WO2011063894A2 - Photovoltaik-modulstruktur und verfahren zum herstellen einer elektrisch leitenden verbindung zwischen zwei voneinander beabstandeten kontaktschichten, insbesondere in der photovoltaik-modulstruktur - Google Patents

Photovoltaik-modulstruktur und verfahren zum herstellen einer elektrisch leitenden verbindung zwischen zwei voneinander beabstandeten kontaktschichten, insbesondere in der photovoltaik-modulstruktur Download PDF

Info

Publication number
WO2011063894A2
WO2011063894A2 PCT/EP2010/006841 EP2010006841W WO2011063894A2 WO 2011063894 A2 WO2011063894 A2 WO 2011063894A2 EP 2010006841 W EP2010006841 W EP 2010006841W WO 2011063894 A2 WO2011063894 A2 WO 2011063894A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrical line
photovoltaic module
module structure
region
structuring
Prior art date
Application number
PCT/EP2010/006841
Other languages
English (en)
French (fr)
Other versions
WO2011063894A4 (de
WO2011063894A3 (de
Inventor
Frank Becker
Michael Bauer
Jochen Frenck
Robert Fischer
Original Assignee
Calyxo Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calyxo Gmbh filed Critical Calyxo Gmbh
Priority to US13/512,134 priority Critical patent/US9202966B2/en
Publication of WO2011063894A2 publication Critical patent/WO2011063894A2/de
Publication of WO2011063894A3 publication Critical patent/WO2011063894A3/de
Publication of WO2011063894A4 publication Critical patent/WO2011063894A4/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • H01L27/1421Energy conversion devices comprising bypass diodes integrated or directly associated with the device, e.g. bypass diode integrated or formed in or on the same substrate as the solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photovoltaic module structure according to claim 1 and to a method for producing an electrically conductive connection between two spaced-apart contact layers, in particular in a photovoltaic module structure according to the preamble of claim 9.
  • Photovoltaic modules are widely used today, and despite their somewhat lower efficiency, thin-film photovoltaic module structures have become very important due to their significantly lower material requirements.
  • Such thin-film photovoltaic module structures have photoactive layers with layer thicknesses of the order of magnitude of ⁇ , and as semiconductor materials, in addition to the pure semiconductors silicon and germanium, also compound semiconductors such as CdTe or Cu (In, Ga) (S, Se) 2 (abbreviated to CIS or CIGS) for use.
  • semiconductor materials in addition to the pure semiconductors silicon and germanium, also compound semiconductors such as CdTe or Cu (In, Ga) (S, Se) 2 (abbreviated to CIS or CIGS) for use.
  • such a photovoltaic module structure has a plurality of photovoltaic-effective regions, which are interconnected in series to produce a sufficiently large voltage.
  • the in-series connection is usually produced by providing a junction between two photovoltaically active regions, which have contact layers extending in a plane, in which the lower contact layer of one region is electrically conductively connected to the upper contact layer of the other region is as shown for example in EP 0 749 161 Bl.
  • a first electrically conductive contact layer 21 is applied to a substrate 20, which is interrupted by means of laser structuring, for example along a line.
  • the optically active layer 22 is preferably likewise applied to the first electrically conductive contact layer 21 and likewise interrupted by this first structuring step. Thereafter, the trench 23 thus formed is filled with an electrically insulating layer 24 and then in a second Laser Designtechniksschntt only the optically active layer 22 is interrupted.
  • a second electrically conductive contact layer 25 is applied over the entire module structure, which fills the trench 26 produced in the second laser patterning step and thereby produces an electrically conductive contact 27 between the first 21 and second electrically conductive contact layer 25.
  • the second electrically conductive contact layer 25 and the underlying optically active layer 22 are interrupted 28 by a third Laser Design istsschntt, resulting in a transition 29 between the two photovoltaic active areas 30, 31 having a horizontal sequence with a Open circuit 24 in the first electrically conductive contact layer 21, an electrically conductive connection 27 between the first 21 and second electrically conductive contact layer 25 and an interruption 28 in the second electrically conductive contact layer 25.
  • the current flow S is controlled by the photovoltaic module structure 32, that results in a series connection of adjacent photovoltaically active regions 30, 31, as shown purely schematically in FIG. 1.
  • a disadvantage of this known structure 32 and the manufacturing method used for this purpose is that in this case three structuring steps are required, which are carried out in different systems.
  • the three patterning steps are spatially separated from each other, so that within the photovoltaic module structure 32 optically inactive areas A, B are generated, which are usually about 200 ⁇ wide to form a positioning tolerance for structuring, and cause a loss of efficiency.
  • the photovoltaic module structure should allow a higher efficiency and that manufacturing process should allow the production of less expensive photovoltaic module structures.
  • the photovoltaic module structure according to the invention in particular for the thin-film photovoltaic, has at least two photovoltaically active regions, each region having in the vertical direction at least one optically active layer which is arranged between two electrical first and second contacts, wherein the contacts each at least an electrically conductive layer, wherein the two regions adjoin one another horizontally with a transition, that the transition between the two regions is a horizontal sequence of a first electrical line interruption between the first contacts of the first and second region, an electrical line connection between the second Contact of the first region and the first contact of the second region and a second electrical line interruption between the second contacts of the first and second region comprises, so that the two regions are connected in series, wherein at least the electrical line connection and the second electrical line interruption directly adjacent to each other.
  • the efficiency is increased because there are no more inactive areas between the electrical line connection and the second electrical line interruption.
  • the photovoltaic module structure is arranged on a transparent substrate, in particular glass, because then both a laser structuring can take place through the substrate and the photovoltaic module structure is active from the substrate side.
  • the transition is designed as a substantially vertical structuring. Then he can be particularly easy to produce.
  • the first electrical line interruption is likewise provided in the optically active layer of the first region and is preferably designed as an insulating filler incorporated in a structuring, since this can improve the efficiency.
  • the electrical line connection comprises the material of the first and / or second contact and in particular has a metal or a transparent conductive oxide
  • the manufacturing process can be made particularly simple. Alternatively, however, other materials can be used, which then additional manufacturing steps are required.
  • the second electrical line interruption is formed by a structured interruption in the second contact layer of the second region, wherein the interruption preferably extends at least over the optically active layer of the second region. Then no efficiency can also be improved.
  • the electrical line connection has a width in the range of 0.01 to 50 ⁇ m, preferably 5 to 40 ⁇ m, and in particular 30 ⁇ m. This allows a particularly cost-effective production while ensuring a sufficiently high current flow in the series circuit.
  • the optically active layers and the electrical first and second contacts are formed as a horizontally uniformly deposited photo layer or first and second contact layers.
