WO2011065393A1 - 核磁気共鳴イメージング装置およびそのsarの見積方法 - Google Patents

核磁気共鳴イメージング装置およびそのsarの見積方法 Download PDF

Info

Publication number
WO2011065393A1
WO2011065393A1 PCT/JP2010/070964 JP2010070964W WO2011065393A1 WO 2011065393 A1 WO2011065393 A1 WO 2011065393A1 JP 2010070964 W JP2010070964 W JP 2010070964W WO 2011065393 A1 WO2011065393 A1 WO 2011065393A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
resonance imaging
nuclear magnetic
imaging apparatus
subject
Prior art date
Application number
PCT/JP2010/070964
Other languages
English (en)
French (fr)
Inventor
公輔 伊藤
将宏 瀧澤
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to US13/509,094 priority Critical patent/US9510770B2/en
Priority to JP2011543279A priority patent/JP5666470B2/ja
Publication of WO2011065393A1 publication Critical patent/WO2011065393A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room

Definitions

  • the present invention measures nuclear magnetic resonance (hereinafter referred to as ⁇ NMR '') signals from hydrogen, phosphorus, etc. in a subject and images the nuclear density distribution, relaxation time distribution, etc.
  • ⁇ NMR '' nuclear magnetic resonance
  • the present invention relates to an MRI apparatus with improved SAR (Specific Absorption Rate) estimation accuracy and an SAR estimation method thereof.
  • the MRI device measures NMR signals generated by the spins of the subject, especially the tissues of the human body, and visualizes the form and function of the head, abdomen, limbs, etc. in two or three dimensions Device.
  • the NMR signal is given different phase encoding depending on the gradient magnetic field, frequency-encoded, and measured as time series data.
  • the measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
  • An MRI apparatus needs to irradiate a human body with a high-frequency magnetic field pulse (RF pulse) in order to generate an NMR signal. Heat is generated when the human body absorbs RF pulses.
  • the amount of RF pulse absorption per unit time and unit mass is called SAR (Specific Absorption Rate).
  • SAR Specific Absorption Rate
  • IEC 60601-2-33 according to the 2 nd edition, SAR to be controlled, systemic SAR, body parts SAR, head SAR, a local SAR, respectively (Formula 1), (Formula 2), (Equation 3) , (Formula 4).
  • Non-Patent Document 1 shows the upper limit value, which must be observed.
  • Patent Document 1 shows a method for accurately calculating the whole body SAR, the body part SAR, and the head SAR by changing the model of the subject according to the subject data, the imaging region, and the imaging parameters.
  • Non-Patent Document 2 and Patent Document 1 show that the amount of absorption of an RF pulse is obtained.
  • Non-Patent Document 2 does not accurately calculate the energy of the RF pulse absorbed by the head.
  • the object of the present invention is to accurately estimate the SAR estimate by accurately estimating the energy of RF pulses absorbed in a part of the subject, for example, the head, based on the measurement performed prior to the main imaging. Is to further improve.
  • the nuclear magnetic resonance imaging apparatus of the present invention is configured as follows.
  • the present invention provides a static magnetic field generator that generates a static magnetic field in a space in which a subject is placed, a gradient magnetic field application unit that applies a gradient magnetic field to the subject, and an RF pulse having a magnetic resonance frequency applied to the subject
  • a high-frequency magnetic field generation unit a signal detection unit that detects an echo signal generated from the subject; an image reconstruction unit that reconstructs an image using the detected echo signal; the gradient magnetic field application unit;
  • the control unit obtains a signal generated from a part of the subject and a signal generated from the entire subject, A ratio between a signal generated from a part of the subject and a signal generated from the whole subject is obtained, and energy absorbed in a part of the subject is obtained using the ratio of the signals, and a part of the subject is obtained.
  • SAR is an butterfly.
  • the present invention also provides a static magnetic field generator that generates a static magnetic field in a space in which the subject is placed, a gradient magnetic field application unit that applies a gradient magnetic field to the subject, and an RF pulse having a magnetic resonance frequency applied to the subject
  • a high frequency magnetic field generating unit a signal detecting unit for detecting an echo signal generated from the subject, an image reconstructing unit for reconstructing an image using the detected echo signal, the gradient magnetic field applying unit, a high frequency
  • the control unit obtains a signal generated from the head and a signal generated from the entire subject, The ratio of the signal generated from the head and the signal generated from the entire subject is obtained, the energy absorbed by the head is obtained using the ratio of the signal, and the head SAR is estimated. .
  • control unit may acquire an FID signal and obtain a signal generated from the head and a signal generated from the entire subject from the FID signal.
  • control unit may acquire projection data in the body axis direction, and obtain a signal generated from the head and a signal generated from the entire subject from the projection data signal.
  • control unit captures a 3D image having an entire imaging field within the TR-body coil, and generates a signal generated from the head and the entire subject from a pixel value of the 3D image.
  • a signal may be obtained.
  • the present invention may acquire an image of three orthogonal sections with the entire TR-body coil as the imaging field of view, and select a head region using the image of the three orthogonal sections.
  • a 3D image in which the entire inside of the TR-body coil is imaged is picked up, and the head region may be selected using the 3D image.
  • the position of the head receiving coil may be measured, and the head region may be selected using the position of the head receiving coil.
  • the present invention may acquire projection data in the body axis direction and select the head region from the minimum value of the projection data.
  • the present invention is a method for estimating SAR in these magnetic resonance imaging apparatuses.
  • the accuracy of SAR estimation can be further improved by accurately estimating the energy of the RF pulse absorbed by a part of the subject, for example, the head, based on the measurement performed prior to the main imaging. it can.
  • the static magnetic field intensity of the MRI apparatus can be set as large as possible, and a high-quality MRI image can be obtained.
  • FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
  • This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject.As shown in FIG. 1, the MRI apparatus includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, A reception system 6, a signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8 are provided.
  • CPU central processing unit
  • the static magnetic field generation system 2 generates a uniform static magnetic field in the direction perpendicular to the body axis in the space around the subject 1 if the vertical magnetic field method is used, and in the direction of the body axis if the horizontal magnetic field method is used.
  • a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the subject 1.
  • the gradient magnetic field generating system 3 includes a gradient magnetic field coil 9 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field power source 10 that drives each gradient magnetic field coil.
  • the gradient magnetic fields Gx, Gy, and Gz are applied in the three axis directions of X, Y, and Z by driving the gradient magnetic field power supply 10 of each coil in accordance with a command from the sequencer 4 described later.
  • a slice direction gradient magnetic field pulse is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining two orthogonal to the slice plane and orthogonal to each other
  • a phase encoding direction gradient magnetic field pulse (Gp) and a frequency encoding direction gradient magnetic field pulse (Gf) are applied in one direction, and position information in each direction is encoded into an echo signal.
