WO2011063684A1 - 一种长期演进系统中调度的方法和装置 - Google Patents

一种长期演进系统中调度的方法和装置 Download PDF

Info

Publication number
WO2011063684A1
WO2011063684A1 PCT/CN2010/077588 CN2010077588W WO2011063684A1 WO 2011063684 A1 WO2011063684 A1 WO 2011063684A1 CN 2010077588 W CN2010077588 W CN 2010077588W WO 2011063684 A1 WO2011063684 A1 WO 2011063684A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
data
relay node
delay
service
Prior art date
Application number
PCT/CN2010/077588
Other languages
English (en)
French (fr)
Inventor
毛磊
朱李
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011063684A1 publication Critical patent/WO2011063684A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for scheduling in the presence of a relay node in an LTE (Long Term Evolution) system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution Long Term Evolution
  • 3.9G improved 3G
  • LTE adopts an air interface technology different from 3G, and adopts an air interface design based on OFDM (Orthogonal Frequency Division Multiplexity) technology.
  • OFDM Orthogonal Frequency Division Multiplexity
  • a packet-based design concept is used in the system, that is, using a shared channel, the physical layer no longer provides a dedicated channel.
  • the system supports FDD (Frequency Division Duplex) and TDD (Time Division Duplex).
  • the traditional 3G network architecture is optimized, and the flat network structure is adopted.
  • the access network only includes the base station (Node B), and there is no RNC (Radio Network Controller).
  • the entire LTE system is composed of an EPC (Evolved Packet Core), a base station (eNodeB, ie, an eNB, an evolved Node B), and a UE (User Equipment).
  • EPC Evolved Packet Core
  • MME Mobile Management Entity, mobility management entity
  • S-GW SAE Gateway, system architecture evolution gateway
  • eNB is responsible for the access network part.
  • E-UTRAN Evolved Universal Terrestril Radio Access Network
  • UE refers to user terminal equipment.
  • the eNodeB and the EPC are connected through the S1 interface; the eNodeBs are connected through the X2 interface; and the eNB and the UE are connected through the Uu interface.
  • the UMTS Universal Mobile Telecommunications System
  • the NodeB and the RNC are fused into the network element eNB, the LTE interface is less.
  • the X2 interface is similar to the Iur interface, and the S1 interface
  • the port is similar to the III interface, but it is much more simplified.
  • the functions of the eNB include: RRM (Radio Resources Management) function; IP header compression and user data stream encryption; MME selection when UE attaches; scheduled transmission of paging information; scheduled transmission of broadcast information; Measurement of the eNB, etc.
  • RRM Radio Resources Management
  • the functions of the MME include: paging message transmission; security control; Idle (idle) state mobility management; SAE (System Architecture Evolution) bearer management; and NAS (Non-Access Stadium, non-access stratum) letter Encryption and integrity protection, etc.
  • the functions of the S-GW include: routing and transmission of data, and encryption of user plane data.
  • LTE-Advanced (LTE Enhanced Technology) is a standard introduced by 3GPP to meet the requirements of ITU IMT-Advanced (4G).
  • 4G ITU IMT-Advanced
  • 3GPP adopted a research project on LTE-Advanced to further improve the LTE system to meet and exceed the ITU's technical requirements for IMT-Advanced, and to achieve backward compatibility of LTE.
  • LTE-Advanced will be a candidate for IMT-Advanced submitted by the 3GPP to the ITU.
  • LTE system has become one of the main candidate technologies for IMT-Advanced because it represents the main direction of the development of new mobile communication technologies.
  • LTE itself can be used as the technical foundation and core to meet the requirements of IMT-Advanced, but purely from the indicator point of view. There is still a gap between LTE and IMT-Advanced requirements. Therefore, when upgrading LTE to 4G, we do not need to change the core of the LTE standard, and only need to expand, enhance, and improve on the basis of LTE to meet the requirements of IMT-Advanced.
  • the main new technologies include Relay ( Relay technology, CoMP (Coordinative Multiple Point) transmission, CA (Carrier Aggregation) and other enhancement technologies.
  • an eNB provides services for both the UE of the cell and a number of RNs (Relay Nodes) under its control for data transmission and signaling interaction.
  • each RN communicates with both the eNB and the UE under the RN.
  • the link from the eNB to the RN and the link from the RN to the serving UE can use the same frequency resource, which is called an in-band relay. It can also use different frequency resources, which is called an out-of-band relay.
  • Typel Relay is an independent cell with its own physical cell ID, transmitting its own synchronization channel and reference symbols; Typel Relay performs scheduling and HARQ (Hybrid Automatic Repeat Request); For the UE, the Typel Relay is an R8 eNB.
  • the Type2 Relay does not have an independent physical cell ID and does not transmit control information and reference symbols.
  • the R8 UE does not see the existence of the Type2 Relay.
  • the Type2 Relay mainly assists the eNB in transmitting and receiving service data.
  • a direct link refers to an eNB between a eNB and a macro UE (a UE served only by the eNB).
  • the link refers to the link between the eNB and the RN;
  • the access link refers to the RN and the UE served by the RN Link.
  • the technical problem to be solved by the present invention is to propose a method and device for scheduling in a long-term evolution system, which solves the problem that the delay caused by transmitting data through the RN exceeds the requirement.
  • the present invention provides a method for scheduling in a long term evolution system, including:
  • the base station When the base station establishes a service bearer for the user equipment or performs resource scheduling for the user equipment, estimating a delay amount of the data transmitted by the relay node to the user equipment, and if the quality of service requirement cannot be met, the base station selects a direct transmission manner. Data is sent to the user equipment.
  • the method can also have the following characteristics:
  • the step of estimating a delay amount of the data transmitted by the relay node to the user equipment includes: determining, by the base station, the resource allocation manner according to the manner in which the data is transmitted by the relay node, and further estimating, by the relay node, the data to be transmitted to the The amount of delay of the user equipment;
  • the method further includes: when the base station establishes a service bearer for the user equipment or performs resource scheduling on the user equipment, estimating a remaining time delay of the service;
  • the base station selects the direct transmission mode to transmit data to the user equipment.
  • the step of determining, by the base station, the resource allocation according to the manner in which the data is transmitted by the relay node, the resource allocation situation includes: configuring the subframe in which the resources of the first hop and the second hop are located.
  • the method can also include:
  • the base station selects to transmit data to the user equipment by using the relay node to transmit data.
  • the base station transmits the data of the user equipment to the relay node, and only the relay node transmits data to the user equipment; or, the base station Transmitting data of the user equipment to a relay node, and the base station and the relay node cooperate to simultaneously transmit data to the user equipment.
  • the present invention provides a device for scheduling in a long term evolution system, which is applied to a base station, including an estimation module and a selection module.