  • the photo layer comprises the materials CdTe and CdS, the first contact layer a transparent conductive oxide, preferably ITO, and the second contact layer Mo, the first electrical line discontinuity as electrically insulating filler material paints, photoresists and the like the second electrical line interruption comprises electrically insulating filler material air, the first contact layer preferably having a thickness in the range of 0.01 to 1 ⁇ m, preferably 0.05 to 0.5 ⁇ m, and in particular 0.25 ⁇ m, the second contact layer being one Thickness in the range of 0.01 to 1 ⁇ , preferably 0, 1 to 0.8 ⁇ and in particular 0.5 ⁇ is, the photo layer has a thickness in the range of 0, 1 to 10 ⁇ , preferably 1 to 5 ⁇ and in particular 3 ⁇ , the first electrical line interruption a width in the range of 5 to 100
  • Self-contained protection for a method for establishing an electrical line connection between at least two contact layers for a series connection, which is preferably two arranged in a vertically layered layer system layer layers, wherein the contact layers are spaced from each other, wherein an asymmetric patterning step made is used to simultaneously generate the electrical line connection and a directly adjacent electrical line interruption in one of the two contact layers.
  • asymmetrical structuring pulse both the electrical line connection and a directly adjacent electrical line interruption can be generated in a single structuring step, which makes the manufacturing method simpler and less expensive than previous production methods.
  • a positioning step between the second and third laser structuring steps is saved since both Structuring steps now take place simultaneously.
  • the structuring intensity of the structuring pulse should be much lower in an outer region of the structuring pulse than in the remaining regions in that the electrically conductive connection between the first and second contact layer is formed in the structural regions produced with lower structuring intensity, wherein the electrically conductive compound comprises material of the first and / or second contact layer.
  • the method according to the invention can expediently be used for producing the electrical line connection between the second contact of the first region and the first contact of the second region of the photovoltaic module structure according to the invention, but it can also be used for other applications in which series connection should be structured.
  • optical element means that refraction, diffraction, scattering and / or reflection should take place, for example, such an optical element could be planed over a certain subarea for linear structuring. be parallel glass, the thickness of which tapers in the other area, for example, arcuate.
  • optical elements and mirrors or other reflectors can be used or Fesnel lenses, through which an asymmetric intensity distribution is set. The asymmetrical optical element should therefore cause an intensity reduction in a region by refraction, diffraction, reflection and / or scattering.
  • Frter element in this context means that the intensity is reduced by absorption, which can be done for example by a grayscale filter, or alternatively or additionally a complete or partial filtering of individual frequencies can take place, whereby the intensity can likewise be reduced Such frequency filtering is possible, for example, with a Bragg filter.
  • FIG. 2 wherein a preferred embodiment of the photovoltaic module structure according to the invention is shown purely schematically in section therein.
  • a preferred optical filter element is shown purely schematically in Fig. 3.
  • the photovoltaic module structure 1 has two photovoltaically active regions 2 ', 2 ", which are horizontally juxtaposed on a glass substrate 3. Each of the two regions 2', 2" has, starting from the glass substrate 3, a first electrically conductive contact 4 ', 4 ", an optically active layer 5 ', 5" and a second electrically conductive contact 6', 6 ".
  • a transition 7 is provided in the horizontal direction between the two regions 2 ', 2". In this case, the transition 7 has a first electrical line interruption 8, which is provided between the two first electrically conductive contacts 4 ', 4 "of the two regions 2', 2" and extends essentially completely along the thickness of the optically active layer 5 'of FIG first region 2 'extends.
  • an electrical line connection 9 between the second contact 6 'of the first region 2' and the first contact 4 "of the second region 2" is arranged, which is immediately adjacent to a second electrical line interruption 10, the two second contacts 6 ', 6 "of the two regions 2', 2" electrically interrupts and extends substantially over the entire depth of the optically active layer 5 "of the second region 2" to the first contact 4 "of the second region 2".
  • the efficiency is increased compared to the conventional photovoltaic module structure 32 shown in FIG. 1 in that the ineffective region B is omitted.
  • the substrate 3 is a glass substrate 3, the first contacts 4 ', 4 "consist of a transparent conductive oxide, for example ITO, the second contacts 6', 6" consist of Mo and the optically active layers 5 ', 5 "have a layering between CdS and CdTe, which has been activated by tempering, as seen from the substrate 3.
  • a transparent conductive oxide for example ITO
  • the second contacts 6', 6" consist of Mo
  • the optically active layers 5 ', 5 have a layering between CdS and CdTe, which has been activated by tempering, as seen from the substrate 3.
  • an organic, insulating material is preferred, for example a photoresist.
  • the first line break 8 and the electrical line connection 9 are formed directly adjacent to each other elimination of the part 1 1 of the optically active layer 5 ', so that the efficiency is further improved in that also the ineffective area A is eliminated in Fig. 1.
  • the method according to the invention is therefore surprising for the person skilled in the art, since it is based on an error that was first analyzed by the inventors within the conventional photovoltaic module structure 32 according to FIG. 1, which is now advantageously used to produce the photovoltaic module structure 1 according to the invention.
  • the inventors have found that in the known three-step laser structuring process yield losses, which are not readily explainable with the unused areas A, B.
  • SEM analyzes in conjunction with EDX mapping it has been found that in the laser trench of the second electrical line interruption 28 generated in the third structuring step, shunts have formed in that at the laser edge to the first region 30 sections exist which material of the second contact 26 extends to the first contact 21 and thereby produces a local short circuit.
  • the transition 7 By investigations of the transition 7 has been found that on the one hand forms a continuous electrical line connection 9 and on the other hand, the second electrical line interruption 10 on the opposite side with respect to the electrical line connection 9 has a sharp, insulating profile.
  • the manufacturing method according to the invention is based on the fact that a uniform but asymmetric patterning pulse is made with respect to the areas of the electrical line connection 9 and electrical line interruption 10 to be structured.
  • the structuring intensity should therefore be different.
  • the method can be carried out, for example, with an optical element 40 according to FIG. 3, wherein the optical element 40 has a first region 41, in which plane-parallel interfaces and thus a constant thickness D are present, and a second region 42, in which the thickness starting from the thickness D of the first region 41 successively arcuately tapered.
  • Laser beams passing in parallel with respect to the normal of the first region 41 change their direction behind optical element 40 after passing through the first region 41 is not, while through the second region 42 passing laser beams diverge behind a focal point.
  • a first region 41 is provided with the same intensity and a second region 42, in which the intensity is reduced by beam expansion.
  • inventive method can also be used advantageously in other areas in which at least two spaced-apart contact layers are to be electrically conductively connected to each other and at the same time an electrical line interruption is needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Photovoltaik-Modulstruktur 1 sowie ein Verfahren zum Herstellen einer elektrisch leitenden Verbindung zwischen zwei beabstandeten Kontaktschichten 4", 6', insbesondere in der erfindungsgemäßen Photovoltaik- Modulstruktur 1. Die Herstellungsverfahren ist besonders einfach und kostengünstig und die erfindungsgemäße Photovoltaik-Modulstruktur 1 ermöglicht einen bedeutenden Wirkungsgradzugewinn.

