WO2011063695A1 - 一种高炉炉顶布料器复合液压控制系统 - Google Patents

一种高炉炉顶布料器复合液压控制系统 Download PDF

Info

Publication number
WO2011063695A1
WO2011063695A1 PCT/CN2010/078176 CN2010078176W WO2011063695A1 WO 2011063695 A1 WO2011063695 A1 WO 2011063695A1 CN 2010078176 W CN2010078176 W CN 2010078176W WO 2011063695 A1 WO2011063695 A1 WO 2011063695A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
valve
control
loop
hydraulic
Prior art date
Application number
PCT/CN2010/078176
Other languages
English (en)
French (fr)
Inventor
刘勋
吴卫
李军
丁常红
赵渭康
郑军
王劲松
Original Assignee
中冶赛迪工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶赛迪工程技术股份有限公司 filed Critical 中冶赛迪工程技术股份有限公司
Publication of WO2011063695A1 publication Critical patent/WO2011063695A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types

Definitions

  • the invention belongs to the technical field of metallurgical machinery, and discloses a composite hydraulic control system for a top furnace of a blast furnace, which is used for controlling the cloth top process of a blast furnace without a bell.
  • the control of the blast furnace top distributor is a key part of the blast furnace distribution system, and its control accuracy directly affects the fabric precision of the blast furnace distribution system.
  • Most of the existing distributors use a simple centralized hydraulic control method, that is, the operation of three hydraulic cylinders is controlled by one valve, and the hydraulic oils in the three hydraulic cylinders can be synchronized with each other.
  • the control accuracy of the distributor mainly depends on the gap between the guide wheel mounted on the bracket and the guide rail mounted on the housing. Therefore, in order to improve the cloth precision of the distributor, it is mainly adjusted by comparison. The gap between the small guide rail and the guide wheel is realized. In fact, this method is difficult to ensure the accuracy of the cloth.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a composite hydraulic control system for a blast furnace top distributor, which has separate control of three hydraulic cylinders, has high control precision, less synchronization error, and good reliability and safety.
  • the characteristics are suitable for the high-precision fabric requirements of the blast furnace top.
  • a composite hydraulic control system for a blast furnace top distributor characterized in that the control system comprises:
  • At least three separate closed-loop control loops for controlling the hydraulic cylinders are used to realize the closed-loop control of the individual positions of the hydraulic cylinders and the dynamic compensation control of the three hydraulic cylinder positions during the movement of the distributor;
  • At least one centralized control loop when the separate closed loop control loop is not working properly, the three hydraulic cylinders are controlled by the centralized control loop;
  • At least one switching loop automatic switching between a separate closed loop control loop and a centralized control loop can be achieved.
  • the separate closed-loop control loop further includes corresponding at least one safety protection module: when the hydraulic system fails, perform corresponding draining and replenishing work.
  • the first closed-loop control is firstly performed to achieve accurate positional positioning, thereby ensuring the accuracy of the cloth cloth angle; in this process, the synchronous control strategy is applied to realize the synchronization in the closed-loop control process, avoiding the three-cylinder Mechanical damage caused by out of synchronization during closed loop control.
  • the detected fault signal (displacement, pressure, etc.) is used as the switching signal to automatically switch from the separate closed loop control mode to the centralized control mode. In this case, the position accuracy of the three cylinders is mechanically guided. Guarantee.
  • the centralized control mode if the synchronization error of the initial position of the three cylinders is large, it needs to be separately adjusted. By turning off the corresponding electromagnetic cut-off valve, the three cylinders can be operated separately, which can reduce the synchronization error of the three cylinders.
  • the fabric accuracy of the distributor mainly depends on the control precision of the hydraulic system.
  • the three-cylinder separate position closed-loop control ensures the cylinder parking accuracy, and the synchronous control strategy is used to make the three cylinders under closed-loop control conditions. It also keeps synchronization during the adjustment process, which greatly improves the cloth precision of the distributor and avoids the problem that the mechanical guiding error affects the cloth precision.
  • the position of the three cylinders can be adjusted in time by separate closed-loop control.
  • the support ring is basically in a horizontal state, which reduces the impact and wear between the guide wheel and the guide rail.
