されている。
The lower fixing member 320 includes a cylindrical body 321 having the same inner diameter as the cylindrical body 331 of the upper fixing member 330, and a circular lower plate 322 having a disk shape attached to the lower end side in the cylindrical body 321. ing.
18 is an enlarged cross-sectional view of a part of the lower fixing member 320. As shown in FIG. 18, a flange portion 321a is formed at the upper peripheral edge of the cylindrical body 321 as in the case of the upper fixing member 330. A plate-like body 324 is provided inside the lower fixing member 320.
The plate-like body 324 is formed into a plate shape by solidifying an adhesive, and the hollow fiber membrane 311 is formed by penetrating the lower end portion from the upper surface side to the lower surface side of the plate-like body 324. It is fixed to the body 324.
 下部固定部材320と、板状体324の取り付け方法は、前記上部固定部材330と板状体334の取り付け手段と同様取り付けられている。
 すなわち、図18に示すように、板状体324の上端周縁部にはフランジ部324aが形成されており、該板状体324のフランジ部324aと前記下部固定部材320の円筒体321のフランジ部321aが図17に示すようにOリング326aを介して密着状態で接合され、さらに、円筒体321の内周面と板状体324の外周面もOリング326bを介して密着状態で接合され、該接合部分の外側に環状固定部材327を嵌めて、下部固定部材320と板状体324がシールされた状態で固定されている。
 尚、前記上部固定部材330及び下部固定部材320の円筒体331、321、円形上板332、322は金属や樹脂などの任意の材質から成形や削り出しなど公知の方法により一体的に形成することができる。
The lower fixing member 320 and the plate-like body 324 are attached in the same manner as the attachment means for the upper fixing member 330 and the plate-like body 334.
That is, as shown in FIG. 18, a flange portion 324 a is formed at the upper peripheral edge of the plate-like body 324, and the flange portion 324 a of the plate-like body 324 and the flange portion of the cylindrical body 321 of the lower fixing member 320. 321a is joined in close contact via an O-ring 326a as shown in FIG. 17, and the inner peripheral surface of the cylindrical body 321 and the outer peripheral surface of the plate-like body 324 are also joined in close contact via an O-ring 326b. An annular fixing member 327 is fitted to the outside of the joint portion, and the lower fixing member 320 and the plate-like body 324 are fixed in a sealed state.
The cylindrical bodies 331 and 321 and the circular upper plates 332 and 322 of the upper fixing member 330 and the lower fixing member 320 are integrally formed by a known method such as molding or cutting out from any material such as metal or resin. Can do.
 前記下部固定部材320内の下部には、前記板状体324の下方側に透過水が収容される下部集水部325が形成されており、下部集水部325は、各中空糸膜311の下端部の開口に連通している。 A lower water collecting part 325 that stores permeated water is formed below the plate-like body 324 at a lower part in the lower fixing member 320, and the lower water collecting part 325 is formed of each hollow fiber membrane 311. It communicates with the opening at the lower end.
 中空糸膜モジュール310には、上部の板状体334及び下部の板状体324を貫通してそれぞれの上下端部が前記上部集水部335と前記下部集水部325に開口する透過水管340が3本設けられている。
 3本の透過水管340a,340b,340cは中空糸膜311と平行に上下方向に延設され、その端部は図15に示すように、上部固定部材330側から見た場合に、円形状板332の径方向中心を中心とする放射線上(それぞれ120度のひらき角となる3本の放射線300L1~300L3上)に、円形状板332の径方向中心から等距離となるように配置されている。
 尚、透過水管340の本数と配置はこれに限定されるものではなく、例えば板状体324、334の外部に設置してもよい。
The hollow fiber membrane module 310 has a permeate pipe 340 that passes through the upper plate 334 and the lower plate 324 and whose upper and lower ends open to the upper water collecting portion 335 and the lower water collecting portion 325, respectively. Are provided.
The three permeated water tubes 340a, 340b, 340c are extended in the vertical direction in parallel with the hollow fiber membrane 311, and the end portions thereof are circular plates when viewed from the upper fixing member 330 side as shown in FIG. Arranged so as to be equidistant from the radial center of the circular plate 332 on the radiation centering on the radial center of the 332 (on the three radiations 300L1 to 300L3 each having an opening angle of 120 degrees). .
The number and arrangement of the permeate pipes 340 are not limited to this, and may be installed outside the plate- like bodies 324 and 334, for example.
 尚、前記下部集水部325内は上記のように、板状体324と円筒体321がそれぞれのフランジ部321a、324aと、円筒体321の内周面と板状324の外周面をOリング326a,326bを介して密着して取り付けられているため、中空糸膜311の下端部及び透過水管340の開口部を除いて外部とは隔離された空間となっている。 In the lower water collecting portion 325, as described above, the plate-like body 324 and the cylindrical body 321 are respectively connected to the flange portions 321a and 324a, the inner peripheral surface of the cylindrical body 321 and the outer peripheral surface of the plate-like 324 are O-rings. Since they are closely attached via 326a and 326b, they are spaces isolated from the outside except for the lower end of the hollow fiber membrane 311 and the opening of the permeate pipe 340.
 前記上部集水部335に配管を介して接続された吸引ポンプによって中空糸膜311内部が吸引されて中空糸膜311が被処理水の膜分離を行う。
 膜分離によって中空糸膜311を透過した透過水は中空糸膜311上端部からは上部集水部335に回収される。
 一方、中空糸膜311の下部からも前記透過水管340を介して吸引ポンプによって吸引されるため、前記下部集水部325に透過水が回収される。
 さらに、この下部集水部325に回収された透過水は透過水管340を介して伝わる吸引ポンプの吸引力によって上部集水部335に移送され、ここで上部集水部335に回収された透過水と合流されて透過水出口332aから中空糸膜モジュール310の外へ導出される。
The inside of the hollow fiber membrane 311 is sucked by a suction pump connected to the upper water collecting part 335 via a pipe, and the hollow fiber membrane 311 performs membrane separation of the water to be treated.
The permeated water that has permeated through the hollow fiber membrane 311 by membrane separation is recovered from the upper end of the hollow fiber membrane 311 to the upper water collecting part 335.
On the other hand, since it is sucked by the suction pump from the lower part of the hollow fiber membrane 311 through the permeate pipe 340, the permeate is collected in the lower water collecting part 325.
Further, the permeated water collected in the lower water collecting section 325 is transferred to the upper water collecting section 335 by the suction force of the suction pump transmitted through the permeated water pipe 340, and here the permeated water collected in the upper water collecting section 335. And is led out of the hollow fiber membrane module 310 from the permeate outlet 332a.
 さらに、中空糸膜モジュール310には、前記上部固定部材330と前記下部固定部材320の間に延設された管状体351が設けられている。
 該管状体351は、金属或いは合成樹脂等のある程度強度のある材質から形成され、且つその上端部が前記円形状板332の管状体取り付け孔332bに挿入され、下端部が下部固定部材320の板状体324に埋設されて固定されることで、中空糸膜311の中心部に配置されている。
Further, the hollow fiber membrane module 310 is provided with a tubular body 351 extending between the upper fixing member 330 and the lower fixing member 320.
The tubular body 351 is formed of a material having some strength such as metal or synthetic resin, and its upper end is inserted into the tubular body mounting hole 332b of the circular plate 332, and its lower end is a plate of the lower fixing member 320. The hollow fiber membrane 311 is disposed at the center of the hollow fiber membrane 311 by being embedded and fixed in the cylindrical body 324.
 管状体351の上端部が挿入された前記管状体取り付け孔332bには、中空糸膜モジュール310の外部に設けられたブロアから管状体351内部にエアを供給可能な空気供給ラインが接続されており、中空糸膜311へ散気するための散気機構350を構成している。
 前記管状体351の下方の周面には、ブロアから管状体351内に送られてきたエアを中空糸膜311に向かって気泡として接触させる散気孔352が形成されている。
An air supply line capable of supplying air from the blower provided outside the hollow fiber membrane module 310 to the inside of the tubular body 351 is connected to the tubular body mounting hole 332b into which the upper end portion of the tubular body 351 is inserted. An air diffusion mechanism 350 for air diffusion to the hollow fiber membrane 311 is configured.
On the lower peripheral surface of the tubular body 351, there are formed air diffusion holes 352 for bringing the air sent from the blower into the tubular body 351 into contact with the hollow fiber membrane 311 as bubbles.
 前記管状体351は、その上端部を上部固定部材330の管状体取り付け孔332bに挿入され、且つ下端部を下部固定部材320の板状体324に埋設されて固定されているため、上下端部が中空糸膜311に接触することはない。
 また、前記管状体351は、金属或いは合成樹脂等のある程度強度のある材質から形成され且つその上下端部が上部固定部材330及び下部固定部材320に固定されているため、中空糸膜311を支える支持部材としても機能する。
The tubular body 351 has its upper end inserted into the tubular body mounting hole 332b of the upper fixing member 330 and its lower end embedded and fixed in the plate-like body 324 of the lower fixing member 320. Does not come into contact with the hollow fiber membrane 311.
The tubular body 351 is formed of a material having a certain degree of strength, such as metal or synthetic resin, and the upper and lower ends thereof are fixed to the upper fixing member 330 and the lower fixing member 320, so that the hollow fiber membrane 311 is supported. It also functions as a support member.
 管状体351を円形状板332の管状体取り付け孔332bに取り付ける方法は適宜従来の取り付け方法を採用しうるが、例えば、図19に示すように、管状体351の嵌合部分の外周面に設けられたネジ溝部分(「ネジ部」ともいう。)351aにシールテープ300Tを巻きつけて、円形状板332の管状体取り付け孔332bに該シールテープを介して螺合することで、管状体351を管状体取り付け孔332bにシールされた状態で取り付けることができる。 As a method of attaching the tubular body 351 to the tubular body attachment hole 332b of the circular plate 332, a conventional attachment method can be adopted as appropriate. For example, as shown in FIG. 19, it is provided on the outer peripheral surface of the fitting portion of the tubular body 351. A sealing tape 300T is wound around the threaded groove portion (also referred to as a “threaded portion”) 351a, and is screwed into the tubular body mounting hole 332b of the circular plate 332 via the sealing tape, thereby the tubular body 351. Can be attached in a state of being sealed in the tubular body attaching hole 332b.
 なお、管状体351に散気孔352を設ける位置は任意に設定でき、例えば中空糸膜311の全体にわたって有効にエアスクラビングしうるべく下方側の周面に設けることや、あるいは中空糸上部の付着物除去を重視して上方側に設けることが可能である。 The position where the air diffuser holes 352 are provided in the tubular body 351 can be arbitrarily set. For example, the air diffuser 352 can be provided on the peripheral surface on the lower side so that the entire hollow fiber membrane 311 can be effectively subjected to air scrubbing. It can be provided on the upper side with emphasis on removal.
 前記散気機構350の管状体351から気泡を散気することでエアスクラビングを行う。
 図20に管状体351から気泡を散気する状態を示した。
 前記管状体351内のエアは前記ブロアによって前記散気孔352から気泡として散気されるが、管状体351は上下方向に延設されているため、管状体351の周面に形成されている散気孔352より気泡は水平方向に散気される。気泡は浮力によって下から上に向かって上昇し、また気泡の上昇に伴って水流が形成される。
 従って、中空糸膜311へ接触する気泡および水流による中空糸膜311の揺動により、エアスクラビングが効果的に行われる。
Air scrubbing is performed by air bubbles being diffused from the tubular body 351 of the air diffusion mechanism 350.
FIG. 20 shows a state where air bubbles are diffused from the tubular body 351.
The air in the tubular body 351 is diffused as air bubbles from the diffuser holes 352 by the blower. However, since the tubular body 351 extends in the vertical direction, the air diffused formed on the peripheral surface of the tubular body 351. Bubbles are diffused in the horizontal direction from the pores 352. The bubbles rise from bottom to top by buoyancy, and a water flow is formed as the bubbles rise.
Accordingly, air scrubbing is effectively performed by the swinging of the hollow fiber membrane 311 caused by bubbles and water flowing in contact with the hollow fiber membrane 311.
 散気孔352を設ける個数については、中空糸膜311全体に気泡がいきわたるような個数を適宜設定できる。
 散気孔352を複数形成する場合には、各散気孔352を形成する位置は適宜任意に設定できるが、例えば、管状体351の径方向に放射状に散気されるように、管状体351の周面に散気孔352が形成されていてもよい。この場合には、色々な方向に気泡を散気することができるためより中空糸膜311の広い方向に気泡をいきわたらせることができる。
The number of air holes 352 provided can be set as appropriate so that air bubbles can be distributed throughout the hollow fiber membrane 311.
In the case where a plurality of air diffusion holes 352 are formed, the positions where the air diffusion holes 352 are formed can be arbitrarily set as appropriate. Aeration holes 352 may be formed on the surface. In this case, since the bubbles can be diffused in various directions, the bubbles can be spread in a wider direction of the hollow fiber membrane 311.
 散気孔352の開口面積については、開口面積を小さくして、散気孔352を通過する空気の流速を高めることによって、中空糸膜311の表面に勢い良く気泡を接触させることができ高い付着物除去効果を得ることができる。
 一方で、散気孔352の開口面積を小さくすると、散気を停止させている間等において散気孔352の目詰まりを発生させるおそれがある。
 このような点において、散気孔352は、例えば散気孔の形状が円形の場合は、直径3~25mmとなるように形成されていることが好ましい。
With respect to the opening area of the air diffusion holes 352, by reducing the opening area and increasing the flow velocity of the air passing through the air diffusion holes 352, it is possible to bring the bubbles into contact with the surface of the hollow fiber membrane 311 with high vigorous removal. An effect can be obtained.
On the other hand, if the opening area of the air diffuser hole 352 is reduced, the air diffuser hole 352 may be clogged while the air diffuser is stopped.
In this respect, the air diffusion holes 352 are preferably formed to have a diameter of 3 to 25 mm when the shape of the air diffusion holes is circular, for example.
 さらに、中空糸膜311の有効長さ(中空糸膜が水に接触する部分の長さ)は、中空糸膜の内径等にもよるが800~5000mmが好ましく、例えば、中空糸膜の内径が0.5~1.2mmである場合においては、透過効率の観点から、1000~3000mmが好ましい。 Further, the effective length of the hollow fiber membrane 311 (the length of the portion where the hollow fiber membrane is in contact with water) is preferably 800 to 5000 mm, although it depends on the inner diameter of the hollow fiber membrane, for example, the inner diameter of the hollow fiber membrane is In the case of 0.5 to 1.2 mm, 1000 to 3000 mm is preferable from the viewpoint of transmission efficiency.
 なお、第3実施形態の中空糸膜モジュール310には、上記例示の態様に加え種々の改良が加えられたものを採用することができる。 In addition, the hollow fiber membrane module 310 of the third embodiment can adopt a module in which various improvements are added in addition to the above-described example.
 例えば、上記中空糸膜モジュール310において、透過水管340の本数は、透過水を集水する量などにあわせて3本に限らず任意に設定でき、2本又は4以上の複数本、又は1本であってもよい。
 さらに、透過水管340の管の内径も、集水量及び透過水管340の本数にあわせて適宜設定できる。
For example, in the hollow fiber membrane module 310, the number of permeate pipes 340 is not limited to three according to the amount of permeate collected, etc., and can be arbitrarily set, two or four or more, or one It may be.
Furthermore, the inner diameter of the permeated water pipe 340 can also be appropriately set according to the amount of water collected and the number of permeated water pipes 340.