  • the estimating module is configured to: when establishing a service bearer for the user equipment or performing resource scheduling on the user equipment, estimating a delay amount of the data transmitted by the relay node to the user equipment, and notifying the selecting module;
  • the selection module is configured to: if the delay amount obtained by the estimation module to transmit the data to the user equipment by the relay node cannot meet the quality of service requirement, then select the direct transmission method to transmit the data to the User equipment.
  • the device may also have the following features:
  • the estimating module is configured to estimate a delay amount of data transmitted by the relay node to the user equipment in a manner of: determining a resource allocation according to a manner of transmitting data by the relay node, and further estimating transmission by the relay node The amount of delay of data to the user equipment;
  • the estimating module is further configured to: when establishing a service bearer for the user equipment or performing resource scheduling on the user equipment, estimating a remaining time delay of the service;
  • the selecting module is further configured to: determine, according to an estimated amount of delay of the service obtained by the estimating module, and a delay amount of the data transmitted by the relay node to the user equipment, if the remaining delay of the service is smaller than that of the relay node The amount of delay in transmitting data to the user equipment determines that the quality of service requirement cannot be met.
  • the device may also have the following features:
  • the resource allocation situation includes: configuring a subframe in which the resources of the first hop and the second hop are located, and further determining a delay amount of the data transmitted by the relay node to the user equipment.
  • the device may also have the following features:
  • the selection module is further configured to: if the delay amount of the relay node transmitting data to the user equipment obtained by the estimation module meets the quality of service requirement, then selecting to transmit data to the user equipment by using the relay node to transmit data .
  • the device may also have the following features:
  • the transmitting, by the relay node, the data to the user equipment wherein: the base station transmits the data of the user equipment to the relay node, and only the relay node transmits data to the user equipment; or The base station transmits data of the user equipment to the relay node, and the base station and the relay node cooperate to simultaneously transmit data to the user equipment.
  • the present invention solves the problem that the delay caused by the transmission of data by the RN exceeds the requirement in the presence of the RN, and the requirement of QoS (Quality of Service) is guaranteed.
  • QoS Quality of Service
  • Figure 1 shows the network architecture of the LTE system
  • Figure 2 is a schematic diagram of Relay transmission
  • FIG. 3 is a schematic diagram of a Type 2 Relay in a scenario of a cell capacity enhancement application scenario
  • Figure 4 is a schematic diagram of 2-hop mode transmission
  • FIG. 5 is a flow chart of Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a scheduling apparatus according to an embodiment of the present invention. Preferred embodiment of the invention
  • the eNB when the eNB establishes a service bearer for the UE or performs resource scheduling for the UE, the eNB estimates the delay amount of the data transmitted by the RN to the UE. If the QoS requirement cannot be met, the eNB selects the direct transmission mode to transmit data to the eNB. The UE.
  • the eNB estimates the remaining time delay of the service when the UE establishes a service bearer or performs resource scheduling for the UE.
  • the remaining delay of the service indicates: the delay value in the QoS requirement of the service minus the air interface in the data packet transmission path. Part of the time spent;
  • the eNB determines the resource allocation situation (including the configuration of the subframe in which the first hop and the second hop resource are located) according to the manner in which the RN transmits data, and further determines the delay amount of the RN transmitting data to the UE, if the service is remaining. If the delay is less than the amount of delay of the RN to transmit data to the UE, it is determined that the QoS requirement cannot be met, and the eNB selects a direct transmission manner to transmit data to the UE.
  • the eNB estimates the amount of delay when the RN transmits data to the UE, if the QoS requirement is met, the eNB selects to transmit data to the UE by using the RN to transmit data.
  • the eNB transmits the data to the UE by using the RN to transmit data, specifically: the eNB transmits the data of the UE to the RN, and only the RN transmits the data to the UE; or the eNB transmits the data of the UE.
  • the RN, the eNB, and the RN cooperate to simultaneously transmit data to the UE.
  • the eNB may also select to transmit data according to the configuration or other selection factors. To the UE.
  • the method of transmitting data by the RN is as shown in FIG. 4.
  • the eNB and the RN perform point-to-point communication, and the eNB transmits the data of the UE to the RN.
  • the eNB follows the backhaul link.
  • the channel quality is selected by the MCS (Modulation and Coding Scheme).
  • the eNB and the RN may cooperate to simultaneously transmit data to the UE, or may only transmit data to the UE by the RN.
  • a direct transmission mode that is, the eNB directly transmits data to the UE
  • a method of transmitting data through the RN that is, the eNB first transmits data to the eNB.
  • the RN is then transmitted by the RN (or the RN and the eNB simultaneously) to the UE.
  • the total delay of data from eNB to UE in the two paths is different.
  • the eNB can estimate the delay of the two transmission modes during scheduling, and compare the delay requirements of the UE data, thereby determining which transmission mode to select:
  • the delay requirement is relatively loose, you can choose the method of transmitting data through the RN. This method requires less system resources and less RN transmit power, and does not cause large inter-cell interference.
  • the eNB may decide to transmit data to the UE by itself. In this manner, if the data is to be correctly received, the eNB needs to allocate more resources and use a lower modulation code. Mode and larger transmit power.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the scheduling process of the eNB includes the following steps:
  • Step 501 The UE requests the eNB to establish a service bearer, and according to the delay requirement of the service, the eNB estimates the remaining time delay of the service.
  • Step 502 the eNB according to the normal radio bearer establishment process, determine whether the UE is within a certain RN coverage, and if so, proceed to the next step, otherwise, step 505;
  • Step 503 The eNB determines, according to the manner in which the data is transmitted by the RN, the resource allocation, including the configuration of the subframe where the resources of the first hop and the second hop are located; and determines the configuration of the subframe where the resources of the first hop and the second hop are located , the delay amount of the data transmitted by the RN to the UE can be further estimated; Step 504, it is determined whether the amount of delay of the data transmitted by the RN to the UE is less than the remaining amount of service delay, and if so, step 506 is performed, otherwise, step 505 is performed;
  • Step 505 The eNB selects a direct transmission manner to transmit data to the UE, and ends the process.
  • Step 506 The eNB selects to transmit data to the UE by using the RN to transmit data.
  • the eNB estimates the delay (transmission delay and processing delay) from the peer UE to the eNB according to the configuration or other techniques, which is approximately 100 ms, which is equivalent to The transmission time requirement between the eNB and the UE1 is less than 20 ms, and the delay is the remaining amount of service delay;