  • the sequencer 4 is a control means that repeatedly applies a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) and a gradient magnetic field pulse in a predetermined pulse sequence, and operates under the control of the CPU 8 to collect tomographic image data of the subject 1.
  • RF pulse high-frequency magnetic field pulse
  • Various commands necessary for the transmission are sent to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6.
  • the transmission system 5 irradiates the subject 1 with RF pulses in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1, and includes a high frequency oscillator 11, a modulator 12, and a high frequency amplifier. 13 and a high frequency coil (transmission coil) 14a on the transmission side.
  • the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1.
  • the high frequency coil 14a the subject 1 is irradiated with the RF pulse.
  • the receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives a high-frequency coil (receiving coil) 14b on the receiving side and a signal amplifier 15 And a quadrature phase detector 16 and an A / D converter 17.
  • the NMR signal of the response of the subject 1 induced by the electromagnetic wave irradiated from the high frequency coil 14a on the transmission side is detected by the high frequency coil 14b arranged close to the subject 1 and amplified by the signal amplifier 15,
  • the signal is divided into two orthogonal signals by the quadrature phase detector 16 at the timing according to the command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing system 7.
  • the signal processing system 7 performs various data processing and display and storage of processing results, and includes an external storage device such as an optical disk 19 and a magnetic disk 18, an internal storage device such as ROM21 and RAM22, and a display made up of a CRT, etc.
  • an external storage device such as an optical disk 19 and a magnetic disk 18, an internal storage device such as ROM21 and RAM22, and a display made up of a CRT, etc.
  • the CPU 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20.
  • the data is recorded on the magnetic disk 18 of the external storage device.
  • the operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed by the signal processing system 7 and includes a trackball or mouse 23 and a keyboard 24.
  • the operation unit 25 is disposed close to the display 20, and the operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.
  • the high-frequency coil 14a and the gradient magnetic field coil 9 on the transmission side face the subject 1 in the static magnetic field space of the static magnetic field generation system 2 into which the subject 1 is inserted, in the case of the vertical magnetic field method. If the horizontal magnetic field method is used, the subject 1 is installed so as to surround it.
  • the high-frequency coil 14b on the receiving side is disposed so as to face or surround the measurement site of the subject 1, for example, the head.
  • the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is the main constituent material of the subject, as is widely used in clinical practice.
  • proton the main constituent material of the subject
  • the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.
  • the estimation of the SAR according to the present invention obtains a signal generated from a part of the subject and a signal generated from a wide area of the subject including a part of the subject, and a signal generated from the part of the subject. And the signal generated from the entire wide area, the energy absorbed in a part of the subject is obtained using the ratio of the signal, and the body part SAR for the part of the subject is estimated.
  • the body part SAR for a part of the subject can be estimated based on the ratio of the signal generated from a part of the subject and the signal generated from the entire wide area.
  • SAR is proportional to the square of the intensity of the high-frequency magnetic field B 1 (Equation 5).
  • the SAR is described as a function of the position vector r.
  • High-frequency magnetic fields that contribute to SAR include B 1 + that causes spin to flip and B 1 ⁇ that cannot be observed by MRI.
  • B 1 + and B 1 ⁇ are given by (Equation 6) and (Equation 7), respectively.
  • the relationship between flip angle (FA) and B 1 + is shown in (Equation 8).
  • represents a magnetic rotation ratio
  • ⁇ t represents a time during which a high-frequency magnetic field is applied.
  • * means a complex conjugate.
  • the signal strength of MRI depends on the T1 value, T2 value, FA, repetition time TR, and echo time TE as expressed by (Equation 9).
  • FIG. 2 shows a diagram of the Gradient Echo sequence as an example of a typical sequence
  • FIG. 3 shows a schematic diagram of T1 relaxation
  • FIG. 4 shows T2 relaxation
  • 201 is an RF pulse
  • 202 is a slice selective gradient magnetic field pulse
  • 203 is a phase encoding gradient magnetic field pulse
  • 204 is a frequency encoding gradient magnetic field pulse
  • 205 is a sampling window
  • 206 is an echo signal.
  • FA can be obtained as an inverse function of the MRI signal (Equation 11).
  • the energy E absorbed by the entire subject is calculated using the ratio between the reference RF pulse and the actually used pulse, using the reference SAR measured using the reference RF pulse.
  • Wc is the amount of RF pulse absorption measured using the reference RF pulse
  • T 0 is the application time of the reference RF pulse
  • FA 0 is the flip angle of the reference RF pulse
  • T is the application time of the RF pulse actually used
  • Wc is measured by irradiating a reference RF pulse, measuring the energy of the incident wave and the reflected wave, and measuring the power of the absorbed RF pulse by taking the difference. Since Wc includes both B 1 + and B 1 ⁇ contributions, E includes both B 1 + and B 1 ⁇ contributions. When E is divided by the mass M of the subject, the whole body SAR can be calculated.
  • L head and L coil in represent the head region defined by FIG. 16 and the region covered by the receiving coil.
  • the head SAR can be calculated by dividing E h by the head mass.
  • the head SAR has been described. However, by acquiring a signal for a part of the body that is of interest, the part of the body SAR can be estimated.
  • the head is taken as an example of a part of the subject, but is not limited to the head and may be another partial region.
  • Example 1 calculates the head SAR using the ratio of the signal received from the entire transmission-reception RF coil (TR-body coil) covering the wide area including the head and the signal received from the head. It is characterized by doing.
  • FIG. 11 is a flowchart for the first embodiment. Details of each step are shown below.
  • Step 1101 Acquire an image of three orthogonal sections with the entire inside of the TR-body coil as the imaging field of view. For example, Gradient Echo represented in the sequence diagram of FIG.
  • Step 1102 Set ROI on the head on the image acquired in step 1101.
  • ROI 501 is set on the head on the SAG image or the COR image.
  • Step 1103 by using the sequence for SAR measurement, and acquires the signals from throughout the TR-body coil S b (n), the signal from the head S h a (n).
  • the slice selection gradient magnetic field pulse 202 is applied and the region selected by the ROI (head Region) is used to acquire the signal S b (n) from within the entire TR-body coil, and a sequence that excites the wide area covered by the TR-body coil without applying the slice selective gradient magnetic field pulse.
  • the FID signal is a free decay signal that appears after 90-degree pulse application.
  • Step 1104 ⁇ given by (Expression 15) is calculated using S b (n) and S h (n) obtained in Step 1103.
  • the signal value used for the calculation of ⁇ uses the integral value of the signal acquired between the ADs of the window 205 given by (Equation 18) when calculating using the FID signal.
  • n is the number of points sampled between AD, and 1 ⁇ n ⁇ N.
  • Step 1105 Calculate energy absorbed by the head using (Equation 16).
  • Step 1106 The head SAR is calculated using (Equation 17).
  • the first embodiment acquires the FID signal, and obtains the signal generated from the head and the signal generated from the entire wide area from the FID signal.
  • an image of three orthogonal sections with the entire inside of the TR-body coil as the imaging field of view is acquired, and the head region is selected using the image of the three orthogonal sections. According to the first embodiment, it is possible to estimate the head SAR with high accuracy.