  • the present invention proposes a three-cylinder closed-loop synchronous control method, which improves the cloth precision of the distributor; at the same time, in order to avoid the special case, the three-cylinder closed-loop synchronous control failure causes the hydraulic synchronous control to interfere with the mechanical guidance, This damages the mechanical equipment.
  • the switching is designed in the composite hydraulic control system.
  • the circuit can also be automatically converted in two control modes of separate closed-loop synchronous control and centralized control through the detected signals, thereby improving the reliability and safety of the entire control system.
  • Figure 1 is a schematic diagram of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of the present invention.
  • the separate closed-loop control loops are three groups: the first group of separate closed-loop control loops includes: the P port of the proportional valve 1-1 is connected to the external oil inlet pipe through the first pilot operated check valve 3-1, and the proportional valve 1-1 T The port is connected to the external oil return pipe; the A port of the proportional valve is connected to the rodless cavity of the hydraulic cylinder 7-1 through the internal oil passage of the integrated block through the second pilot operated check valve 3-2; the B of the proportional valve 1-1 After passing through the third hydraulic control check valve 3-3, the port is connected to the rod chamber of the hydraulic cylinder 7-1 through the internal oil passage of the integrated block; the pressure oil of the P port of the proportional valve 1-1 is reversible through the proportional valve and is connected to Proportional valve A port or B port; after receiving the target command signal, the controller sends a proportional valve control signal through closed loop calculation, thereby realizing the reversing of the proportional valve and the valve opening degree control; achieving the hydraulic cylinder 7-1 through the
  • the second group of separate closed-loop control loops includes: the P port of the proportional valve 1-2 is connected to the external oil inlet pipe through the hydraulically controlled first check valve 3-4, and the T port of the proportional valve 1-2 is connected to the external oil return pipe;
  • the port A of the proportional valve 1-2 passes through the second pilot operated check valve 3-5 and is connected to the rodless cavity of the hydraulic cylinder 7-2 via the internal oil passage of the manifold;
  • the B port of the proportional valve 1-2 passes through the third liquid After the check valve 3-6 is controlled, the internal oil passage of the integrated block is connected to the rod cavity of the hydraulic cylinder 7-2;
  • the third group of separate closed-loop control loops includes: the P port of the proportional valve 1-3 is connected to the external oil inlet pipe through the first pilot operated check valve 3-7, and the T port of the proportional valve 1-3 is connected to the external oil return pipe;
  • the port A of the proportional valve 1-3 passes through the second pilot operated check valve 3-8 and is connected to the rodless cavity of the hydraulic cylinder 7-3 via the internal oil passage of the manifold;
  • the B port of the proportional valve 1-3 passes through the third liquid After the check valve 3-9 is controlled, it is connected to the rod cavity of the hydraulic cylinder 7-3 via the internal oil passage of the integrated block;
  • the second separate closed loop control loop has the same control principle as the third separate closed loop control loop and will not be repeated here.
  • the P port and the T port of the reversing valve 2 are respectively connected to the external oil inlet pipe and the external oil return pipe, and the B port is connected to the control oil ports of all the liquid control check valves 3-1 to 3-9; the A port is connected to all The drain port of the pilot operated check valves 3-1 to 3-9; when the separate closed loop control is required, the reversing valve 2 works, the control port B has the control pressure, thereby opening the first pilot operated check valve, the second Hydraulic control check valve, third hydraulic control check valve.
  • the centralized control loop includes: the P port of the large flow proportional valve 8 is connected to the external oil inlet pipe, the T port is connected to the external oil return pipe; the A port and the B port of the large flow proportional valve 8 are respectively connected with the A port of the cutoff solenoid valve 9, The B port side is connected, and the A port and the B port bottom side of the cut solenoid valve 9 are respectively connected to the P port and the T port of the switching cut-off solenoid valves 10-1, 10-2, 10-3 in the switching circuit;
  • the A port of the cut-off solenoid valves 10-1, 10-2, and 10-3 is a rodless cavity that communicates with the hydraulic cylinder, and the B port communicates with the rod cavity of the hydraulic cylinder. Open all the cut-off solenoid valves, the reversing valve 2 loses power, and close all the hydraulic control check valves to achieve a centralized control of the proportional valve 8 to the three hydraulic cylinders.