  • the eNB performs the radio bearer setup process according to normal, and determines that the UE1 is located within the coverage of a certain RN, and can perform data transmission by using the RN;
  • the eNB determines the resource allocation according to the manner in which the RN performs data transmission, including the resource locations and subframes of the first hop and the second hop; and determines, according to the two segments, the time required for the RN to transmit (the delay amount) is 25 ms, When the eNB determines that the data transmission by the RN cannot guarantee the delay requirement of the service, it can only be directly transmitted by the eNB;
  • the eNB determines the resource allocation according to the remaining time delay of the service, ensures that the delay of the transmitted data is smaller than the remaining delay of the service, and establishes a radio bearer for the service, and the transmission route is not transmitted through the RN, and the eNB directly transmits the method.
  • the eNB estimates the delay (transmission delay and processing delay) from the peer UE to the eNB according to the configuration or other techniques, which is approximately 100 ms, which is equivalent to The transmission time between the eNB and the UE2 is required to be d, 60 ms;
  • the eNB performs the radio bearer setup process according to normal, and determines that the UE2 is located within the coverage of a certain RN, and can perform data transmission by using the RN;
  • the eNB determines the resource allocation according to the manner in which the RN performs data transmission, including the resource locations and subframes of the first hop and the second hop; and determines, according to the two segments, the time required for the RN to transmit (the delay amount) is 25 ms, When the eNB determines that the data transmission by the RN can ensure the delay requirement of the service; The eNB determines the resource allocation according to the remaining delay, establishes a radio bearer for the service, and transmits the transmission route through the RN.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the scheduling process of the eNB includes the following steps:
  • Step 601 The eNB performs resource scheduling on the UE, and the eNB estimates the remaining time delay of the service.
  • Step 602 The eNB performs scheduling according to normal, and determines whether the UE is within the coverage of a certain RN. If yes, the next step is performed. Otherwise, the step is performed. 605;
  • Step 603 The eNB determines, according to the manner in which the data is transmitted by the RN, the resource allocation, including the configuration of the subframe where the resources of the first hop and the second hop are located; and determines the configuration of the subframe where the resources of the first hop and the second hop are located And determining, by the RN, the amount of delay for transmitting data to the UE by using the RN; Step 604, determining whether the amount of delay for transmitting data to the UE by the RN is less than a remaining amount of service delay, and if yes, performing step 606, otherwise, Perform step 605;
  • Step 605 The eNB selects a direct transmission manner to transmit data to the UE, and ends the process.
  • Step 606 The eNB selects to transmit data to the UE by using the RN to transmit data.
  • UE1 has one service, and its end-to-end delay requirement is 120ms. It takes 100ms for a data packet to be transmitted from the core network to the eNB, which is equivalent to the eNB needs to transmit the data to UE1 within at least 20ms.
  • the eNB performs the scheduling according to the normal, and determines that the UE1 is located in the coverage of the RN, and can perform data transmission by using the RN. Then, according to the data transmission by the RN, the resource allocation is determined, including the resource locations and sub-hops of the first hop and the second hop. Frame; determining the time (delay amount) required for transmission by the RN according to the two segments is 25 ms. At this time, the eNB determines that the data transmission by the RN cannot guarantee the QoS requirement; it will be changed to the form directly transmitted by the eNB; The remaining delay amount determines the resource allocation and sends the data to UE1. Assume that UE2 has one service, and its end-to-end delay requirement is 180ms. It takes 100ms for a data packet to be transmitted from the core network to the eNB, which is equivalent to the eNB needs to transmit the data to UE2 within at least 60ms.
  • the eNB performs the scheduling according to the normal, and determines that the UE2 is located in the coverage of the RN, and can perform data transmission by using the RN. Then, according to the data transmission by the RN, the resource allocation is determined, including the resource positions of the first hop and the second hop. And determining, according to the two segments, the time required for the transmission by the RN (the amount of delay) is 30 ms, and the eNB determines that the data transmission by the RN can ensure the QoS requirement, and the method for transmitting the data by using the RN; The amount of delay determines the resource allocation, and the RN sends the data to UE2.
  • the apparatus for scheduling in a long term evolution system is applied to an eNB, including an estimation module and a selection module.
  • the estimating module is configured to: when establishing a service bearer for the UE or performing resource scheduling on the UE, estimating a delay amount of the data transmitted by the RN to the UE, and notifying the selecting module;
  • the selection module is configured to transmit data to the UE in a direct transmission manner if the delay amount obtained by the estimation module for the RN transmission data to the UE cannot meet the QoS requirement.
  • the estimating module is further configured to: when establishing a service bearer for the UE or perform resource scheduling on the UE, estimate a remaining time delay of the service, and determine, according to a manner of transmitting data by using the RN, a resource allocation situation, and further determine the RN transmission.
  • the amount of delay of the data to the UE; the selecting module is further configured to determine, according to the remaining amount of service delay obtained by the estimating module, and the amount of delay of the RN to transmit data to the UE, if the service has a remaining delay If the amount of delay is less than the amount of delay that the RN transmits data to the UE, it is determined that the QoS requirement cannot be met, and the data is transmitted to the UE in a direct transmission manner.
  • the estimating module is further configured to determine a configuration of a subframe where the resources of the first hop and the second hop are located according to the manner in which the data is transmitted by the RN, and further determine a delay amount of the data transmitted by the RN to the UE.
  • the selecting module is further configured to: if the amount of delay of the RN transmission data obtained by the estimation module to the UE meets the QoS requirement, select to transmit data to the UE by using the RN to transmit data.
  • the RN transmits data to the UE, specifically: the eNB transmits data of the UE to an RN, and only the RN transmits data to the UE; or, the eNB transmits The data of the UE is sent to the RN, and the eNB and the RN cooperate to simultaneously transmit data to the UE.
  • the present invention solves the problem that the delay caused by the transmission of data through the RN exceeds the requirement in the presence of the RN, and the QoS requirement is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种长期演进系统中调度的方法和装置,其中,所述方法包括:基站为用户设备建立业务承载或者对用户设备进行资源调度时,估计经中继节点传输数据给所述用户设备的时延量,若不能满足服务质量要求,则所述基站选择直传的方式传输数据给所述用户设备。本发明解决了存在RN的情况下,通过RN传输数据可能造成的时延超过要求的问题,保证了QoS的要求。