Description

Photovoltaik-Modulstruktur und Verfahren zum Herstellen einer elektrisch leitenden Verbindung zwischen zwei voneinander beabstandeten Kontaktschichten, insbesondere in der Photovoltaik-Modulstruktur
Die vorliegende Erfindung betrifft eine Photovoltaik-Modulstruktur nach Anspruch 1 sowie ein Verfahren zum Herstellen einer elektrisch leitenden Verbindung zwischen zwei beabstandeten Kontaktschichten, insbesondere in einer Photovoltaik- Modulstruktur nach dem Oberbegriff von Anspruch 9.
Photovoltaik-Module kommen heute in großem Umfang zum Einsatz, wobei trotz eines etwas geringeren Wirkungsgrades Dünnschichtphotovoltaik-Modulstrukturen wegen Ihres deutlich geringeren Materialbedarfs starke Bedeutung erlangt haben.
Solche Dünnschichtphotovoltaik-Modulstrukturen weisen photoaktive Schichten mit Schichtdicken in der Größenordnung von μηι auf und als Halbleitermaterialien kommen neben den reinen Halbleitern Silizium und Germanium auch Verbindungshalbleiter wie CdTe oder Cu(In,Ga)(S,Se)2 (kurz CIS oder CIGS genannt) zum Einsatz.
Üblicherweise weist eine solche Photovoltaik-Modulstruktur mehrere photovoltaik- wirksame Bereiche auf, die miteinander in Reihe verschaltet sind, um eine genügend große Spannung zu erzeugen. Die in-Reihe-Verschaltung wird dabei üblicherweise dadurch erzeugt, dass zwischen zwei photovoltaisch wirksamen Bereichen, die in einer Ebene verlaufende Kontaktschichten aufweisen, ein Übergang vorgesehen wird, bei dem die untere Kontaktschicht des einen Bereichs mit der oberen Kontaktschicht des anderen Bereichs elektrisch leitend verbunden wird, so wie es beispielsweise in der EP 0 749 161 Bl gezeigt ist.
Üblicherweise werden zur Erzeugung eines solchen Übergangs drei Strukturierungs- schritte vorgenommen, die gewöhnlich durch Laserstrukturierung erfolgen, wie im
BESTÄTIGUNGSKOPIE Folgenden anhand Fig. 1 beispielhaft beschrieben wird. Dazu wird auf einem Substrat 20 eine erste elektrisch leitende Kontaktschicht 21 aufgebracht, die mittels Laser- strukturierung, beispielsweise entlang einer Linie, unterbrochen wird. Vorzugsweise wird auch gleich die optisch aktive Schicht 22 auf der ersten elektrisch leitenden Kontaktschicht 21 aufgebracht und ebenfalls durch diesen ersten Strukturierungsschritt unterbrochen. Danach wird der so gebildete Graben 23 mit einer elektrisch isolierenden Schicht 24 verfüllt und anschließend in einem zweiten Laserstrukturierungsschntt nur die optisch aktive Schicht 22 unterbrochen. Dann wird über der gesamten Modulstruktur eine zweite elektrisch leitende Kontaktschicht 25 aufgebracht, die den bei dem zweiten Laserstrukturierungsschntt hergestellten Graben 26 verfüllt und dadurch einen elektrisch leitenden Kontakt 27 zwischen erster 21 und zweiter elektrisch leitender Kontaktschicht 25 herstellt. In einem dritten Schritt werden schließlich die zweite elektrisch leitende Kontaktschicht 25 und die darunter liegende optisch aktive Schicht 22 durch einen dritten Laserstrukturierungsschntt unterbrochen 28, wodurch sich ein Übergang 29 zwischen den zwei photovoltaisch wirksamen Bereichen 30, 31 ergibt, der eine horizontale Abfolge aufweist mit einer Unterbrechung 24 in der ersten elektrisch leitenden Kontaktschicht 21 , einer elektrisch leitenden Verbindung 27 zwischen erster 21 und zweiter elektrisch leitender Kontaktschicht 25 und einer Unterbrechung 28 in der zweiten elektrisch leitenden Kontaktschicht 25. Hierdurch wird der Stromfluss S durch die Photovoltaik-Modulstruktur 32 so gesteuert, dass sich eine Reihenverschaltung benachbarter photovoltaisch wirksamer Bereiche 30, 31 ergibt, wie dies in Fig. 1 reinschematisch dargestellt ist.
Nachteilig an dieser bekannten Struktur 32 und dem dafür verwendeten Herstellungsverfahren ist es, dass hierbei zum einen drei Strukturierungsschritte erforderlich sind, die in unterschiedlichen Anlagen durchgeführt werden. Außerdem erfolgen die drei Strukturierungsschritte voneinander örtlich getrennt, so dass innerhalb der Photovoltaik-Modulstruktur 32 optisch inaktive Bereiche A, B erzeugt werden, die üblicherweise etwa 200 μιη breit sind, um eine Positionierungstoleranz für die Strukturierung zu bilden, und einen Wirkungsgradverlust bedingen. Aufgabe der vorliegenden Erfindung ist es daher, eine Photovoltaik-Modulstruktur und ein Verfahren zum Herstellen einer elektrisch leitenden Verbindung zwischen zwei voneinander beabstandeten Kontaktschichten bereitzustellen, mit denen diese Nachteile überwunden werden. Insbesondere soll die Photovoltaik-Modulstruktur einen höheren Wirkungsgrad ermöglichen und dass Herstellungsverfahren soll die Herstellung kostengünstigerer Photovoltaik-Modulstrukturen gestatten.
Diese Aufgabe wird gelöst mit einer Photovoltaik-Modulstruktur gemäß Anspruch 1 und einem Herstellungsverfahren gemäß Anspruch 9. Vorteilhafte Weiterbildungen sind jeweils in den abhängigen Unteransprüchen angegeben.
Die erfindungsgemäße Photovoltaik-Modulstruktur, insbesondere für die Dünn- schichtphotovoltaik, weist zumindest zwei photovoltaisch wirksame Bereiche auf, wobei jeder Bereich in vertikaler Richtung zumindest eine optisch aktive Schicht aufweist, die zwischen zwei elektrischen ersten und zweiten Kontakten angeordnet ist, wobei die Kontakte jeweils zumindest eine elektrisch leitende Schicht umfassen, wobei die zwei Bereiche horizontal so aneinander mit einem Übergang angrenzen, dass der Übergang zwischen den zwei Bereichen eine horizontale Abfolge einer ersten e- lektrischen Leitungsunterbrechung zwischen den ersten Kontakten des ersten und zweiten Bereichs, einer elektrischen Leitungsverbindung zwischen dem zweiten Kontakt des ersten Bereichs und dem ersten Kontakt des zweiten Bereichs und eine zweite elektrische Leitungsunterbrechung zwischen den zweiten Kontakten des ersten und zweiten Bereichs umfasst, so dass die beiden Bereiche in Reihe verschaltet sind, wobei zumindest die elektrische Leitungsverbindung und die zweite elektrische Leitungsunterbrechung direkt aneinander angrenzen. Dadurch wird der Wirkungsgrad erhöht, weil keine inaktiven Bereiche mehr zwischen der elektrischen Leitungsverbindung und der zweiten elektrischen Leitungsunterbrechung mehr vorliegen. Bevorzugt ist die Photovoltaik-Modulstruktur auf einem transparenten Substrat, insbesondere Glas angeordnet, weil dann sowohl eine Laserstrukturierung durch das Substrat erfolgen kann als auch die Photovoltaik-Modulstruktur von der Substratseite her aktiv ist. Zweckmäßig ist der Übergang als im Wesentlichen vertikale Strukturierung ausgebildet. Dann lässt er sich besonders einfach erzeugen.