  • the switching circuit includes: switching-type solenoid valves 10-1, 10-2, and 10-3, which can switch the opening and closing of the P port and the A port, the T port, and the B port by commutation, thereby realizing the centralized control loop and Switching of separate closed loop control loops.
  • the safety protection module includes three groups: the first group of safety protection modules includes: the one-way valve 4-1 is connected to the oil outlet B port of 4-2, and the one-way valve 4-3 is connected to the oil inlet port A of the 4-4, The other ends of the check valves 4-1, 4-3 are connected to the rod chamber of the hydraulic cylinder 7-1, and the other ends of the check valves 4-2, 4-4 are connected to the rodless chamber of the hydraulic cylinder 7-1.
  • a safety valve 5-1 is connected between the B port of the check valve 4-1, 4-2 and the A port of the check valve 4-3, 4-4, and the T port of the safety valve 5-1 passes through the inside of the manifold The oil passage is connected to an external return line.
  • the cylinder chamber can be relieved and relieved by the check valve and the safety valve of the module, and simultaneously The other chamber of the hydraulic cylinder can be replenished through the corresponding one-way valve to avoid suction.
  • the second group of safety protection modules includes: the one-way valve 4-5 is connected to the oil outlet B port of 4-6, the one-way valve 4-3 is connected to the oil inlet port A of the 4-4, the one-way valve 4-5, The other end of 4-7 is connected to the rod chamber of the hydraulic cylinder 7-1, and the other end of the one-way 4-6, 4-8 is connected to the rodless chamber of the hydraulic cylinder 7-2, the one-way valve 4-5, 4 A safety valve 5-2 is connected between the B port of the -6 and the A port of the check valve 4-7, 4-8, and the T port of the safety valve 5-2 is connected to the external oil return pipe through the internal oil passage of the integrated block. .
  • the third group of safety protection modules includes: the one-way valve 4-9 is connected with the oil outlet B port of 4-10, the one-way valve 4-11 is connected with the oil inlet port A of 4-12, the one-way valve 4-9, The other end of 4-11 is connected to the rod chamber of the hydraulic cylinder 7-3, and the other end of the one-way 4-10, 4-12 is connected to the rodless chamber of the hydraulic cylinder 7-3, the check valves 4-9, 4 A safety valve 5-3 is also connected between the B port of the -10 and the A port of the check valve 4-11, 4-12, and the T port of the safety valve 5-3 is connected to the external oil return pipe through the internal oil passage of the integrated block .
  • the centralized control loop does not participate in the control. At this time, it is ensured that the switching loop completely cuts off the centralized control loop and the three separate control loops, so that the three hydraulic cylinders are separately closed-loop controlled by three separate closed-loop control loops.
  • the three-cylinder closed-loop synchronous control method ensures the synchronization of the cylinder during the movement, thus ensuring the positional accuracy of the distributor during the fabric process.
  • any of the pressure sensors 6-1 to 6-6 on the three cylinders and the displacement sensor 7-11, 7-22 or 7-33 are abnormal, that is, a certain error is exceeded, A synchronous error fault or other fault signal of the oil circuit; when the control system detects this signal, the system automatically opens the switching cut-off solenoid valves 10-1 to 10-3 in the switching loop, and simultaneously closes the separate closed loop control loop, so that three The separate closed-loop control loop of the group is isolated from the centralized control loop, and at the same time the centralized control loop is activated.
  • the large flow proportional valve centrally controls the operation of three cylinders. At this time, only one cylinder participates in the closed-loop position control.
  • the synchronization of the three cylinders is realized by mechanical guidance.
  • the hydraulic system automatically switches to a centralized control loop, so that the oil passages of the three cylinders can communicate with each other, so that the oil pressure can be adaptively balanced, thereby avoiding weak links of the system due to mutual interference of cylinders or mechanical mechanisms. damage.
  • the centralized control loop and switching loop ensure the reliability and safety of the whole system, which provides a guarantee for the safe production and maintenance of the fabric control system.
  • the centralized control loop works, when a certain cylinder has a large displacement deviation, the centralized control loop and the corresponding electromagnetic cut-off valve on-off control can be activated to perform displacement correction on a single cylinder, thereby maximizing the three-cylinder synchronization. .
  • the safety protection module can perform the oil draining and replenishing action on the cylinder to play a safety protection role.
  • the entire system is more reliable and safe.
  • the proportional valve used in the present invention can also be replaced by a servo valve, and such a change is within the scope of the present invention.