Description

一种长期演进系统中调度的方法和装置
技术领域
本发明涉及无线通讯领域, 尤其涉及一种 LTE ( Long Term Evolution, 长 期演进) 系统中, 在存在中继节点的情况下调度的方法和装置。 背景技术
2005年, 3GPP ( 3rd Generation Partnership Project,第三代合作伙伴计划) 启动了 LTE ( Long Term evolution长期演进)研究的工作组, 研究和设计第 三代移动通信技术演进的 3.9G (改进的 3G ) 的下一代网络。
LTE釆用了与 3G不同的空中接口技术, 釆用基于 OFDM ( Orthogonal Furequency Division Multiplexity , 正交频分复用)技术的空中接口设计。 在系 统中釆用了基于分组交换的设计思想, 即使用共享信道, 物理层不再提供专 用信道。 系统支持 FDD ( Frequency Division Duplex,频分双工)和 TDD ( Time Division Duplex, 时分双工) 两种双工方式。 同时, 对传统 3G的网络架构进 行了优化, 釆用扁平化的网络结构, 接入网仅包含基站(Node B ) , 不再有 RNC ( Radio Network Controller, 无线网络控制器) 。
如图 1所示, 整个 LTE系统由 EPC ( Evolved Packet Core, 分组核心演 进) 、 基站(eNodeB, 即 eNB, 演进的节点 B )和 UE ( User Equipment, 用 户设备 ) 3部分组成。其中, EPC负责核心网部分, EPC信令处理部分称 MME ( Mobile Management Entity, 移动性管理实体) , 数据处理部分称为 S-GW ( SAE Gateway, 系统架构演进网关); eNB负责接入网部分,也称 E-UTRAN ( Evolved Universal Terrestril Radio Access Network, 演进的通用地面无线接 入网路) ; UE指用户终端设备。
如图 1 , eNodeB与 EPC通过 S 1接口连接; eNodeB之间通过 X2接口连 接; eNB与 UE通过 Uu 接 口 连接。 和 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统)相比, 由于 NodeB 和 RNC 融合为网元 eNB , 所以 LTE少了 Iub接口。 X2接口类似于 Iur接口, S1接 口类似于 III接口, 但有较大简化。
eNB的功能包括: RRM ( Radio Resources Management , 无线资源管理) 功能; IP头压缩及用户数据流加密; UE附着时的 MME选择; 寻呼信息的调 度传输; 广播信息的调度传输; 以及设置和提供 eNB的测量等。
MME的功能包括: 寻呼消息发送; 安全控制; Idle (空闲) 态的移动性 管理; SAE ( System Architecture Evolution, 系统架构演进)承载管理; 以及 NAS ( Non-Access Stadium, 非接入层)信令的加密及完整性保护等。
S-GW的功能包括: 数据的路由和传输, 以及用户面数据的加密。
LTE-Advanced( LTE增强技术)是 3GPP为了满足 ITU IMT-Advanced (4G) 的要求而推出的标准。 2008年 3月, 3GPP通过了关于 LTE-Advanced的研究 项目 , 对 LTE 系统进行进一步的技术提高, 以达到并超过 ITU 对 IMT-Advanced的技术要求为目标, 实现 LTE的后向兼容。 LTE-Advanced将 作为 3GPP向 ITU提交的 IMT-Advanced的候选技术。
LTE 系统由于其代表了移动通信新技术发展的主要方向, 显然已成为 IMT-Advanced主要的候选技术之一, LTE本身可以作为满足 IMT-Advanced 需求的技术基础和核心,只是纯粹从指标上来讲, LTE较 IMT-Advanced的要 求还有一定差距。 因此当将 LTE升级到 4G时, 我们并不需要改变 LTE标准 的核心, 而只需在 LTE 基础上进行扩充、 增强、 完善, 就可以满足 IMT-Advanced 的要求, 主要引入的新技术包括 Relay (中继) 、 CoMP ( Coordinative Multiple Point, 协同多点)传输、 CA ( Carrier Aggregation, 载 波聚合)等增强技术。
为了提高小区边界的覆盖增益, 增强热点地区性能, 提高整个小区的容 量, 在 3GPP中 LTE-Advanced中引入了 Relay技术, 如图 2所示。 图中, 一 个 eNB既为本小区的 UE提供服务,也和其控制下的若干个 RN( Relay Node, 中继节点)进行数据传输和信令交互。 同样的, 每个 RN既和该 eNB通讯, 也为该 RN下的 UE提供服务。 eNB到 RN的链路与 RN到其服务 UE的链路 可以使用相同的频率资源, 称之为带内 Relay; 也可以使用不同的频率资源, 称之为带外 Relay。 在 3GPP的讨论中,最终确定以 RN是否带有独立的小区 ID来区分 Relay 类别, 分为 Typel Relay (类型 1中继)和 Type2 Relay (类型 2中继) 两种 Relay类型:
Typel Relay:
对 UE来说, Typel Relay就是一个独立的小区, 有自己的物理小区 ID, 传输自己的同步信道、 参考符号; Typel Relay执行调度和 HARQ ( Hybrid Automatic Repeat Request, 混合自动重传)功能; 对 R8 UE来说, Typel Relay 就是一个 R8 eNB。
Type2 Relay:
Type2 Relay没有独立的物理小区 ID,不传输控制信息和参考符号, R8 UE 看不到 Type2 Relay的存在。 Type2 Relay主要协助 eNB进行业务数据的发送 和接收。
图 3是 Type2 Relay的在小区容量增强应用场景下的示意图,在图中有三 种链路: 直连链路( direct link )指的是 eNB与宏 UE (仅由 eNB服务的 UE ) 之间的链路; 回程链路( backhaul link, 也称为中继链路 )指的是 eNB与 RN 之间的链路; 接入链路( access link )指的是 RN与该 RN服务的 UE之间的 链路。
弓 I入 Relay技术后,出现了通过 RN传输数据可能造成的时延超过要求的 问题, 而现有技术还没有相关的解决方案。 发明内容
本发明要解决的技术问题就是提出一种长期演进系统中调度的方法和装 置, 解决通过 RN传输数据可能造成的时延超过要求的问题。