Bevorzugt ist die erste elektrische Leitungsunterbrechung ebenfalls in der optisch aktiven Schicht des ersten Bereichs vorgesehen und bevorzugt als in eine Strukturierung eingebrachter isolierender Füllstoff ausgebildet, da dadurch der Wirkungsgrad verbessert werden kann.
Wenn die elektrische Leitungsverbindung das Material des ersten und/oder zweiten Kontakts umfasst und insbesondere ein Metall oder ein transparentes leitendes Oxid aufweist, lässt sich der Herstellungsprozess besonders einfach gestalten. Alternativ können aber auch andere Materialien verwendet werden, wodurch dann zusätzliche Herstellungsschritte erforderlich werden.
Ebenfalls ist es vorteilhaft, wenn die zweite elektrische Leitungsunterbrechung durch eine strukturierte Unterbrechung in der zweiten Kontaktschicht des zweiten Bereichs gebildet ist, wobei die Unterbrechung sich bevorzugt zumindest auch über die optisch aktive Schicht des zweiten Bereichs erstreckt. Dann kein der Wirkungsgrad ebenfalls verbessert werden.
Besonders wünschenswert ist es, wenn die elektrische Leitungsverbindung eine Breite im Bereich von 0,01 bis 50 μηι, bevorzugt 5 bis 40 μιη aufweist und insbesondere 30 μηι beträgt. Dadurch lässt sich eine besonders kostengünstige Herstellung ermöglichen unter gleichzeitiger Sicherstellung eines ausreichend hohen Stromflusses in der Reihenschaltung.
Besonders vorteilhaft ist es, wenn die optisch aktiven Schichten und die elektrischen ersten und zweiten Kontakte als horizontal einheitlich abgeschiedene Photoschicht bzw. erste und zweite Kontaktschichten ausgebildet sind. In diesem Zusammenhang ist es zweckmäßig, wenn die Photoschicht die Materialien CdTe und CdS, die erste Kontaktschicht ein transparentes leitendes Oxid, bevorzugt ITO, und die zweite Kontaktschicht Mo aufweisen, die erste elektrische Leitungsunterbrechung als elektrisch isolierendes Füllmaterial Lacke, Photorestist und dgl. umfasst und die zweite elektrische Leitungsunterbrechung als elektrisch isolierendes Füllmaterial Luft umfasst, wobei bevorzugt die erste Kontaktschicht eine Dicke im Bereich von 0,01 bis 1 μηι, bevorzugt 0,05 bis 0,5 μπι aufweist und insbesondere 0,25 μιη beträgt, die zweite Kontaktschicht eine Dicke im Bereich von 0,01 bis 1 μιη, bevorzugt 0, 1 bis 0,8 μιη aufweist und insbesondere 0,5 μπι beträgt, die Photoschicht eine Dicke im Bereich von 0, 1 bis 10 μπι, bevorzugt 1 bis 5 μπι aufweist und insbesondere 3 μπι beträgt, die erste elektrische Leitungsunterbrechung eine Breite im Bereich von 5 bis 100 μηι, bevorzugt 20 bis 80 μηι aufweist und insbesondere 50 μηι beträgt und die zweite elektrische Leitungsunterbrechung eine Breite im Bereich von 5 bis 100 μιη, bevorzugt 20 bis 80 μη aufweist und insbesondere 30 μιη beträgt. Selbstverständlich können die Bereiche auch in Form von horizontal nicht einheitlich ausgebildeten Schichten hergestellt sein, wobei dennoch die eben genannten Materialien bevorzugt sind.
Selbständiger Schutz wird beansprucht für ein Verfahren zum Herstellen einer elektrischen Leitungsverbindung zwischen zumindest zwei Kontaktschichten für eine Reihenverschaltung, wobei es sich bevorzugt um zwei in einem vertikal geschichteten Schichtensystem angeordnete Kontaktschichten handelt, wobei die Kontaktschichten voneinander beabstandet angeordnet sind, wobei ein asymmetrischer Strukturierungs- schritt vorgenommen wird zur gleichzeitigen Erzeugung der elektrischen Leitungsverbindung und einer direkt angrenzenden elektrischen Leitungsunterbrechung in einer der beiden Kontaktschichten. Durch den asymmetrischen Strukturierungsimpuls können in einem einzigen Strukturierungsschritt sowohl die elektrischen Leitungsverbindung als auch eine direkt angrenzende elektrische Leitungsunterbrechung erzeugt werden, wodurch das Herstellungsverfahren einfacher und kostengünstiger wird gegenüber bisherigen Herstellungsverfahren. Vor allem wird ein Positionierungsschritt zwischen dem zweiten und dritten Laserstrukturierungsschritt eingespart, da beide Strukturierungsschritte nun gleichzeitig erfolgen. Dadurch werden Positionierungsprobleme umgangen, die im industriellen Maßstab große Bedeutung haben, denn dabei wird üblicherweise zur Erzielung hohen Durchsatzes ein einzelner Laserstrahl mit Hilfe eines Spiegels auf das zu strukturierende Schichtpaket gelenkt, um seriell viele, beispielsweise linienförmige Gräben zu erzeugen und dadurch viele photovoltaisch wirksame Bereiche festzulegen. Zur Anpassung an Positionierungsfehler werden Toleranzen benötigt, die über die inaktiven Bereiche A, B mit ca. 200 μηι Breite bereitgestellt werden. Zumindest eine solche Positionierungstoleranz ist nun entbehrlich, was den Durchsatz deutlich erhöht.
In einer besonders vorteilhaften Ausgestaltung soll die Strukturierungsintensität des Strukturierungspulses in einem äußeren Bereich des Strukturierungspulses soviel geringer sein, als in den übrigen Bereichen, dass sich in den mit geringerer Strukturierungsintensität erzeugten Strukturbereichen die elektrisch leitende Verbindung zwischen der ersten und zweiten Kontaktschicht ausbildet, wobei die elektrisch leitende Verbindung Material der ersten und/oder zweiten Kontaktschicht umfasst.