Description

一种高炉炉顶布料器复合液压控制系统 技术领域
本发明属于冶金机械技术领域,公开了一种高炉炉顶布料器复合液压控制系统,用于高炉无料钟炉顶布料过程的控制。
背景技术
高炉炉顶布料器的控制是高炉布料系统的一个关键环节,其控制精度直接影响到高炉布料系统的布料精度。已有的布料器大都是采用简单的集中液压控制方法,即通过一个阀控制三个液压缸的动作,三个液压缸内的液压油可以相互串动。这种控制方式下,布料器的控制精度主要取决于安装于托圈上的导轮与安装于壳体上的导轨之间的间隙大小,因此为了提高布料器的布料精度,目前主要通过调整较小的导轨与导轮间的间隙来实现,实际上此方法很难保证布料的精度,由于导轨与导轮间的间隙减小,会增加机械加工及装配难度,提高制造成本,同时在高温条件下还容易造成布料器卡死。另外,由于布料器下部载荷存在偏载,导致液压缸驱动下的布料器托圈始终处于交变受力状态,加剧了导轮和导轨间的冲击和磨损。
发明内容
本发明的目的是克服现有技术的不足,提供一种高炉炉顶布料器复合液压控制系统,该系统对三个液压缸单独进行控制,具有控制精度高、同步误差少、可靠性安全性好的特点,适合高炉炉顶高精度布料的要求。
为了实现上述目的,本发明采用以下的技术方案:
一种高炉炉顶布料器复合液压控制系统,其特征在于:所述控制系统包括:
至少三个用于控制液压缸的单独闭环控制回路,用于实现各液压缸单独位置闭环控制及布料器运动过程中三个液压缸位置动态补偿控制;
至少一个集中控制回路:当单独闭环控制回路不能正常工作时,通过集中控制回路控制三个液压缸;
至少一个切换回路:可以实现单独闭环控制回路与集中控制回路之间的自动切换。
为了提高系统的可靠性与安全性,所述单独闭环控制回路还包括相对应的至少一个安全保护模块:当液压系统出现故障时,进行相应的泄油和补油的工作。
本发明在投入控制时,首先进行单独闭环控制以实现精确的位置定位,从而保证布料器布料角度的精确度;在此过程中,应用同步控制策略实现闭环控制过程中的同步性,避免三缸在闭环控制过程中的不同步造成的机械损坏。当单独闭环控制出现故障失效时,检测到的故障信号(位移、压力等)作为切换信号,实现从单独闭环控制模式自动切换为集中控制模式,这种情况下三缸的位置精度靠机械导向来保证。在集中控制模式下,如果三缸初始位置的同步误差很大则需要单独调节,通过关闭开启对应的电磁截止阀可以实现三个油缸单独动作,这样可以减少三缸的同步误差。
本发明具有如下优点:
(1)使用该系统后,布料器的布料精度主要取决于液压系统的控制精度,通过三缸单独的位置闭环控制保证油缸的停位精度,同时在闭环控制条件下采用同步控制策略使三缸在调整过程中也保持同步,极大地提高了布料器的布料精度,避免了机械导向误差影响布料精度问题。
(2)通过单独闭环控制可以适时调整三个油缸的位置,工作过程中保证托圈基本处于水平状态,减小了导轮与导轨间的冲击和磨损。
(3)本发明提出了三缸闭环同步控制的方法,这样提高了布料器的布料精度;与此同时,为避免特殊情况下,三缸闭环同步控制失效造成液压同步控制与机械导向发生干涉,从而损坏机械设备。在该复合液压控制系统中设计了切换,通过检测到的信号该回路还可以自动在单独闭环同步控制与集中控制的两种控制模式下进行转换,从而提高整个控制系统的可靠性与安全性。
附图说明
图l为本发明的原理图;
图2为本发明实施例的结构示意图。
本发明的实施方式
下面结合附图对本发明的具体实施作进一步说明:
如图2所示:
单独闭环控制回路为三组:第一组单独闭环控制回路包括:比例阀1-1的P口通过第一液控单向阀3-1连接至外部进油管道,比例阀1-1的T口连接至外部回油管道;比例阀的A口通过第二液控单向阀3-2后经集成块内部油道连接至液压缸7-1的无杆腔;比例阀1-1的B口通过第三液控单向阀3-3后经集成块内部油道连接至液压缸7-1的有杆腔;比例阀1-1的P口的压力油通过比例阀换向后连通到比例阀A口或B口;控制器接收到目标命令信号以后通过闭环计算发出比例阀控制信号,从而实现比例阀的换向和阀开度控制;通过比例阀的控制实现对液压缸7-1无杆腔与有杆腔的动态补、排油,从而使得液压缸7-1达到并保持在目标位置。
第二组单独闭环控制回路包括:比例阀1-2的P口通过液控第一单向阀3-4连接至外部进油管道,比例阀1-2的T口连接至外部回油管道;比例阀1-2的A口通过第二液控单向阀3-5后经集成块内部油道连接至液压缸7-2的无杆腔;比例阀1-2的B口通过第三液控单向阀3-6后经集成块内部油道连接至液压缸7-2的有杆腔;