为了解决上述技术问题, 本发明提供一种长期演进系统中调度的方法, 包括:
基站为用户设备建立业务承载或者对用户设备进行资源调度时, 估计经 中继节点传输数据给所述用户设备的时延量, 若不能满足服务质量要求, 则 所述基站选择直传的方式传输数据给所述用户设备。 所述方法还可具有以下特点:
所述估计经中继节点传输数据给所述用户设备的时延量的步骤包括: 基 站按照经中继节点传输数据的方式, 确定资源分配情况, 进而估计出经中继 节点传输数据给所述用户设备的时延量;
所述方法还包括: 基站为用户设备建立业务承载或者对用户设备进行资 源调度时, 估计业务剩余时延量;
若业务剩余时延量小于经中继节点传输数据给所述用户设备的时延量, 则判断不能满足服务质量要求, 所述基站选择直传的方式传输数据给所述用 户设备。
所述方法还可具有以下特点:
所述基站按照经中继节点传输数据的方式,确定资源分配情况的步骤中, 所述资源分配情况包括: 第一跳和第二跳的资源所在子帧的配置。
所述方法还可包括:
若经中继节点传输数据给所述用户设备的时延量满足服务质量要求, 则 所述基站选择经中继节点传输数据的方式传输数据给所述用户设备。
所述方法还可具有以下特点:
所述经中继节点传输数据的方式传输数据给所述用户设备, 是指: 基站传输所述用户设备的数据给中继节点, 仅由中继节点传输数据给所 述用户设备; 或者, 基站传输所述用户设备的数据给中继节点 , 基站和中继 节点协作同时传输数据给所述用户设备。
为了解决上述技术问题, 本发明提供一种长期演进系统中调度的装置, 应用于基站, 包括估计模块和选择模块,
所述估计模块设置为: 为用户设备建立业务承载或者对用户设备进行资 源调度时, 估计经中继节点传输数据给所述用户设备的时延量, 并告知选择 模块;
所述选择模块设置为: 若估计模块得到的经中继节点传输数据给所述用 户设备的时延量不能满足服务质量要求, 则选择直传的方式传输数据给所述 用户设备。
所述装置还可具有以下特点:
所述估计模块是设置为以如下方式估计经中继节点传输数据给所述用户 设备的时延量: 按照经中继节点传输数据的方式, 确定资源分配情况, 进而 估计出经中继节点传输数据给所述用户设备的时延量;
所述估计模块还设置为: 为用户设备建立业务承载或者对用户设备进行 资源调度时, 估计业务剩余时延量;
所述选择模块还设置为: 根据估计模块得到的业务剩余时延量和经中继 节点传输数据给所述用户设备的时延量进行判断, 若所述业务剩余时延量小 于经中继节点传输数据给所述用户设备的时延量, 则判断不能满足服务质量 要求。
所述装置还可具有以下特点:
所述资源分配情况包括: 第一跳和第二跳的资源所在子帧的配置, 进而 确定经中继节点传输数据给所述用户设备的时延量。
所述装置还可具有以下特点:
所述选择模块还设置为: 若估计模块得到的经中继节点传输数据给所述 用户设备的时延量满足服务质量要求, 则选择经中继节点传输数据的方式传 输数据给所述用户设备。
所述装置还可具有以下特点:
所述经中继节点传输数据的方式传输数据给所述用户设备, 是指: 所述基站传输所述用户设备的数据给中继节点, 仅由中继节点传输数据 给所述用户设备; 或者, 所述基站传输所述用户设备的数据给中继节点 , 所 述基站和中继节点协作同时传输数据给所述用户设备。
本发明解决了存在 RN的情况下, 通过 RN传输数据可能造成的时延超 过要求的问题, 保证了 QoS ( Quality of Service, 服务质量) 的要求。 附图概述
图 1是 LTE系统网络架构;
图 2是 Relay传输的示意图;
图 3是 Type2 Relay的在小区容量增强应用场景下的示意图;
图 4是 2跳模式传输的示意图;
图 5是本发明实施例一的流程图;
图 6是本发明实施例二的流程图;
图 7是本发明实施例的调度装置示意图。 本发明的较佳实施方式
本发明中, eNB为 UE建立业务承载或者对 UE进行资源调度时, 估计 经 RN传输数据给所述 UE的时延量, 若不能满足 QoS要求, 则所述 eNB选 择直传的方式传输数据给所述 UE。
具体地, eNB为 UE建立业务承载或者对 UE进行资源调度时, 估计业 务剩余时延量; 该业务剩余时延量表示: 业务的 QoS要求中的时延值减掉数 据包传输路径中除空口部分所花时间;
eNB按照经 RN传输数据的方式, 确定资源分配情况(包括第一跳和第 二跳的资源所在子帧的配置),进而确定经 RN传输数据给所述 UE的时延量, 若业务剩余时延量小于经 RN传输数据给所述 UE的时延量,则判断不能满足 QoS要求, 所述 eNB选择直传的方式传输数据给所述 UE。
优选地, 所述 eNB估计经 RN传输数据给所述 UE的时延量时, 若满足 QoS要求, 则所述 eNB选择经 RN传输数据的方式传输数据给所述 UE。
其中, 所述经 RN传输数据的方式传输数据给所述 UE, 具体是指: eNB传输所述 UE的数据给 RN, 仅由 RN传输数据给所述 UE; 或者, eNB传输所述 UE的数据给 RN , eNB和 RN协作同时传输数据给所述 UE。
当然,所述 eNB估计经 RN传输数据给所述 UE的时延量时,若满足 QoS 要求, 所述 eNB也可以根据配置或其它选择因素, 选择直传的方式传输数据 给所述 UE。
一般情况下, 经 RN传输数据的方式如图 4, 第一跳( 1st hop )时, eNB 和 RN进行点对点通信, eNB传输 UE的数据给 RN,为了利用好的链路质量, eNB按照 backhaul link的信道质量选择 MCS( Modulation and Coding Scheme, 调制编码方案) ; 第二跳(2nd hop ) 时, eNB和 RN可以协作同时传输数据 给 UE , 也可以仅由 RN发射数据给 UE。
以图 4为例, 数据从 eNB到达 UE的路径有两种选择: 1 )直传的方式, 即由 eNB直接发射数据给 UE; 2 )经 RN传输数据的方式, 即 eNB先将数据 发射给 RN, 再由 RN (或 RN和 eNB同时 )发射给 UE。
两种路径下数据从 eNB到 UE总的时延是不同的。 eNB可以在调度时估 计两种传输方式的时延, 并比较 UE数据的时延要求, 进而确定选择哪种发 送方式:
如果时延要求比较宽松, 可以选择经 RN传输数据的方式, 这种方式对 系统资源要求较小、 RN发射功率也较小, 不会带来较大的小区间干扰。
如果经 RN传输数据给 UE时延要求不能满足, 那么 eNB可以决定自己 发射数据给 UE, 这种方式下, 如果要保证数据的正确接收, eNB需要分配较 多资源、 釆用较低的调制编码方式和较大的发射功率。
实施例一:
如图 5所示, 为本发明实施例的 UE发起建立业务承载时, eNB的调度 过程, 包括如下步骤:
步骤 501 , UE向 eNB请求建立业务承载, 依据该业务的时延要求, eNB 估计业务剩余时延量;
