WO2011062352A1 - 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치 - Google Patents

영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치 Download PDF

Info

Publication number
WO2011062352A1
WO2011062352A1 PCT/KR2010/005065 KR2010005065W WO2011062352A1 WO 2011062352 A1 WO2011062352 A1 WO 2011062352A1 KR 2010005065 W KR2010005065 W KR 2010005065W WO 2011062352 A1 WO2011062352 A1 WO 2011062352A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
liquid
pixel
height
histogram data
Prior art date
Application number
PCT/KR2010/005065
Other languages
English (en)
French (fr)
Inventor
권성일
김원
이찬주
김동구
이혜은
유민욱
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Priority to CN2010800027019A priority Critical patent/CN102165288B/zh
Publication of WO2011062352A1 publication Critical patent/WO2011062352A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/02Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by gauge glasses or other apparatus involving a window or transparent tube for directly observing the level to be measured or the level of a liquid column in free communication with the main body of the liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20068Projection on vertical or horizontal image axis

Definitions

  • the present invention relates to a liquid interface recognition method and a liquid interface recognition apparatus using a change in concentration distribution of temporal pixels of an image.
  • the present invention recognizes the liquid boundary surface by checking the temporal change of the density of each pixel in the Y direction by using the phenomenon in which the image at the liquid boundary portion is temporally changed from the image continuously photographing the liquid boundary portion.
  • the liquid interface recognition method that can increase the accuracy of the liquid height measurement by minimizing the occurrence of errors in measuring the height of the liquid, such as the level of the river, the level in the liquid storage tank, and the liquid to recognize the liquid height using the same It relates to a height recognition device.
  • Patent Registration No. 10-0778014 an example of a technique of automatically measuring the height of a liquid by using imaging is disclosed in Patent Registration No. 10-0778014.
  • "Liquid height measuring device using an image” disclosed in the above Patent Registration No. 10-0778014 is equipped with a water level table, an image acquisition device, and a height recognition device, and receives the captured image from the image receiver according to the color density Generate a digitized image to recognize the liquid surface, i.e., the liquid interface, and also determine the minimum value by recognizing the number of the watermark from the captured image, and the number of pixels in the vertical direction from the recognized liquid boundary to the number corresponding to the minimum value. It has a configuration that determines the height of the liquid by recognizing it.
  • the liquid boundary surface is recognized using only the change in color concentration in the vertical direction, that is, the Y direction in the captured image.
  • the position where the color concentration is rapidly changed as going from top to bottom or bottom to top in the Y direction of the captured image is recognized as the liquid boundary surface. Therefore, an error occurred in recognizing the liquid interface in the following cases.
  • the difference in color concentration between the top and the bottom may be large at the boundary position of the foundation and the piers, and thus, the boundary position of the foundation and the piers may be incorrectly recognized as the liquid interface.
  • the present invention minimizes the error in liquid height measurement that occurs in situations where it is difficult to accurately measure the liquid boundary, including the limitations of the prior art as described above, i.e., the situations illustrated in (1) to (4) mentioned above.
  • the purpose is to make it possible.
  • the present invention by accurately recognizing the interface of the liquid even when the situation illustrated in (1) to (4) mentioned above occurs, the height of the liquid, such as the level of the river, the level in the liquid storage tank, etc. In order to minimize the occurrence of errors in the measurement to increase the accuracy of the liquid height measurement.
  • the present invention provides a method and apparatus for recognizing a liquid boundary using a change over time of the histogram data for a pixel in the Y direction in an image of the liquid boundary surface photographed continuously.
  • gray image processing of the image taken to include the liquid boundary surface is performed in the X direction and Digitizing each pixel distributed in the Y direction according to the density (S1); Extracting only an image of a graduation area in which the major and minor scales are displayed in the X-direction in the water table from the image in which each pixel is digitized (S2); Summing the numerical values of all the pixels in the X direction at the same position in the Y direction in the image for the extracted scale region, and calculating the numerical values of each pixel in the summed Y direction to form histogram data for the Y direction of the pixels.
  • the present invention is a liquid height recognition device for determining the height of the liquid by recognizing the liquid boundary surface from the image obtained by continuously photographing the water level table to include the liquid boundary surface through the image acquisition device, the water level table is continuously included so that the liquid boundary surface
  • an image receiving unit for receiving the image captured by the image acquisition device, a main control unit for determining the height of the liquid from the captured image, and a shooting signal control module for operating the image acquisition device under the control of the main control unit.
  • the main control portion is provided with a liquid height recognition device characterized in that to determine the height of the liquid in accordance with the liquid interface recognition method according to the present invention described above.
  • the process of edge processing of the image may be further performed through the binarization process.
  • FIG. 3 is a flowchart for explaining each method step of the liquid interface recognition method according to the present invention.
  • FIG. 4 is a diagram for one example of an image acquired such that the boundary surface of the liquid is included in the water level table.
  • FIG. 6 is a diagram illustrating an edge-processed photographed image.
  • the liquid boundary recognition method of the present invention is a method of recognizing a liquid boundary surface from an image obtained by continuously photographing the water level table 101 so that the liquid boundary surface is included.
  • Gray image processing of the image captured to include the liquid boundary surface Digitizing each pixel distributed in the X direction and the Y direction according to the density (S1); Extracting only an image of a graduation area in which the major and minor scales are displayed in the X-direction in the water table from the image in which each pixel is digitized (S2); Summing the numerical values of all the pixels in the X direction at the same position in the Y direction in the image for the extracted scale region, and calculating the numerical values of each pixel in the summed Y direction to form histogram data for the Y direction of the pixels.