Das erfindungsgemäße Verfahren kann zweckmäßig zur Herstellung der elektrischen Leitungsverbindung zwischen dem zweiten Kontakt des ersten Bereichs und dem ersten Kontakt des zweiten Bereichs der erfindungsgemäßen Photovoltaik-Modulstruktur eingesetzt werden, jedoch lässt es sich auch für andere Anwendungsfälle einsetzen, in denen eine Reihenverschalten strukturiert werden soll.
Besonders zweckmäßig wird der Strukturierungsschritt mittels Laserstrukturierung durchgeführt und die Bereiche unterschiedlicher Strukturierungsintensität werden dadurch erzeugt, dass ein asymmetrisches optisches Element verwendet wird und/oder dass zumindest zwei Laser verwendet werden, die eine unterschiedliche Intensität aufweisen und/oder das ein asymmetrisches Filterelement eingesetzt wird.„Optisches Element" heißt in diesem Zusammenhang, dass Brechung, Beugung, Streuung und/oder Reflektion erfolgen sollen. Ein solches optisches Element könnte beispielsweise für eine linienförmige Strukturierung ein über einen gewissen Teilbereich plan- paralleles Glas sein, dessen Dicke sich in dem anderen Bereich beispielsweise bogenförmig verjüngt. Als weitere optische Elemente können auch Spiegel oder andere Reflektoren eingesetzt werden oder Fesnel-Linsen, durch die eine asymmetrische Intensitätsverteilung eingestellt wird. Das asymmetrische optische Element soll also in einem Bereich durch Brechung, Beugung, Reflektion und/oder Streuung eine Intensitätsreduzierung bewirken.
„Filterelement" heißt in diesem Zusammenhang, dass durch Absorption die Intensität verringert wird, was beispielsweise durch einen Graustufenfilter erfolgen kann. Andererseits kann auch alternativ oder zusätzlich eine vollständige bzw. teilweise Filterung von einzelnen Frequenzen erfolgen, wodurch die Intensität ebenfalls herabgesetzt werden kann. Eine solche Frequenzfilterung ist beispielsweise mit einem Bragg-Filter möglich.
Die Kennzeichen und Merkmale sowie weitere Vorteile der vorliegenden Erfindung werden im Weiteren anhand der Beschreibung eines bevorzugten Ausführungsbeispiels gemäß Fig. 2 deutlich werden, wobei darin eine bevorzugte Ausführungsform der erfindungsgemäßen Photovoltaik-Modulstruktur rein schematisch im Schnitt dargestellt ist. Außerdem wird in Fig. 3 ein bevorzugtes optisches Filterelement rein schematisch dargestellt.
Die Photovoltaik-Modulstruktur 1 weist zwei photovoltaisch wirksame Bereiche 2', 2" auf, die horizontal gesehen nebeneinander auf einem Glassubstrat 3 aufgebracht sind. Jeder der beiden Bereiche 2', 2" weist ausgehend vom Glassubstrat 3 einen ersten elektrisch leitfähigen Kontakt 4', 4", eine optisch aktive Schicht 5 ', 5 " und einen zweiten elektrisch leitfähigen Kontakt 6', 6" auf. Zwischen den beiden Bereichen 2', 2" ist in horizontaler Richtung ein Übergang 7 vorgesehen. Der Übergang 7 weist dabei eine erste elektrische Leitungsunterbrechung 8 auf, die zwischen den beiden ersten elektrisch leitenden Kontakten 4', 4" der beiden Bereiche 2', 2" vorgesehen ist und sich im Wesentlichen vollständig entlang der Dicke der optisch aktiven Schicht 5 ' des ersten Bereichs 2 ' erstreckt. Getrennt durch einen Teil 1 1 der optische aktiven Schicht 5 ' des Bereichs 2' ist eine elektrische Leitungsverbindung 9 zwischen dem zweiten Kontakt 6' des ersten Bereichs 2' und dem ersten Kontakt 4" des zweiten Bereichs 2" angeordnet, an den sich unmittelbar angrenzend eine zweite elektrisch Leitungsunterbrechung 10 anschließt, die die beiden zweiten Kontakte 6', 6" der beiden Bereiche 2', 2" elektrisch unterbricht und sich im Wesentlichen über die gesamte Tiefe der optisch aktiven Schicht 5 " des zweiten Bereichs 2 " bis zum ersten Kontakt 4" des zweiten Bereichs 2" erstreckt.
Auf Grund des unmittelbaren aneinander Angrenzens der elektrischen Leitungsverbindung 9 und der zweiten elektrischen Leitungsunterbrechung 10 wird in der erfindungsgemäßen Photovoltaik-Modulstruktur der Wirkungsgrad gegenüber der in Fig. 1 gezeigten herkömmlichen Photovoltaik-Modulstruktur 32 dadurch erhöht, dass der unwirksame Bereich B entfällt.
Bevorzugt handelt es sich bei dem Substrat 3 um ein Glassubstrat 3, die ersten Kontakte 4', 4" bestehen aus einem transparent leitfähigen Oxid, beispielsweise ITO, die zweiten Kontakte 6', 6" bestehen aus Mo und die optisch aktiven Schichten 5 ', 5 " weisen vom Substrat 3 aus betrachtet eine Schichtung zwischn CdS und CdTe auf, die durch Temperierung aktiviert wurde. Als Material für die erste elektrische Leitungsunterbrechung 8 wird bevorzugt ein organisches, isolierendes Material gewählt, beispielsweise ein Photoresist.
Gemäß einer verbesserten Ausgestaltung (nicht gezeigt) werden auch die erste Leitungsunterbrechung 8 und die elektrische Leitungsverbindung 9 unmittelbar aneinander angrenzend ausgebildet unter Beseitigung des Teils 1 1 der optisch aktiven Schicht 5 ', so dass der Wirkungsgrad dahingehend weiter verbessert ist, dass auch der unwirksame Bereich A in Fig. 1 beseitigt ist. Dies könnte zum Beispiel dadurch erfolgen, dass der asymmetrische Strukturierungsschritt mit einer solchen Beabstandung und Breite ausgeführt wird, so dass sich die elektrische Leitungsverbindung 9 direkt angrenzend an die erste elektrische Leitungsunterbrechung 8 ausbildet, wobei dann die Breite der elektrischen Leitungsunterbrechung 8 so zu wählen ist, dass Positionierungstoleranzen bei der Laserstrukturierung gewährleistet werden.
Obwohl die in Fig. 2 gezeigte Photovoltaik-Modulstruktur 1 auf den ersten Blick nahe liegend erscheint, ist sie für den Fachmann dennoch überraschend, da sie mit dem bisher verwendeten Dreischritt-Strukturierungsverfahren im industriellen Maßstab auf Grund von Positionierungsungenauigkeiten und deshalb notwendigen Positionierungstoleranzen nicht herstellbar ist. Erst die Erfinder stellen ein überraschend einfaches Verfahren zur Herstellung einer solchen Struktur zur Verfügung.