第三组单独闭环控制回路包括:比例阀1-3的P口通过第一液控单向阀3-7连接至外部进油管道,比例阀1-3的T口连接至外部回油管道;比例阀1-3的A口通过第二液控单向阀3-8后经集成块内部油道连接至液压缸7-3的无杆腔;比例阀1-3的B口通过第三液控单向阀3-9后经集成块内部油道连接至液压缸7-3的有杆腔;
第二单独闭环控制回路与第三单独闭环控制回路的控制原理相同,在此不再复述。
换向阀2的P口、T口分别连接至外部进油管道和外部回油管道,B口连接至所有液控单向阀3-1至3-9的控制油口;A口连接至所有液控单向阀3-1至3-9的泄油口;当需要单独闭环控制时,换向阀2工作,控制油口B有控制压力,从而打开第一液控单向阀、第二液控单向阀、第三液控单向阀。
集中控制回路包括:大流量比例阀8的P口与外部进油管道相连,T口与外部回油管道相连;大流量比例阀8的A口、B口分别与截止电磁阀9的A口、B口阀侧相连,截止电磁阀9的A口、B口底板侧分别与切换回路中切换用截止式电磁阀10-1、10-2、10-3的P口、T口相连;切换用截止式电磁阀10-1、10-2、10-3的A口是连通液压缸的无杆腔,B口连通液压缸的有杆腔。打开所有截止式电磁阀,换向阀2失电,关闭所有液控单向阀就实现了一个比例阀8对三个液压缸的集中控制。
切换回路包括有:切换用截止式电磁阀10-1、10-2、10-3,可以通过换向切换其P口与A口、T口与B口的通断,从而实现集中控制回路与单独闭环控制回路的切换。
安全保护模块包括三组:第一组安全保护模块包括:单向阀4-1与4-2的出油B口相连,单向阀4-3与4-4的进油口A口相连,单向阀4-1、4-3的另一端连接至液压缸7-1的有杆腔,单向阀4-2、4-4的另一端连接至液压缸7-1的无杆腔,单向阀4-1、4-2的B口与单向阀4-3、4-4的A口之间还连接有安全阀5-1,安全阀5-1的T口通过集成块内部油道连接至外部回油管道。当液压缸7-1受到外界冲击或其他故障原因使其有伸出或缩回的趋势且压力大于安全压力时,缸腔可以通过本模块的单向阀及安全阀进行溢流泄压,同时液压缸的另外一腔可以通过对应的单向阀进行补油,避免吸空。
第二组安全保护模块包括:单向阀4-5与4-6的出油B口相连,单向阀4-3与4-4的进油口A口相连,单向阀4-5、4-7的另一端连接至液压缸7-1的有杆腔,单向4-6、4-8的另一端连接至液压缸7-2的无杆腔,单向阀4-5、4-6的B口与单向阀4-7、4-8的A口之间还连接有安全阀5-2,安全阀5-2的T口通过集成块内部油道连接至外部回油管道。
第三组安全保护模块包括:单向阀4-9与4-10的出油B口相连,单向阀4-11与4-12的进油口A口相连,单向阀4-9、4-11的另一端连接至液压缸7-3的有杆腔,单向4-10、4-12的另一端连接至液压缸7-3的无杆腔,单向阀4-9、4-10的B口与单向阀4-11、4-12的A口之间还连接有安全阀5-3,安全阀5-3的T口通过集成块内部油道连接至外部回油管道。
正常工作时,集中控制回路不参与控制,这时保证切换回路将集中控制回路和三个单独控制回路完全切断,这样三个液压缸由三组单独闭环控制回路进行单独的位置闭环控制,与此同时,通过三缸的闭环同步控制方法保证油缸在运动过程中的同步,从而保证布料器在布料过程中位置精度。
在布料过程中,如果三个油缸上的任何一个压力传感器6-1~6-6与位移传感器7-11、7-22或7-33出现异常,也就是超过了一定的误差,就会产生一个同步误差故障或者油路其他故障信号;当控制系统检测到这个信号时,系统自动打开切换回路中的切换用截止式电磁阀10-1~10-3,同时关闭单独闭环控制回路,使三组单独闭环控制回路与集中控制回路隔离开,与此同时启动集中控制回路。大流量比例阀集中控制三个油缸动作,此时仅有一个油缸参与位置闭环控制,三个油缸的同步由机械导向来实现,这样,如果整个布料系统任何一个油缸出现了位置与压力的异常,出于安全保证,液压系统自动切换为集中控制回路,使三个油缸的油路能够相互连通,让油液压力可以自适应平衡,从而避免由于油缸或机械机构等的相互干涉造成系统薄弱环节的破坏。通过集中控制回路与切换回路保证了整个系统的可靠性与安全性,为布料控制系统的安全生产与维护提供了保障。
另外,在集中控制回路工作时,当某个油缸有较大的位移偏差时,可以启动集中控制回路和对应的电磁截止阀通断控制,对单个油缸进行位移纠偏,从而最大限度保证三缸同步。
此外,在布料的任何环节中如果油缸内的油压因为各种原因发生超压或吸空的现象时,安全保护模块可以对油缸进行泄油与补油动作,起到安全保护的作用,是整个系统更加可靠安全。
本发明使用的比例阀也可以用伺服阀替代,类似这种变换都落在本发明的保护范围之内。