  • the liquid height recognition device of the present invention is a liquid height recognition device for determining a liquid height by recognizing a liquid boundary surface from an image obtained by continuously photographing a water level table so that a liquid boundary surface is included through an image acquisition device.
  • An image receiving unit for receiving an image of the water level continuous from the image acquisition device, a main control unit for determining the height of the liquid from the captured image, and a photographing signal control module for operating the image acquisition device under control of the main control unit It is configured to include;
  • the main control unit may determine the height of the liquid according to the liquid interface recognition method according to the present invention.
  • liquid height measuring device which may include a liquid height recognition device to which a liquid interface recognition method according to an embodiment of the present invention is applied, the liquid height measurement disclosed in Patent Registration No. 10-778014.
  • a schematic diagram and block diagram showing the configuration of the apparatus are disclosed.
  • the liquid interface recognition method according to the present invention is applied, and the liquid height measuring apparatus which can be provided with the liquid height recognition device according to the present invention is disclosed in FIGS. 1 and 2 and Patent No. 10-888014,
  • the watermark (101) and the watermark (101) and the watermark (101) which are installed by being submerged perpendicularly to the liquid, are marked with a major scale consisting of numbers, and a minor scale consisting of signs such as a bar.
  • the liquid height recognition device 103 of the liquid height measuring device the image receiving unit 203 for receiving an image captured by the image acquisition device 102, the main control unit for determining the height of the liquid from the captured image 20, a photographing signal control module 202 for operating the image acquisition device 102 under the control of the main controller 201.
  • the member number 101 is the water level table 101
  • the member number 102 is the image acquisition unit 102
  • the member number 103 is the height recognition unit 103
  • the member number 104 is the central management unit 104.
  • Is a liquid 105 and a member 107 is a support 107.
  • the liquid interface recognition method according to the present invention is performed by the main controller 201 described above. That is, the main controller 201 of the liquid height recognition device 103 according to the present invention recognizes the liquid height by identifying the liquid boundary surface by the liquid interface recognition method according to the present invention. As will be described later below, the main controller 201 of the liquid height recognition device 103 according to the present invention is a liquid interface according to a liquid interface recognition method different from the main controller 201 disclosed in Patent Registration No. 10-778014. Will be recognized.
  • FIG. 3 is a flowchart illustrating each method step of the liquid interface recognition method according to the present invention.
  • 4 shows an example of an image acquired such that the boundary surface of the liquid 501 is included in the water level table 101.
  • reference numeral 502 denotes a minor scale.
  • the liquid interface recognition method according to the present invention is based on the premise that the image including the liquid boundary surface is acquired in the water level table 101.
  • the image acquisition device 102 the image photographing the water level table 101 is continuously acquired such that the liquid boundary surface as illustrated in FIG. 4 is included, and the acquired image is transferred to the height recognition device 103.
  • the liquid interface is recognized through the liquid interface recognition method according to the present invention.
  • a height recognition device (103) comprising an image obtained by photographing the water level table (101) so as to include a liquid boundary surface, and continuously acquiring the acquired image by the image acquisition device (102). Since an example of the method steps and the configuration to be transmitted to is disclosed in Patent Registration No. 10-778014, repeated description thereof is omitted by using the contents of the Patent Registration No. 10-778014.
  • a continuous photographing image of the water level table 101 to be used in the liquid interface recognition device and the liquid interface recognition method according to the present invention that is, an image of the water level table 101 continuously photographed so that the liquid boundary surface is included. This is illustrated as being obtained by the method disclosed in Patent Registration No. 10-778014, but is not limited thereto. Therefore, the image acquired by continuously photographing the water level table 101 may be used in the liquid boundary recognition method and the liquid boundary recognition apparatus of the present invention so that the liquid boundary surface is included by other methods.
  • the liquid interface is recognized based on the change in color concentration over time in the image of the water level table 101 to include the liquid interface at different times. That is, for each image photographing the water level table 101 at a predetermined time interval, the histogram data according to the color density in the image taken at the previous time and the histogram data according to the color concentration in the image taken at the subsequent time.
  • the liquid interface is recognized by detecting whether a change in color concentration (change between histogram data) occurs.
  • the liquid interface recognition method and the liquid interface recognition device will be described in more detail.
  • the liquid interface recognition according to the present invention is performed in a state in which an image photographing the water level table 101 is continuously captured and acquired so that the liquid interface is included.
  • the apparatus performs a gray image processing (a process of making the photographed image black and white) of the photographed image to include the liquid boundary surface, and digitizes each pixel distributed in the X and Y directions according to the density (S1).
  • the X direction represents the horizontal direction of the water level table
  • the Y direction represents the height direction of the water level table, that is, the vertical direction (the direction in which the liquid level rises and falls).
  • the pixel concentration digitization step S1 is performed to make the image captured to include the liquid boundary in black and white (gray image processing), and thus exist in the black and white image.
  • the density of each pixel (dark and dark in the black and white image) is digitized.
  • the density of each pixel in the black and white image has a value of about 0 ?? 255. Since the gray image processing of the photographed image and the method itself for digitizing each pixel according to the density are already known in the field of image processing, a detailed description thereof will be omitted.
  • FIG. 5 is a diagram illustrating a photographed image before edge processing
  • FIG. 6 is a diagram representing an edge processed photographed image.
  • the watermark is displayed on the water table. The borders of numbers or letters become thicker and clearer, so that even if a dark image is acquired due to lack of light at night, the numbers displayed on the scale can be more easily recognized.