Das erfindungsgemäße Verfahren ist deshalb für den Fachmann überraschend, da es auf einem erst durch die Erfinder analysierten Fehler innerhalb der herkömmlichen Photovoltaik-Modulstruktur 32 gemäß Fig. 1 beruht, der nun vorteilhaft zur Erzeugung der erfindungsgemäßen Photovoltaik-Modulstruktur 1 eingesetzt wird. Im Detail haben die Erfinder festgestellt, dass sich bei dem bekannten Dreischritt- Laserstrukturierungsverfahren Wirkungsgradverluste ergeben, die nicht ohne Weiteres mit den ungenutzten Bereichen A, B zu erklären sind. Im Rahmen von REM-Analysen in Verbindung mit EDX-Mapping wurde festgestellt, dass sich im Lasergraben der im dritten Strukturierungsschritt erzeugten zweiten elektrischen Leitungsunterbrechung 28 Nebenanschlüsse („Shunts") dadurch ausgebildet haben, dass an der Laserkante zum ersten Bereich 30 Abschnitte bestehen, in denen Material des zweiten Kontakts 26 sich bis zum ersten Kontakt 21 erstreckt und dadurch einen lokalen Kurzschluss herstellt.
Dieser Effekt wird dadurch erklärt, dass in diesem Bereich an der Laserkante der zur Strukturierung verwendete Laserimpuls eine geringere Intensität aufgewiesen hat als in den anderen Bereichen, so dass an dieser Stelle Material des ersten Kontakts 21 umgelagert wird. Man kann sich den Effekt wohl so veranschaulichen, dass beim Schneiden durch einen Kuchen mit aufgebrachter Glasur die Glasur an dem Schnitt herunter läuft bzw. herunter gezogen wird. Dies wird dadurch erklärt, dass in diesem Bereich der Strukturierungsimpuls zu schwach ist. Mit dem erfindungsgemäßen Verfahren wird nun also durch einen asymmetrisch ausgebildeten Strukturierungsschritt Material des zweiten Kontakts 6' des ersten Bereichs 2' entlang der Schnittkante zum ersten Kontakt 4" des zweiten Bereichs 2" hin verllagert, um die elektrische Leitungsverbindung 9 zu erzeugen. Bei geeigneter Strukturierung wird es allerdings auch möglich sein, das Material des ersten Kontakts 6" des zweiten Bereichs 2" entlang der Schnittkante zu verteilen, um so eine Kontaktierung des ersten Kontakts 6' des ersten Bereichs 2' zu erreichen.
Durch Untersuchungen des Übergangs 7 wurde festgestellt, dass sich einerseits eine durchgehende elektrische Leitungsverbindung 9 ausbildet und andererseits die zweite elektrische Leitungsunterbrechung 10 an der abgewandten Seite bezüglich der elektrischen Leitungsverbindung 9 ein scharfes, isolierendes Profil aufweist.
Auch wenn hier davon ausgegangen wird, dass der Strukturierungsimpuls im Bereich der Kontaktierung durch die elektrische Leitungsverbindung 9 schwächer ist als im Bereich der zweiten elektrischen Leitungsunterbrechung 10, ist es prinzipiell auch denkbar, dass der Strukturierungsimpuls im Bereich der elektrischen Leitungsverbindung 9 stärker ist als im Bereich der elektrischen Leitungsunterbrechung 10. Prinzipiell liegt also das erfindungsgemäße Herstellungsverfahren darin begründet, dass eine einheitlicher, aber asymmetrischer Strukturierungsimpuls hinsichtlich der zu strukturierenden Bereiche der elektrischen Leitungsverbindung 9 und elektrischen Leitungsunterbrechung 10 vorgenommen wird. Die Strukturierungsintensität soll also unterschiedlich hoch sein.
Das Verfahren kann beispielsweise mit einem optischen Element 40 gemäß Fig. 3 ausgeführt werden, wobei das optische Element 40 einen ersten Bereich 41 aufweist, in dem planparallele Grenzflächen und somit eine konstante Dicke D vorliegen, und einen zweiten Bereich 42, in dem sich die Dicke ausgehend von der Dicke D des ersten Bereichs 41 sukzessive bogenförmig verjüngt. In Bezug auf die Normale des ersten Bereichs 41 parallel durchtretende Laserstrahlen verändern ihre Richtung hinter dem optischen Element 40 nach Durchtritt durch den ersten Bereich 41 nicht, während durch den zweiten Bereich 42 durchtretende Laserstrahlen hinter einem Fokuspunkt divergieren. Dadurch wird ein erster Bereich 41 mit gleicher Intensität bereitgestellt und ein zweiter Bereich 42, in dem die Intensität durch Strahlaufweitung verringert ist.
Auch wenn vorstehend stets von einer Laserstrukturierung ausgegangen wurde, können natürlich auch andere bekannte Struktunerungsmethoden Verwendung finden, wie beispielsweise eine Elektronenstrahlstrukturierung oder eine Ionenstrahlstrukturie- rung.
Dadurch, dass die Photovoltaik-Modulstruktur 1 von Fig. 2 durch das erfindungsgemäße Verfahren nicht den ungenutzten Bereich B der Photovoltaik-Modulstruktur aus Fig. 1 aufweist, wurde ein absoluter Wirkungsgradgewinn von etwa 0,2 % erreicht. Dies bedeutet, dass der Wirkungsgradzugewinn relativ um etwa 2 % erhöht werden konnte, was einen bedeutenden Fortschritt in der Herstellung von Photovoltaik- Modulstrukturen darstellt. Außerdem lassen sich durch die erfindungsgemäße Photovoltaik-Modulstruktur 1 , insbesondere unter Verwendung des erfindungsgemäßen Verfahrens zwei Prozessschritte einsparen. Zum einen ist nämlich nur ein einziger Struk- turierungsschritt, bevorzugt durch Laserstrahlstrukturierung, für die Erzeugung der Strukturen für die elektrische Leitungsverbindung 9 und die zweite elektrische Leitungsunterbrechung 10 erforderlich und zum anderen kann auf das Einbringen von leitfähigen Material in die Struktur der elektrischen Leitungsverbindung 9 verzichtet werden, da sich diese elektrische Leitungsverbindung 9 während des asymmetrischen Strukturierungsschrittes von selbst ausbildet. Hier wird also auch Material und Zeit eingespart.
Aus dem Vorstehenden ist klar geworden, dass sich mit der erfindungsgemäßen Photovoltaik-Modulstruktur 1 und durch Bereitstellung des erfindungsgemäßen Verfahrens zum Herstellen einer elektrisch leitenden Verbindung zwischen voneinander beabstandeten Kontaktschichten besonders einfach und kostengünstig Wirkungsgrad- optimierte Photovoltaik-Modulstrukturen 1 ergeben, wobei der Wirkungsgradzuge- winn bedeutend ist.
Selbstverständlich kann das erfindungsgemäße Verfahren aber auch in anderen Bereichen vorteilhaft eingesetzt werden, in denen zumindest zwei voneinander beabstandete Kontaktschichten miteinander elektrisch leitend verbunden werden sollen und gleichzeitig eine elektrische Leitungsunterbrechung benötigt wird.