  • projection data in the body axis direction is used to obtain the ratio ⁇ .
  • an echo signal using a sequence in which a readout gradient magnetic field pulse 204 is applied in the body axis direction as shown in FIGS. To get. Then, the measured echo signal is Fourier transformed to collect projection data P b (z), P h (z) in the body axis direction.
  • step 1104 the spatial integration value of the projection data given by (Equation 19) is used.
  • z represents the position in the body axis direction.
  • S h / S b .
  • the second embodiment acquires projection data in the body axis direction, and obtains a signal generated from the head and a signal generated from the entire wide area from the projection data signal. According to the second embodiment, the head SAR can be estimated with high accuracy.
  • Example 3 of the present invention will be described with reference to FIG.
  • FIG. 12 is a flowchart for the third embodiment.
  • the third embodiment is different from the first embodiment in that a 3D image is acquired and the head SAR is calculated from the image.
  • a 3D image is acquired and the head SAR is calculated from the image.
  • Step 1201 A 3D image I (x, y, z) is captured with the entire TR-body coil as the field of view.
  • 3D Gradient Echo represented by the sequence diagram of FIG. 20 is used.
  • Step 1202 Set ROI on the head. That is, the head region is selected by ROI.
  • Step 1203 by using the pixel values and the entire image of the pixel values in the ROI, to calculate the S h and S b.
  • Sh and Sb are given by (Equation 20).
  • the head is an area surrounded by [x1 x2], [y1 y2] and [z1 z2]
  • the area covered by the TR-body coil is [X1 X2] and [Y1 Y2] And [Z1 Z2].
  • the third embodiment captures a 3D image with the entire TR-body coil as an imaging field of view, and generates a signal generated from the head and the entire wide area from the pixel value of the 3D image. Find the signal. At that time, the head region is selected using the 3D image. According to the third embodiment, it is possible to calculate the head SAR with high accuracy without separately performing the SAR measurement sequence and the sequence for determining the imaging position.
  • Example 4 will be described with reference to FIG.
  • FIG. 13 is a flowchart for the fourth embodiment.
  • the fourth embodiment is different from the first embodiment in that the calculation is performed using the position of the head receiving coil.
  • the calculation is performed using the position of the head receiving coil.
  • Step 1301 The position of the center of the receiving coil for head is specified by a laser, and the distance l from the center of the magnetic field to the center of the receiving coil for head 1701 is measured.
  • Step 1302 The entire TR-body coil is imaged as an imaging field.
  • the sequence shown in FIG. 9 is used.
  • the body axis direction is the z axis
  • a read gradient magnetic field pulse 204 is applied in the body axis direction to obtain projection data P (z) in the z direction.
  • Step 1303 the projection data in the region of [1-L / 2 l + L / 2] of the head receiving coil 1701, the projection data of the entire region, for calculating the S h and S b.
  • S h and S b are given by (Equation 21).
  • L is the length of the receiving coil 1701 for the head in the z direction.
  • the position of the head receiving coil is measured, and the head region is selected using the position of the head receiving coil. According to the fourth embodiment, it is possible to automatically extract the head region and calculate the head SAR with high accuracy.
  • Example 5 will be described with reference to FIG.
  • FIG. 14 is a flowchart for the fifth embodiment.
  • the difference from the first embodiment is that the head region is extracted using the minimum value of the projection data in the body axis direction.
  • the head region is extracted using the minimum value of the projection data in the body axis direction.
  • Step 1401 A readout gradient magnetic field is applied in the body axis direction, the entire TR-body coil is imaged as an imaging region, and signal projection data is acquired in the body axis direction.
  • the sequence shown in FIG. 9 is used.
  • Step 1402 In the obtained projection data, the portion corresponding to the head can be distinguished because the signal is smaller than the portion other than the head.
  • the distinction is made at a point z 1 where the pixel value of the projection data P (z) takes a minimum value.
  • Equation (22) the entire area covered by the TR-body coil is [Z1, Z2], and the head area is [z1, z2].
  • the fifth embodiment acquires projection data in the body axis direction, and selects a head region from the minimum value of the projection data. According to the fifth embodiment, according to this embodiment, it is possible to automatically extract the head region and calculate the head SAR with high accuracy.
  • Example 6 A difference from the first embodiment or the like is that the FA is directly obtained by measuring B1map without using the inverse function of the signal intensity when obtaining the FA.
  • B1map represents the intensity and phase distribution in the imaging region of the irradiated RF pulse.
  • This B1map is used for RF shimming for correcting the irradiation non-uniformity of the RF pulse in the imaging region.
  • the method described in Non-Patent Document 3 can be used as a method for creating a B1map.
  • the method for creating a B1map is not limited in the present invention, and any method may be used.
  • B1map is a complex number
  • its absolute value is FA
  • the square of this absolute value is obtained by integrating the head area (head) and the entire wide area (wholebody), respectively, and the ratio ⁇ of these integral values is calculated. To do. That is, the ratio ⁇ is given by Equation 23.
  • FA represents the value of B1map, but may be a relative value with respect to some reference value (for example, the maximum value of FA). However, in the case of relative values, the reference values are made equal for the numerator and denominator. [] Means taking the absolute value of the complex number inside.
  • a signal generated from the head and a signal generated from the entire subject are obtained using B1map. According to the sixth embodiment, it is possible to estimate the head SAR with higher accuracy by using (B1map (B1 distribution)).
  • Step 1501 The MRI operator turns on the power of the MRI apparatus.
  • Step 1502 The MRI operator sets the subject on the table and inserts the table into the gantry.
  • Step 1503 The MRI apparatus measures ⁇ defined by (Equation 15) by the method of each embodiment.
  • Step 1504 The MRI operator inputs imaging parameters and subject information.
  • Step 1505 The MRI apparatus calculates the whole body SAR, the body part SAR, and the head SAR using the input imaging parameters and the subject information.
  • the MRI apparatus compares the calculated SAR and the SAR limit value, and if the SAR exceeds the SAR limit value, returns to imaging parameter input.
  • Step 1506 If the SAR does not exceed the SAR limit value, the MRI apparatus starts imaging.
  • Examples 1 to 3 are examples in which the ratio ⁇ of energy absorbed by the head is obtained, and Examples 4 and 5 are examples in which the position of the head is obtained, and It can be implemented in combination.
  • the head SAR can be accurately calculated.
  • 1 subject 2 static magnetic field generation system, 3 gradient magnetic field generation system, 4 sequencer, 5 transmission system, 6 reception system, 7 signal processing system, 8 central processing unit (CPU), 9 gradient magnetic field coil, 10 gradient magnetic field power supply, 11 High frequency transmitter, 12 modulator, 13 high frequency amplifier, 14a high frequency coil (transmitting coil), 14b high frequency coil (receiving coil), 15 signal amplifier, 16 quadrature phase detector, 17 A / D converter, 18 magnetic disk, 19 optical disc, 20 display, 21 ROM, 22 RAM, 23 trackball or mouse, 24 keyboard, 201 RF pulse, 202 slice selection gradient magnetic field pulse, 203 phase encoding gradient magnetic field pulse, 204 frequency encoding gradient magnetic field pulse, 205 sampling window, 206 echo signal, 501 head ROI, 1601 TR-body coil, 1602 subject, 1701 receiving coil for head