 また、管状体351の管状体取り付け孔332bへの取り付け手段についても管状体351をシールされた状態で管状体取り付け孔332bへ取り付けることが可能な手段であればどのような手段であってもよい。
 例えば、図21に示すように、あらかじめ管状体取り付け孔332b内部にコーキング剤300Cを充填しておき、管状体351のネジ部351aを孔の内部に螺合させてシールされた状態に取り付けてもよい。このようにコーキング剤300Cを使用する場合には、コーキング剤を管状体取り付け孔332b内部充填した後に負圧状態にしながら管状体351を螺合させることで、コーキング剤300Cが管状体取り付け孔332bと管状体351間に隙間なく充填される。
 あるいは図22に示すように、管状体351を管状体取り付け孔332bに挿入して、パッキング300Pを介してナット300Nを取り付けることでシールされた状態に取り付けてもよい。
The means for attaching the tubular body 351 to the tubular body attachment hole 332b may be any means as long as the means can attach the tubular body 351 to the tubular body attachment hole 332b in a sealed state. .
For example, as shown in FIG. 21, the caulking agent 300C is filled in the tubular body attachment hole 332b in advance, and the threaded portion 351a of the tubular body 351 is screwed into the hole to be attached in a sealed state. Good. When the caulking agent 300C is used in this way, the caulking agent 300C is screwed into the tubular body mounting hole 332b by filling the inside of the tubular body mounting hole 332b and then screwing the tubular body 351 while maintaining a negative pressure state. The tubular body 351 is filled with no gap.
Alternatively, as shown in FIG. 22, the tubular body 351 may be inserted into the tubular body attachment hole 332b and attached in a sealed state by attaching a nut 300N via the packing 300P.
 さらに、管状体351の本数も任意に設定でき、1本であることに限られず、2本以上設けられていてもよい。
 さらに、中空糸膜モジュールの形状も任意に設定でき、縦長円筒状であることに限られず、例えば、三角柱状、四角柱状、六角柱状等の多角柱状であってもよい。
Furthermore, the number of the tubular bodies 351 can be arbitrarily set, and is not limited to one, and may be two or more.
Furthermore, the shape of the hollow fiber membrane module can be arbitrarily set, and is not limited to a vertically long cylindrical shape, and may be, for example, a polygonal column shape such as a triangular column shape, a quadrangular column shape, or a hexagonal column shape.
 また、管状体取り付け孔332bを上部固定部材330に形成することにも限定されない。
 例えば、前記下部固定部材320の円形下板322に管状体取り付け孔を設け、ブロアからの空気を下部固定部材320側から管状体351内に吹き込んでもよい。
Further, the tubular body attaching hole 332 b is not limited to being formed in the upper fixing member 330.
For example, a tubular body attachment hole may be provided in the circular lower plate 322 of the lower fixing member 320, and air from the blower may be blown into the tubular body 351 from the lower fixing member 320 side.
 さらに、第3実施形態では、上下両側に上部集水部335、下部集水部325を設け、且つ両端部が上下集水部に開口している透過水管340を設け、中空糸膜311の上下両端側から透過水を回収する構成にしたが、透過水の回収も上下どちらか一方からのみ回収することでもよい。 Furthermore, in 3rd Embodiment, the upper water collecting part 335 and the lower water collecting part 325 are provided in the up-and-down both sides, and the permeated water pipe 340 which both ends are open to the up-and-down water collecting part is provided. Although the permeated water is collected from both end sides, the permeated water may be collected from only one of the upper and lower sides.
 次に、図23を参照しつつ、水処理装置およびこの水処理装置において実施される膜分離方法について説明する。
 図23は、前記第3実施形態の中空糸膜モジュール310が用いられた水処理装置の一実施形態を示す構成説明図である。
Next, a water treatment device and a membrane separation method carried out in this water treatment device will be described with reference to FIG.
FIG. 23 is a configuration explanatory view showing an embodiment of a water treatment apparatus using the hollow fiber membrane module 310 of the third embodiment.
 図23に示すように、水処理装置360には、被処理水供給ライン361からの被処理水が供給される被処理水槽362が備えられている。
 また、第3実施形態の水処理装置360には、この被処理水槽362内の被処理水中に起立姿勢で浸漬されて配置された複数の中空糸膜モジュール310と、これらの中空糸膜モジュール310に接続され、吸引ポンプ363aを有して該吸引ポンプ363aによって中空糸膜内部を吸引することにより被処理水の膜ろ過による固液分離を行って透過水を導出するための透過水取出しライン363を有する膜分離装置が備えられている。
 さらに、第3実施形態の水処理装置360には、中空糸膜モジュール310の管状体351にエアを送るためのブロア364aと、被処理水槽362内の沈殿物を排出するための沈殿物排出ライン365とを備えている。
As shown in FIG. 23, the water treatment apparatus 360 is provided with a water tank 362 to which water to be treated is supplied from a water supply line 361 to be treated.
Further, the water treatment apparatus 360 of the third embodiment includes a plurality of hollow fiber membrane modules 310 arranged so as to be immersed in standing water in the water to be treated in the water tank 362 to be treated, and these hollow fiber membrane modules 310. The permeated water take-out line 363 has a suction pump 363a and sucks the inside of the hollow fiber membrane by the suction pump 363a to perform solid-liquid separation by membrane filtration of the water to be treated to derive permeated water. A membrane separation apparatus having
Furthermore, in the water treatment device 360 of the third embodiment, a blower 364a for sending air to the tubular body 351 of the hollow fiber membrane module 310 and a sediment discharge line for discharging the sediment in the water tank 362 to be treated. 365.
 前記透過水取出しライン363は、各中空糸膜モジュール310の透過水出口332aに接続された集水管363b、各集水管363bに連通する集水ヘッダー管363c、透過水取出し管363dを備えている。 The permeated water extraction line 363 includes a water collecting pipe 363b connected to the permeated water outlet 332a of each hollow fiber membrane module 310, a water collecting header pipe 363c communicating with each water collecting pipe 363b, and a permeated water extracting pipe 363d.
 また、前記ブロア364aには、該ブロア364aによって加圧された空気を供給する空気輸送管364bが接続され、該空気輸送管364bは、各中空糸膜モジュール内部に上下方向に挿入されている管状体351と空気供給配管364cを介して接続されている。
 前記管状体351の下端部は各中空糸膜モジュール310の板状体324内に埋設されて固定されている。
 なお、各中空糸膜モジュール310は、その上部固定部材330全体が水面より下方に位置するように設置されている。
The blower 364a is connected to an air transport pipe 364b that supplies air pressurized by the blower 364a, and the air transport pipe 364b is a tubular tube that is inserted vertically into each hollow fiber membrane module. The body 351 is connected to the air supply pipe 364c.
The lower end portion of the tubular body 351 is embedded and fixed in the plate-like body 324 of each hollow fiber membrane module 310.
Each hollow fiber membrane module 310 is installed such that the entire upper fixing member 330 is positioned below the water surface.
 このような水処理装置360の膜分離装置においては、通常、前記吸引ポンプ363aによって中空糸膜内部を吸引することにより中空糸膜で被処理水を膜分離(ろ過)して、透過水を透過水取出しライン363を通じて導出させる膜分離が実施されうる。
 一方、前記水処理装置360において、前記ブロア364aから送られる空気によって、前記中空糸膜の表面に付着した懸濁物等を除去するエアスクラビングが実施されうる。
 さらに、水処理装置360の被処理水槽362内の沈殿物は、前記沈殿物排出ライン365から排出される。
In such a membrane separator of the water treatment device 360, normally, the water to be treated is membrane-separated (filtered) by the hollow fiber membrane by sucking the inside of the hollow fiber membrane by the suction pump 363a, and the permeated water is permeated. Membrane separation that is led out through the water withdrawal line 363 can be performed.
On the other hand, in the water treatment device 360, air scrubbing for removing suspended matters and the like attached to the surface of the hollow fiber membrane can be performed by air sent from the blower 364a.
Further, the precipitate in the water tank 362 of the water treatment device 360 is discharged from the precipitate discharge line 365.
 より具体的に説明すると、前記膜分離装置においては、前記吸引ポンプ363aによって中空糸内部を吸引すると、中空糸膜で被処理水を濾過し、透過水は中空糸膜モジュール311の上下位置に設けられた前記上下部集水部335,325(図14に示す)にそれぞれ回収される。
 下部集水部325に収容された透過水は、前記透過水管340によって上部集水部335に移送され、上部集水部335に回収された透過水とともに前記透過水出口332aに取り付けられた前記集水管363bから集水ヘッダー管363cを経て透過水取出し管363dを通って取り出される。
 このように中空糸膜モジュール310の上下側から透過水を回収できるため、効率よく膜分離を行うことができる。
More specifically, in the membrane separation device, when the inside of the hollow fiber is sucked by the suction pump 363a, the water to be treated is filtered by the hollow fiber membrane, and the permeated water is provided at the upper and lower positions of the hollow fiber membrane module 311. The upper and lower water collecting portions 335 and 325 (shown in FIG. 14) are respectively collected.
The permeated water accommodated in the lower water collecting part 325 is transferred to the upper water collecting part 335 by the permeated water pipe 340, and the collected water attached to the permeated water outlet 332a together with the permeated water collected in the upper water collecting part 335. The water pipe 363b is taken out through the water collection header pipe 363c and the permeated water take-out pipe 363d.
Thus, since permeated water can be collected from the upper and lower sides of the hollow fiber membrane module 310, membrane separation can be performed efficiently.
 一方、前記ブロア364aから、空気輸送管364bを通じて中空糸膜モジュール310内に延設されている管状体351の下方に空気が供給され、前記散気孔352から中空糸膜311へ気泡が散気される。
 このとき、散気孔352は管状体351の周面に形成されているため散気孔352付近では水平方向に気泡の流れが生じ、その後は浮力によって上昇する方向に気泡の流れは変化していく(図20に示す)。
 すなわち、中空糸膜311は気泡と接触する位置によって、色々な方向に流れる気泡に揺らされることになり、より効果的にエアスクラビングが行われる。
On the other hand, air is supplied from the blower 364a to the lower part of the tubular body 351 extending into the hollow fiber membrane module 310 through the air transport pipe 364b, and bubbles are diffused from the air diffuser holes 352 to the hollow fiber membrane 311. The
At this time, since the air diffusion holes 352 are formed on the peripheral surface of the tubular body 351, a flow of bubbles is generated in the horizontal direction in the vicinity of the air diffusion holes 352, and thereafter, the flow of the bubbles changes in a direction of rising by buoyancy ( (Shown in FIG. 20).
That is, the hollow fiber membrane 311 is shaken by the bubbles flowing in various directions depending on the position in contact with the bubbles, and air scrubbing is performed more effectively.
 第3実施形態の水処理装置360は、前記のように中空糸膜の上下両側から透過水を回収でき且つ透過水の集水を邪魔することなく中空糸膜311へ散気可能であるため、効果的にエアスクラビングができる。 Since the water treatment device 360 of the third embodiment can collect the permeated water from both the upper and lower sides of the hollow fiber membrane as described above and can diffuse into the hollow fiber membrane 311 without disturbing the collection of the permeated water, Air scrubbing can be done effectively.
第4実施形態
 次に、第4実施形態の中空糸膜モジュール、水処理装置及び水処理方法について説明する。
4th Embodiment Next, the hollow fiber membrane module, water treatment apparatus, and water treatment method of 4th Embodiment are demonstrated.
 ところで、従来の中空糸膜モジュールとしては、様々なものが知られており、例えば、上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを備え、被処理水に浸漬させて該被処理水の膜分離を実施させるべく中空糸膜の外側から内側へ透過される透過水を上下両方から前記上部通水室及び前記下部通水室を介して集水するように形成されているものが知られている(特開2003-326140号公報(特許文献2))。 By the way, various types of conventional hollow fiber membrane modules are known. For example, a plurality of hollow fiber membranes extending in the vertical direction, and formed inside the hollow fiber membranes above the hollow fiber membranes. An upper water passage communicating with the hollow region, a lower water passage formed below the hollow fiber membrane and communicated with the hollow region inside the hollow fiber membrane, and bubbles are generated at the lower end side of the hollow fiber membrane. And a ventilation chamber formed below the hollow fiber membrane for supplying gas to the air diffusion hole, and immersed in the water to be treated to perform membrane separation of the water to be treated. Therefore, it is known that the permeated water permeated from the outside to the inside of the hollow fiber membrane is collected from both the upper and lower sides through the upper water passage and the lower water passage (Japanese Patent Application Laid-Open No. 2005-260707). 2003-326140 (Patent Document 2)).
 斯かる中空糸膜モジュールには、中空糸膜の上下両方から取り出した透過水を集水するための透過水取出しラインが取り付けられている。また、散気孔から気泡を発生させて中空糸膜の外側表面に付着した付着物を除去すべく、散気孔に連通する通気室へ気体を供給するための気体供給ラインが取り付けられている。 Such a hollow fiber membrane module is provided with a permeated water extraction line for collecting permeated water taken from both the upper and lower sides of the hollow fiber membrane. In addition, a gas supply line for supplying gas to the vent chamber communicating with the air diffuser is attached to generate bubbles from the air diffuser and remove the deposits attached to the outer surface of the hollow fiber membrane.
 しかしながら、斯かる中空糸膜モジュールには、透過水取出しラインや気体供給ラインが取り付けられていることから、斯かる中空糸膜モジュールを複数備えた水処理装置では、各モジュールに取り付けられたこれらラインが装置における比較的大きい領域を占めることになる。従って、斯かる水処理装置においては、中空糸膜を必ずしも十分に高密度で配置できないという問題がある。 However, since such a hollow fiber membrane module is provided with a permeate take-out line and a gas supply line, in a water treatment apparatus provided with a plurality of such hollow fiber membrane modules, these lines attached to each module. Occupies a relatively large area in the device. Therefore, in such a water treatment apparatus, there exists a problem that a hollow fiber membrane cannot necessarily be arrange | positioned with sufficient high density.
 第4実施形態は、上記問題点等に鑑み、中空糸膜を比較的高密度で配置できる中空糸膜モジュールを提供することを課題とする。また、中空糸膜を比較的高密度で配置できる水処理装置を提供することを課題とする。また、中空糸膜を比較的高密度で配置して膜分離できる水処理方法を提供することを課題とする。 The fourth embodiment has an object to provide a hollow fiber membrane module in which the hollow fiber membranes can be arranged at a relatively high density in view of the above-described problems. It is another object of the present invention to provide a water treatment apparatus that can dispose hollow fiber membranes at a relatively high density. It is another object of the present invention to provide a water treatment method capable of membrane separation by arranging hollow fiber membranes at a relatively high density.
<第4-1実施形態>
 まず、本発明に係る中空糸膜モジュールの第4-1実施形態について説明する。図24は、第4-1実施形態の中空糸膜モジュール401を使用時と同じ起立状態にさせたものの縦断面図である。図25は、図24における破線で囲まれた部分の拡大図である。図26は、図24のA-A線における中空糸膜モジュール401の断面(横断面)を示す断面図である。
<4-1 embodiment>
First, a 4-1 embodiment of the hollow fiber membrane module according to the present invention will be described. FIG. 24 is a longitudinal cross-sectional view of the hollow fiber membrane module 401 according to the 4-1 embodiment in the same standing state as in use. FIG. 25 is an enlarged view of a portion surrounded by a broken line in FIG. 26 is a cross-sectional view showing a cross section (transverse cross section) of the hollow fiber membrane module 401 taken along the line AA in FIG.