Claims (5)

  1. 一种高炉炉顶布料器复合液压控制系统,其特征在于:所述控制系统包括:
    控制各液压缸的单独闭环控制回路,用于实现各液压缸单独位置闭环控制及布料器运动过程中三个液压缸位置动态补偿控制;
    至少一个集中控制回路:当单独闭环控制回路不能正常工作时,通过集中控制回路控制三个液压缸;
    至少一个切换回路:可以实现单独闭环控制回路与集中控制回路之间的自动切换。
  2. 如权利要求l所述的高炉炉顶布料器复合液压控制系统,其特征在于:所述单独闭环控制回路还包括相对应的至少一个安全保护模块:当液压系统出现故障时,进行相应的泄油和补油的工作。
  3. 如权利要求2所述的高炉炉顶布料器复合液压控制系统,其特征在于:
    所述单独闭环控制回路包括:比例阀P口通过第一液控单向阀连接至外部进油管道,比例阀T口连接至外部回油管道;比例阀的A口通过第二液控单向阀后经集成块内部油道连接至液压缸的无杆腔;比例阀B口通过第三液控单向阀后经集成块内部油道连接至液压缸的有杆腔;
    换向阀的P口、T口分别连接至外部进油管道和外部回油管道,B口连接至控制油口;A口连接至所有液控单向阀的泄油孔,当需要单独闭环控制时,换向阀工作,控制油口B有控制压力,从而打开液控单向阀。
  4. 如权利要求3所述的高炉炉顶布料器复合液压控制系统,其特征在于:
    所述集中控制回路包括:大流量比例阀和截止式电磁阀;
    所述切换回路包括切换用截止式电磁阀;
    其中大流量比例阀的P口与外部进油管道相连,T口与外部回油管道相连;大流量比例阀的A口、B口分别与截止电磁阀的A口、B口阀侧相连,截止电磁阀的A口、B口底板侧分别与切换回路中切换用截止式电磁阀的P口、T口相连;切换用截止式电磁阀的A口连通液压缸的无杆腔,B口连通液压缸的有杆腔。
  5. 如权利要求4所述的高炉炉顶布料器复合液压控制系统,其特征在于:
    所述安全保护模块包括:两个油口B相连的第一、第二单向阀,两个油口A相连的第三、第四单向阀;第一单向阀与第三单向阀的A口连接至液压缸的有杆腔,第二单向阀与第四单向阀的B口连接至液压缸的有杆腔,第二单向阀的B口与第三单向阀A口之间还连接有安全阀,安全阀的T口通过集成块内部油道连接至外部回油管道。
PCT/CN2010/078176 2009-11-24 2010-10-28 一种高炉炉顶布料器复合液压控制系统 WO2011063695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910191551.X 2009-11-24
CN 200910191551 CN101725581B (zh) 2009-11-24 2009-11-24 一种高炉炉顶布料器复合液压控制系统

Publications (1)

Publication Number Publication Date
WO2011063695A1 true WO2011063695A1 (zh) 2011-06-03

Family

ID=42446986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078176 WO2011063695A1 (zh) 2009-11-24 2010-10-28 一种高炉炉顶布料器复合液压控制系统

Country Status (2)

Country Link
CN (1) CN101725581B (zh)
WO (1) WO2011063695A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108131349A (zh) * 2018-02-07 2018-06-08 上海中驰自动控制技术有限公司 可切换单动和串联同步的回路及其使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725581B (zh) * 2009-11-24 2013-04-17 中冶赛迪工程技术股份有限公司 一种高炉炉顶布料器复合液压控制系统
CN104828699B (zh) * 2014-10-17 2017-06-06 北汽福田汽车股份有限公司 起重机的液压控制系统及具有其的起重机
CN104745754B (zh) * 2015-04-17 2017-03-29 中冶赛迪工程技术股份有限公司 高炉炉顶布料器液压控制回路
CN104864705B (zh) * 2015-05-21 2017-07-18 南京梅山冶金发展有限公司 一种套筒窑料钟系统控制方法
EP3109488B1 (en) * 2015-06-25 2017-12-13 MOOG GmbH Safe-to-operate hydraulic drive