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 本撮像に先立って実施する計測に基づいて被検体の一部、例えば頭部に吸収されるRFパルスのエネルギーを被検体ごとに正確に見積もることによって、SARの見積もりの精度をさらに向上するために、核磁気共鳴イメージング装置において、頭部から発生する信号Shと被検体全体から発生する信号Sbとを求め、当該頭部から発生する信号と当該被検体全体から発生する信号との比αを求め、当該信号の比を用いて頭部に吸収されるエネルギーEhを求め、頭部SARを見積もる。

Description

核磁気共鳴イメージング装置およびそのSARの見積方法
 本発明は、被検体中の水素や燐等からの核磁気共鳴(以下、「NMR」という)信号を測定し、その原子核の密度分布や緩和時間分布等を画像化する核磁気共鳴イメージング(以下、「MRI」という)装置に関し、特にSAR(Specific Absorption Rate)の見積もりの精度を向上したMRI装置およびそのSARの見積方法に関する。
 MRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、NMR信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。
 MRI装置は、NMR信号を発生させるために高周波磁場パルス(RFパルス)を人体に照射する必要がある。人体がRFパルスを吸収することで熱が発生する。単位時間、単位質量当りのRFパルスの吸収量をSAR(Specific Absorption Rate)という。IEC 60601-2-33, 2nd  editionによると、制御するべきSARは、全身SAR、身体部分SAR、頭部SAR、局所SARであり、それぞれ(式1)、(式2)、(式3)、(式4)で定義されている。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、Eは単位時間当たりのRFパルスの吸収量、Mは被検体の質量、mpはRFパルスが照射される部分の被検体質量、Ehは頭部に吸収されるRFパルスの電力、mhは頭部の質量をそれぞれ表す。以上の4種類のSARについて、非特許文献1では上限値が示されており、遵守する必要がある。
 MRI装置においては、静磁場強度の増加に応じて加えるRF パルスの周波数も増加させる必要がある。吸収されるRFパルスの電力は、RFパルスの周波数の2乗に比例するため、特に高磁場のMRI装置を開発する際に、SARを正確に見積もることが非常に重要である。
 SARの見積もりについて、吸収されるRFパルスの量を計算する方法は非特許文献1でなされている。非特許文献2では、Maxwell方程式を近似的に解くことによって、RFパルスの吸収量を計算している。特許文献1では、被検体のモデルを、被検体データや撮像部位や撮像パラメータに応じて変化させることで、全身SAR、身体部分SAR及び頭部SARを正確に計算する方法を示している。
米国特許第6841999号明細書
IEC60601-2-33,2nd edition Journal of Magnetic Resonance Imaging 12:46-67 (2000) David I. Hoult, MA, D Phil: Sensitivity and Power Deposition in a High-Field Imaging Experiment Hai-King Margaret Cheng,Graham A Wright著、「Rapid High-Resolution T1 Mapping by  Variable Flip Angles: Accurate and Precise Measurements in the Presence of Radiofrequency Field Inhomogeneity」、Magnetic Resonance in Medicine 55:566-574
 上述のように、非特許文献2や特許文献1には、RFパルスの吸収量を求めることが示されている。しかし、非特許文献2では、頭部に吸収されるRFパルスのエネルギーを正確に計算することはなされていない。また、特許文献1の方法では、モデルを用いて計算を行うため、個々の被検体についてSARの値を正確に求めるには限界がある。
 本発明の目的は、本撮像に先立って実施する計測に基づいて被検体の一部、例えば頭部に吸収されるRFパルスのエネルギーを被検体ごとに正確に見積もることによって、SARの見積もりの精度をさらに向上することである。
 上記目的を達成するために、本発明の核磁気共鳴イメージング装置は以下のように構成される。
 本発明は、被検体が置かれる空間に静磁場を発生する静磁場発生部と、前記被検体に傾斜磁場を印加する傾斜磁場印加部と、前記被検体に磁気共鳴周波数のRFパルスを印加する高周波磁場発生部と、前記被検体から発生するエコー信号を検出する信号検出部と、前記検出されたエコー信号を用いて画像を再構成する画像再構成部と、前記傾斜磁場印加部、高周波磁場発生部、及び信号検出部を制御する制御部と、を備えた核磁気共鳴イメージング装置において、前記制御部は、被検体の一部から発生する信号と被検体全体から発生する信号とを求め、当該被検体の一部から発生する信号と当該被検体全体から発生する信号との比を求め、当該信号の比を用いて被検体の一部に吸収されるエネルギーを求め、被検体の一部SARを見積もることを特徴とするものである。
 また本発明は、被検体が置かれる空間に静磁場を発生する静磁場発生部と、前記被検体に傾斜磁場を印加する傾斜磁場印加部と、前記被検体に磁気共鳴周波数のRFパルスを印加する高周波磁場発生部と、前記被検体から発生するエコー信号を検出する信号検出部と、前記検出されたエコー信号を用いて画像を再構成する画像再構成部と、前記傾斜磁場印加部、高周波磁場発生部、及び信号検出部を制御する制御部と、を備えた核磁気共鳴イメージング装置において、前記制御部は、頭部から発生する信号と被検体全体から発生する信号とを求め、当該頭部から発生する信号と当該被検体全体から発生する信号との比を求め、当該信号の比を用いて頭部に吸収されるエネルギーを求め、頭部SARを見積もることを特徴とするものである。
 また本発明は、前記制御部は、FID信号を取得し、該FID信号から、前記頭部から発生する信号と前記被検体全体から発生する信号とを求めるものでよい。
 また本発明は、前記制御部は、体軸方向のプロジェクションデータを取得し、該プロジェクションデータ信号から、前記頭部から発生する信号と前記被検体全体から発生する信号とを求めるものでよい。
 また本発明は、前記制御部は、TR-bodyコイル内全体を撮像視野とする3D画像を撮像し、該3D画像の画素値から、前記頭部から発生する信号と前記被検体全体から発生する信号とを求めるものでよい。
 また本発明は、TR-bodyコイル内全体を撮像視野とする直交3断面の画像を取得し、該直交3断面の画像を用いて頭部領域の選択を行うものでよい。
 また本発明は、TR-bodyコイル内全体を撮像視野とする3D画像を撮像し、該3D画像を用いて頭部領域の選択を行うものでよい。
 また本発明は、頭部用受信コイルの位置を測定し、該頭部用受信コイルの位置を用いて頭部領域の選択を行うものでよい。
 また本発明は、体軸方向のプロジェクションデータを取得し、該プロジェクションデータの極小値から頭部領域を選択するものでよい。
 さらに本発明は、これら磁気共鳴イメージング装置におけるSARの見積方法である。
 本撮像に先立って実施する計測に基づいて被検体の一部、例えば頭部に吸収されるRFパルスのエネルギーを被検体ごとに正確に見積もることによって、SARの見積もりの精度をさらに向上することができる。これにより、MRI装置の静磁場強度を可能な限り大きく設定でき、高画質のMRI画像を得ることができる。
本発明に係るMRI装置の全体構成を示す図。 Gradient Echoシーケンス図。 T1緩和概念図。 T2緩和概念図。 SAG画像による頭部ROI設定例。 COR画像による頭部ROI設定例。 TR-bodyコイル内全体からのFID信号を検出するシーケンス図。 頭部のROIからのFID信号を検出するシーケンス図。 TR-bodyコイル内全体からのエコー信号を検出するシーケンス図。 頭部のROIからのエコー信号を検出するシーケンス図。 本発明の実施例1及び2のフローチャート。 本発明の実施例3のフローチャート。 本発明の実施例4のフローチャート。 本発明の実施例5のフローチャート。 実施例1~実施例6に共通するワークフロー。 コイル及び頭部の領域図。 頭部コイルとTR-bodyコイルの座標を示す図。 頭部の座標及びTR-bodyコイルの座標を示す図。 プロジェクションデータ概念図。 3D Gradient Echoシーケンス図。
 以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、図1に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、シーケンサ4と、中央処理装置(CPU)8とを備えて構成される。
 静磁場発生系2は、垂直磁場方式であれば、被検体1の周りの空間にその体軸と直交する方向に、水平磁場方式であれば、体軸方向に均一な静磁場を発生させるもので、被検体1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。
 傾斜磁場発生系3は、MRI装置の座標系(静止座標系)であるX,Y,Zの3軸方向に巻かれた傾斜磁場コイル9と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源10とから成り、後述のシ-ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzを印加する。撮影時には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルス(Gp)と周波数エンコード方向傾斜磁場パルス(Gf)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。