  • the density change of each pixel is continuously changed. For example, pixels may flash over time. If the pixel concentration is continuously changed over time, it is difficult to find the correct liquid interface.
  • edge processing is performed as described above, the pixel glow in the image over time is also removed. Since a specific method of edge-processing a captured image is an image processing method that is already known in the field of image processing, a detailed description thereof will be omitted.
  • the pixel in the X-direction width and the already known X-direction width of the major scale are already referred to, based on the coordinates in the X-direction at the point where the water level table 101 starts from the digitized image.
  • the step S2 of extracting only an image of a region in which the major and minor scales are displayed in the X direction is performed using the known width of the minor scale in the X direction.
  • tick area When an image is extracted for an area marked with major and minor ticks (“tick area”), the values of all pixels in the X direction at the same position in the Y direction are summed from the image of the extracted tick area, and all Step S3 is performed to form histogram data for the Y direction of the pixel using the numerical value of each pixel in the Y direction that is the sum of the numerical values of the pixels.
  • the numerical sum of each pixel from pixel P 11 to pixel P m1 is determined for pixel P xy , and pixel P
  • the numerical sum of each pixel from 21 to pixel P m1 is calculated, and the operation of calculating the numerical sum of each pixel is repeated to obtain the sum of the numerical values of each pixel from pixel P 1n to pixel P mn .
  • the numerical value of each pixel in the Y direction which is the sum of the numerical values of the pixels.
  • the obtained "number of pixels in the Y direction which is the sum of the values of all the pixels in the X direction" is taken as histogram data for the Y direction of the pixels.
  • the histogram data forming step S3 in the Y direction of the pixel is repeatedly performed for each successive photographed image, and the histogram data is compared with each other for the before and after images (S4).
  • the histogram data for the Y direction of the pixel is formed for the image photographed at the time t1, and the histogram data for the Y direction of the pixel for the image photographed at the time t2 subsequent to the time t1.
  • the histogram data at time t1 is compared with the histogram data at time t2.
  • the comparison of the histogram data for the before and after images at such time determines whether or not a difference of more than a preset increase value occurs.
  • the difference between the histogram data is previously determined.
  • a pixel starting to be equal to or larger than the set increment value is regarded as a pixel located on the boundary of the liquid, and the position (height) of the pixel is recognized as the liquid boundary (S5).
  • the height of the liquid interface is subsequently calculated.
  • An example of a specific method for calculating the height of the liquid interface is disclosed in detail in Patent Registration No. 10-778014. That is, in the image that recognizes the liquid boundary, it recognizes the number of the major scale engraved on the water table, determines the minimum value and the height value per pixel, and determines the vertical value from the liquid boundary to the number corresponding to the minimum value. The distance from the minimum value to the liquid interface is calculated by counting the number of pixels in the direction and multiplying the height value per pixel, and the actual liquid height is calculated by subtracting the calculated distance from the minimum value. Other matters regarding an example of the process of calculating the height of the liquid interface are omitted by repeating the contents of Korean Patent Registration No. 10-778014.
  • a histogram for pixels in the Y direction generated between captured images having a temporal forward and backward relationship in an image of a liquid interface continuously photographed.
  • the change in the data is used to recognize the liquid interface.
  • the liquid interface is recognized based on the change in the color concentration in the static state as well as the change in the color concentration in time. That is, the difference between the histogram data for the Y direction of the pixel for the image photographed at the time t1 and the histogram data for the Y direction of the pixel for the image photographed at the time t2 subsequent to the time t1, and the difference between the histogram data.
  • the position at which the value starts to exceed the preset increment is recognized as the liquid interface. Therefore, in the situation where it is difficult to recognize the liquid interface as described above, the error of recognizing the wrong position as the liquid interface does not occur, and the correct liquid interface is recognized.
  • the static image or the position where the contamination started may
  • the jammed position, or the position where the water level table is connected in multiple stages corresponds to the color density sudden change position, and the prior art makes an error of recognizing it as a liquid boundary surface.
  • the difference in color concentration that is, the histogram data between the before and after images of which time is changed according to the present invention, is changed from the contamination start position to the time.
  • the resulting change in histogram data will not be sufficient to be regarded as the liquid interface, and according to the present invention there will be no error that would recognize such a contamination start position as the liquid interface.
  • the liquid interface has a characteristic of continuously moving in addition to the rapid change in color concentration, the difference in the histogram data between the before and after images of the time varying greatly occurs at the liquid interface. Since the liquid interface is recognized based on the difference in the histogram data between the before and after images, it is possible to recognize the exact liquid interface, thereby accurately measuring the height of the liquid interface.

Abstract

본 발명은, 액체 경계면이 포함되도록 촬영된 영상을 그레이(Gray) 영상처리하여 X방향과 Y방향으로 분포되어 있는 각 픽셀을 농도에 따라 수치화하고, 수위표에서 X방향으로 눈금 영역에 대한 영상만을 추출하고, 추출된 영상에서 Y방향으로의 각 픽셀의 합산된 수치를 구하여 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하고, 시간적으로 전, 후 관계를 갖는 촬영영상에 대해 히스토그램 데이터를 서로 비교하여, 히스토그램 데이터에 미리 설정한 증가값 이상의 차이가 발생하는지 여부를 판단하여, 미리 설정한 증가값 이상의 차이가 발생하기 시작하게 되는 픽셀의 Y방향 위치(높이)를 액체 경계면으로 인식하게 되는 것을 특징으로 하는 액체 경계면 인식방법과, 이를 이용한 액체높이인식장치이다.