CN108796158A (zh) * 2018-09-13 2018-11-13 中冶东方工程技术有限公司 具有互锁液压控制系统的布料器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903476A (zh) * 2005-07-28 2007-01-31 中南大学 大型模锻液压机的补偿同步平衡控制系统
JP2007046742A (ja) * 2005-08-11 2007-02-22 Hitachi Constr Mach Co Ltd 油圧駆動装置
EP1860243A1 (en) * 2006-05-23 2007-11-28 Volvo Construction Equipment Holding Sweden AB Apparatus for increasing operation speed of boom on excavator
CN101249730A (zh) * 2008-03-24 2008-08-27 中南大学 多点驱动大型液压机液压控制系统
JP2009047259A (ja) * 2007-08-21 2009-03-05 Daikin Ind Ltd 流体圧ユニット
JP2009133461A (ja) * 2007-12-03 2009-06-18 Kobelco Cranes Co Ltd 油圧制御装置
CN201269230Y (zh) * 2008-05-20 2009-07-08 上海建工股份有限公司 建筑施工钢平台整体顶升爬模液压同步集成控制系统
CN101725581A (zh) * 2009-11-24 2010-06-09 中冶赛迪工程技术股份有限公司 一种高炉炉顶布料器复合液压控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791105B1 (ko) * 2006-05-23 2008-01-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 굴삭기 붐 속도 증속장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903476A (zh) * 2005-07-28 2007-01-31 中南大学 大型模锻液压机的补偿同步平衡控制系统
JP2007046742A (ja) * 2005-08-11 2007-02-22 Hitachi Constr Mach Co Ltd 油圧駆動装置
EP1860243A1 (en) * 2006-05-23 2007-11-28 Volvo Construction Equipment Holding Sweden AB Apparatus for increasing operation speed of boom on excavator
JP2009047259A (ja) * 2007-08-21 2009-03-05 Daikin Ind Ltd 流体圧ユニット
JP2009133461A (ja) * 2007-12-03 2009-06-18 Kobelco Cranes Co Ltd 油圧制御装置
CN101249730A (zh) * 2008-03-24 2008-08-27 中南大学 多点驱动大型液压机液压控制系统
CN201269230Y (zh) * 2008-05-20 2009-07-08 上海建工股份有限公司 建筑施工钢平台整体顶升爬模液压同步集成控制系统
CN101725581A (zh) * 2009-11-24 2010-06-09 中冶赛迪工程技术股份有限公司 一种高炉炉顶布料器复合液压控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, WENBIN ET AL.: "Design of Hydraulic Synchronous System for Tundish Car Up | and Down.", CHINESE HYDRAULICS & PNEUMATICS., no. 8, August 2009 (2009-08-01), pages 19 - 21 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108131349A (zh) * 2018-02-07 2018-06-08 上海中驰自动控制技术有限公司 可切换单动和串联同步的回路及其使用方法
CN108131349B (zh) * 2018-02-07 2023-12-05 上海中驰自动控制技术有限公司 可切换单动和串联同步的回路及其使用方法