 シーケンサ4は、高周波磁場パルス(以下、「RFパルス」という)と傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、CPU8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送る。
 送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1にRFパルスを照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル(送信コイル)14aとから成る。高周波発振器11から出力された高周波パルスをシーケンサ4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に被検体1に近接して配置された高周波コイル14aに供給することにより、RFパルスが被検体1に照射される。
 受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)14bと信号増幅器15と直交位相検波器16と、A/D変換器17とから成る。送信側の高周波コイル14aから照射された電磁波によって誘起された被検体1の応答のNMR信号が被検体1に近接して配置された高周波コイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞれがA/D変換器17でディジタル量に変換されて、信号処理系7に送られる。
 信号処理系7は、各種データ処理と処理結果の表示及び保存等を行うもので、光ディスク19、磁気ディスク18等の外部記憶装置と、ROM21、RAM22等の内部記憶装置と、CRT等からなるディスプレイ20とを有し、受信系6からのデータがCPU8に入力されると、CPU8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。
 操作部25は、MRI装置の各種制御情報や上記信号処理系7で行う処理の制御情報を入力するもので、トラックボール又はマウス23、及び、キーボード24から成る。この操作部25はディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブにMRI装置の各種処理を制御する。
 なお、図1において、送信側の高周波コイル14aと傾斜磁場コイル9は、被検体1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検体1に対向して、水平磁場方式であれば被検体1を取り囲むようにして設置されている。また、受信側の高周波コイル14bは、被検体1の測定部位、例えば頭部に対向して、或いは取り囲むように設置されている。
 現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。
 次に、本発明におけるSARの見積もりについて説明する。本発明のSARの見積もりは、被検体の一部から発生する信号と、該被検体の一部を含む被検体の広範囲領域から発生する信号とを求め、当該被検体の一部から発生する信号と当該広範囲領域全体から発生する信号との比を求め、当該信号の比を用いて被検体の一部に吸収されるエネルギーを求め、該被検体の一部についての身体部分SARを見積もることを特徴とする。
 最初に、被検体の一部から発生する信号と広範囲領域全体から発生する信号との比に基づいて、当該被検体の一部についての身体部分SARの見積もりが可能であることを説明する。一般にSARは高周波磁場B1の強度の2乗に比例する(式5)。
Figure JPOXMLDOC01-appb-M000005
 但し、高周波磁場は位置に依存して変化するため、SARは位置ベクトルrの関数として記述される。
 SARに寄与する高周波磁場としては、spinをflipさせるB1 と、MRIでは観測することができないB1 がある。B1 とB1 の定義は(式6)、(式7)でそれぞれ与えられる。また、flip angle(FA)とB1 の関係を(式8)に示す。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、γは磁気回転比、Δtは高周波磁場を印加している時間を示す。また、(式7)で、*は、複素共役を意味する。
 B1 とB1 は、z方向の分布は同じである。このため、B1 のSARとB1 のSARは、z方向に同じ分布となる。(式5)及び(式8)から、SARがflip angle(FA)の2乗に比例することもわかる。
 一方、MRIの信号強度は(式9)で表されるようにT1値、T2値、FA、繰り返し時間TR、エコー時間TE、に依存する。
 ここで、fは撮像シーケンスによって決定される関数である。図2に代表的なシーケンスの例としてGradient Echoシーケンスにおける図と、図3にT1 緩和及び図4にT2緩和の模式図を示す。図2において、201はRFパルス、202はスライス選択傾斜磁場パルス、203は位相エンコード傾斜磁場パルス、204は周波数エンコード傾斜磁場パルス、205はサンプリングウインド、206はエコー信号である。十分に小さいTRとTEを用いることで、T1、T2、TR、TEの寄与を小さくすることができ、MRIの信号強度を近似的にFAのみの関数とすることができる(式10)。
Figure JPOXMLDOC01-appb-M000010
 つまり、FAはMRI信号の逆関数として求めることができる(式11)。
Figure JPOXMLDOC01-appb-M000011
 (式5)と(式8)を使うと、SARをMRI信号の関数として計算することができる。
Figure JPOXMLDOC01-appb-M000012
 被検体全体に吸収されるエネルギーEは基準RFパルスを用いて測定した基準SARを用いて、基準RFパルスと実際に用いるパルスとの比を用いて計算する。
Figure JPOXMLDOC01-appb-M000013
 ここで、Wcは基準RFパルスを用いて測定された、RFパルスの吸収量、T0は基準RFパルスの印加時間、FA0は基準RFパルスのflip angle、S0は基準RFパルスの波形を[0,1]に規格化した関数の2乗を、時刻t=0からt=T0まで積分した量である。また、Tは実際に用いるRFパルスの印加時間、Sは実際に用いるRFパルスの波形を[0,1]に規格化した関数の2乗を、時刻t=0からt=Tまで積分した量をそれぞれ表す。Wcの測定は、基準RFパルスを照射して、入射波と反射波のエネルギーを測定し、差を取ることによって、吸収されたRFパルスのパワーを測定する。WcにはB1 とB1 両方の寄与が含まれるため、EにはB1 とB1 両方の寄与が含まれる。Eを被検体の質量Mで割ると、全身SARを計算することができる。
 (式12)について、受信コイルがカバーする領域(頭部領域を含む広範囲領域)全体にわたって積分した量Sb (式14)と、頭部領域について(式12)を積分した量Sh(式14)との比を計算することで、頭部に吸収されるエネルギーの割合αを計算することができる(式15)。αは本撮像シーケンスで使用する照射コイルと同じ照射コイルをもちいて信号を取得し、計算を行う。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 ただし、(式14)中のLhead及びLcoilは、図16に定義した、頭部領域と、受信コイルがカバーする領域を表す。被検体全体に吸収されるエネルギーEにαをかけることで、頭部に吸収されるエネルギーEh計算することができる。
Figure JPOXMLDOC01-appb-M000016
 Ehを頭部の質量で割ることで頭部SARを計算により求めることができる。
Figure JPOXMLDOC01-appb-M000017
 なお、以上の説明では頭部SARについて説明したが、身体の注目する一部について信号を取得することにより、身体の一部SARを見積もることができる。
 以下、被検体の一部から発生する信号と被検体の広範囲領域全体から発生する信号との比の求め方に関する各実施例を詳細に説明する。なお、以下の各実施例においては、被検体の一部として頭部を例にしているが、頭部に限定されることなく、他の一部領域でもよい。
 本発明の実施例1について説明する。実施例1は、頭部を含む広範囲領域をカバーする送信-受信RFコイル(TR-bodyコイル)内全体から受信した信号と、頭部から受信した信号との比を用いて頭部SARを計算することを特徴とする。
 実施例1の動作について図11を用いて説明する。図11は第1の実施形態についてのフローチャートである。以下に各ステップの詳細を示す。
 ステップ1101:TR-bodyコイル内全体を撮像視野とする直交3断面の画像を取得する。この際のシーケンスは例えば図2のシーケンス図で表されるGradient Echoを用いる。
 ステップ1102:ステップ1101で取得した画像上で、頭部にROIを設定する。設定方法としては、例えば図5や図6に示すように、SAG画像若しくはCOR画像上で、頭部にROI501を設定する。
 ステップ1103:SAR測定用のシーケンスを用いて、TR-bodyコイル内全体からの信号Sb(n)と、頭部からの信号Sh(n)を取得する。この時使用するシーケンスとしては、図7,8に示すように、頭部からの信号Sh(n)の取得にはスライス選択傾斜磁場パルス202を印加してROIで選択された領域(頭部領域)を励起するシーケンスを用い、TR-bodyコイル内全体からの信号Sb(n)の取得にはスライス選択傾斜磁場パルスを印加しないでTR-bodyコイルがカバーする広範囲領域を励起するシーケンスを用いて、それぞれFID信号を取得する。ここで、FID信号とは、90度パルス印加後に現れる自由減衰信号である。