Description

영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치
본 발명은 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 액체 경계면 인식장치에 관한 것이다. 구체적으로 본 발명은 액체 경계 부분을 연속적으로 촬영한 영상으로부터, 액체 경계부분에서의 영상이 시간적으로 변화하는 현상을 이용하여, 영상의 Y방향 픽셀별 농도의 시간적 변화를 확인하여 액체의 경계면을 인식함으로써, 하천의 수위, 액체 저장 탱크에서의 수위 등과 같이 액체의 높이를 측정함에 있어서의 오류 발생을 최소화하여 액체 높이 측정의 정확도를 높일 수 있는 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치에 관한 것이다.
하천의 수위를 측정하거나 댐의 수위를 측정하는 경우, 또는 액체를 저장하고 있는 액체 탱크에서의 수위를 측정하는 경우 등과 같이 액체의 높이를 측정함에 있어서, 수위표를 설치하고 액체 경계면 부근에서 수위표의 영상을 촬영하여, 촬영된 영상을 분석하여 액체의 높이를 자동적으로 측정할 수 있는 종래의 기술이 제시되고 있다.
구체적으로 영상 촬영을 이용하여 액체의 높이를 자동적으로 측정하는 기술의 일예가 특허등록 제10-0778014호에 개시되어 있다. 위 특허등록 제10-0778014호에 개시된 "영상을 이용한 액체 높이 측정 장치"는, 수위표와, 영상취득장치와, 높이인식장치를 구비하고 있으며, 영상수신부로부터 촬영 영상을 전송받아서 색농도에 따른 수치화된 영상을 생성하여 액체 표면 즉, 액체 경계면을 인식하고, 아울러 촬영 영상으로부터 수위표의 숫자를 인식하여 최소값을 결정하고, 인식된 액체 경계면으로부터 상기 최소값에 해당하는 숫자까지의 수직방향으로의 픽셀 수를 인식하여 액체의 높이를 결정하는 구성을 가지고 있다.
그런데 종래의 기술에서는 촬영된 영상에서 수직방향, 즉 Y방향으로의 색농도 변화만을 이용하여 액체 경계면을 인식하게 된다. 즉, 촬영 영상의 Y방향으로 위에서 아래로 또는 아래에서 위로 가면서 급격히 색농도가 변화되는 위치를 액체 경계면으로 인식하게 되는 것이다. 따라서 다음과 같은 경우에 액체 경계면을 인식하는데 오류가 발생되었다.
(1) 액체 높이 측정을 위한 수위표의 표면이 오염되었을 경우;
(2) 액체가 매우 맑아 액체 속에 잠겨 있는 수위표가 투시되어 촬영되는 경우;
(3) 수위표에 부유물 등이 걸려 있는 경우;
(4) 수위표가 다단으로 설치되어 있는 경우 등
즉, (1)번이나 (3)번의 경우에는, 액체 경계면이 아님에도 불구하고, 촬영 영상에서는 수위표의 표면에 존재하는 오염물이 존재하는 위치의 상,하에서 색농도가 급격히 변화하게 되므로 이러한 오염물 존재 위치를 액체 경계면을 잘못 인식하는 경우가 발생하게 되는 것이다.
또한 (2)번의 경우, 액체가 매우 맑게 되면 액체 경계면에서 색농도의 변화가 크게 일어나지 않게 되고, 따라서 단순히 상,하 간의 색농도 변화에만 근거하여 액체 경계면을 인식하는 종래 기술에서는 정확한 액체 경계면을 인식하지 못하게 되는 것이다.
예를 들어, 교각의 기초부에 수위표가 설치되고, 기초부보다 더 작은 직경을 가진 교각에 수위표가 연속하여 위치하는 경우가 (4)번에 해당하는 것인데, 이러한 경우, 촬영된 영상에서 볼 때, 기초부와 교각의 경계 위치에서 자칫 위쪽과 아래쪽 간에 색농도의 차이가 크게 나타날 수 있으며, 그에 따라 이러한 기초부와 교각의 경계 위치를 액체 경계면으로 잘못 인식하는 경우가 생기는 것이다.
본 발명은 위와 같은 종래 기술의 한계 즉, 위에서 언급한 (1)번 내지 (4)번에 예시된 상황을 포함하여 액체 경계를 정확하게 측정하기 어려운 상황에서 발생하게 되는 액체 높이 측정 상의 오류를 최소화할 수 있도록 하는 것을 목적으로 한다.
구체적으로 본 발명은, 위에서 언급한 (1)번 내지 (4)번에 예시된 상황 등이 발생하였을 때에도 액체의 경계면을 정확하게 인식함으로써, 하천의 수위, 액체 저장 탱크에서의 수위 등과 같이 액체의 높이를 측정함에 있어서의 오류 발생을 최소화하여 액체 높이 측정의 정확도를 높일 수 있도록 하는 것을 목적으로 한다.
위와 같은 목적을 달성하기 위하여 본 발명에서는 연속적으로 촬영된 액체 경계면에 대한 영상에서, Y방향 픽셀에 대한 히스토그램 데이터의 시간에 따른 변화를 이용하여 액체 경계면을 인식하는 방법 및 장치가 제공된다.