 第4-1実施形態の中空糸膜モジュール401は、図24に示すように、上下方向に延在する複数本の中空糸膜402と、該中空糸膜402の上下端部を開口状態でそれぞれ固定する上部固定部材405及び下部固定部材406と、前記上部固定部材405の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室407と、前記下部固定部材406の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室408と、前記中空糸膜402の下端部側で気泡411を発生させるように形成された散気孔410と、前記下部固定部材406の下方に形成され前記散気孔410へ気体を供給する通気室413とを備えている。 As shown in FIG. 24, the hollow fiber membrane module 401 according to the 4-1 embodiment includes a plurality of hollow fiber membranes 402 extending in the vertical direction and upper and lower ends of the hollow fiber membranes 402 in an open state. An upper fixing member 405 and a lower fixing member 406 to be fixed, an upper water passage 407 formed above the upper fixing member 405 and communicated with a hollow region inside the hollow fiber membrane, and formed below the lower fixing member 406 A lower water flow chamber 408 communicating with a hollow region inside the hollow fiber membrane, an air diffuser hole 410 formed so as to generate bubbles 411 on the lower end side of the hollow fiber membrane 402, and a lower fixing member 406 And a vent chamber 413 that is formed below and supplies gas to the air diffuser hole 410.
 また、前記中空糸膜モジュール401は、複数が並列するように配置されて用いられ、被処理水に浸漬させて該被処理水の膜分離を実施させるべく中空糸膜402の外側から内側へ透過される透過水を上下両方から前記上部通水室407及び前記下部通水室408を介して集水するように形成されている。 A plurality of the hollow fiber membrane modules 401 are arranged and used in parallel, and penetrate from the outside to the inside of the hollow fiber membrane 402 so as to be immersed in the water to be treated and to perform membrane separation of the water to be treated. The permeated water is collected from both above and below via the upper water passage 407 and the lower water passage 408.
 また、前記中空糸膜モジュール401は、前記上部固定部材405及び前記上部通水室407を覆い且つ隣接するもの同士互いに連結する上部連結部材403と、前記下部固定部材406、前記下部通水室408及び前記通気室413を覆い且つ隣接するもの同士互いに連結する上部連結部材404とをさらに備えている。そして、上部連結部材403同士及び上部連結部材404同士がそれぞれ互いに連結した状態では、前記上部通水室407同士、前記下部通水室408同士及び前記通気室413同士が、それぞれ互いに連通するように形成されている。 Further, the hollow fiber membrane module 401 includes an upper connecting member 403 that covers the upper fixing member 405 and the upper water passage chamber 407 and connects the adjacent ones to each other, the lower fixing member 406, and the lower water passage chamber 408. And an upper connecting member 404 that covers the ventilation chamber 413 and connects the adjacent ones to each other. In a state where the upper connecting members 403 and the upper connecting members 404 are connected to each other, the upper water passing chambers 407, the lower water passing chambers 408, and the venting chambers 413 are connected to each other. Is formed.
 前記上部連結部材403は、上面視略正方形の上面部と、その外周から下方に向けて延びる側壁部とにより、下方に向けて開口した中空立方体状に形成されている。
 前記上部連結部材403の上面部及び側壁部に囲まれた空間には、前記上部固定部材405及び前記上部通水室407が配されている。即ち、前記上部連結部材403は、前記上部固定部材405及び前記上部通水室407を上方及び側方から覆うように配されている。
The upper connecting member 403 is formed in a hollow cubic shape opened downward by an upper surface portion having a substantially square shape when viewed from above and a side wall portion extending downward from the outer periphery thereof.
The upper fixing member 405 and the upper water flow chamber 407 are disposed in a space surrounded by the upper surface portion and the side wall portion of the upper connecting member 403. That is, the upper connecting member 403 is disposed so as to cover the upper fixing member 405 and the upper water flow chamber 407 from above and from the side.
 前記上部連結部材404は、下面視略正方形の下面部と、その外周から上方に向けて延びる側壁部とにより、上方に向けて開口した中空立方体状に形成されている。
 前記上部連結部材404の下面部及び側壁部に囲まれた空間には、前記下部固定部材406、前記下部通水室408、及び前記通気室413が配されている。即ち、前記上部連結部材404は、前記下部固定部材406、前記下部通水室408、及び前記通気室413を下方及び側方から覆うように配されている。
The upper connecting member 404 is formed in a hollow cubic shape opened upward by a lower surface portion having a substantially square shape when viewed from the lower surface and a side wall portion extending upward from the outer periphery thereof.
The lower fixing member 406, the lower water flow chamber 408, and the ventilation chamber 413 are disposed in a space surrounded by the lower surface portion and the side wall portion of the upper connecting member 404. That is, the upper connecting member 404 is disposed so as to cover the lower fixing member 406, the lower water flow chamber 408, and the ventilation chamber 413 from below and from the side.
 前記上部連結部材403及び前記上部連結部材404の間には、複数本の中空糸膜402が、上端部側が前記上部固定部材405で固定され下端部側が前記下部固定部材406で固定されて、上下方向に配されている。 Between the upper connecting member 403 and the upper connecting member 404, a plurality of hollow fiber membranes 402 are fixed so that the upper end side is fixed by the upper fixing member 405 and the lower end side is fixed by the lower fixing member 406. Arranged in the direction.
 前記上部連結部材403の内側には、上面視円形で下方に向けて開口した円筒状の上部キャップ部418が配されている。該上部キャップ部418は、前記上部連結部材403の内側で上部連結部材403に固定されている。 Inside the upper connecting member 403, a cylindrical upper cap portion 418 having a circular shape when viewed from above and opened downward is disposed. The upper cap portion 418 is fixed to the upper connecting member 403 inside the upper connecting member 403.
 前記上部キャップ部418の内側には、略円柱状に形成された前記上部固定部材405の上端面の上方に空間が存在するように、前記上部固定部材405が配されて固定されている。また、前記上部固定部材405の外周面は、前記上部キャップ部418の内面と密着状態で接合されている。従って、前記上部キャップ部418の内面と前記上部固定部材405の上端面とに囲まれた空間は、水密性を有している。このことにより、前記中空糸膜モジュール401は、膜分離を行う被処理水に浸漬させた際に、該空間に被処理水が侵入することが防止されている。 The upper fixing member 405 is arranged and fixed inside the upper cap portion 418 so that a space exists above the upper end surface of the upper fixing member 405 formed in a substantially columnar shape. Further, the outer peripheral surface of the upper fixing member 405 is joined to the inner surface of the upper cap portion 418 in a close contact state. Therefore, the space surrounded by the inner surface of the upper cap portion 418 and the upper end surface of the upper fixing member 405 has water tightness. Thus, when the hollow fiber membrane module 401 is immersed in the water to be membrane-separated, the water to be treated is prevented from entering the space.
 前記上部固定部材405は、中空糸膜402の上端部と固化した接着剤とによって略円柱状に形成されている。また、まとまって一束となるように束ねられた中空糸膜402が、上端部の端縁を面一となるように固定されて、形成されている。即ち、前記上部固定部材405は、図25に示すように、中空糸膜402の上端部が上下方向に貫通し、中空糸膜402が上面において開口する状態で形成されている。 The upper fixing member 405 is formed in a substantially cylindrical shape by the upper end portion of the hollow fiber membrane 402 and the solidified adhesive. Moreover, the hollow fiber membranes 402 bundled so as to be bundled together are formed so as to be fixed so that the edge of the upper end portion is flush. That is, as shown in FIG. 25, the upper fixing member 405 is formed such that the upper end portion of the hollow fiber membrane 402 penetrates in the vertical direction and the hollow fiber membrane 402 opens at the upper surface.
 前記中空糸膜402が前記上部固定部材405の上面において開口していることから、中空糸膜内部の中空領域と、前記上部キャップ部418の内面及び前記上部固定部材405の上端面に囲まれた空間とは連通している。そして、該空間は上述したように水密性を有しており、前記上部通水室407として機能する。 Since the hollow fiber membrane 402 is open on the upper surface of the upper fixing member 405, the hollow fiber membrane is surrounded by a hollow region inside the hollow fiber membrane, the inner surface of the upper cap portion 418, and the upper end surface of the upper fixing member 405. It communicates with the space. The space has water tightness as described above and functions as the upper water flow chamber 407.
 前記上部通水室407には、図26に示すように、中空糸膜402を透過した透過水を前記中空糸膜モジュール401から排出して集水するための少なくとも2つの通水口409が形成されている。
 該通水口409は、前記上部連結部材403の側壁部及び前記上部キャップ部418の側壁部を水平方向に貫通するように形成されている。また、上部連結部材403同士が互いに連結した状態では、被処理水が上部通水室407に侵入すること及び上部通水室407にある透過水が外部へ漏れ出すことが防止されるように、水密性を有するように形成されている。
 前記上部連結部材403の側壁部に形成された通水口409同士が互いに対向するように、複数の前記中空糸膜モジュール401を上方側から見て直線状に水平方向に並べて連結することにより、上部通水室407を連通させることができる。
In the upper water flow chamber 407, as shown in FIG. 26, at least two water flow ports 409 for discharging the permeated water that has passed through the hollow fiber membrane 402 from the hollow fiber membrane module 401 and collecting the water are formed. ing.
The water inlet 409 is formed so as to penetrate the side wall portion of the upper connecting member 403 and the side wall portion of the upper cap portion 418 in the horizontal direction. Further, in a state where the upper connecting members 403 are connected to each other, the water to be treated enters the upper water passage chamber 407 and the permeated water in the upper water passage chamber 407 is prevented from leaking to the outside. It is formed to have water tightness.
By connecting the plurality of hollow fiber membrane modules 401 in a straight line as viewed from above so that the water passages 409 formed in the side wall portions of the upper connecting member 403 face each other, The water flow chamber 407 can be communicated.
 前記下部キャップ部419は、前記上部キャップ部418と同様に形成されて、該上部キャップ部418とは上下方向の向きが逆になって前記上部連結部材404の内側に配されている。詳しくは、下面視円形で上方に向けて開口した円筒状に形成され、前記上部連結部材404の内側に配されて前記上部連結部材404に固定されている。
 また、前記下部キャップ部419の内側には、略円柱状に形成された前記下部固定部材406の下端面の下方に空間が存在するように、前記下部固定部材406が配されて固定されている。また、前記下部固定部材406の外周面は、前記下部キャップ部419の内面と密着状態で接合されている。従って、前記下部キャップ部419の内面と前記上部固定部材405の上端面とに囲まれた空間は、水密性を有しており、該空間に被処理水が侵入することが防止されている。
The lower cap portion 419 is formed in the same manner as the upper cap portion 418, and is disposed inside the upper connecting member 404 with the upper cap portion 418 having a reverse vertical direction. Specifically, it is formed in a circular shape in a bottom view and opened upward, and is arranged inside the upper connecting member 404 and fixed to the upper connecting member 404.
Further, the lower fixing member 406 is arranged and fixed inside the lower cap portion 419 so that a space exists below the lower end surface of the lower fixing member 406 formed in a substantially columnar shape. . Further, the outer peripheral surface of the lower fixing member 406 is joined to the inner surface of the lower cap portion 419 in close contact. Therefore, the space surrounded by the inner surface of the lower cap portion 419 and the upper end surface of the upper fixing member 405 has water tightness, and the treated water is prevented from entering the space.
 前記下部固定部材406は、上下方向の向きが逆に形成されている点で、上部固定部材405と相違するが、中空糸膜402の下端部と固化した接着剤とによって略円柱状に形成されている点、まとまって一束となるように束ねられた中空糸膜402が、下端部の端縁を面一となるように固定されて形成されている点、中空糸膜402の下端部が上下方向に貫通し、中空糸膜402が下面において開口する状態で形成されている点で、上部固定部材405と同様に形成されている。 The lower fixing member 406 is different from the upper fixing member 405 in that the direction in the vertical direction is reversed, but is formed in a substantially cylindrical shape by the lower end portion of the hollow fiber membrane 402 and the solidified adhesive. The hollow fiber membranes 402 bundled so as to be bundled together are fixed so that the edge of the lower end portion is flush with the lower end portion of the hollow fiber membrane 402. It is formed in the same manner as the upper fixing member 405 in that it penetrates in the vertical direction and the hollow fiber membrane 402 is formed in an open state on the lower surface.
 前記下部通水室408は、金属や合成樹脂などによって中空の略円柱状に形成されている。
また、図24に示すように、前記下部キャップ部419の内面及び前記下部固定部材406の下面に囲まれた空間内、即ち下部固定部材406の下方に配されている。
 該下部通水室408には、図26に示すように、中空糸膜402を透過した透過水を前記中空糸膜モジュール401から排出して集水するための少なくとも2つの通水口409が形成されている。該通水口409は、前記上部連結部材404の側壁部及び前記下部キャップ部419の側壁部を水平方向に貫通するように形成されている。また、隣接する上部連結部材404同士が互いに連結した状態では、被処理水が下部通水室408に侵入すること及び下部通水室408にある透過水が外部へ漏れ出すことが防止されるように水密性を有するように形成されている。
The lower water flow chamber 408 is formed in a hollow, substantially cylindrical shape using metal, synthetic resin, or the like.
Further, as shown in FIG. 24, it is disposed in a space surrounded by the inner surface of the lower cap part 419 and the lower surface of the lower fixing member 406, that is, below the lower fixing member 406.
In the lower water flow chamber 408, as shown in FIG. 26, at least two water flow ports 409 for discharging the permeated water that has permeated through the hollow fiber membrane 402 from the hollow fiber membrane module 401 and collecting the water are formed. ing. The water inlet 409 is formed to penetrate the side wall portion of the upper connecting member 404 and the side wall portion of the lower cap portion 419 in the horizontal direction. Further, in a state where the adjacent upper connecting members 404 are connected to each other, it is possible to prevent the water to be treated from entering the lower water passing chamber 408 and the permeated water in the lower water passing chamber 408 from being leaked to the outside. It is formed to have watertightness.
 前記通気室413は、上面視円形の中空円柱状に形成された通気室本体414と、該通気室本体414の側面から外方に向けて延在し通気室本体414の内部空間と連通した中空領域を有する通気室連絡管415とを有し、金属や合成樹脂などによって形成されている、また、図24に示すように、前記下部キャップ部419の内面及び前記下部固定部材406の下端面に囲まれた空間内において前記下部通水室408の下方に配されている。 The vent chamber 413 includes a vent chamber main body 414 formed in a hollow cylindrical shape having a circular shape when viewed from above, and a hollow that extends outward from a side surface of the vent chamber main body 414 and communicates with an internal space of the vent chamber main body 414. 24, and is formed of metal, synthetic resin, or the like. Further, as shown in FIG. 24, the inner surface of the lower cap portion 419 and the lower end surface of the lower fixing member 406 are formed. It is arranged below the lower water passage 408 in the enclosed space.
 前記通気室413の通気室連絡管415は、上方側から見たときに円形である通気室本体414のその直径方向に沿って2つ配されている。また、前記通気室413の通気室連絡管415には、図26に示すように、供給される気体を取り込むため又は通気室413に供給された気体を隣接するモジュールの通気室413へ送るための通気口416が形成されている。
 該通気口416は、前記上部連結部材404の側壁部及び前記下部キャップ部419の側壁部を水平方向に貫通するように形成されている。また、隣接する上部連結部材404同士が互いに連結した状態では、気体が被処理水へと漏れ出さないように且つ被処理水が通気室413へ入らないように密閉性を有するように形成されている。
Two vent chamber communication pipes 415 of the vent chamber 413 are arranged along the diameter direction of the vent chamber body 414 that is circular when viewed from above. In addition, as shown in FIG. 26, the vent chamber communication pipe 415 of the vent chamber 413 is used for taking in the supplied gas or sending the gas supplied to the vent chamber 413 to the vent chamber 413 of the adjacent module. A vent 416 is formed.