 ステップ1104:ステップ1103で得たSb(n)とSh(n)とを用いて(式15)で与えられるαを計算する。ここでαの計算に用いる信号値は、FID信号を用いて計算する場合は(式18)で与えられる、ウインド205のAD間に取得した信号の積分値を用いる。
Figure JPOXMLDOC01-appb-M000018
 ここで、nはAD間にサンプルされた点の番号であり、1≦n≦Nである。
 この時αは、α=Sh/Sbで与えられる。
 ステップ1105:(式16)を用いて頭部に吸収されるエネルギーを計算する。
 ステップ1106:(式17)を用いて頭部SARを計算する。
 以上説明したように、本実施例1は、FID信号を取得し、該FID信号から、頭部から発生する信号と広範囲領域全体から発生する信号とを求める。また、TR-bodyコイル内全体を撮像視野とする直交3断面の画像を取得し、該直交3断面の画像を用いて頭部領域の選択を行う。本実施例1により、頭部SARを高精度に見積もることが可能である。
 この実施例は、比αを求めるために、体軸方向のプロジェクションデータを用いるものである。
 実施例1のステップ1103の、Sb(n)とSh(n)を取得するシーケンスとして、図9,10示すように体軸方向に読み出し傾斜磁場パルス204を印加するシーケンスを用いてエコー信号を取得する。そして、計測したエコー信号をフーリエ変換して、体軸方向のプロジェクションデータPb(z),Ph(z)を収集する。
 ステップ1104では、(式19)で与えられる、プロジェクションデータの空間的な積分値を用いる。ここで、zは体軸方向の位置を表す。
Figure JPOXMLDOC01-appb-M000019
 この時αは、α=Sh/Sbで与えられる。
 以上説明したように、本実施例2は、体軸方向のプロジェクションデータを取得し、該プロジェクションデータ信号から、頭部から発生する信号と広範囲領域全体から発生する信号とを求める。本実施例2により、頭部SARを高精度に見積もることが可能となる。
 本発明の実施例3について図12を用いて説明する。図12は実施例3についてのフローチャートである。実施例3は、実施例1と異なり、3D画像を取得しておき、その画像から頭部SARを算出することを特徴とする。以下、異なる箇所のみ説明し、同じ箇所の説明は省略する。以下、各ステップの詳細を示す。
 ステップ1201:TR-bodyコイル内全体を撮像視野とする3D画像I(x,y,z)を撮像する。この際のシーケンスとしては、例えば図20のシーケンス図で表される3D Gradient Echoを用いる。
 ステップ1202:頭部にROIを設定する。つまり、頭部領域をROIで選択する。
 ステップ1203:ROI内の画素値と画像全体の画素値を用いて、Sh及びSbを計算する。この時、Sh及びSbは(式20)で与えられる。ただし、図18に示すように、頭部は[x1 x2]及び[y1 y2]及び[z1 z2]に囲まれる領域とし、TR-bodyコイルがカバーする領域を[X1 X2]及び[Y1 Y2]及び[Z1 Z2]に囲まれる領域とした。
Figure JPOXMLDOC01-appb-M000020
 以上説明したように、本実施例3は、TR-bodyコイル内全体を撮像視野とする3D画像を撮像し、該3D画像の画素値から、頭部から発生する信号と広範囲領域全体から発生する信号とを求める。その際、3D画像を用いて頭部領域の選択を行なう。本実施例3により、SAR測定用シーケンスと、撮像位置を決定するシーケンスを別々に行うことなく頭部SARの計算を高精度に行うことが可能である。
 実施例4について図13を用いて説明する。図13は実施例4についてのフローチャートである。実施例4は、実施例1等と異なり、頭部用受信コイルの位置を用いて計算することを特徴とする。以下、異なる箇所のみ説明し、同じ箇所の説明は省略する。以下に各ステップの詳細を示す。
 ステップ1301:頭部用受信コイルの中心の位置をレーザーで特定し、磁場中心から頭部用受信コイル1701の中心までの距離lを測定する。
 ステップ1302:TR-bodyコイル内全体を撮像視野として撮像する。この際のシーケンスとしては、例えば図9で表されるシーケンスを用いる。図17において、体軸方向をz軸とし、TR-bodyコイル1601の中心をz=0とする。まず、体軸方向に読み出し傾斜磁場パルス204を印加してz方向のプロジェクションデータP(z)を取得する。
 ステップ1303:頭部受信コイル1701の[1-L/2 l+L/2]の領域のプロジェクションデータと、全体の領域のプロジェクションデータから、ShとSbとを計算する。Sh及びSbは(式21)で与えられる。ただし、Lは頭部用受信コイル1701のz方向の長さである。
Figure JPOXMLDOC01-appb-M000021
 以上説明したように、本実施例4は、頭部用受信コイルの位置を測定し、該頭部用受信コイルの位置を用いて頭部領域の選択を行う。本実施例4により、頭部の領域を自動で抽出して、頭部SARを高精度に計算することが可能である。
 次に実施例5について図14を用いて説明する。図14は実施例5についてのフローチャートである。実施例1等と異なる点は、体軸方向のプロジェクションデータの極小値を用いて頭部の領域を抽出する点である。以下、異なる箇所のみ説明し、同じ箇所の説明は省略する。以下に各ステップの詳細を示す。
 ステップ1401:体軸方向に読み出し傾斜磁場を印加し、TR-bodyコイル内全体を撮像領域として撮像し、体軸方向に信号のプロジェクションデータを取得する。この際のシーケンスとしては、例えば図9で表されるシーケンスを用いる。
 ステップ1402:得られたプロジェクションデータで、頭部にあたる部分は、信号が頭部以外の部分に比べて小さいため、区別することが可能である。区別する方法としては、例えば図19に示すようにプロジェクションデータP(z)の画素値が極小値を取る点z1で区別する。
 ステップ1403:(式14)で定義されるSh及びSbは(式22)で与えられる。ここで、TR-bodyコイルがカバーする全体領域は[Z1,Z2]とし、頭部領域は[z1,z2]とする。
Figure JPOXMLDOC01-appb-M000022
 (式15)のαは、α=Sh/Sbで与えられる。
 以上説明したように、本実施例5は、体軸方向のプロジェクションデータを取得し、該プロジェクションデータの極小値から頭部領域を選択する。本実施例5により、この実施例により、頭部の領域を自動で抽出して、頭部SARを高精度に計算することが可能である。
 次に実施例6について説明する。実施例1等と異なる点は、FAを求める際に信号強度の逆関数を用いずに、B1mapを測定して直接FAを求める点である。B1mapとは、照射されるRFパルスの撮像領域内における強度と位相の分布を表す。このB1mapは、撮像領域内でのRFパルスの照射不均一を補正するRFシミングに利用される。B1mapの作成方法については例えば非特許文献3に記載の方法を用いることができるが、B1mapの作成方法は本発明では限定されずいずれの作成方法でも良い。B1mapは複素数であるため、その絶対値がFAとなり、この絶対値の自乗を、頭部領域(head)と広範囲領域全体(wholebody)についてそれぞれ積分して求め、これらの積分値の比αを算出する。つまり、比αは式23で与えられる。
Figure JPOXMLDOC01-appb-M000023
 この式23で、FAがB1mapの値を表すが、何かの基準値(例えばFAの最大値)に対する相対値でもよい。ただし、相対値の場合は分子と分母で基準値を等しくする。そして、[ ]はその内部の複素数の絶対値をとることを意味する。
 以上説明したように、本実施例6は、B1mapを用いて、前記頭部から発生する信号と前記被検体全体から発生する信号とを求める。本実施例6により、(B1map(B1の分布)を用いることで、より高精度に頭部SARを見積もることが可能となる。
 (共通のフロー)
 以上で説明した実施例1乃至実施例6に共通するワークフローについて、図15を用いて説明する。各ステップの詳細を以下に示す。
 ステップ1501:MRI操作者はMRI装置の電源を入れる。
 ステップ1502:MRI操作者は、被検体をテーブルにセットし、テーブルをガントリに挿入する。
 ステップ1503:MRI装置は、各実施例の方法で(式15)で定義されるαを測定する。
 ステップ1504:MRI操作者は撮像パラメータ及び被検体情報を入力する。
 ステップ1505:MRI装置は入力された撮像パラメータと、被検体情報とを用いて、全身SAR及び身体部分SAR及び頭部SARを計算する。MRI装置は計算したSARとSAR制限値とを比較し、SARがSAR制限値を超えている場合には撮像パラメータ入力に戻る。
 ステップ1506:SARがSAR制限値を超えていない場合は、MRI装置は撮像を始める。
 なお、実施例1乃至実施例3は、頭部に吸収されるエネルギーの割合αを求める実施例であり、実施例4および実施例5は、頭部の位置を求める実施例であり、それぞれを組み合わせて実施することができる。
 以上説明したように、本実施例に依れば頭部SARを正確に計算することができる。
 1 被検体、2 静磁場発生系、3 傾斜磁場発生系、4 シーケンサ、5 送信系、6 受信系、7 信号処理系、8 中央処理装置(CPU)、9 傾斜磁場コイル、10 傾斜磁場電源、11 高周波発信器、12 変調器、13 高周波増幅器、14a 高周波コイル(送信コイル)、14b 高周波コイル(受信コイル)、15 信号増幅器、16 直交位相検波器、17 A/D変換器、18 磁気ディスク、19 光ディスク、20 ディスプレイ、21 ROM、22 RAM、23 トラックボール又はマウス、24 キーボード、201 RFパルス、202 スライス選択傾斜磁場パルス、203 位相エンコード傾斜磁場パルス、204 周波数エンコード傾斜磁場パルス、205 サンプリングウインド、206 エコー信号、501 頭部ROI、1601 TR-bodyコイル、1602 被検体、1701 頭部用受信コイル