구체적으로 본 발명에서는 액체 경계면이 포함되도록 수위표(101)를 연속적으로 촬영하여 취득한 영상으로부터 액체 경계면을 인식하는 방법으로서, 액체 경계면이 포함되도록 촬영된 영상을 그레이(Gray) 영상처리하여 X방향과 Y방향으로 분포되어 있는 각 픽셀을 농도에 따라 수치화하는 단계(S1); 각 픽셀이 수치화된 영상으로부터, 수위표에서 X방향으로 주 눈금과 보조 눈금이 표시되어 있는 눈금 영역에 대한 영상만을 추출하는 단계(S2); 추출된 눈금 영역에 대한 영상에서 Y방향으로 동일한 위치에 있는 X방향의 모든 픽셀의 수치를 합산하고, 합산된 Y방향으로의 각 픽셀의 수치를 구하여 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하는 단계(S3); 연속적인 촬영 영상 각각에 대해 픽셀의 Y방향에 대한 히스토그램 데이터 형성 단계를 반복하여 연속적으로 수행하여, 시간적으로 전, 후 관계를 갖는 촬영영상에 대해 히스토그램 데이터를 서로 비교하여, 상기 시간적으로 전, 후 관계를 갖는 촬영영상 간의 히스토그램 데이터에 미리 설정한 증가값 이상의 차이가 발생하는지 여부를 판단하는 단계(S4); 및 미리 설정한 증가값 이상의 차이가 발생하기 시작하게 되는 픽셀을 액체의 경계면에 위치하는 픽셀로 보아 해당 픽셀의 Y방향 위치(높이)를 액체 경계면으로 인식하는 단계(S5)를 포함하는 것을 특징으로 하는 액체 경계면 인식방법이 제공된다.
또한 본 발명에서는 영상취득장치를 통해 액체 경계면이 포함되도록 수위표를 연속적으로 촬영하여 취득한 영상으로부터 액체 경계면을 인식하여 액체의 높이를 결정하는 액체높이인식장치로서, 액체 경계면이 포함되도록 수위표를 연속적으로 촬영한 영상을 영상취득장치로부터 수신하는 영상수신부와, 촬영한 영상으로부터 액체의 높이를 결정하는 주제어부와, 상기 주제어부의 제어에 따라 영상취득장치를 작동시키는 촬영신호 제어모듈을 포함하여 구성되며; 상기 주제어부는 상기한 본 발명에 따른 액체 경계면 인식방법에 따라 액체의 높이를 결정하게 되는 것을 특징으로 하는 액체높이인식장치가 제공된다.
위와 같은 본 발명에 따른 방법과 장치에서, 촬영한 영상의 밝기가 사전 설정된 밝기 이하일 때에는 상기 촬영 영상의 픽셀 수치화할 때, 픽셀의 변화를 제거하고 수위표의 표시내용을 명확하게 보이도록 하기 위하여, 영상의 이진화 처리를 통해 영상을 에지(edge) 처리하는 작업을 더 수행할 수 있다.
본 발명에 의하면, 액체 경계면을 정확하게 인식하기 어려운 여러 가지 상황에서도 정확하고 안정적으로 액체의 경계면을 인식할 수 있고 그에 따라 액체의 경계면 높이를 정확하게 측정할 수 있게 된다.
도 1 및 도 2는 각각 본 발명의 일 실시예에 따른 액체 경계면 인식방법이 적용되는 액체 경계면 인식장치를 구비할 수 있는 액체 높이 측정장치의 일예에 대한 개요도와 블록도이다.
도 3은 본 발명에 따른 액체 경계면 인식방법의 각 방법 단계를 설명하기 위한 흐름도이다.
도 4는 수위표에서 액체의 경계면이 포함되어 있도록 취득된 영상의 일예에 대한 도면이다.
도 5는 에지 처리 전의 촬영 영상을 그림으로 표현한 도면이다.
도 6은 에지 처리된 촬영 영상을 그림으로 표현한 도면이다.
본 발명의 액체 경계면 인식방법은, 액체 경계면이 포함되도록 수위표(101)를 연속적으로 촬영하여 취득한 영상으로부터 액체 경계면을 인식하는 방법으로서, 액체 경계면이 포함되도록 촬영된 영상을 그레이(Gray) 영상처리하여 X방향과 Y방향으로 분포되어 있는 각 픽셀을 농도에 따라 수치화하는 단계(S1); 각 픽셀이 수치화된 영상으로부터, 수위표에서 X방향으로 주 눈금과 보조 눈금이 표시되어 있는 눈금 영역에 대한 영상만을 추출하는 단계(S2); 추출된 눈금 영역에 대한 영상에서 Y방향으로 동일한 위치에 있는 X방향의 모든 픽셀의 수치를 합산하고, 합산된 Y방향으로의 각 픽셀의 수치를 구하여 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하는 단계(S3); 연속적인 촬영 영상 각각에 대해 픽셀의 Y방향에 대한 히스토그램 데이터 형성 단계를 반복하여 연속적으로 수행하여, 시간적으로 전, 후 관계를 갖는 촬영영상에 대해 히스토그램 데이터를 서로 비교하여, 상기 시간적으로 전, 후 관계를 갖는 촬영영상 간의 히스토그램 데이터에 미리 설정한 증가값 이상의 차이가 발생하는지 여부를 판단하는 단계(S4); 및 미리 설정한 증가값 이상의 차이가 발생하기 시작하게 되는 픽셀을 액체의 경계면에 위치하는 픽셀로 보아 해당 픽셀의 Y방향 위치(높이)를 액체 경계면으로 인식하는 단계(S5)를 포함하는 것을 특징으로 한다.