The vent hole 416 is formed to penetrate the side wall portion of the upper connecting member 404 and the side wall portion of the lower cap portion 419 in the horizontal direction. Further, in a state where the adjacent upper connecting members 404 are connected to each other, it is formed to have a sealing property so that the gas does not leak into the water to be treated and the water to be treated does not enter the ventilation chamber 413. Yes.
 前記下部通水室408の通水口409と前記通気室413の通気口416とは、図26に示すように、中空糸膜モジュール401を上方側から見たときに重なる位置に配されている。そして、前記上部連結部材404の側壁部に形成された通水口409同士、通気口416同士がそれぞれ互いに対向するように、複数の前記中空糸膜モジュール401を上方側から見て直線状に水平方向に並べて連結することにより、下部通水室408同士、通気室413同士をそれぞれ互いに連通させることができる。 As shown in FIG. 26, the water flow port 409 of the lower water flow chamber 408 and the air flow port 416 of the ventilation chamber 413 are arranged at positions where they overlap when the hollow fiber membrane module 401 is viewed from above. The plurality of hollow fiber membrane modules 401 are linearly viewed in the horizontal direction so that the water passages 409 and the air vents 416 formed in the side wall portions of the upper connecting member 404 face each other. By arranging and connecting to each other, the lower water flow chambers 408 and the ventilation chambers 413 can be communicated with each other.
 なお、中空糸膜モジュール401が連結され後述するように連結体になっていると、連結体の端部に位置する中空糸膜モジュールにおいては、上下の通水室の通水口409及び通気室の通気口416が、開口された状態になり得る。この場合、通水口409及び通気口416を適当な手段によって塞ぐことにより、通水室の水密性、通気室の密閉性を維持することができる。 In addition, when the hollow fiber membrane module 401 is connected and is a connected body as will be described later, in the hollow fiber membrane module positioned at the end of the connected body, the water inlets 409 of the upper and lower water passing chambers and the vent chambers The vent 416 can be open. In this case, the watertightness of the water flow chamber and the airtightness of the air flow chamber can be maintained by closing the water flow port 409 and the vent hole 416 with an appropriate means.
 前記通気室413には、図24に示すように、前記散気孔410へ気体を送るための散気管412が設けられており、該散気管412の内部空間を介して前記通気室413の内部空間が前記散気孔410と連通している。そして、前記通気室413は、供給された気体を散気管412を介して散気孔410へ供給するものとして機能する。 As shown in FIG. 24, the ventilation chamber 413 is provided with a diffusion tube 412 for sending gas to the diffusion hole 410, and the internal space of the ventilation chamber 413 through the internal space of the diffusion tube 412. Communicates with the diffuser holes 410. The ventilation chamber 413 functions to supply the supplied gas to the diffuser holes 410 via the diffuser pipe 412.
 前記散気管412は、前記下部通水室408及び前記下部固定部材406を上下方向に貫通し散気孔410に達するように形成されている。 The air diffuser 412 is formed so as to penetrate the lower water flow chamber 408 and the lower fixing member 406 in the vertical direction and reach the air diffuser hole 410.
 前記散気孔410は、通常上面視環状に形成されており、前記通気室413から散気管412を介して供給される気体を気泡411として散気するように形成されている。該散気孔410は、通常、前記下部固定部材406の上端面付近に形成されている。 The air diffusion hole 410 is generally formed in an annular shape when viewed from above, and is formed so as to diffuse the gas supplied from the ventilation chamber 413 through the air diffusion tube 412 as bubbles 411. The air diffusion hole 410 is usually formed near the upper end surface of the lower fixing member 406.
 前記散気孔410の個数は、中空糸膜402全体に気泡411がいきわたるように適宜設定でき、図26に示すように複数であることが好ましい。該散気孔410が複数個形成されている場合には、各散気孔410の位置を適宜設定することができ、各散気孔410は、例えば図26に示すように、上方側からみたときに正方形の頂点に位置するように配置され得る。 The number of the air diffusion holes 410 can be set as appropriate so that the bubbles 411 are distributed throughout the hollow fiber membrane 402, and it is preferable that the number of the air diffusion holes 410 is plural as shown in FIG. In the case where a plurality of air diffusion holes 410 are formed, the position of each air diffusion hole 410 can be appropriately set. Each air diffusion hole 410 has a square shape when viewed from above, for example, as shown in FIG. It can arrange | position so that it may be located in the vertex.
 前記散気孔410の大きさとしては、特に限定されるものではなく、例えば、直径3~25mmが挙げられる。なお、該散気孔410を小さくすることにより、散気孔410を通過する気体の流速を高くでき、中空糸膜402の外側表面により勢いよく気泡411を接触させることができる。 The size of the air diffusion hole 410 is not particularly limited, and examples thereof include a diameter of 3 to 25 mm. In addition, by making the air diffuser 410 small, the flow velocity of the gas passing through the air diffuser 410 can be increased, and the bubbles 411 can be brought into contact with the outer surface of the hollow fiber membrane 402 more vigorously.
<第4-2実施形態>
 次に、本発明に係る中空糸膜モジュールの第4-2実施形態について説明する。図27は、第4-2実施形態の中空糸膜モジュール401の水平方向断面(横断面)を示す断面図である。
<4-2th Embodiment>
Next, a 4-2 embodiment of the hollow fiber membrane module according to the present invention will be described. FIG. 27 is a cross-sectional view showing a horizontal cross section (transverse cross section) of the hollow fiber membrane module 401 of the 4-2 embodiment.
 第4-1実施形態の中空糸膜モジュールは、上方側から見たときに、図26に示すように、それぞれの散気孔410が正方形の頂点に位置するように4箇所に形成されていることに対して、第4-2実施形態の中空糸膜モジュール401は、図27に示すように、複数の散気孔410が“X”を描くように配置されている点で相違する。 The hollow fiber membrane module of the 4-1 embodiment is formed at four locations so that each air diffusion hole 410 is located at the apex of a square as shown in FIG. 26 when viewed from above. On the other hand, the hollow fiber membrane module 401 of the 4-2 embodiment is different in that a plurality of air diffusion holes 410 are arranged so as to draw “X” as shown in FIG.
 また、第4-1実施形態の中空糸膜モジュールは、下部通水室408の通水口409と通気室413の気体供給口とが上方側から見たときに重なる位置に形成されていることに対して、第4-2実施形態の中空糸膜モジュール401は、図27に示すように、上方側から見たときに通水口409の貫通方向と気体供給口の貫通方向とが直角に交わっている点で相違する。
 斯かる構成の中空糸膜モジュール401を用いることにより、複数のモジュールを例えば正方格子を描くように縦横に連結して配置することができる。
Further, the hollow fiber membrane module according to the fourth to fourth embodiments is formed at a position where the water flow port 409 of the lower water flow chamber 408 and the gas supply port of the air flow chamber 413 overlap when viewed from above. On the other hand, in the hollow fiber membrane module 401 of the 4-2 embodiment, as shown in FIG. 27, when viewed from above, the penetration direction of the water passage 409 and the penetration direction of the gas supply port intersect at right angles. Is different.
By using the hollow fiber membrane module 401 having such a configuration, a plurality of modules can be connected vertically and horizontally so as to draw a square lattice, for example.
<第4-3実施形態>
 さらに、本発明に係る中空糸膜モジュールの第4-3実施形態について説明する。図28は、第4-3実施形態の中空糸膜モジュール401を使用時と同じ起立状態にさせたものの縦断面図である。図29は、図28のB-B線における中空糸膜モジュール401の水平方向断面(横断面)を示す断面図である。
<4-3 Embodiment>
Furthermore, a fourth to third embodiment of the hollow fiber membrane module according to the present invention will be described. FIG. 28 is a longitudinal cross-sectional view of the hollow fiber membrane module 401 according to the fourth to third embodiments in the same standing state as in use. FIG. 29 is a cross-sectional view showing a horizontal cross section (transverse cross section) of the hollow fiber membrane module 401 taken along the line BB of FIG.
 第4-3実施形態の中空糸膜モジュール401は、図28に示すように、上下方向に延在し両端部が前記上部固定部材405及び前記下部固定部材406でそれぞれ固定された管状の支持部材417を2つ備えている点で上記第4-1実施形態の中空糸膜モジュールと相違する。
 該支持部材417は、図29に示すように、上方側から中空糸膜モジュール401を見たときに中空糸膜402が配されている円形領域の外側寄りの位置に一対となって備えられている。また、該支持部材417は、上部固定部材405の上端面において、及び、下部固定部材406の下端面において、開口した状態で固定されている。そして、支持部材内部の中空領域を介して上部通水室407と下部通水室408とが連通している。
As shown in FIG. 28, the hollow fiber membrane module 401 of the fourth to third embodiment is a tubular support member that extends in the vertical direction and is fixed at both ends by the upper fixing member 405 and the lower fixing member 406, respectively. It differs from the hollow fiber membrane module of the above-mentioned 4-1 embodiment in that two 417 are provided.
As shown in FIG. 29, the support member 417 is provided as a pair at a position closer to the outer side of the circular region where the hollow fiber membrane 402 is disposed when the hollow fiber membrane module 401 is viewed from above. Yes. The support member 417 is fixed in an open state on the upper end surface of the upper fixing member 405 and on the lower end surface of the lower fixing member 406. The upper water passage 407 and the lower water passage 408 communicate with each other through a hollow region inside the support member.
 前記支持部材417によって、上部通水室407、上部固定部材405、及び上部連結部材403が、上部連結部材404や下部固定部材406によって支持されることから、上部固定部材405等を支えるための支持手段を別途設ける必要性が低くなる。
 また、前記支持部材417によって、上部通水室407と下部通水室408とが連通することから、透過水の集水がより円滑に行われ得る。
Since the upper water passage 407, the upper fixing member 405, and the upper connecting member 403 are supported by the upper connecting member 404 and the lower fixing member 406 by the support member 417, the support for supporting the upper fixing member 405 and the like. The need for providing a separate means is reduced.
Further, since the upper water flow chamber 407 and the lower water flow chamber 408 are communicated with each other by the support member 417, the permeated water can be collected more smoothly.
 なお、前記中空糸膜モジュール401には、前記散気孔410に供給される気体が所定圧力を超えたときに該散気孔410を開口状態にする弁が設けられ得る。具体的には、例えば、前記散気孔410にチャッキ弁を設けることにより、気泡を間欠的に発生させることができ、また、気泡の中空糸膜への衝突力に強弱をつけることができる。 The hollow fiber membrane module 401 may be provided with a valve that opens the air diffuser hole 410 when the gas supplied to the air diffuser hole 410 exceeds a predetermined pressure. Specifically, for example, by providing a check valve in the diffuser hole 410, bubbles can be generated intermittently, and the impact force of the bubbles against the hollow fiber membrane can be increased or decreased.
 続いて、本発明の水処理装置の実施形態について図面を参照しながら説明する。図30は、前記中空糸膜モジュール401を備えた第4実施形態の水処理装置430を示す概要図である。図31は、第4実施形態の水処理装置430の変形例を上方側から見たときの様子を示す平面概要図である。 Subsequently, an embodiment of the water treatment apparatus of the present invention will be described with reference to the drawings. FIG. 30 is a schematic view showing a water treatment device 430 of the fourth embodiment provided with the hollow fiber membrane module 401. FIG. 31 is a schematic plan view illustrating a modification of the water treatment device 430 according to the fourth embodiment as viewed from above.
 第4実施形態の水処理装置430には、図30に示すように、被処理水420を供給する被処理水供給ライン425と、供給された被処理水420を貯留する被処理水槽424とが備えられている。 As shown in FIG. 30, the water treatment apparatus 430 of the fourth embodiment includes a treated water supply line 425 that supplies the treated water 420 and a treated water tank 424 that stores the supplied treated water 420. Is provided.
 また、前記水処理装置430には、図30に示すように、前記被処理水槽424内の被処理水420中に起立状態で浸漬された複数の前記第4-1実施形態の中空糸膜モジュール401が隣接するように配置されて備えられている。具体的には、該複数の前記中空糸膜モジュール401は、上方側から見て直線状に水平方向に並ぶように(並列するように)配置されて連結され連結体となって設置されている。中空糸膜モジュール401の連結体は、被処理水槽424内で起立状態を維持するために、各中空糸膜モジュール401の上部連結部材403及び上部連結部材404が保持手段(図示せず)によって固定されている。 Further, in the water treatment device 430, as shown in FIG. 30, a plurality of the hollow fiber membrane modules of the 4-1 embodiment immersed in standing water in the water to be treated 420 in the water tank 424 to be treated. 401 are arranged so as to be adjacent to each other. Specifically, the plurality of hollow fiber membrane modules 401 are arranged and connected so as to be arranged in a straight line (in parallel) in a straight line when viewed from above, and are installed as a connected body. . In order to maintain the connected state of the hollow fiber membrane module 401 in the water tank 424 to be treated, the upper connection member 403 and the upper connection member 404 of each hollow fiber membrane module 401 are fixed by holding means (not shown). Has been.
 また、前記水処理装置430には、図30に示すように、被処理水420を中空糸膜でろ過して透過水を得るべく前記中空糸膜内部を吸引するための吸引ポンプ440と、連結された中空糸膜モジュール401の通水室のうちの一部(直線状に並んで接続されたもののうち端縁側の1つ)及び前記吸引ポンプ440に接続された透過水取出しライン421と、前記散気孔から気泡を発生させるべく空気などの気体を供給するためのブロア450と、連結された中空糸膜モジュール401の通気室413のうちの一部及び前記ブロア450に接続された気体供給ライン422と、被処理水槽424内の沈殿物を排出するために被処理水槽424の底部に接続された沈殿物排出ライン423とが備えられている。 Further, as shown in FIG. 30, the water treatment device 430 is connected to a suction pump 440 for sucking the inside of the hollow fiber membrane so as to obtain permeated water by filtering the water to be treated 420 through the hollow fiber membrane. A part of the water flow chamber of the hollow fiber membrane module 401 thus formed (one of the edges connected in a straight line) and the permeate discharge line 421 connected to the suction pump 440; A blower 450 for supplying a gas such as air to generate bubbles from the air diffuser, a part of the vent chamber 413 of the connected hollow fiber membrane module 401 and a gas supply line 422 connected to the blower 450. And a sediment discharge line 423 connected to the bottom of the water tank 424 to discharge the sediment in the water tank 424 to be treated.
 前記透過水取出しライン421は、一方が吸引ポンプ440に接続され、他方が中空糸膜モジュール401における上下の通水室407,408の通水口409に接続され、通水室407,408にある透過水を集水するように構成されている。該透過水取出しライン421の他方は、全ての中空糸膜モジュールの通水口409に接続されている必要はなく、例えば図30に示すように連結された複数の中空糸膜モジュール401のうちの、最も端に位置する中空糸膜モジュール401の通水口409に接続されていればよい。このように構成されていることにより、モジュールの連結体における上下連結部材の内側で連通している複数のモジュールの通水室407,408を介して透過水を集水することができる。なお、この場合、連結体のもう一方側(透過水取出しライン421が接続されていない側)にある通水口409は、適当な手段によって水密性を有するように封止されている。 One of the permeated water extraction lines 421 is connected to the suction pump 440, and the other is connected to the water flow ports 409 of the upper and lower water flow chambers 407 and 408 in the hollow fiber membrane module 401, and the permeation in the water flow chambers 407 and 408. It is configured to collect water. The other of the permeated water extraction line 421 does not need to be connected to the water passage ports 409 of all the hollow fiber membrane modules. For example, among the plurality of hollow fiber membrane modules 401 connected as shown in FIG. What is necessary is just to be connected to the water flow port 409 of the hollow fiber membrane module 401 located in the end. By comprising in this way, permeated water can be collected through the water flow chambers 407 and 408 of a plurality of modules communicating with each other inside the upper and lower connecting members in the module connection body. In this case, the water passage port 409 on the other side of the coupling body (the side where the permeated water extraction line 421 is not connected) is sealed to have water tightness by an appropriate means.