步骤 502, eNB按照正常进行无线承载建立过程,判断该 UE是否在某个 RN覆盖范围内, 若是, 则执行下一步, 否则, 执行步骤 505;
步骤 503 , eNB按照经 RN传输数据的方式, 确定资源分配情况, 包括 第一跳和第二跳的资源所在子帧的配置; 当确定了第一跳和第二跳的资源所 在子帧的配置, 就可以进一步估计出经 RN传输数据给该 UE的时延量; 步骤 504,判断经 RN传输数据给所述 UE的时延量是否小于业务剩余时 延量, 若是, 执行步骤 506, 否则, 执行步骤 505;
步骤 505, eNB选择直传的方式传输数据给该 UE, 结束流程。
步骤 506, eNB选择经 RN传输数据的方式传输数据给该 UE。
假设 UE1发起一个业务, 其端到端时延要求为 120ms, eNB根据配置或 者其他技术估计出从对端 UE到 eNB之间的时延(传输时延和处理时延 ) 大 约为 100ms, 相当于 eNB与 UE1之间的传输时间要求小于 20ms, 该时延即 业务剩余时延量;
eNB按照正常进行无线承载建立过程, 并判断出 UE1位于某个 RN覆盖 范围内, 可以通过 RN进行数据传输;
eNB按照由 RN进行数据传输的方式, 确定资源分配情况, 包括第一跳 和第二跳的资源位置和子帧;根据这两段确定由 RN进行传输需要的时间(时 延量)为 25ms, 此时 eNB判断出由 RN进行数据传输不能保证该业务的时延 要求, 只能由 eNB直接发射;
eNB根据业务剩余时延量确定资源分配, 保证传输数据的时延量小于业 务剩余时延量, 为该业务建立无线承载, 其传输路由不通过 RN进行传输, 釆用 eNB直传的方式。
假设 UE2发起一个业务, 其端到端时延要求为 160ms, eNB根据配置或 者其他技术估计出从对端 UE到 eNB之间的时延(传输时延和处理时延 ) 大 约为 100ms, 相当于 eNB与 UE2之间的传输时间要求 d、于 60ms;
eNB按照正常进行无线承载建立过程, 并判断出 UE2位于某个 RN覆盖 范围内, 可以通过 RN进行数据传输;
eNB按照由 RN进行数据传输的方式, 确定资源分配情况, 包括第一跳 和第二跳的资源位置和子帧;根据这两段确定由 RN进行传输需要的时间(时 延量)为 25ms, 此时 eNB判断出由 RN进行数据传输可以保证该业务的时延 要求; eNB根据剩余时延量确定资源分配, 为该业务建立无线承载, 其传输路 由通过 RN进行传输。
实施例二:
如图 6所示, 为本发明实施例的 eNB对 UE进行资源调度时, eNB的调 度过程, 包括如下步骤:
步骤 601 , eNB对 UE进行资源调度, eNB估计业务剩余时延量; 步骤 602, eNB按照正常进行调度, 判断该 UE是否在某个 RN覆盖范围 内, 若是, 则执行下一步, 否则, 执行步骤 605;
步骤 603 , eNB按照经 RN传输数据的方式, 确定资源分配情况, 包括 第一跳和第二跳的资源所在子帧的配置; 当确定了第一跳和第二跳的资源所 在子帧的配置, 就可以进一步估计出经 RN传输数据给该 UE的时延量; 步骤 604,判断经 RN传输数据给所述 UE的时延量是否小于业务剩余时 延量, 若是, 执行步骤 606, 否则, 执行步骤 605;
步骤 605, eNB选择直传的方式传输数据给该 UE, 结束流程。
步骤 606, eNB选择经 RN传输数据的方式传输数据给该 UE。
假设 UE1有一个业务, 其端到端时延要求为 120ms, —个数据包从核心 网传输到 eNB已经耗时 100ms, 相当于 eNB需要在至少 20ms内将该数据传 输给 UE1 ;
eNB按照正常进行调度, 并判断出 UE1位于某个 RN覆盖范围内, 可以 通过 RN进行数据传输; 之后按照由 RN进行数据传输, 确定资源分配情况, 包括第一跳和第二跳的资源位置和子帧; 根据这两段确定由 RN进行传输需 要的时间(时延量 )为 25ms, 此时 eNB判断出由 RN进行数据传输不能保证 QoS要求; 将改为由 eNB直接发射的形式; 并根据该剩余时延量确定资源分 配, 并发送该数据给 UE1。 假设 UE2有一个业务, 其端到端时延要求为 180ms, —个数据包从核心 网传输到 eNB已经耗时 100ms, 相当于 eNB需要在至少 60ms内将该数据传 输给 UE2;
eNB按照正常进行调度, 并判断出 UE2位于某个 RN的覆盖范围内, 可 以通过 RN进行数据传输; 之后按照由 RN进行数据传输, 确定资源分配情 况, 包括第一跳和第二跳的资源位置和子帧; 根据这两段确定由 RN进行传 输需要的时间(时延量 )为 30ms, 此时 eNB判断出由 RN进行数据传输可以 保证 QoS要求, 釆用经 RN传输数据的方式; 根据该剩余时延量确定资源分 配, 经 RN发送该数据给 UE2。
如图 7所示, 本发明实施例的长期演进系统中调度的装置,应用于 eNB, 包括估计模块和选择模块,
所述估计模块用于为 UE建立业务承载或者对 UE进行资源调度时,估计 经 RN传输数据给所述 UE的时延量, 并告知选择模块;
所述选择模块用于若估计模块得到的经 RN传输数据给所述 UE的时延 量不能满足 QoS要求, 则选择直传的方式传输数据给所述 UE。
优选地,所述估计模块进一步用于为 UE建立业务承载或者对 UE进行资 源调度时, 估计业务剩余时延量, 以及, 按照经 RN传输数据的方式, 确定 资源分配情况,进而确定经 RN传输数据给所述 UE的时延量; 所述选择模块 进一步用于根据估计模块得到的业务剩余时延量和经 RN传输数据给所述 UE 的时延量进行判断, 若所述业务剩余时延量小于经 RN传输数据给所述 UE 的时延量, 则判断不能满足 QoS要求, 选择直传的方式传输数据给所述 UE。
优选地, 所述估计模块进一步用于按照经 RN传输数据的方式, 确定第 一跳和第二跳的资源所在子帧的配置, 进而确定经 RN传输数据给所述 UE 的时延量。
优选地, 所述选择模块进一步用于若估计模块得到的经 RN传输数据给 所述 UE的时延量满足 QoS要求, 则选择经 RN传输数据的方式传输数据给 所述 UE。 优选地, 所述经 RN传输数据的方式传输数据给所述 UE, 具体是指: 所述 eNB传输所述 UE的数据给 RN, 仅由 RN传输数据给所述 UE; 或 者, 所述 eNB传输所述 UE的数据给 RN , 所述 eNB和 RN协作同时传输数 据给所述 UE。
尽管为示例目的, 已经公开了本发明的优选实施例, 本领域的技术人员 将意识到各种改进、 增加和取代也是可能的, 因此, 本发明的范围应当不限 于上述实施例。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明解决了存在 RN的情况下, 通过 RN传输数据可能造成的时延超 过要求的问题, 保证了 QoS的要求。