본 발명의 액체높이인식장치는, 영상취득장치를 통해 액체 경계면이 포함되도록 수위표를 연속적으로 촬영하여 취득한 영상으로부터 액체 경계면을 인식하여 액체의 높이를 결정하는 액체높이인식장치로서, 액체 경계면이 포함되도록 수위표를 연속적으로 촬영한 영상을 영상취득장치로부터 수신하는 영상수신부와, 촬영한 영상으로부터 액체의 높이를 결정하는 주제어부와, 상기 주제어부의 제어에 따라 영상취득장치를 작동시키는 촬영신호 제어모듈을 포함하여 구성되며; 상기 주제어부는 상기한 본 발명에 따른 액체 경계면 인식방법에 따라 액체의 높이를 결정하게 되는 것을 특징으로 한다.
도 1 및 도 2에는 각각 본 발명의 일 실시예에 따른 액체 경계면 인식방법이 적용되는 액체높이인식장치를 구비할 수 있는 액체 높이 측정장치의 일예로서 특허등록 제10-778014호에 개시된 액체 높이 측정장치의 구성을 보여주는 개요도와, 블록도가 개시되어 있다.
본 발명에 따른 액체 경계면 인식방법이 적용되고, 본 발명에 따른 액체높이인식장치를 구비할 수 있는 액체 높이 측정장치는 도 1 및 도 2, 그리고 특허등록 제10-888014호에 개시되어 있는 것처럼, 액체의 높이를 시각적으로 인식할 수 있도록 숫자로 이루어진 주 눈금과, 막대 표시 등과 같이 부호로 이루어진 보조 눈금이 표시되어 있고 액체에 수직하게 잠겨서 설치되는 수위표(101)와, 수위표(101)의 표면을 촬영하는 영상취득장치(102)와, 상기 영상취득장치(102)로부터 촬영된 영상을 수신하여 액체(105)의 경계면을 인식하여 액체(105)의 높이를 결정하는 액체높이인식장치(103)를 포함하여 구성될 수 있다.
상기한 액체 높이 측정장치의 상기 액체높이인식장치(103)는, 상기 영상취득장치(102)에 의해 촬영한 영상을 수신하는 영상수신부(203), 촬영한 영상으로부터 액체의 높이를 결정하는 주제어부(201), 상기 주제어부(201)의 제어에 따라 영상취득장치(102)를 작동시키는 촬영신호 제어모듈(202)을 포함하여 구성될 수 있다. 도 1 및 도 2에서 부재번호 101은 수위표(101)이고, 부재번호 102는 영상취득부(102)이며, 부재번호 103은 높이 인식부(103)이고, 부재번호 104는 중앙관리 장치(104)이며, 부재번호 105는 액체(105)이고, 부재번호 107은 지지대(107)이다. 또한 부재번호 201은 주제어부(201)이고, 부재번호 202는 촬영신호 제어모듈(202)이며, 부재번호 203은 영상수신부이고, 부재번호 204는 전송수단(204)이다. 부재번호 205는 카메라(205)이고, 부재번호 206은 팬 틸트(206)이며, 부재번호 207 및 208은 각각 조명장치(207) 및 렌즈 제어 모듈(208)이다. 상기한 각 구성요소는 특허등록 제10-778014호에 모두 개시되어 있는 것이므로, 상기 특허등록 제10-778014호의 내용을 원용함으로써 이에 대한 반복 설명은 생략한다.
본 발명에 따른 액체 경계면 인식방법은 상기한 주제어부(201)에 의해서 수행된다. 즉, 본 발명에 따른 액체높이인식장치(103)의 상기 주제어부(201)는 본 발명에 따른 액체 경계면 인식방법에 의해 액체 경계면을 식별하여 액체높이를 인식하게 되는 것이다. 아래에서 후술하는 것처럼, 본 발명에 따른 액체높이인식장치(103)의 상기 주제어부(201)는 특허등록 제10-778014호에 개시된 주제어부(201)와 상이한 액체 경계면 인식방법에 따라 액체의 경계면을 인식하게 된다.
다음에서는 본 발명에 따른 액체 경계면 인식방법에 대해 설명한다. 도 3에는 본 발명에 따른 액체 경계면 인식방법의 각 방법 단계를 설명하기 위한 흐름도가 도시되어 있다. 도 4에는 수위표(101)에서 액체(501)의 경계면이 포함되어 있도록 취득된 영상의 일예가 도시되어 있다. 도 4에서 부재번호 502는 보조 눈금이다.
본 발명에 따른 액체 경계면 인식방법은, 수위표(101)에서 액체 경계면이 포함되어 있는 영상이 취득되어 있는 상태를 전제로 하고 있다.
즉, 영상취득장치(102)를 통해, 도 4에 예시된 것과 같은 액체 경계면이 포함되도록 수위표(101)를 촬영한 영상이 연속적으로 취득되고, 취득된 영상이 상기 높이인식장치(103)로 전송되어 온 상태에서 본 발명에 따른 액체 경계면 인식방법을 통하여 액체 경계면을 인식하게 되는 것이다.