 前記気体供給ライン422は、一方がブロア450に接続され、他方が中空糸膜モジュール401における通気室413の通気口416に接続され、通気室413に気体を供給するように構成されている。該気体供給ライン422の他方は、全ての中空糸膜モジュールの通気口416に接続されている必要はなく、例えば図30に示すように連結された複数の中空糸膜モジュール401のうちの、最も端に位置する中空糸膜モジュール401の通気口416に接続されていればよい。このように構成されていることにより、モジュールの連結体における上下連結部材の内側で連通している複数の通気室413を介して複数のモジュールの散気孔に同時に空気を供給することができる。なお、この場合、連結体のもう一方側(気体供給ライン422が接続されていない側)にある通気口416は、適当な手段によって密閉性を有するように封止されている。 The gas supply line 422 has one end connected to the blower 450 and the other end connected to the vent 416 of the vent chamber 413 in the hollow fiber membrane module 401 so as to supply gas to the vent chamber 413. The other of the gas supply lines 422 need not be connected to the vents 416 of all the hollow fiber membrane modules. For example, the most of the plurality of hollow fiber membrane modules 401 connected as shown in FIG. What is necessary is just to be connected to the vent 416 of the hollow fiber membrane module 401 located in the end. By being configured in this way, air can be simultaneously supplied to the air diffusion holes of the plurality of modules through the plurality of ventilation chambers 413 communicating inside the upper and lower connection members in the connection body of the modules. In this case, the vent 416 on the other side of the coupling body (the side to which the gas supply line 422 is not connected) is sealed so as to have a sealing property by an appropriate means.
 前記吸引ポンプ440及び前記ブロア450としては、従来公知の一般的なものを採用することができる。 As the suction pump 440 and the blower 450, conventionally known general ones can be adopted.
 また、前記水処理装置430においては、上述した複数の第4-1実施形態の中空糸膜モジュール401が直線状に水平方向に並ぶように配置され連結された連結体を、図31に示すように、該連結体の並び方向と直交する方向に複数配列させてなるものであってもよい。
 斯かる水処理装置430は、中空糸膜モジュール401がより高密度で配置され、その結果、中空糸膜402がより高密度で配置されていることから、被処理水420の膜分離をより効率的に行うことができる。
Further, in the water treatment apparatus 430, as shown in FIG. 31, a connection body in which the hollow fiber membrane modules 401 of the plurality of the fourth to fourth embodiments described above are arranged and connected in a straight line in the horizontal direction. In addition, a plurality of connectors may be arranged in a direction orthogonal to the direction in which the connected bodies are arranged.
In such a water treatment device 430, since the hollow fiber membrane modules 401 are arranged at a higher density, and as a result, the hollow fiber membranes 402 are arranged at a higher density, membrane separation of the treated water 420 is more efficient. Can be done automatically.
 なお、前記水処理装置430は、前記散気孔410に供給する気体の圧力が変化し前記気泡411の大きさ又は噴出強さが変化できるように構成され得る。具体的には、前記水処理装置430においては、例えば、前記ブロア450として、供給する気体の圧力をインバータ制御により制御しつつ変化させ得るように構成されたブロアを採用することができる。また、運転及び停止を繰り返すように設定された前記ブロア450を採用することができる。また、前記気体供給ライン422として、ライン中に設置した弁の開閉により気体供給を間欠的に行えるように構成されたものを採用することができる。前記水処理装置430が前記気泡411の大きさ又は噴出強さを変化させ得るように構成されていることにより、中空糸膜402の外側表面に付着した付着物が気泡411によってより取り除かれやすくなり得る。 The water treatment device 430 may be configured such that the pressure of the gas supplied to the air diffuser hole 410 can be changed to change the size or ejection strength of the bubbles 411. Specifically, in the water treatment device 430, for example, a blower configured to change the pressure of the gas to be supplied while being controlled by inverter control can be employed as the blower 450. Further, the blower 450 set to repeat the operation and the stop can be employed. In addition, the gas supply line 422 may be configured so that gas supply can be intermittently performed by opening and closing a valve installed in the line. Since the water treatment device 430 is configured to change the size or the jetting strength of the bubbles 411, the deposits attached to the outer surface of the hollow fiber membrane 402 are more easily removed by the bubbles 411. obtain.
 ここで、水処理装置の参考形態について説明する。図32は、本参考形態の水処理装置における複数の中空糸膜ユニットと、中空糸膜に散気するように形成された複数の散気ユニットとが、直線状に水平方向に並ぶように交互に連結された様子を斜め上方から見た斜視図である。 Here, a reference form of the water treatment apparatus will be described. FIG. 32 shows a plurality of hollow fiber membrane units in the water treatment apparatus of the present embodiment and a plurality of air diffusion units formed so as to diffuse into the hollow fiber membranes so that they are arranged in a straight line in the horizontal direction. It is the perspective view which looked at the mode connected to No. 2 from the slanting upper part.
 本参考形態の水処理装置は、通気室413を有するが散気孔410及び散気管412を有さない点以外は、上記第4-1実施形態の中空糸膜モジュール401と同様に形成された中空糸膜ユニット431を備えている。また、中空糸膜を有さず支持部材417を1つ備えている点以外は、上記第4-3実施形態の中空糸膜モジュール401と同様に形成された散気ユニット432を備えている。なお、散気ユニット432は、支持部材417を複数備えていてもよい。 The water treatment apparatus of the present embodiment has a hollow formed in the same manner as the hollow fiber membrane module 401 of the above-mentioned 4-1 embodiment except that it has a ventilation chamber 413 but does not have a diffuser hole 410 and a diffuser pipe 412. A thread membrane unit 431 is provided. In addition, an air diffusion unit 432 formed in the same manner as the hollow fiber membrane module 401 of the above-described fourth to third embodiments is provided except that it does not have a hollow fiber membrane and has one support member 417. Note that the air diffusion unit 432 may include a plurality of support members 417.
 本参考形態の水処理装置は、図32に示すように、互いに隣接する中空糸膜ユニット431及び散気ユニット432によって形成された連続体を備えており、該水処理装置では、上述した実施形態の水処理装置と同様に、中空糸膜によって被処理水420を膜分離し、中空糸膜を透過した透過水を集水できる。 As shown in FIG. 32, the water treatment apparatus of the present embodiment includes a continuous body formed by the hollow fiber membrane unit 431 and the air diffusion unit 432 adjacent to each other. In the water treatment apparatus, the embodiment described above is used. Similarly to the water treatment apparatus, the water to be treated 420 is separated by the hollow fiber membrane, and the permeated water that has permeated the hollow fiber membrane can be collected.
 本参考形態の水処理装置は、装置を構成する前記中空糸膜ユニット431に散気孔410が形成されておらず、また、前記散気ユニット432に中空糸膜が固定されていないことから、前記中空糸膜ユニット431及び前記散気ユニット432がそれぞれ比較的単純な構造で形成されている。斯かる2種類のユニットが直線状に水平方向に並ぶように交互に連結させてなる水処理装置は、上述した実施形態の水処理装置と同様に、中空糸膜を比較的高密度に配置できる。また、散気ユニット432に備えられた支持部材417によって、散気ユニット432だけでなく中空糸膜ユニット431をも支持して直立状態に維持させることができる。
 該水処理装置は、散気ユニット432の散気孔410から発生する気泡411をできるだけ中空糸膜に衝突させるために、図32に示すように、気泡拡散防止板433を備えていることが好ましい。
In the water treatment device of the present embodiment, the air diffusion hole 410 is not formed in the hollow fiber membrane unit 431 constituting the device, and the hollow fiber membrane is not fixed to the air diffusion unit 432. The hollow fiber membrane unit 431 and the aeration unit 432 are each formed with a relatively simple structure. In the water treatment apparatus in which such two types of units are alternately connected so as to be arranged in a straight line in the horizontal direction, the hollow fiber membranes can be arranged at a relatively high density, similarly to the water treatment apparatus of the above-described embodiment. . Further, not only the air diffusion unit 432 but also the hollow fiber membrane unit 431 can be supported and maintained in an upright state by the support member 417 provided in the air diffusion unit 432.
The water treatment apparatus preferably includes a bubble diffusion preventing plate 433 as shown in FIG. 32 in order to cause the bubbles 411 generated from the diffusion holes 410 of the diffusion unit 432 to collide with the hollow fiber membrane as much as possible.
 なお、中空糸膜ユニット431は、下部キャップ部419の内面及び下部固定部材406の下面に囲まれた空間において、該空間を水平方向に貫通するように通気室が備えられ、該空間における該通気室以外の部分が下部通水室になっている形態であってもよい。一方、該中空糸膜ユニット431に隣接する散気ユニット432は、中空糸膜ユニット431が斯かる形態である場合、隣接する中空糸膜ユニット431で膜分離された透過水を通過させるための通水室を備えており、該通水室が、隣接する中空糸膜ユニット431の通水室と連通するように構成された形態になり得る。そして、散気ユニット432の管状の通水室を取り囲む空間は、隣接する中空糸膜ユニット431の通気室と連通するように形成され散気孔に気体を供給できる通気室になるように構成されている。
 これに対して、中空糸膜ユニット431は、隣接する散気ユニット432を貫通該散気ユニット432と隣合う別の中空糸膜ユニット431に透過水を送るように形成された透過水供給管を備えた形態であってもよい。一方、散気ユニット432は、中空糸膜ユニット431が斯かる形態である場合、隣接する中空糸膜ユニット431を貫通もしくはその外部を通って該中空糸膜ユニット431と隣合う別の散気ユニット432に気体を送るように形成された気体供給管を備えた形態になり得る。
 斯かる形態の中空糸膜ユニット431は、下部キャップ部419の内面及び下部固定部材406の下面に囲まれた空間の大部分が下部通水室になっており、該下部通水室が、隣接する散気ユニット432の気体供給管を通すスペースを有するように形成されている。また、斯かる形態の散気ユニット432は、前記気体供給管を介して別の散気ユニット432の通気室と連通するように形成され散気孔に気体を供給できる通気室を備え、該通気室が、隣接する中空糸膜ユニット431の透過水供給管を通すスペースを有するように形成されている。
The hollow fiber membrane unit 431 is provided with a ventilation chamber in a space surrounded by the inner surface of the lower cap portion 419 and the lower surface of the lower fixing member 406 so as to penetrate the space in the horizontal direction. The form in which the part other than the chamber is a lower water passage may be used. On the other hand, the air diffusion unit 432 adjacent to the hollow fiber membrane unit 431 is configured to pass the permeated water separated by the adjacent hollow fiber membrane unit 431 when the hollow fiber membrane unit 431 has such a configuration. A water chamber is provided, and the water flow chamber can be configured to communicate with the water flow chamber of the adjacent hollow fiber membrane unit 431. The space surrounding the tubular water flow chamber of the air diffusion unit 432 is formed to communicate with the air flow chamber of the adjacent hollow fiber membrane unit 431 and is configured to be a gas flow chamber that can supply gas to the air diffusion holes. Yes.
On the other hand, the hollow fiber membrane unit 431 has a permeated water supply pipe formed so as to pass through the adjacent air diffusion unit 432 and send the permeated water to another hollow fiber membrane unit 431 adjacent to the air diffusion unit 432. It may be a form provided. On the other hand, when the hollow fiber membrane unit 431 has such a configuration, the air diffusion unit 432 penetrates through the adjacent hollow fiber membrane unit 431 or passes through the outside thereof, and another air diffusion unit adjacent to the hollow fiber membrane unit 431. 432 may be provided with a gas supply pipe formed to send gas to 432.
In the hollow fiber membrane unit 431 having such a configuration, most of the space surrounded by the inner surface of the lower cap portion 419 and the lower surface of the lower fixing member 406 is a lower water passage, and the lower water passage is adjacent to the lower water passage. It forms so that it may have the space which lets the gas supply pipe | tube of the diffuser unit 432 to pass. Further, the air diffuser unit 432 having such a configuration includes a vent chamber that is formed so as to communicate with the vent chamber of another air diffuser unit 432 via the gas supply pipe and can supply gas to the diffuser hole. However, it forms so that it may have the space which lets the permeated water supply pipe | tube of the adjacent hollow fiber membrane unit 431 pass.
 次に、本発明の水処理方法の実施形態について説明する。第4実施形態の水処理方法で用いる装置類の概要図は、図30に示す通りである。 Next, an embodiment of the water treatment method of the present invention will be described. A schematic diagram of devices used in the water treatment method of the fourth embodiment is as shown in FIG.
 第4実施形態の水処理方法では、前記被処理水供給ライン425から被処理水420を被処理水槽424に供給し、被処理水420に浸漬され連結された複数の中空糸膜モジュール401を用いて、被処理水420を中空糸膜により膜分離(膜ろ過)して透過水を得る。
 また、被処理水槽424内の沈殿物を沈殿物排出ライン423から排出する。
In the water treatment method of the fourth embodiment, the treated water 420 is supplied from the treated water supply line 425 to the treated water tank 424, and a plurality of hollow fiber membrane modules 401 immersed in and connected to the treated water 420 are used. Then, the treated water 420 is subjected to membrane separation (membrane filtration) with a hollow fiber membrane to obtain permeated water.
Moreover, the deposit in the water tank 424 to be treated is discharged from the deposit discharge line 423.
 前記水処理方法では、前記吸引ポンプ440によって中空糸膜内部を吸引することにより、中空糸膜で被処理水420を膜分離(膜ろ過)して、透過水を透過水取出しライン421を通して集水する。
 具体的には、前記水処理方法では、前記吸引ポンプ440によって前記中空糸膜内部を吸引することにより、被処理水420を中空糸膜でろ過し、ろ過された透過水を中空糸膜モジュール401の上下位置に備えられた上部通水室又は下部通水室に導く。そして、吸引ポンプ440の吸引力によって、上部又は下部の通水室にある透過水を、隣接する中空糸膜モジュール401の上部又は下部の通水室にそれぞれ導き、最終的には前記透過水取出しライン421を経て透過水を連続的に集水する。
In the water treatment method, the inside of the hollow fiber membrane is sucked by the suction pump 440 to separate the treated water 420 with the hollow fiber membrane (membrane filtration), and the permeate is collected through the permeate discharge line 421. To do.
Specifically, in the water treatment method, the water to be treated 420 is filtered through a hollow fiber membrane by sucking the inside of the hollow fiber membrane with the suction pump 440, and the filtered permeated water is passed through the hollow fiber membrane module 401. To the upper water passage or the lower water passage provided at the upper and lower positions. Then, the permeated water in the upper or lower water flow chamber is guided to the upper or lower water flow chamber of the adjacent hollow fiber membrane module 401 by the suction force of the suction pump 440, and finally the permeated water is taken out. Permeate is continuously collected through line 421.