Claims (20)

  1.  被検体が置かれる空間に静磁場を発生する静磁場発生部と、
     前記被検体に傾斜磁場を印加する傾斜磁場印加部と、
     前記被検体に磁気共鳴周波数のRFパルスを印加する高周波磁場発生部と、
     前記被検体から発生するエコー信号を検出する信号検出部と、
     前記検出されたエコー信号を用いて画像を再構成する画像再構成部と、
     前記傾斜磁場印加部、高周波磁場発生部、及び信号検出部を制御する制御部と、を備えた核磁気共鳴イメージング装置において、
     前記制御部は、被検体の一部から発生する信号と、該被検体の一部を含む被検体の広範囲領域から発生する信号とを求め、当該被検体の一部から発生する信号と当該広範囲領域全体から発生する信号との比を求め、当該信号の比を用いて被検体の一部に吸収されるエネルギーを求め、該被検体の一部についての身体部分SARを見積もることを特徴とする核磁気共鳴イメージング装置。
  2.  請求項1記載の核磁気共鳴イメージング装置において、
     前記被検体の一部は、該被検体の頭部であることを特徴とする核磁気共鳴イメージング装置。
  3.  請求項2記載の核磁気共鳴イメージング装置において、
     前記制御部は、FID信号を取得し、該FID信号から、前記頭部から発生する信号と前記広範囲領域全体から発生する信号とを求めることを特徴とする核磁気共鳴イメージング装置。
  4.  請求項2記載の核磁気共鳴イメージング装置において、
     前記制御部は、体軸方向のプロジェクションデータを取得し、該プロジェクションデータ信号から、前記頭部から発生する信号と前記広範囲領域全体から発生する信号とを求めることを特徴とする核磁気共鳴イメージング装置。
  5.  請求項2記載の核磁気共鳴イメージング装置において、
     前記制御部は、TR-bodyコイル内全体を撮像視野とする3D画像を撮像し、該3D画像の画素値から、前記頭部から発生する信号と前記広範囲領域全体から発生する信号とを求めることを特徴とする核磁気共鳴イメージング装置。
  6.  請求項5に記載の核磁気共鳴イメージング装置において、
     前記3D画像を用いて頭部領域の選択を行うことを特徴とする核磁気共鳴イメージング装置。
  7.  請求項2に記載の核磁気共鳴イメージング装置において、
     TR-bodyコイル内全体を撮像視野とする直交3断面の画像を取得し、該直交3断面の画像を用いて頭部領域の選択を行うことを特徴とする核磁気共鳴イメージング装置。
  8.  請求項2に記載の核磁気共鳴イメージング装置において、
     頭部用受信コイルの位置を測定し、該頭部用受信コイルの位置を用いて頭部領域の選択を行うことを特徴とする核磁気共鳴イメージング装置。
  9.  請求項2に記載の核磁気共鳴イメージング装置において、
     体軸方向のプロジェクションデータを取得し、該プロジェクションデータの極小値から頭部領域を選択することを特徴とする核磁気共鳴イメージング装置。
  10.  請求項2に記載の核磁気共鳴イメージング装置において、
     前記制御部は、B1mapを用いて、前記頭部から発生する信号と前記被検体全体から発生する信号とを求めることを特徴とする核磁気共鳴イメージング装置。
  11.  被検体が置かれる空間に静磁場を発生する静磁場発生部と、前記被検体に傾斜磁場を印加する傾斜磁場印加部と、前記被検体に磁気共鳴周波数のRFパルスを印加する高周波磁場発生部と、前記被検体から発生するエコー信号を検出する信号検出部と、前記検出されたエコー信号を用いて画像を再構成する画像再構成部と、前記傾斜磁場印加部、高周波磁場発生部、及び信号検出部を制御する制御部と、を備えた核磁気共鳴イメージング装置におけるSARの見積方法であって、
     被検体の一部から発生する信号と、該被検体の一部を含む被検体の広範囲領域から発生する信号とを求め、
     当該被検体の一部から発生する信号と当該広範囲領域全体から発生する信号との比を求め、
     当該信号の比を用いて被検体の一部に吸収されるエネルギーを求め、
     該被検体の一部についての身体部分SARを見積もることを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  12.  請求項11記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     前記被検体の一部は、該被検体の頭部であることを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  13.  請求項12記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     FID信号を取得し、該FID信号から、前記頭部から発生する信号と前記広範囲領域全体から発生する信号を求めることを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  14.  請求項12記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     体軸方向のプロジェクションデータを取得し、該プロジェクションデータ信号から、前記頭部から発生する信号と前記広範囲領域全体から発生する信号を求めることを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  15.  請求項12記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     TR-bodyコイル内全体を撮像視野とする3D画像を撮像し、該3D画像の画素値から、前記頭部から発生する信号と前記広範囲領域全体から発生する信号を求めることを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  16.  請求項12に記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     TR-bodyコイル内全体を撮像視野とする直交3断面の画像を取得し、該直交3断面の画像を用いて頭部領域の選択を行うことを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  17.  請求項12に記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     TR-bodyコイル内全体を撮像視野とする3D画像を撮像し、該3D画像を用いて頭部領域の選択を行うことを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  18.  請求項12に記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     頭部用受信コイルの位置を測定し、該頭部用受信コイルの位置を用いて頭部領域の選択を行うことを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  19.  請求項12に記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     体軸方向のプロジェクションデータを取得し、該プロジェクションデータの極小値から頭部領域を選択することを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
  20.  請求項12に記載の核磁気共鳴イメージング装置におけるSARの見積方法において、
     前記制御部は、B1mapを用いて、前記頭部から発生する信号と前記被検体全体から発生する信号とを求めることを特徴とする核磁気共鳴イメージング装置におけるSARの見積方法。
PCT/JP2010/070964 2009-11-27 2010-11-25 核磁気共鳴イメージング装置およびそのsarの見積方法 WO2011065393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/509,094 US9510770B2 (en) 2009-11-27 2010-11-25 Magnetic resonance imaging apparatus and SAR estimation method
JP2011543279A JP5666470B2 (ja) 2009-11-27 2010-11-25 核磁気共鳴イメージング装置およびそのsarの見積方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-270261 2009-11-27
JP2009270261 2009-11-27
JP2010-253339 2010-11-12
JP2010253339 2010-11-12