Claims

Patentansprüche
1. Photovoltaik-Modulstruktur (1), insbesondere für die Dünnschichtphotovoltaik, wobei die Modulstruktur (1) zumindest zwei photovoltaisch wirksame Bereiche (2', 2") aufweist, wobei jeder Bereich (2', 2") in vertikaler Richtung zumindest eine optisch aktive Schicht (5 ', 5 ") aufweist, die zwischen zwei elektrischen ersten und zweiten Kontakten (4', 4", 6', 6") angeordnet ist, wobei die Kontakte (4', 4", 6', 6") jeweils zumindest eine elektrisch leitende Schicht umfassen, wobei die zwei Bereiche (2', 2 ") horizontal so aneinander mit einem Übergang (7) angrenzen, dass der Übergang (7) zwischen den zwei Bereichen (2', 2") eine horizontale Abfolge einer ersten elektrischen Leitungsunterbrechung (8) zwischen den ersten Kontakten (4', 4") des ersten (2') und zweiten Bereichs (2"), einer elektrischen Leitungsverbindung (9) zwischen dem zweiten Kontakt (6') des ersten Bereichs (2') und dem ersten Kontakt (4") des zweiten Bereichs (2") und eine zweite elektrische Leitungsunterbrechung (10) zwischen den zweiten Kontakten (6', 6") des ersten (2') und zweiten Bereichs (2") umfasst, so dass die beiden Bereiche (2', 2") in Reihe verschaltet sind, wobei die Photovoltaik-Modulstruktur (1) bevorzugt auf einem transparenten Substrat (3), insbesondere Glas angeordnet ist, dadurch gekennzeichnet, dass zumindest die elektrische Leitungsverbindung (9) und die zweite elektrische Leitungsunterbrechung (10) direkt aneinander angrenzen.
2. Photovoltaik-Modulstruktur (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der Übergang (7) als im Wesentlichen vertikale Strukturierung ausgebildet ist.
3. Photovoltaik-Modulstruktur (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste elektrische Leitungsunterbrechung (8) ebenfalls in der optisch aktiven Schicht (5 ') des ersten Bereichs (2') vorgesehen ist und bevorzugt als in eine Strukturierung eingebrachter isolierender Füllstoff ausgebildet ist.
4. Photovoltaik-Modulstruktur (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die elektrische Leitungsverbindung (9) das Material des ersten (4', 4) und/oder des zweiten Kontakts (6", 6) umfasst und insbesondere ein Metall oder ein transparentes leitendes Oxid aufweist.
5. Photovoltaik-Modulstruktur (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die zweite elektrischen Leitungsunterbrechung (10) durch eine strukturierte Unterbrechung in der zweiten Kontaktschicht (6") des zweiten Bereichs (2") gebildet ist, wobei die Unterbrechung sich bevorzugt zumindest auch über die optisch aktive Schicht (5 ") des zweiten Bereichs (2") erstreckt.
6. Photovoltaik-Modulstruktur (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die elektrische Leitungsverbindung (9) eine Breite im Bereich von 0,01 bis 50 μηι, bevorzugt 5 bis 40 μπι aufweist und insbesondere 30 μιη beträgt.
7. Photovoltaik-Modulstruktur (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die optisch aktiven Schichten (5 ', 5 ") und die elektrischen ersten (4', 4") und zweiten Kontakte (6', 6") als horizontal einheitlich abgeschiedene Photoschicht (5) und erste (4) und zweite Kontaktschichten (6) ausgebildet sind.
8. Photovoltaik-Modulstruktur (1) nach Anspruch 7, dadurch gekennzeichnet, dass die Photoschicht (5) die Materialien CdTe und CdS, die erste Kontaktschicht (4) ein transparentes leitendes Oxid, bevorzugt ITO, und die zweite Kontaktschicht (6) Mo aufweisen, die erste elektrische Leitungsunterbrechung (8) als elektrisch isolierendes Füllmaterial Lacke, Photorestist und dgl. umfasst und die zweite elektrische Leitungsunterbrechung (10) als elektrisch isolierendes Füllmaterial Luft umfasst, wobei bevorzugt die erste Kontaktschicht (4) eine Dicke im Bereich von 0,01 bis 1 μιη, bevorzugt 0,05 bis 0,5 μπι aufweist und insbesondere 0,25 μηι beträgt, die zweite Kontaktschicht (6) eine Dicke im Bereich von 0,01 bis 1 μπι, bevorzugt 0, 1 bis 0,8 μπι aufweist und insbesondere 0,5 μιη beträgt, die Photoschicht (5) eine Dicke im Bereich von 0, 1 bis 10 μηι, bevorzugt 1 bis 5 μπι aufweist und insbesondere 3 μιη beträgt, die erste elektrische Leitungsunterbrechung (8) eine Breite im Bereich von 5 bis 100 μπι, bevorzugt 20 bis 80 μηι aufweist und insbesondere 50 μπι beträgt und die zweite e- lektrische Leitungsunterbrechung (10) eine Breite im Bereich von 5 bis 100 μηι, bevorzugt 20 bis 80 μπι aufweist und insbesondere 30 μπι beträgt.
9. Verfahren zum Herstellen einer elektrischen Leitungsverbindung (9) zwischen zumindest zwei, bevorzugt in einem vertikal geschichteten Schichtensystem (1) von voneinander beabstandeten ersten (4) und zweiten Kontaktschichten (6) für eine Reihenverschaltung, insbesondere Verfahren zur Herstellung der elektrischen Leitungsverbindung (9) zwischen dem zweiten Kontakt (6') des ersten Bereichs (2') und dem ersten Kontakt (4") des zweiten Bereichs (2") einer Photovoltaik-Modulstruktur (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein asymmetrischer Strukturierungsschritt vorgenommen wird zur gleichzeitigen Erzeugung der e- lektrischen Leitungsverbindung (9) und einer direkt angrenzenden elektrischen Leitungsunterbrechung in einer der beiden Kontaktschichten (4, 6), bei dem insbesondere die Struktunerungsintensität des Strukturierungspulses in einem äußeren Bereich des Strukturierungspulses soviel geringer ist, als in den übrigen Bereichen, dass sich in den mit geringerer Struktunerungsintensität erzeugten Strukturbereichen die elektrisch leitende Verbindung (9) zwischen der ersten (4) und zweiten Kontaktschicht (6) ausbildet, wobei die elektrisch leitende Verbindung (9) Material der ersten (4) und/oder zweiten Kontaktschicht (6) umfasst.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Strukturierungsschritt mittels Laserstrukturierung durchgeführt wird und die Bereiche unterschiedlicher Strukturierungsintensität dadurch erzeugt werden, dass ein asymmetrisches optisches Element verwendet wird, um durch Brechung, Beugung, Reflektion und/oder Streuung eine Intensitätsreduzierung zu erreichen, insbesondere ein Glas, das in einem ersten Bereich planparallel ist und dessen Dicke sich in einem zweiten Bereich bogenförmig verjüngt, und/oder dass zumindest zwei Laser verwendet werden, die eine unterschiedliche Intensität aufweisen und/oder das ein asymmetrisches Filterelement eingesetzt wird.
PCT/EP2010/006841 2009-11-25 2010-11-10 Photovoltaik-modulstruktur und verfahren zum herstellen einer elektrisch leitenden verbindung zwischen zwei voneinander beabstandeten kontaktschichten, insbesondere in der photovoltaik-modulstruktur WO2011063894A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/512,134 US9202966B2 (en) 2009-11-25 2010-11-10 Photovoltaic module structure and method for producing an electrically conductive connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055675.3 2009-11-25
DE102009055675.3A DE102009055675B4 (de) 2009-11-25 2009-11-25 Photovoltaik-Modulstruktur für die Dünnschichtphotovoltaik mit einer elektrischen Leitungsverbindung und Verfahren zur Herstellung der elektrischen Leitungsverbindung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/391,589 A-371-Of-International US8896629B2 (en) 2009-08-18 2010-08-13 Method for representing virtual information in a real environment
US14/502,366 Continuation US20150015611A1 (en) 2009-08-18 2014-09-30 Method for representing virtual information in a real environment