 また、前記水処理方法では、前記ブロア450から空気などの気体を前記散気孔に供給することによって、散気孔から気泡を発生させ、該気泡によって前記中空糸膜の外側表面に付着した懸濁物等由来の付着物を除去する。なお、気体の供給は、連続的に行ってもよく、間欠的に行ってもよい。
 具体的には、前記水処理方法では、複数の中空糸膜モジュール401の通気室413のうちの一部に前記ブロア450から前記気体供給ライン422を通じて空気を供給する。これにより、隣接する中空糸膜モジュール401の通気室にも空気を供給することができる。即ち、複数の中空糸膜モジュール401の通気室に同時に空気を供給することができる。そして、通気室から供給された空気によって散気孔から気泡を発生させ、該気泡によって中空糸膜の外側表面に付着した懸濁物等由来の付着物を除去する。
Further, in the water treatment method, by supplying a gas such as air from the blower 450 to the diffuser holes, bubbles are generated from the diffuser holes, and the suspended matter adhered to the outer surface of the hollow fiber membrane by the bubbles. Remove deposits derived from etc. Note that the gas supply may be performed continuously or intermittently.
Specifically, in the water treatment method, air is supplied from the blower 450 to the part of the ventilation chambers 413 of the plurality of hollow fiber membrane modules 401 through the gas supply line 422. Thereby, air can be supplied also to the ventilation chamber of the adjacent hollow fiber membrane module 401. That is, air can be simultaneously supplied to the ventilation chambers of the plurality of hollow fiber membrane modules 401. Then, air bubbles are generated from the air diffusion holes by the air supplied from the ventilation chamber, and the adhering matter derived from the suspension adhering to the outer surface of the hollow fiber membrane is removed by the air bubbles.
 上記実施形態の中空糸膜モジュール、水処理装置および水処理方法は、上記例示の通りであるが、本発明は、上記例示の中空糸膜モジュール、水処理装置および水処理方法に限定されるものではない。
 また、一般の中空糸膜モジュール、水処理装置および水処理方法において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
The hollow fiber membrane module, water treatment apparatus and water treatment method of the above embodiment are as exemplified above, but the present invention is limited to the above exemplified hollow fiber membrane module, water treatment apparatus and water treatment method. is not.
Moreover, the various aspects used in a general hollow fiber membrane module, a water treatment apparatus, and a water treatment method are employable in the range which does not impair the effect of this invention.
 10:中空糸膜モジュール、11:中空糸膜、20:上部固定部材、20a:(上部)集水室、21:上部板状体、21a:上面、21r:ポリマー部、21w:外周面、22:キャップ材、22c:天面部、22d:開口部、22s:開口、22w:周壁部、30:下部固定部材、30a:(下部)集水室、30b:気体貯留室、30r:リング、31:下部板状体、31a:上面、31b:下面、31f:張出し部、31s:シール部材、31w:周壁部、33:筒状部材、33h:貫通孔、33n:突出部、33p:仕切り壁、33s:シール部材、33w:周側壁、33w1:フランジ部、33x:気泡通路、40p:給気管、41:中空体、50:給気管、60:水処理装置、61:被処理水供給ライン、62:被処理水槽、63:透過水取出しライン、63a:吸引ポンプ、63b:集水管、63c:集水ヘッダー管、63d:透過水取出し管、64:空気供給ライン、64a:空気供給源、64b:空気輸送管、64d:空気輸送分岐管、65:沈殿物排出ライン、AO:散気孔、CL:クランプ、S:支持部材、
 210:中空糸膜モジュール、211:中空糸膜、211a:中空糸膜束、220:上部固定部材、220a:空間部(上部集水室)、221:(上部)板状体、221a:上面、221w:外周面、222:キャップ材、222c:天面部、222s:開口、222w:周壁部、230:下部固定部材、230a:空間部(下部集水室)、231:(下部)板状体、231a:上面、231b:下面、232:キャップ材、232b:底面部、240:散気部材、240p:管体、240p:給気管、241:中空体、241b:底壁、241c:円形基体部、241e:立上り部、241p:管状部、241r:天井壁、241w:周側壁、250:給気管、251:分岐配管部、260:水処理装置、261:被処理水供給ライン、262:被処理水槽、263a:吸引ポンプ、263b:集水管、263c:集水ヘッダー管、263d:透過水取出し管、264:空気供給ライン、264a:空気供給源、264b:空気輸送管、264d:空気輸送分岐管、265:沈殿物排出ライン、200AB:気泡、200AO:散気孔、200AL:溝、200P:通水管、200S:支持部材、200Se:延設管、
 310:中空糸膜モジュール、311:中空糸膜、320:下部固定部材、321、331:円筒体、321a、331a:フランジ部、322:円形下板、324、334:板状体、324a、334a:フランジ部、325:下部集水部、326a、326b、336a、336b:Oリング、327、337:環状固定部材、330:上部固定部材、332:円形上板、332a:透過水出口、332b:管状体取り付け孔、332c:外周面、332d:内周面、334b:上面、335上部集水部、340(340a,340b,340c):透過水管、351:管状体、351a:ネジ溝部分(ネジ部)、352:散気孔、360:水処理装置、361:被処理水供給ライン、362:被処理水槽、363:透過水取出しライン、363a:吸引ポンプ、363b:集水管、363c:集水ヘッダー管、363d:透過水取出し管、364a:ブロア、364b:空気輸送管、364c:空気供給配管、365:沈殿物排出ライン、300BS:バルブソケット、300C:コーキング剤、300L1~300L3:放射線、300N:ナット、300P:パッキング、300S:ソケット、300T:シールテープ、
 401:中空糸膜モジュール、402:中空糸膜、403:上部連結部材、404:下部連結部材、405:上部固定部材、406:下部固定部材、407:上部通水室、408:下部通水室、409:通水口、410:散気孔、411:気泡、412:散気管、413:通気室、414:通気室本体、415:通気室連絡管、416:通気口、417:支持部材、418:上部キャップ部、419:下部キャップ部、420:被処理水、421:透過水取出しライン、422:気体供給ライン、423:沈殿物排出ライン、424:被処理水槽、425:被処理水供給ライン、430:水処理装置、431:中空糸膜ユニット、432:散気ユニット、433:気泡拡散防止板、440:吸引ポンプ、450:ブロア
10: Hollow fiber membrane module, 11: Hollow fiber membrane, 20: Upper fixing member, 20a: (Upper) water collecting chamber, 21: Upper plate, 21a: Upper surface, 21r: Polymer part, 21w: Outer peripheral surface, 22 : Cap material, 22c: top surface part, 22d: opening part, 22s: opening part, 22w: peripheral wall part, 30: lower fixing member, 30a: (lower part) water collecting chamber, 30b: gas storage chamber, 30r: ring, 31: Lower plate-like body, 31a: upper surface, 31b: lower surface, 31f: overhang portion, 31s: sealing member, 31w: peripheral wall portion, 33: cylindrical member, 33h: through hole, 33n: projecting portion, 33p: partition wall, 33s : Seal member, 33w: peripheral side wall, 33w1: flange portion, 33x: bubble passage, 40p: air supply pipe, 41: hollow body, 50: air supply pipe, 60: water treatment device, 61: water to be treated supply line, 62: Water tank to be treated, 63 Permeated water extraction line, 63a: Suction pump, 63b: Water collection pipe, 63c: Water collection header pipe, 63d: Permeated water extraction pipe, 64: Air supply line, 64a: Air supply source, 64b: Air transport pipe, 64d: Air Transport branch pipe, 65: sediment discharge line, AO: air diffuser, CL: clamp, S: support member,
210: hollow fiber membrane module, 211: hollow fiber membrane, 211a: hollow fiber membrane bundle, 220: upper fixing member, 220a: space (upper water collecting chamber), 221: (upper) plate-like body, 221a: upper surface, 221w: outer peripheral surface, 222: cap material, 222c: top surface portion, 222s: opening, 222w: peripheral wall portion, 230: lower fixing member, 230a: space (lower water collecting chamber), 231: (lower) plate-like body, 231a: upper surface, 231b: lower surface, 232: cap material, 232b: bottom surface portion, 240: diffuser member, 240p: pipe body, 240p: air supply pipe, 241: hollow body, 241b: bottom wall, 241c: circular base body portion, 241e: rising part, 241p: tubular part, 241r: ceiling wall, 241w: peripheral side wall, 250: air supply pipe, 251: branch pipe part, 260: water treatment device, 261: treated water supply line, 2 2: Water tank to be treated, 263a: Suction pump, 263b: Water collecting pipe, 263c: Water collecting header pipe, 263d: Permeated water outlet pipe, 264: Air supply line, 264a: Air supply source, 264b: Air transport pipe, 264d: Air transport branch pipe, 265: sediment discharge line, 200AB: air bubbles, 200AO: air diffuser, 200AL: groove, 200P: water pipe, 200S: support member, 200Se: extension pipe,
310: Hollow fiber membrane module, 311: Hollow fiber membrane, 320: Lower fixing member, 321, 331: Cylindrical body, 321a, 331a: Flange, 322: Circular lower plate, 324, 334: Plate body, 324a, 334a : Flange portion, 325: lower water collecting portion, 326a, 326b, 336a, 336b: O-ring, 327, 337: annular fixing member, 330: upper fixing member, 332: circular upper plate, 332a: permeate outlet, 332b: Tubular body mounting hole, 332c: outer peripheral surface, 332d: inner peripheral surface, 334b: upper surface, 335 upper water collecting portion, 340 (340a, 340b, 340c): permeate pipe, 351: tubular body, 351a: screw groove portion (screw) Part), 352: air diffuser, 360: water treatment device, 361: treated water supply line, 362: treated water tank, 363: permeated water extraction line 363a: Suction pump, 363b: Water collection pipe, 363c: Water collection header pipe, 363d: Permeate discharge pipe, 364a: Blower, 364b: Air transport pipe, 364c: Air supply pipe, 365: Sediment discharge line, 300BS: Valve Socket, 300C: caulking agent, 300L1 to 300L3: radiation, 300N: nut, 300P: packing, 300S: socket, 300T: seal tape,
401: Hollow fiber membrane module, 402: Hollow fiber membrane, 403: Upper connecting member, 404: Lower connecting member, 405: Upper fixing member, 406: Lower fixing member, 407: Upper water passage, 408: Lower water passage 409: Water vent, 410: Air diffuser, 411: Air bubble, 412: Air diffuser, 413: Vent chamber, 414: Vent chamber main body, 415: Vent chamber communication tube, 416: Vent, 417: Support member, 418: Upper cap part, 419: lower cap part, 420: treated water, 421: permeated water extraction line, 422: gas supply line, 423: sediment discharge line, 424: treated water tank, 425: treated water supply line, 430: Water treatment device, 431: Hollow fiber membrane unit, 432: Air diffusion unit, 433: Bubble diffusion prevention plate, 440: Suction pump, 450: Blower

Claims (24)

  1.  上下方向に延在する複数本の中空糸膜を有し、水中に浸漬して用いられる中空糸膜モジュールであって、
     前記中空糸膜に散気し得る散気機構と、前記中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室とを備え、前記上部通水室及び前記下部通水室を介して、前記中空糸膜の外側から内側に透過された透過水を集水し得るように形成されてなることを特徴とする中空糸膜モジュール。
    A hollow fiber membrane module having a plurality of hollow fiber membranes extending in the vertical direction and used by being immersed in water,
    An air diffusion mechanism that can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and formed below the hollow fiber membrane A lower water passage communicating with a hollow region inside the hollow fiber membrane, and collects permeated water permeated from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage. A hollow fiber membrane module characterized by being formed so as to be able to perform.
  2.  上下方向に延在する複数本の中空糸膜を有し、水中に浸漬して用いられる中空糸膜モジュールが備えられてなる水処理装置であって、
     前記中空糸膜モジュールが、前記中空糸膜に散気し得る散気機構と、前記中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室とを備え、前記上部通水室及び前記下部通水室を介して、前記中空糸膜の外側から内側に透過された透過水を集水し得るように形成されてなることを特徴とする水処理装置。
    A water treatment apparatus having a plurality of hollow fiber membranes extending in the vertical direction and provided with a hollow fiber membrane module used by being immersed in water,
    An air diffusion mechanism in which the hollow fiber membrane module can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and the hollow fiber A lower water passage formed below the membrane and communicating with a hollow region inside the hollow fiber membrane, and is transmitted from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage. A water treatment device formed so as to collect collected permeated water.
  3.  上下方向に延在する複数本の中空糸膜を有し、水中に浸漬して用いられる中空糸膜モジュールを用いた水処理方法であって、
     前記中空糸膜モジュールが、前記中空糸膜に散気し得る散気機構と、前記中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室とを備え、前記上部通水室及び前記下部通水室を介して、前記中空糸膜の外側から内側に透過された透過水を集水し得るように形成されてなることを特徴とする水処理方法。
    A water treatment method using a hollow fiber membrane module having a plurality of hollow fiber membranes extending in the vertical direction and used by being immersed in water,
    An air diffusion mechanism in which the hollow fiber membrane module can diffuse into the hollow fiber membrane, an upper water passage formed above the hollow fiber membrane and communicated with a hollow region inside the hollow fiber membrane, and the hollow fiber A lower water passage formed below the membrane and communicating with a hollow region inside the hollow fiber membrane, and is transmitted from the outside to the inside of the hollow fiber membrane through the upper water passage and the lower water passage. A water treatment method characterized by being formed so that collected permeated water can be collected.
  4.  複数本の中空糸膜を上下方向に延在させた状態で被処理水に浸漬させて該被処理水の膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、前記中空糸膜の下端部側において気泡を発生させる散気機構がさらに備えられている中空糸膜モジュールであって、
     前記下部固定部材が、前記集水室の下方に設けられた気体貯留室と、該気体貯留室から前記集水室を通過して前記固定部の上面側にいたる気泡通路とをさらに備えており、前記気体貯留室に気体が貯留され、該貯留された前記気体が前記気泡通路を通って浮上されて前記固定部の上側に気泡が発生される前記散気機構が備えられていることを特徴とする中空糸膜モジュール。
    An upper fixing member for fixing an upper end portion of the hollow fiber membrane so that a plurality of hollow fiber membranes can be immersed in the water to be treated in a state in which the hollow fiber membranes are extended in the vertical direction so as to perform membrane separation of the water to be treated; A lower fixing member that fixes a lower end portion, the upper fixing member has a water collection chamber above a fixing portion that fixes the hollow fiber membrane, and the lower fixing member fixes the hollow fiber membrane. A water collecting chamber below the fixed portion, the hollow region inside the hollow fiber membrane communicates with both the upper and lower water collecting chambers, and the permeated water permeated from the outside to the inside of the hollow fiber membrane is moved up and down. A hollow fiber membrane module that is formed so that water can be collected from both, and further includes an air diffusion mechanism that generates bubbles on the lower end side of the hollow fiber membrane,
    The lower fixing member further includes a gas storage chamber provided below the water collection chamber, and a bubble passage extending from the gas storage chamber through the water collection chamber to the upper surface side of the fixing portion. The gas storage chamber is provided with a gas diffusion mechanism in which gas is stored, the stored gas is floated through the bubble passage, and bubbles are generated above the fixed portion. A hollow fiber membrane module.