액체 경계면이 포함되어 있도록 수위표(101)를 촬영한 영상을 영상취득장치(102)에 의하여 연속적으로 취득하고, 취득된 영상을 본 발명에 따른 액체 경계면 인식장치를 포함하는 높이인식장치(103)로 전송되는 방법 단계 및 구성의 일예는 특허등록 제10-778014호에 개시되어 있으므로, 위 특허등록 제10-778014호의 내용을 원용함으로써 이에 대한 반복 설명은 생략한다. 비록 본 명세서에서는, 본 발명에 따른 액체 경계면 인식장치 및 액체 경계면 인식방법에서 이용하게 될 수위표(101)의 연속 촬영 영상 즉, 액체 경계면이 포함되어 있도록 수위표(101)를 연속적으로 촬영한 영상이, 특허등록 제10-778014호에 개시된 방법으로 취득되는 것으로 예시하였지만 이에 한정되는 것은 아니다. 따라서 기타의 방법을 통하여 액체 경계면이 포함되어 있도록 수위표(101)를 연속적으로 촬영하여 취득한 영상을 본 발명의 액체 경계면 인식방법 및 액체 경계면 인식장치에서 이용할 수도 있다.
본 발명에서는 시간을 달리하여 액체 경계면이 포함되도록 수위표(101)를 촬영한 영상에서, 시간 경과에 따른 색농도의 변화에 기초하여 액체 경계면을 인식하게 된다. 즉, 일정 시간 간격으로 수위표(101)를 촬영한 각각의 영상에 대해, 앞선 시간에 촬영한 영상에서의 색농도에 따른 히스토그램 데이터와 후속된 시간에서 촬영한 영상에서의 색농도에 따른 히스토그램 데이터를 대비하여 색농도의 변화(히스토그램 데이터 간의 변화)가 발생하는 지의 여부를 감지하여 액체 경계면을 인식하게 되는 것이다.
본 발명에 따른 액체 경계면 인식방법 및 액체 경계면 인식장치를 더욱 구체적으로 설명하면, 액체 경계면이 포함되도록 수위표(101)를 촬영한 영상이 연속적으로 촬영되어 취득된 상태에서 본 발명에 따른 액체 경계면 인식장치는, 액체 경계면이 포함되도록 촬영된 영상을 그레이(Gray) 영상처리(촬영영상을 흑백으로 만드는 작업)하여 X방향과 Y방향으로 분포되어 있는 각 픽셀을 농도에 따라 수치화하는 단계(S1)를 수행한다. 여기서 X방향은 수위표의 수평방향을 나타내며, Y방향은 수위표의 높이 방향 즉, 수직방향(액체의 수위가 승하강하는 방향)을 나타낸다. 이와 같이 본 발명에 따른 액체 경계면 인식방법의 첫째 단계로서 픽셀 농도 수치화 단계(S1)가 수행되어, 액체 경계면이 포함되도록 촬영된 영상을 흑백으로 만들게 되고(그레이 영상처리), 그에 따른 흑백 영상에 존재하는 각 픽셀의 농도(흑백 영상의 농암)가 수치화되는 것이다. 일반적으로 흑백 영상에서의 각 픽셀의 농도는 약 0??255까지의 값을 갖는다. 이러한 촬영 영상의 그레이 영상처리 및 각 픽셀을 농도에 따라 수치화하는 방법 자체는 영상처리 분야에서 이미 공지된 것이므로 상세한 설명은 생략한다.
야간처럼 수위표를 비추는 광량(光量)이 부족하여 촬영한 영상의 밝기가 사전 설정된 밝기 이하인 경우, 본 발명에 따른 액체 경계면 인식장치에서는 영상의 이진화 처리를 통해 영상을 에지(edge) 처리를 수행한다. 도 5는 에지 처리 전의 촬영 영상을 그림으로 표현한 도면이고, 도 6은 에지 처리된 촬영 영상을 그림으로 표현한 도면인데, 도 5 및 도 6에서 알 수 있듯이 촬영 영상을 에지 처리하게 되면 수위표에 표시된 숫자나 문자의 테두리가 더 굵고 선명하게 보이게 되어, 야간과 같이 광량이 부족하여 어두운 영상이 취득되더라도 눈금에 표시된 숫자 등을 더욱 쉽게 인식할 수 있게 된다.
일반적으로 광량이 부족한 야간에 촬영된 영상을 그레이영상처리만 하게 되면 각 영상의 픽셀의 농도 변화가 계속적으로 변화하게 된다. 예를 들면, 시간이 지나면서 픽셀이 반짝이는 등의 현상이 발생하게 되는 것이다. 이러한 픽셀 농도가 시간이 경과하면서 계속적으로 변화하게 되면 정확한 액체 경계면을 찾기가 어렵게 되는데, 위와 같이 에지 처리를 수행하게 되면, 이러한 시간 경과에 따른 영상에서의 픽셀 놀도 변화가 제거된다. 촬영영상을 에지 처리하는 구체적인 방법은 영상처리 분야에서 이미 알려진 영상처리 방법이므로, 그 구체적인 내용에 대해서는 설명을 생략한다.
후속하여 본 발명에 따른 액체 경계면 인식장치에서는, 각 픽셀이 수치화된 영상으로부터, 수위표(101)가 시작되는 점에서 X방향의 좌표를 기준을 삼아, 이미 알고 있는 주 눈금의 X방향 폭과 이미 알고 있는 보조 눈금의 X방향 폭을 이용하여, X방향으로 주 눈금과 보조 눈금이 표시되어 있는 영역의 영상만을 추출하는 단계(S2)를 수행한다.