Publications (3)

Publication Number Publication Date
WO2011063894A2 true WO2011063894A2 (de) 2011-06-03
WO2011063894A3 WO2011063894A3 (de) 2011-10-20
WO2011063894A4 WO2011063894A4 (de) 2011-12-15

Family

ID=43902143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/006841 WO2011063894A2 (de) 2009-11-25 2010-11-10 Photovoltaik-modulstruktur und verfahren zum herstellen einer elektrisch leitenden verbindung zwischen zwei voneinander beabstandeten kontaktschichten, insbesondere in der photovoltaik-modulstruktur

Country Status (3)

Country Link
US (1) US9202966B2 (de)
DE (1) DE102009055675B4 (de)
WO (1) WO2011063894A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011104020A1 (de) * 2011-06-11 2012-12-13 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer Kontaktschicht eines Solarmoduls und auf diese Weise hergestelltes Solarmodul
WO2019232034A1 (en) * 2018-05-30 2019-12-05 Erten Eser Thin-film photovoltaic device structure and method of monolithically interconnecting photovoltaic cells in modules utilizing such structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749161A2 (de) 1995-06-15 1996-12-18 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Integriertes Dünnschicht-Sonnenzellenmodul und Herstellungsverfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517403A (en) * 1983-05-16 1985-05-14 Atlantic Richfield Company Series connected solar cells and method of formation
US4954181A (en) * 1984-10-05 1990-09-04 Fuji Electric Company Ltd. Solar cell module and method of manufacture
US4968354A (en) * 1987-11-09 1990-11-06 Fuji Electric Co., Ltd. Thin film solar cell array
DE4324318C1 (de) * 1993-07-20 1995-01-12 Siemens Ag Verfahren zur Serienverschaltung einer integrierten Dünnfilmsolarzellenanordnung
DE19934560B4 (de) * 1999-07-22 2005-12-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaikmodul mit integriert serienverschalteten Zellen und Herstellungsverfahren hierfür
US20080047599A1 (en) * 2006-03-18 2008-02-28 Benyamin Buller Monolithic integration of nonplanar solar cells
WO2009076403A1 (en) * 2007-12-13 2009-06-18 First Solar, Inc. Systems and methods of parallel interconnection of photovoltaic modules
TWI426615B (zh) * 2007-12-21 2014-02-11 Jusung Eng Co Ltd 薄膜型太陽能電池及其製造方法
KR101368903B1 (ko) * 2007-12-21 2014-03-04 주성엔지니어링(주) 박막형 태양전지 및 그 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749161A2 (de) 1995-06-15 1996-12-18 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Integriertes Dünnschicht-Sonnenzellenmodul und Herstellungsverfahren

Also Published As

Publication number Publication date
DE102009055675A1 (de) 2011-05-26
WO2011063894A4 (de) 2011-12-15
US20120280349A1 (en) 2012-11-08
US9202966B2 (en) 2015-12-01
DE102009055675B4 (de) 2016-05-19
WO2011063894A3 (de) 2011-10-20

Similar Documents

Publication Publication Date Title
EP2168177B1 (de) Herstellungsverfahren eines Dünnschichtsolarzellen-Moduls
DE3121350A1 (de) "verfahren zum herstellen einer sonnenbatterie"
DE112009002290T5 (de) Strukturieren von Elektrodenmaterialien, frei von Bermstrukturen, für Dünnfilm-Photovoltaikzellen
DE102013105426A1 (de) Verfahren zum Laserritzen einer Solarzelle
EP2507834B1 (de) Verfahren zum zumindest bereichsweisen entfernen einer schicht eines schichtenstapels
DE112009001168T5 (de) Verfahren zur Herstellung eines Dünnfilmsolarbatteriemoduls sowie Dünnfilmsolarbatteriemodul
EP3039726A1 (de) Verfahren zur laser-strukturierung von dünnschichten auf einem substrat für die herstellung monolithisch verschalteter dünnschichtsolarzellen und herstellungsverfahren für ein dünnschichtsolarmodul
EP2058870A2 (de) Kontaktierung und Modulverschaltung von Dünnschichtsolarzellen auf polymeren Trägern
EP2177302B1 (de) Verfahren zum Abtragen von Schichtmaterial eines Schichtaufbaus mittels Laserstrahlung mit einem Hilfsgrabenschritt und einem Abtragschritt
DE102009055675B4 (de) Photovoltaik-Modulstruktur für die Dünnschichtphotovoltaik mit einer elektrischen Leitungsverbindung und Verfahren zur Herstellung der elektrischen Leitungsverbindung
EP3493274A1 (de) Dünnschichtsolarmodul mit verbessertem shunt-widerstand
DE4201571C2 (de) Verfahren zur Herstellung einer für Licht teildurchlässigen Solarzelle und eines entsprechenden Solarmoduls
WO2015027996A1 (de) Verfahren zur herstellung von sub-solarmodulen durch elektrisch isolierende isoliergräben in einem dünnschichtsolarmodul und verfahren zur herstellung eines dünnschichtsolarmoduls mit derartigen isoliergräben
DE3714920C1 (de) Verfahren zur Herstellung einer Duennschicht-Solarzellenanordnung
DE102008029107B4 (de) Verfahren zur Herstellung einer Metallstruktur auf einer Oberfläche eines Halbleitersubstrates
DE102019122637B4 (de) Verfahren zur Herstellung einer metallischen Kontaktierungsstruktur einer photovoltaischen Solarzelle
DE102015114135A1 (de) Photovoltaische Vorrichtung und Verfahren zur Herstellung einer photovoltaischen Vorrichtung
DE102016125637A1 (de) Photovoltaik-Modul und Verfahren zur Herstellung eines Photovoltaik-Moduls
EP2352171A1 (de) Solarzellenanordnung und Dünnschichtsolarmodul, sowie Herstellungsverfahren hierfür
DE202010013136U1 (de) Dünnschicht-Photovoltaikmodul
DE102009060618A1 (de) Dünnschicht-Solarzellenmodul mit in Reihe geschalteten Solarzellen
DE112018003861T5 (de) Schichtelement-herstellungsverfahren
EP2442361A2 (de) Verfahren zur Herstellung von Verbindungen in einem Dünnschichtfotovoltaikmodul und Dünnschichtfotovoltaikmodul
DE102014204681A1 (de) Verfahren und Vorrichtung zum Herstellen einer elektrischen Schaltung zwischen zwei benachbarten Teilbereichen einer Solarzelle
DE102013220753A1 (de) Solarzelle und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787004

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13512134

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10787004

Country of ref document: EP

Kind code of ref document: A2