  5.  前記下部固定部材は、前記集水室と前記気体貯留室とを画成するための筒状部材、及び、前記固定部を構成する板状体を有し、該板状体が水平方向に配置されてその上面側から下面側に前記中空糸膜を貫通させて該中空糸膜を前記下面側において開口させた状態で固定しており、該板状体には厚み方向に貫通する貫通孔が1以上穿設されているとともに前記筒状部材には前記板状体に下側から外嵌可能な内径を有する筒状の周側壁と該周側壁の内部を上下に区分する仕切り壁とが備えられており、該仕切り壁には前記板状体に貫通孔が穿設されている位置に相当する位置において上方に向けて突出し且つ先端が前記貫通孔よりも小径で基端が前記貫通孔よりも大径な突出部が備えられており、該突出部の前記先端を前記貫通孔に下方から挿入させて前記突出部と前記貫通孔の開口縁とが当接されて前記仕切り壁と前記板状体との間に前記周側壁で囲まれた前記集水室を形成させるとともに前記仕切り壁の下方側に前記周側壁で囲まれた前記気体貯留室を形成させて前記筒状部材が前記板状体に外嵌されており、しかも、前記突出部に設けられた上下に貫通する貫通孔と前記板状体の貫通孔とによって形成された前記気泡通路が備えられている請求項4記載の中空糸膜モジュール。 The lower fixing member includes a cylindrical member for defining the water collection chamber and the gas storage chamber, and a plate-like body constituting the fixing portion, and the plate-like body is disposed in a horizontal direction. The hollow fiber membrane is penetrated from the upper surface side to the lower surface side and fixed in a state where the hollow fiber membrane is opened on the lower surface side, and the plate-like body has a through-hole penetrating in the thickness direction. The cylindrical member is provided with a cylindrical peripheral side wall having an inner diameter that can be externally fitted to the plate-like body from below and a partition wall that divides the inside of the peripheral side wall vertically. The partition wall protrudes upward at a position corresponding to a position where a through-hole is formed in the plate-like body, has a distal end smaller in diameter than the through-hole, and a proximal end from the through-hole. Has a large-diameter projection, and the tip of the projection is inserted into the through-hole from below. The protruding portion and the opening edge of the through hole are in contact with each other to form the water collecting chamber surrounded by the peripheral side wall between the partition wall and the plate-like body, and below the partition wall. The tubular member is externally fitted to the plate-like body by forming the gas storage chamber surrounded by the peripheral side wall on the side, and the through-hole penetrating vertically provided in the projecting portion and the The hollow fiber membrane module according to claim 4, wherein the bubble passage formed by the through hole of the plate-like body is provided.
  6.  前記透過水が、上水として供給可能な状態で集水される請求項4又は5記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 4 or 5, wherein the permeated water is collected in a state where it can be supplied as clean water.
  7.  複数本の中空糸膜を上下方向に延在させた状態で膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、前記中空糸膜の下端部側において気泡を発生させる散気機構がさらに備えられている中空糸膜モジュールを被処理水中に浸漬させた状態で前記上部集水室と前記下部集水室とに集水された前記透過水を中空糸膜モジュール外に吸引することによって前記被処理水を膜分離する膜分離工程と、前記中空糸膜の表面に付着した付着物を前記表面から除去させるべく前記散気機構で気泡を発生させて前記中空糸膜を振動させる散気工程とを実施する水処理方法であって、
     前記下部固定部材が、前記集水室の下方に設けられた気体貯留室と、該気体貯留室から前記集水室を通過して前記固定部の上面側にいたる気泡通路とを備えている中空糸膜モジュールを用い、前記気体貯留室に気体を貯留させて、該貯留させた前記気体を前記気泡通路を通じて浮上させることにより前記固定部の上側に前記気泡を発生させて前記散気工程を実施することを特徴とする水処理方法。
    An upper fixing member for fixing the upper end of the hollow fiber membrane and a lower fixing member for fixing the lower end so that the membrane separation can be carried out in a state where a plurality of hollow fiber membranes are extended in the vertical direction The upper fixing member has a water collecting chamber above the fixing portion fixing the hollow fiber membrane, and the lower fixing member has a water collecting chamber below the fixing portion fixing the hollow fiber membrane. The hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collecting chambers, and is formed so as to collect the permeated water permeated from the outside to the inside of the hollow fiber membrane from both the upper and lower sides. The hollow fiber membrane module further comprising an air diffusion mechanism for generating bubbles on the lower end side of the hollow fiber membrane is immersed in the water to be treated in the upper water collecting chamber and the lower water collecting chamber. Sucking the collected permeate out of the hollow fiber membrane module Therefore, a membrane separation step of membrane-separating the water to be treated, and a dispersion that vibrates the hollow fiber membrane by generating bubbles with the air diffusion mechanism so as to remove deposits attached to the surface of the hollow fiber membrane from the surface. A water treatment method for carrying out a gas process,
    The lower fixing member includes a gas storage chamber provided below the water collection chamber, and a hollow passage provided from the gas storage chamber through the water collection chamber to the upper surface side of the fixing portion. Using the yarn membrane module, the gas is stored in the gas storage chamber, and the stored gas is floated through the bubble passage, thereby generating the bubbles above the fixed portion and performing the air diffusion step. A water treatment method characterized by:
  8.  複数本の中空糸膜を上下方向に延在させた状態で被処理水に浸漬させて該被処理水の膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、さらに、前記中空糸膜の下端部側において気泡を発生させるための散気部材が備えられている中空糸膜モジュールであって、
     前記散気部材が、前記中空糸膜の下端部側に配されその上面側に散気孔が開口された中空体を有し、該中空体に接続された管体から前記中空体に気体が供給されて前記散気孔から気泡を発生させ得るように構成されており、前記散気孔が前記下部固定部材の固定部の上側において上向きに開口されていることを特徴とする中空糸膜モジュール。
    An upper fixing member for fixing an upper end portion of the hollow fiber membrane so that a plurality of hollow fiber membranes can be immersed in the water to be treated in a state in which the hollow fiber membranes are extended in the vertical direction so as to perform membrane separation of the water to be treated; A lower fixing member that fixes a lower end portion, the upper fixing member has a water collection chamber above a fixing portion that fixes the hollow fiber membrane, and the lower fixing member fixes the hollow fiber membrane. A water collecting chamber below the fixed portion, the hollow region inside the hollow fiber membrane communicates with both the upper and lower water collecting chambers, and the permeated water permeated from the outside to the inside of the hollow fiber membrane is moved up and down. A hollow fiber membrane module that is formed so that water can be collected from both, and further includes an air diffuser for generating bubbles on the lower end side of the hollow fiber membrane,
    The air diffusion member has a hollow body that is disposed on the lower end side of the hollow fiber membrane and has air diffusion holes opened on the upper surface thereof, and gas is supplied to the hollow body from a tube connected to the hollow body The hollow fiber membrane module is configured to generate air bubbles from the diffuser holes, and the diffuser holes are opened upward on the upper side of the fixing portion of the lower fixing member.
  9.  前記上部固定部材と前記下部固定部材とに両端部が固定された杆状の支持部材が1又は2以上備えられ、該支持部材の1以上が管状で前記中空体に気体を供給するための前記管体として備えられており、下部固定部材の前記固定部においては、前記中空糸膜がその下端部をポリマー組成物で形成された板状体の上面側から下面側に貫通させた状態で埋設されて固定されており、前記板状体の上面側に開口された散気孔から前記気泡を発生させるべく前記散気孔を有する中空体が前記板状体に埋設されて固定され、該中空体に前記管状の支持部材が接続されている請求項8記載の中空糸膜モジュール。 One or more hook-shaped support members having both ends fixed to the upper fixing member and the lower fixing member are provided, and one or more of the support members are tubular and supply gas to the hollow body. It is provided as a tubular body, and in the fixing portion of the lower fixing member, the hollow fiber membrane is embedded with its lower end portion penetrating from the upper surface side to the lower surface side of the plate-like body formed of the polymer composition. A hollow body having the air diffusion holes is embedded and fixed in the plate-like body so as to generate the bubbles from the air diffusion holes opened on the upper surface side of the plate-like body. The hollow fiber membrane module according to claim 8, wherein the tubular support member is connected.
  10.  前記上部固定部材と前記下部固定部材とに両端部が固定された杆状の支持部材が2以上備えられ、一つの中空体に複数の管体から気体を供給させるべく、前記支持部材の2以上が前記管体として備えられており、前記中空体が2以上の前記管体と接続された状態で備えられている請求項8記載の中空糸膜モジュール。 Two or more bowl-shaped support members having both ends fixed to the upper fixing member and the lower fixing member are provided, and two or more of the support members are provided to supply gas from a plurality of tubes to one hollow body. Is provided as the tubular body, and the hollow body is provided in a state of being connected to two or more tubular bodies.
  11.  前記中空体が、2本の管体に両端部が接続された連結管であり前記散気孔が該連結管の管壁に穿設された貫通孔である請求項10記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 10, wherein the hollow body is a connecting pipe having both ends connected to two pipe bodies, and the diffuser holes are through holes formed in a pipe wall of the connecting pipe.
  12.  前記管状の支持部材が、その下端部を前記板状体の中心部に位置させて前記中空体に接続されており、該中空体が前記管状の支持部材との接続箇所から外方に放射状に広がる形状を有している請求項8又は9記載の中空糸膜モジュール。 The tubular support member is connected to the hollow body with its lower end positioned at the center of the plate-like body, and the hollow body is radially outward from the connection point with the tubular support member. The hollow fiber membrane module according to claim 8 or 9, wherein the hollow fiber membrane module has an expanding shape.
  13.  前記中空糸膜が小分けされた束が、その下端部を放射状に広がる前記中空体の間に埋設させて前記板状体に固定されている請求項12記載の中空糸膜モジュール。 13. The hollow fiber membrane module according to claim 12, wherein a bundle in which the hollow fiber membrane is subdivided is fixed to the plate-like body by burying a lower end portion of the bundle between the hollow bodies spreading radially.
  14.  前記透過水が、上水として供給可能な状態で集水される請求項8乃至11のいずれか1項に記載の中空糸膜モジュール。 The hollow fiber membrane module according to any one of claims 8 to 11, wherein the permeated water is collected in a state where it can be supplied as clean water.
  15.  前記透過水が、上水として供給可能な状態で集水される請求項12記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 12, wherein the permeated water is collected in a state where it can be supplied as clean water.
  16.  前記透過水が、上水として供給可能な状態で集水される請求項13記載の中空糸膜モジュール。 14. The hollow fiber membrane module according to claim 13, wherein the permeated water is collected in a state where it can be supplied as clean water.
  17.  複数本の中空糸膜を上下方向に延在させた状態で膜分離を実施させ得るように前記中空糸膜の上端部を固定する上部固定部材と下端部を固定する下部固定部材とを有し、前記上部固定部材が前記中空糸膜を固定している固定部の上方に集水室を有するとともに前記下部固定部材が前記中空糸膜を固定している固定部の下方に集水室を有しており前記中空糸膜内部の中空領域が上下両方の集水室に連通されて該中空糸膜の外側から内側に透過された透過水を上下両方から集水し得るように形成されており、前記中空糸膜の下端部側において気泡を発生させるための散気部材がさらに備えられている中空糸膜モジュールが被処理水中に浸漬された状態で前記上部集水室と前記下部集水室とに集水された前記透過水を中空糸膜モジュール外に吸引することによって前記被処理水を膜分離する膜分離工程と、前記散気部材で気泡を発生させて前記中空糸膜を振動させることにより該中空糸膜の表面に付着した付着物を前記表面から除去する散気工程とを実施する水処理方法であって、
     前記散気部材が散気孔を備えた中空体を有し、該散気孔が前記下部固定部材の固定部の上側において上向きに開口した状態となるように前記中空体が配されており、該中空体に気体を供給するための管体が前記中空体に接続されて備えられている中空糸膜モジュールを用いて前記膜分離工程を実施させるとともに前記散気工程においては、前記管体から前記中空体に気体を供給し、該供給された気体を気泡として前記散気孔から発生させることによって前記付着物の除去を実施することを特徴とする水処理方法。
    An upper fixing member for fixing the upper end of the hollow fiber membrane and a lower fixing member for fixing the lower end so that the membrane separation can be carried out in a state where a plurality of hollow fiber membranes are extended in the vertical direction The upper fixing member has a water collecting chamber above the fixing portion fixing the hollow fiber membrane, and the lower fixing member has a water collecting chamber below the fixing portion fixing the hollow fiber membrane. The hollow region inside the hollow fiber membrane is communicated with both the upper and lower water collecting chambers, and is formed so as to collect the permeated water permeated from the outside to the inside of the hollow fiber membrane from both the upper and lower sides. The upper water collecting chamber and the lower water collecting chamber in a state in which a hollow fiber membrane module further provided with an air diffuser for generating bubbles on the lower end side of the hollow fiber membrane is immersed in the water to be treated The permeated water collected on the outside is sucked out of the hollow fiber membrane module. A membrane separation step of membrane-separating the water to be treated, and removing adhering matter adhering to the surface of the hollow fiber membrane by generating bubbles in the air diffuser and vibrating the hollow fiber membrane A water treatment method for performing an air diffusion process,
    The air diffuser has a hollow body provided with air diffuser holes, and the hollow body is arranged so that the air diffuser is open upward on the upper side of the fixing portion of the lower fixing member. The hollow fiber membrane module, in which a tube for supplying gas to the body is connected to the hollow body, is used to carry out the membrane separation step, and in the air diffusion step, the hollow body is removed from the tube body. A water treatment method, wherein the deposit is removed by supplying a gas to a body and generating the supplied gas as bubbles from the diffuser holes.
  18.  上下方向に延在させた複数本の中空糸膜と、該中空糸膜の上下端部側をそれぞれ固定する上部固定部材及び下部固定部材と、前記中空糸膜に散気し得る散気機構とを備えた水中に浸漬して用いられる中空糸膜モジュールであって、
     前記散気機構が、前記上部固定部材及び前記下部固定部材に両端部側が固定されて前記上部固定部材及び前記下部固定部材の間に延設された管状体を備え、該管状体の周面に管内の気体を前記中空糸膜へ散気可能な散気孔が形成され、前記中空糸膜の上下端部が開口し、前記中空糸膜の開口した端部から中空糸膜を透過した透過水が収容される上部集水部及び下部集水部を備え、該上部集水部及び下部集水部に収容された透過水を導出する導出機構を備えたことを特徴とする中空糸膜モジュール。
    A plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and an air diffusion mechanism that can diffuse into the hollow fiber membrane; A hollow fiber membrane module used by being immersed in water with
    The air diffusion mechanism includes a tubular body having both ends fixed to the upper fixing member and the lower fixing member and extending between the upper fixing member and the lower fixing member, and is provided on a peripheral surface of the tubular body. Air diffusion holes capable of diffusing the gas in the tube to the hollow fiber membrane are formed, the upper and lower ends of the hollow fiber membrane are opened, and the permeated water that has passed through the hollow fiber membrane from the open end of the hollow fiber membrane is formed. A hollow fiber membrane module comprising an upper water collecting part and a lower water collecting part to be accommodated, and a derivation mechanism for deriving permeated water contained in the upper water collecting part and the lower water collecting part.
  19.  前記上部固定部材及び下部固定部材に両端部側が固定された支持部材を備え、該支持部材が前記管状体である請求項18記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 18, further comprising a support member having both end portions fixed to the upper fixing member and the lower fixing member, wherein the supporting member is the tubular body.