Also Published As

Publication number Publication date
CN101725581B (zh) 2013-04-17
CN101725581A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2011063695A1 (zh) 一种高炉炉顶布料器复合液压控制系统
CN101539218B (zh) 一种高旁减温减压阀执行机构的控制模块
CN101898244B (zh) 一种分流马达同步液压系统
CN103148041B (zh) 一种节能式主被动负载的双电液伺服阀控系统的控制方法
WO2016004664A1 (zh) 一种挖掘机的节能控制系统
WO2014048181A1 (zh) 采用紧凑型二通插装阀的模块化组合式电液多路阀系统
CN101571155A (zh) 数字式电液同步控制系统
CN109630504B (zh) 一种带压力补偿的进出油口独立控制系统
CN104074825B (zh) 双向选择型合流负载传感多路阀
CN109747708B (zh) 用于低速重载车辆的全液压同步转向系统及其控制方法
CN110594210A (zh) 基于位置及压力双控模式的拉矫机压下辊液压控制系统
CN204625669U (zh) 高炉炉顶布料器液压控制回路
CN108716491B (zh) 一种具有o型中位机能的三位五通负载口独立控制多路阀
CN203948366U (zh) 双向选择型合流负载传感多路阀
CN104745754B (zh) 高炉炉顶布料器液压控制回路
JP2012503150A (ja) 油圧駆動による立体カットオフマシン
CN109578391B (zh) 一种电液比例集成控制器及其控制方法
CN108533542B (zh) 一种去毛刺机双缸液压同步控制系统
CN108533551B (zh) 一种紧凑型电磁比例阀
CN216044709U (zh) 一种改装叉车用集成阀组
CN216554697U (zh) 一种双动力配置实现四泵合流控制的集成阀组
CN216044695U (zh) 一种复合动作控制的集成阀组
CN216199355U (zh) 一种高低速同步控制的可调渣线中间包升降液压系统
CN201580961U (zh) 连铸机中间罐车重负载液压同步升降装置
CN220268060U (zh) 一种施胶机液压控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832602

Country of ref document: EP

Kind code of ref document: A1