Publications (1)

Publication Number Publication Date
WO2011065393A1 true WO2011065393A1 (ja) 2011-06-03

Family

ID=44066498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070964 WO2011065393A1 (ja) 2009-11-27 2010-11-25 核磁気共鳴イメージング装置およびそのsarの見積方法

Country Status (3)

Country Link
US (1) US9510770B2 (ja)
JP (1) JP5666470B2 (ja)
WO (1) WO2011065393A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031633A (ja) * 2011-06-29 2013-02-14 Hitachi Medical Corp 磁気共鳴イメージング装置及びsar予測方法
JP2015144811A (ja) * 2014-02-03 2015-08-13 株式会社東芝 磁気共鳴イメージング装置
JP2015532162A (ja) * 2012-10-23 2015-11-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴画像診断システム及び磁気共鳴画像診断方法
JP2016096949A (ja) * 2014-11-20 2016-05-30 株式会社日立メディコ 磁気共鳴イメージング装置およびその制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104023627A (zh) * 2012-08-29 2014-09-03 株式会社东芝 磁共振成像装置及其比吸收率的运算方法
CN103705237B (zh) * 2012-09-28 2016-05-11 上海联影医疗科技有限公司 磁共振成像系统的保护方法、装置及自关断测试方法
CN113960513A (zh) * 2020-07-21 2022-01-21 通用电气精准医疗有限责任公司 磁共振成像系统的监测方法和装置以及磁共振成像系统
US20220365242A1 (en) * 2021-05-07 2022-11-17 Halliburton Energy Services, Inc. Correction of nuclear magnetic resonance data in high vibration environments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838447A (ja) * 1994-07-31 1996-02-13 Shimadzu Corp 核磁気共鳴検査装置
JPH11253416A (ja) * 1998-03-09 1999-09-21 Toshiba Corp 磁気共鳴イメージング装置
JP2007526783A (ja) * 2003-06-30 2007-09-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mriにおいて比吸収率(sar)を制御する装置及び方法
JP2009504224A (ja) * 2005-08-08 2009-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気インピーダンス撮像システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421619C (zh) * 2004-08-30 2008-10-01 株式会社东芝 磁共振诊断装置
JP5269499B2 (ja) * 2007-08-24 2013-08-21 株式会社東芝 磁気共鳴イメージング装置、sar算出装置、磁気共鳴イメージング装置の作動方法およびsar算出方法
CN101981462B (zh) * 2008-03-27 2014-12-24 皇家飞利浦电子股份有限公司 具有针对多rf发射系统的改进的b1映射的翻转角成像
JP5542591B2 (ja) * 2009-11-12 2014-07-09 株式会社東芝 磁気共鳴イメージング装置、および、磁気共鳴イメージング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0838447A (ja) * 1994-07-31 1996-02-13 Shimadzu Corp 核磁気共鳴検査装置
JPH11253416A (ja) * 1998-03-09 1999-09-21 Toshiba Corp 磁気共鳴イメージング装置
JP2007526783A (ja) * 2003-06-30 2007-09-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mriにおいて比吸収率(sar)を制御する装置及び方法
JP2009504224A (ja) * 2005-08-08 2009-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気インピーダンス撮像システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031633A (ja) * 2011-06-29 2013-02-14 Hitachi Medical Corp 磁気共鳴イメージング装置及びsar予測方法
JP2015532162A (ja) * 2012-10-23 2015-11-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴画像診断システム及び磁気共鳴画像診断方法
JP2015144811A (ja) * 2014-02-03 2015-08-13 株式会社東芝 磁気共鳴イメージング装置
JP2016096949A (ja) * 2014-11-20 2016-05-30 株式会社日立メディコ 磁気共鳴イメージング装置およびその制御方法

Also Published As

Publication number Publication date
US20120226137A1 (en) 2012-09-06
JP5666470B2 (ja) 2015-02-12
JPWO2011065393A1 (ja) 2013-04-18
US9510770B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP5666470B2 (ja) 核磁気共鳴イメージング装置およびそのsarの見積方法
JP6113187B2 (ja) B1マッピングのあるmr撮像
US6566878B1 (en) Magnetic resonance imaging device and method therefor
JP6162142B2 (ja) 磁気共鳴イメージング装置、及び、sarの予測方法
US8531184B2 (en) Magnetic resonance imaging apparatus
JP6496311B2 (ja) 温度マッピングを伴うmrイメージング
US20160170001A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2013031633A (ja) 磁気共鳴イメージング装置及びsar予測方法
JP2018508016A (ja) 磁気粒子の量を決定するシステムおよび方法
JP5337406B2 (ja) 磁気共鳴イメージング装置
WO2001022879A1 (fr) Appareil de diagnostic a imagerie par resonance magnetique (irm) et procede correspondant
JP6017443B2 (ja) 磁気共鳴イメージング装置および照射磁場分布計測方法
JP5808659B2 (ja) 磁気共鳴イメージング装置及びT1ρイメージング法
WO2016021440A1 (ja) 磁気共鳴イメージング装置
JP2007282860A (ja) 磁気共鳴イメージング装置および方法
JP5508165B2 (ja) 磁気共鳴イメージング装置及びt2マップ取得方法
JP5421600B2 (ja) 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法
JP6579908B2 (ja) 磁気共鳴イメージング装置及び拡散強調画像計算方法
KR101480413B1 (ko) B1 정보 획득 방법 및 장치
JP3104985B2 (ja) 磁気共鳴診断装置
JP2016131847A (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP2021078949A (ja) 磁気共鳴撮像装置、及び、その制御方法
WO2010038847A1 (ja) 磁気共鳴イメージング装置及びrfパルス調整方法
JP2011251038A (ja) 磁気共鳴イメージング装置及び、波形調整方法
JP2004267404A (ja) 核磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543279

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13509094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833239

Country of ref document: EP

Kind code of ref document: A1