Claims

权 利 要 求 书
1、 一种长期演进系统中调度的方法, 其包括:
基站为用户设备建立业务承载或者对用户设备进行资源调度时, 估计经 中继节点传输数据给所述用户设备的时延量, 若不能满足服务质量要求, 则 所述基站选择直传的方式传输数据给所述用户设备。
2、 如权利要求 1所述的方法, 其中,
所述估计经中继节点传输数据给所述用户设备的时延量的步骤包括: 基 站按照经中继节点传输数据的方式, 确定资源分配情况, 进而估计出经中继 节点传输数据给所述用户设备的时延量;
所述方法还包括: 基站为用户设备建立业务承载或者对用户设备进行资 源调度时, 估计业务剩余时延量;
若业务剩余时延量小于经中继节点传输数据给所述用户设备的时延量, 则判断不能满足服务质量要求, 所述基站选择直传的方式传输数据给所述用 户设备。
3、 如权利要求 2所述的方法, 其中,
所述基站按照经中继节点传输数据的方式,确定资源分配情况的步骤中, 所述资源分配情况包括: 第一跳和第二跳的资源所在子帧的配置。
4、 如权利要求 1所述的方法, 该方法还包括:
若经中继节点传输数据给所述用户设备的时延量满足服务质量要求, 则 所述基站选择经中继节点传输数据的方式传输数据给所述用户设备。
5、 如权利要求 4所述的方法, 其中,
所述经中继节点传输数据的方式传输数据给所述用户设备, 是指: 基站传输所述用户设备的数据给中继节点, 仅由中继节点传输数据给所 述用户设备; 或者, 基站传输所述用户设备的数据给中继节点 , 基站和中继 节点协作同时传输数据给所述用户设备。
6、 一种长期演进系统中调度的装置, 应用于基站, 其包括估计模块和选 择模块, 所述估计模块设置为: 为用户设备建立业务承载或者对用户设备进行资 源调度时, 估计经中继节点传输数据给所述用户设备的时延量, 并告知选择 模块;
所述选择模块设置为: 若估计模块得到的经中继节点传输数据给所述用 户设备的时延量不能满足服务质量要求, 则选择直传的方式传输数据给所述 用户设备。
7、 如权利要求 6所述装置, 其中,
所述估计模块是设置为以如下方式估计经中继节点传输数据给所述用户 设备的时延量: 按照经中继节点传输数据的方式, 确定资源分配情况, 进而 估计出经中继节点传输数据给所述用户设备的时延量;
所述估计模块还设置为: 为用户设备建立业务承载或者对用户设备进行 资源调度时, 估计业务剩余时延量;
所述选择模块还设置为: 根据估计模块得到的业务剩余时延量和经中继 节点传输数据给所述用户设备的时延量进行判断, 若所述业务剩余时延量小 于经中继节点传输数据给所述用户设备的时延量, 则判断不能满足服务质量 要求。
8、 如权利要求 7所述装置, 其中,
所述资源分配情况包括: 第一跳和第二跳的资源所在子帧的配置。
9、 如权利要求 6所述装置, 其中,
所述选择模块还设置为: 若估计模块得到的经中继节点传输数据给所述 用户设备的时延量满足服务质量要求, 则选择经中继节点传输数据的方式传 输数据给所述用户设备。
10、 如权利要求 9所述装置, 其中,
所述经中继节点传输数据的方式传输数据给所述用户设备, 是指: 所述基站传输所述用户设备的数据给中继节点, 仅由中继节点传输数据 给所述用户设备; 或者, 所述基站传输所述用户设备的数据给中继节点 , 所 述基站和中继节点协作同时传输数据给所述用户设备。
PCT/CN2010/077588 2009-11-30 2010-10-08 一种长期演进系统中调度的方法和装置 WO2011063684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910225560A CN101707808A (zh) 2009-11-30 2009-11-30 一种长期演进系统中调度的方法和装置
CN200910225560.6 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011063684A1 true WO2011063684A1 (zh) 2011-06-03