  20.  上下方向に延在させた複数本の中空糸膜と、該中空糸膜の上下端部側をそれぞれ固定する上部固定部材及び下部固定部材と、前記中空糸膜に散気し得る散気機構とを備えた水中に浸漬して用いられる中空糸膜モジュールを用いた膜分離方法であって、
     前記散気機構が、前記上部固定部材及び前記下部固定部材に両端部側が固定されて前記上部固定部材及び前記下部固定部材の間に延設された管状体を備え、該管状体の周面に形成された散気孔から管内の気体を前記中空糸膜へ散気し、前記中空糸膜の上下端部が開口し、前記中空糸膜モジュールが、前記中空糸膜の開口した端部から中空糸膜を透過した透過水が収容される上部集水部及び下部集水部を備え、且つ該上部集水部及び下部集水部に収容された透過水を導出する導出機構を備えたことを特徴とする膜分離方法。
    A plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and an air diffusion mechanism that can diffuse into the hollow fiber membrane; A membrane separation method using a hollow fiber membrane module used by immersing in water,
    The air diffusion mechanism includes a tubular body having both ends fixed to the upper fixing member and the lower fixing member and extending between the upper fixing member and the lower fixing member, and is provided on a peripheral surface of the tubular body. A gas in the pipe is diffused from the formed air diffusion holes to the hollow fiber membrane, the upper and lower ends of the hollow fiber membrane are opened, and the hollow fiber membrane module is hollow fiber from the open end of the hollow fiber membrane. An upper water collecting section and a lower water collecting section that store permeated water that has passed through the membrane, and a derivation mechanism that derives the permeated water stored in the upper water collecting section and the lower water collecting section. Membrane separation method.
  21.  上下方向に延在させた複数本の中空糸膜と、該中空糸膜の上下端部側をそれぞれ固定する上部固定部材及び下部固定部材と、前記中空糸膜に散気し得る散気機構とを備えた中空糸膜モジュールが水中に浸漬されて膜分離が実施される水処理装置であって、
     前記散気機構が、前記上部固定部材及び前記下部固定部材に両端部側が固定されて前記上部固定部材及び前記下部固定部材の間に延設された管状体を備え、該管状体の周面に管内の気体を前記中空糸膜へ散気可能な散気孔が形成されている中空糸膜モジュールが用いられ、前記中空糸膜の上下端部が開口し、前記中空糸膜モジュールが、前記中空糸膜の開口した端部から中空糸膜を透過した透過水が収容される上部集水部及び下部集水部を備え、且つ該上部集水部及び下部集水部に収容された透過水を導出する導出機構を備えたことを特徴とする水処理装置。
    A plurality of hollow fiber membranes extending in the vertical direction, an upper fixing member and a lower fixing member that respectively fix the upper and lower ends of the hollow fiber membrane, and an air diffusion mechanism that can diffuse into the hollow fiber membrane; A water treatment apparatus in which a hollow fiber membrane module provided with water is immersed in water to perform membrane separation,
    The air diffusion mechanism includes a tubular body having both ends fixed to the upper fixing member and the lower fixing member and extending between the upper fixing member and the lower fixing member, and is provided on a peripheral surface of the tubular body. A hollow fiber membrane module in which a diffused hole capable of diffusing gas in a tube to the hollow fiber membrane is formed, upper and lower ends of the hollow fiber membrane are opened, and the hollow fiber membrane module is connected to the hollow fiber. An upper water collecting portion and a lower water collecting portion that contain permeated water that has permeated through the hollow fiber membrane are accommodated from the open end of the membrane, and the permeated water contained in the upper water collecting portion and the lower water collecting portion is derived. A water treatment apparatus comprising a derivation mechanism.
  22.  上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを備え、被処理水に浸漬させて該被処理水の膜分離を実施させるべく中空糸膜の外側から内側へ透過される透過水を上下両方から前記上部通水室及び前記下部通水室を介して集水するように形成され、複数が並列するように配置されて用いられる中空糸膜モジュールであって、
     前記上部通水室を覆い且つ隣接するもの同士互いに連結する上部連結部材と、前記下部通水室及び前記通気室を覆い且つ隣接するもの同士互いに連結する下部連結部材とをさらに備え、前記上部連結部材及び前記下部連結部材同士がそれぞれ互いに連結した状態では、前記上部通水室同士、前記下部通水室同士及び前記通気室同士が、それぞれ互いに連通するように形成されていることを特徴とする中空糸膜モジュール。
    A plurality of hollow fiber membranes extending in the vertical direction, an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, and formed below the hollow fiber membrane A lower water passage communicating with a hollow region inside the hollow fiber membrane, a diffuser hole formed to generate bubbles on a lower end side of the hollow fiber membrane, and the diffuser hole formed below the hollow fiber membrane A permeate chamber that supplies gas to the treated water, so that permeated water that is permeated from the outside to the inside of the hollow fiber membrane is immersed in the treated water to perform membrane separation of the treated water from above and below. A hollow fiber membrane module that is formed so as to collect water through a chamber and the lower water flow chamber, and is used in such a manner that a plurality are arranged in parallel,
    An upper connecting member that covers the upper water flow chamber and connects the adjacent ones to each other; and a lower connecting member that covers the lower water flow chamber and the ventilation chamber and connects the adjacent ones to each other, When the member and the lower connecting member are connected to each other, the upper water passing chambers, the lower water passing chambers, and the venting chambers are formed to communicate with each other. Hollow fiber membrane module.
  23.  上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを有する中空糸膜モジュールが備えられ、該中空糸膜モジュールを被処理水に浸漬させて被処理水の膜分離を実施させるべく中空糸膜の外側から内側へ透過される透過水を中空糸膜モジュールの上下両方から前記上部通水室及び前記下部通水室を介して集水するように構成され、複数の中空糸膜モジュールが並列するように配置されている水処理装置であって、
     前記中空糸膜モジュールは、前記上部通水室を覆い且つ隣接するもの同士互いに連結する上部連結部材と、前記下部通水室及び前記通気室を覆い且つ隣接するもの同士互いに連結する下部連結部材とをさらに備え、前記上部連結部材及び前記下部連結部材同士がそれぞれ互いに連結した状態では、前記上部通水室同士、前記下部通水室同士及び前記通気室同士が、それぞれ互いに連通するように形成されていることを特徴とする水処理装置。
    A plurality of hollow fiber membranes extending in the vertical direction, an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, and formed below the hollow fiber membrane A lower water passage communicating with a hollow region inside the hollow fiber membrane, a diffuser hole formed to generate bubbles on a lower end side of the hollow fiber membrane, and the diffuser hole formed below the hollow fiber membrane A hollow fiber membrane module having a ventilation chamber for supplying gas to the water, and the hollow fiber membrane module is permeated from the outside to the inside of the hollow fiber membrane so as to perform membrane separation of the water to be treated by immersing the hollow fiber membrane module in the water to be treated. The permeated water is collected from both the upper and lower sides of the hollow fiber membrane module through the upper water passage and the lower water passage, and a plurality of hollow fiber membrane modules are arranged in parallel. A water treatment device,
    The hollow fiber membrane module includes an upper connecting member that covers the upper water flow chamber and connects the adjacent ones to each other, and a lower connection member that covers the lower water flow chamber and the ventilation chamber and connects the adjacent ones to each other. In the state where the upper connecting member and the lower connecting member are connected to each other, the upper water passing chambers, the lower water passing chambers, and the venting chambers are formed to communicate with each other. The water treatment apparatus characterized by the above-mentioned.
  24.  上下方向に延在する複数本の中空糸膜と、該中空糸膜の上方に形成され前記中空糸膜内部の中空領域と連通した上部通水室と、前記中空糸膜の下方に形成され前記中空糸膜内部の中空領域と連通した下部通水室と、前記中空糸膜の下端部側で気泡を発生させるように形成された散気孔と、前記中空糸膜の下方に形成され前記散気孔へ気体を供給する通気室とを備えた中空糸膜モジュールの複数を並列するように配置して被処理水に浸漬させ、中空糸膜の外側から内側へ透過される透過水を中空糸膜モジュールの上下両方から前記上部通水室及び前記下部通水室を介して集水し、被処理水の膜分離を実施する水処理方法であって、
     前記上部通水室を覆い且つ隣接するもの同士互いに連結する上部連結部材と、前記下部通水室及び前記通気室を覆い且つ隣接するもの同士互いに連結する下部連結部材とをさらに備えた前記中空糸膜モジュールを、前記上部連結部材及び前記下部連結部材同士でそれぞれ互いに連結し、前記上部通水室同士、前記下部通水室同士及び前記通気室同士をそれぞれ互いに連通させた状態で膜分離を実施することを特徴とする水処理方法。
    A plurality of hollow fiber membranes extending in the vertical direction, an upper water passage formed above the hollow fiber membrane and communicating with a hollow region inside the hollow fiber membrane, and formed below the hollow fiber membrane A lower water passage communicating with a hollow region inside the hollow fiber membrane, a diffuser hole formed to generate bubbles on a lower end side of the hollow fiber membrane, and the diffuser hole formed below the hollow fiber membrane A plurality of hollow fiber membrane modules each having a ventilation chamber for supplying gas to the hollow fiber membrane module are arranged in parallel and immersed in the water to be treated, and the permeated water transmitted from the outside to the inside of the hollow fiber membrane is passed through the hollow fiber membrane module. A water treatment method for collecting water from above and below the upper water passage and the lower water passage, and performing membrane separation of water to be treated,
    The hollow fiber further comprising: an upper connecting member that covers the upper water flow chamber and connects the adjacent ones to each other; and a lower connection member that covers the lower water flow chamber and the vent chamber and connects the adjacent ones to each other. Membrane modules are connected to each other by the upper connecting member and the lower connecting member, and membrane separation is performed with the upper water passing chambers, the lower water passing chambers, and the venting chambers being in communication with each other. A water treatment method characterized by:
PCT/JP2010/071009 2009-11-26 2010-11-25 Hollow-fiber membrane module, water treatment device, membrane separation method, and water treatment method WO2011065418A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-269142 2009-11-26
JP2009-269178 2009-11-26
JP2009269180A JP2011110499A (en) 2009-11-26 2009-11-26 Hollow fiber membrane module and water treatment method
JP2009-269180 2009-11-26
JP2009269178A JP2011110498A (en) 2009-11-26 2009-11-26 Hollow fiber membrane module and water treatment method
JP2009269142A JP2011110496A (en) 2009-11-26 2009-11-26 Hollow fiber membrane module, membrane separation method, and water treatment apparatus
JP2010030198A JP2011161417A (en) 2010-02-15 2010-02-15 Hollow fiber membrane module, water treatment apparatus, and water treatment method
JP2010-030198 2010-02-15

Publications (1)

Publication Number Publication Date
WO2011065418A1 true WO2011065418A1 (en) 2011-06-03

Family

ID=44066523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071009 WO2011065418A1 (en) 2009-11-26 2010-11-25 Hollow-fiber membrane module, water treatment device, membrane separation method, and water treatment method

Country Status (1)

Country Link
WO (1) WO2011065418A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013129136A1 (en) * 2012-03-01 2015-07-30 本田技研工業株式会社 Multi-layer coating formation method
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
CN106215699A (en) * 2016-08-26 2016-12-14 合肥合意环保科技工程有限公司 A kind of film ultrasonic synchronization scale removal ultrafiltration apparatus and control method thereof
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN106457157A (en) * 2014-05-30 2017-02-22 可隆工业株式会社 Filtering system and hollow-fiber membrane module for same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295422A (en) * 1988-09-30 1990-04-06 Akua Runesansu Gijutsu Kenkyu Kumiai Operating method for hollow yarn membrane module
JPH03119424U (en) * 1990-03-14 1991-12-10
JPH0453433U (en) * 1990-09-06 1992-05-07
JPH05285349A (en) * 1992-04-03 1993-11-02 Nitto Denko Corp Membrane separator
JPH06343837A (en) * 1993-06-02 1994-12-20 Ebara Infilco Co Ltd Hollow fiber membrane module
JPH07185268A (en) * 1993-12-28 1995-07-25 Toray Ind Inc Hollow fiber filter membrane element and module
JP2000051670A (en) * 1998-08-07 2000-02-22 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
JP2006305443A (en) * 2005-04-27 2006-11-09 Maezawa Ind Inc Filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295422A (en) * 1988-09-30 1990-04-06 Akua Runesansu Gijutsu Kenkyu Kumiai Operating method for hollow yarn membrane module
JPH03119424U (en) * 1990-03-14 1991-12-10
JPH0453433U (en) * 1990-09-06 1992-05-07
JPH05285349A (en) * 1992-04-03 1993-11-02 Nitto Denko Corp Membrane separator
JPH06343837A (en) * 1993-06-02 1994-12-20 Ebara Infilco Co Ltd Hollow fiber membrane module
JPH07185268A (en) * 1993-12-28 1995-07-25 Toray Ind Inc Hollow fiber filter membrane element and module
JP2000051670A (en) * 1998-08-07 2000-02-22 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
JP2006305443A (en) * 2005-04-27 2006-11-09 Maezawa Ind Inc Filter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013129136A1 (en) * 2012-03-01 2015-07-30 本田技研工業株式会社 Multi-layer coating formation method
CN106457157A (en) * 2014-05-30 2017-02-22 可隆工业株式会社 Filtering system and hollow-fiber membrane module for same
EP3150272A4 (en) * 2014-05-30 2018-05-30 Kolon Industries, Inc. Filtering system and hollow-fiber membrane module for same
US10105654B2 (en) 2014-05-30 2018-10-23 Kolon Industries, Inc. Filtering system and hollow fiber membrane module for the same
CN106457157B (en) * 2014-05-30 2019-04-26 可隆工业株式会社 Filtration system and hollow fiber film assembly for the system
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN106215699A (en) * 2016-08-26 2016-12-14 合肥合意环保科技工程有限公司 A kind of film ultrasonic synchronization scale removal ultrafiltration apparatus and control method thereof
CN106215699B (en) * 2016-08-26 2019-05-10 合肥合意环保科技工程有限公司 A kind of synchronous scale removal ultrafiltration apparatus of film ultrasound and its control method

Similar Documents

Publication Publication Date Title
KR100382012B1 (en) Hollow fiber membrane cartridge
WO2011065418A1 (en) Hollow-fiber membrane module, water treatment device, membrane separation method, and water treatment method
JP6757739B2 (en) Hollow fiber membrane module and its cleaning method
US6325928B1 (en) Immersed membrane element and module
JP4382821B2 (en) Membrane module and integrated membrane cassette
ES2309000T3 (en) IMMERSE MEMBRANE ELEMENT AND MODULE.
TWI396583B (en) Filtration apparatus
ES2358890T3 (en) METHOD FOR CLEANING MEMBRANE MODULES.
EP1043276B1 (en) Apparatus and method for treating water
WO2009145077A1 (en) Hollow-fiber membrane module, method of membrane separation, and apparatus for water treatment
JP2011115796A (en) Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
US20110005994A1 (en) Membrane element and membrane module
KR100646001B1 (en) System and apparatus for immersion filtering water using hollow fiber membrane module
US20110011787A1 (en) Membrane element and membrane module
JP2000343095A (en) Activated sludge treating device
JP6343227B2 (en) Membrane module
JP2007203254A (en) Membrane module for membrane separation type water-purifying apparatus
CN102806019A (en) Multifunctional composite filtering diaphragm plate
JPH09220446A (en) External pressure type hollow yarn membrane module
JP2011110496A (en) Hollow fiber membrane module, membrane separation method, and water treatment apparatus
KR100544383B1 (en) Hollow Fiber Membrane Module Combined with Air Diffuser
JP2006021109A (en) Hollow fiber membrane module and water treatment equipment using the same
JP2007083129A (en) Membrane separation unit
JP2011110498A (en) Hollow fiber membrane module and water treatment method
JP2011161417A (en) Hollow fiber membrane module, water treatment apparatus, and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833264

Country of ref document: EP

Kind code of ref document: A1