Family

ID=42377965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077588 WO2011063684A1 (zh) 2009-11-30 2010-10-08 一种长期演进系统中调度的方法和装置

Country Status (2)

Country Link
CN (1) CN101707808A (zh)
WO (1) WO2011063684A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554689A (zh) * 2015-12-14 2016-05-04 东莞酷派软件技术有限公司 一种业务传输方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707808A (zh) * 2009-11-30 2010-05-12 中兴通讯股份有限公司 一种长期演进系统中调度的方法和装置
CN102340887B (zh) * 2010-07-22 2016-01-20 中兴通讯股份有限公司 一种利用数据无线承载建立s1/x2接口的方法及系统
BR112013011154B1 (pt) * 2010-11-05 2022-02-22 Interdigital Patent Holdings,Inc. Medições de camada 2 relacionadas à interface de nó de retransmissão e manipulação do nó de retransmissão em equilíbrio de carga de rede, método para realizar medições de uso de rádio, nó b e sistema para mudança automática de um nó de retransmissão
CN102612093B (zh) * 2012-03-30 2014-07-02 西安交通大学 一种基于载波聚合的LTE-Advanced 系统中的上行跨层资源调度方法
CN102769876A (zh) * 2012-07-02 2012-11-07 中兴通讯股份有限公司 一种中继系统中保证服务质量的方法和装置
CN102769930B (zh) * 2012-07-11 2018-05-11 中兴通讯股份有限公司 承载处理方法及装置
EP2999292B1 (en) 2013-06-09 2018-03-14 Huawei Technologies Co., Ltd. Scheduling method and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155624A2 (en) * 2007-06-18 2008-12-24 Nokia Corporation Method and apparatus for transmission scheduling in a meshed network
US20090185492A1 (en) * 2008-01-22 2009-07-23 Nortel Networks Limited Path selection for a wireless system with relays
CN101707808A (zh) * 2009-11-30 2010-05-12 中兴通讯股份有限公司 一种长期演进系统中调度的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388742A (zh) * 2007-09-14 2009-03-18 华为技术有限公司 一种中继系统中数据传输的方法、系统及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155624A2 (en) * 2007-06-18 2008-12-24 Nokia Corporation Method and apparatus for transmission scheduling in a meshed network
US20090185492A1 (en) * 2008-01-22 2009-07-23 Nortel Networks Limited Path selection for a wireless system with relays
CN101707808A (zh) * 2009-11-30 2010-05-12 中兴通讯股份有限公司 一种长期演进系统中调度的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105554689A (zh) * 2015-12-14 2016-05-04 东莞酷派软件技术有限公司 一种业务传输方法及装置
CN105554689B (zh) * 2015-12-14 2019-10-11 东莞酷派软件技术有限公司 一种业务传输方法及装置

Also Published As

Publication number Publication date
CN101707808A (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
US11382001B2 (en) Wireless broadband communication method, device, and system, for establishing a user plane connection between a small cell and a user equipment
JP7313281B2 (ja) 通信システム
KR101521892B1 (ko) 무선통신 시스템에서 핸드오버 장치 및 방법
EP2903390B1 (en) Mobile communication system
JP6147929B2 (ja) 無線通信システムにおけるスモールセルに対してデータを伝達するための方法及び装置
US9980308B2 (en) Method for performing a logical channel prioritization and communication device thereof
JP5826937B2 (ja) 移動通信システム、基地局、ユーザ端末、及びプロセッサ
JP6110376B2 (ja) 制御方法、ユーザ端末、プロセッサ、及び基地局
KR102242295B1 (ko) 무선 통신 시스템에서 이중 연결에서의 e-rab 전환 문제를 처리하기 위한 방법 및 장치
EP3007499B1 (en) Method and apparatus for performing timing synchronization in wireless communication system
JP6101696B2 (ja) 移動通信システム、ユーザ端末及びプロセッサ
WO2011063684A1 (zh) 一种长期演进系统中调度的方法和装置
JP5981172B2 (ja) 無線通信システム、通信方法、基地局装置、および通信端末
KR20150096499A (ko) 이종 네트워크에서 이중 연결 동작을 수행하기 위한 방법 및 장치
JP6305481B2 (ja) 無線端末、プロセッサ及び基地局
JP6416424B2 (ja) 基地局、プロセッサ、及び通信方法
TW201127114A (en) Method and apparatus for performing component carrier-specific reconfiguration
JP7182874B2 (ja) 通信システム
CN108184249B (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2021205923A1 (ja) 通信システム、通信端末および基地局
JP2017530665A (ja) 無線通信システムにおける二重接続に対して重複したe−rabを取り扱うための方法及び装置
WO2011035610A1 (zh) 一种通过中继进行下行数据发送的方法及系统
JPWO2015125698A1 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
KR20230147612A (ko) 통신 시스템 및 기지국
KR20140080278A (ko) 이종 네트워크 무선 통신 시스템에서 베어러 확장 제어 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832591

Country of ref document: EP

Kind code of ref document: A1