주 눈금 및 보조 눈금이 표시된 영역("눈금 영역")에 대한 영상이 추출되면, 추출된 눈금 영역의 영상에서 Y방향으로 동일한 위치에 있는 X방향의 모든 픽셀의 수치를 합산하고, X방향으로 모든 픽셀의 수치의 합으로 이루어진 Y방향으로의 각 픽셀의 수치를 이용하여 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하는 단계(S3)가 수행된다. 예를 들어, X방향으로 픽셀이 m개 배열되고, Y방향으로 픽셀이 n개 배열된다고 가정하면, 픽셀 Pxy에 대해 픽셀 P11부터 픽셀 Pm1까지의 각 픽셀의 수치합을 구하고, 픽셀 P21부터 픽셀 Pm1까지의 각 픽셀의 수치합을 구하며, 이러한 각 픽셀의 수치합을 구하는 작업을 반복하여 픽셀 P1n부터 픽셀 Pmn까지의 각 픽셀의 수치의 합을 구함으로써 "X방향으로 모든 픽셀의 수치의 합으로 이루어진 Y방향으로의 각 픽셀의 수치"를 얻어낸다. 이렇게 얻어낸 "X방향으로 모든 픽셀의 수치의 합으로 이루어진 Y방향으로의 각 픽셀의 수치"를, 픽셀의 Y방향에 대한 히스토그램 데이터로 삼게 되는 것이다.
연속적인 촬영 영상 각각에 대해 이와 같은 픽셀의 Y방향에 대한 히스토그램 데이터 형성 단계(S3)를 반복하여 연속적으로 수행하고, 전, 후의 영상에 대해 히스토그램 데이터를 서로 비교하는 단계(S4)를 수행한다. 예를 들어, 시간 t1에 촬영한 영상에 대해 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하고, 상기 시간 t1에 후속하는 시간 t2에 촬영한 영상에 대해 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하여, 시간 t1에서의 히스토그램 데이터와 시간 t2에서의 히스토그램 데이터를 비교하는 것이다.
이와 같은 시간에 있어서의 전, 후 영상에 대한 히스토그램 데이터 비교 단계를 통하여 미리 설정한 증가값 이상의 차이가 발생하는지 여부를 판단하게 되는데, 본 발명에 따른 액체 경계면 인식장치는, 히스토그램 데이터 간의 차이가 미리 설정한 증가값 이상이 되기 시작하는 픽셀을 액체의 경계면에 위치하는 픽셀로 보아 해당 픽셀의 Y방향 위치(높이)를 액체 경계면으로 인식한다(S5).
이와 같이 액체의 경계면으로 인식하게 되면, 후속하여 액체 경계면의 높이를 연산하게 된다. 액체 경계면의 높이를 연산하는 구체적인 방법의 일예는 특허등록 제10-778014호에 상세히 개시되어 있다. 즉, 액체 경계면을 인식하게 된 영상에서, 수위표에 새겨진 주 눈금의 숫자를 인식하고, 인식된 숫자 중 최소값과, 픽셀당 높이값을 결정하고, 액체 경계면으로부터 상기 최소값에 해당하는 숫자까지의 수직방향으로의 픽셀 수를 계수하여 상기 픽셀당 높이값을 곱하여 상기 최소값으로부터 액체 경계면까지의 거리를 연산하고, 상기 최소값으로부터 상기 연산된 거리를 차감하여 실제 액체의 높이를 연산한다. 액체 경계면의 높이 연산 과정의 일예에 대한 기타 사항은 대한민국 특허등록 제10-778014호의 내용을 원용함으로써 반복 설명을 생략한다.
위에서 설명한 바와 같이, 본 발명에 따른 액체 경계면 인식방법 및 액체 경계면 인식장치에서는, 연속적으로 촬영된 액체 경계면에 대한 영상에서 시간적으로 전,후 관계를 갖는 촬영 영상들 간에 생기게 되는 Y방향 픽셀에 대한 히스토그램 데이터의 변화를 이용하여 액체 경계면을 인식하게 된다.
앞서 "배경 기술"란에서 언급한 것처럼, 종래의 기술에서는 특정 시간에 촬영된 정적 영상에서, Y방향으로의 색농도만을 점검하여 Y방향으로 위에서 아래로 또는 아래에서 위로 가면서 색농도가 급변하는 위치를 액체 경계면으로 인식하였다. 따라서 "배경 기술"란에서 언급한 (1) 내지 (4)번을 포함한 여러 가지 액체 경계면을 정확하게 인식하기 어려운 상황이 발생하게 된다.
이와 달리 본 발명에서는 종래와 같이 정적인 상태의 색농도의 변화 뿐만 아니라, 시간적인 색농도 변화에 근거하여 액체 경계면을 인식하게 된다. 즉, 시간 t1에 촬영한 영상에 대해 픽셀의 Y방향에 대한 히스토그램 데이터와, 상기 시간 t1에 후속하는 시간 t2에 촬영한 영상에 대해 픽셀의 Y방향에 대한 히스토그램 데이터를 비교하여, 히스토그램 데이터 간의 차이가 미리 설정한 증가값 이상이 되기 시작하는 위치를 액체 경계면으로 인식하는 것이다. 따라서 위와 같이 액체 경계면을 인식하기 어려운 상황에서 잘못된 위치를 액체 경계면으로 인식하게 되는 오류가 발생하지 않게되고, 정확한 액체 경계면을 인식하게 된다.
예를 들어, 액체 높이 측정을 위한 수위표의 표면이 오염되거나 수위표에 부유물 등이 걸려 있는 경우 또는 수위표가 다단으로 설치되어 있는 경우, 정적인 상태에서의 촬영영상에서는 오염이 시작된 위치 또는 부유물이 걸린 위치, 또는 수위표가 다단으로 연결되는 위치가 색농도 급변 위치에 해당하게 되고, 종래 기술에서는 이를 액체 경계면으로 인식하는 오류를 범하게 된다. 그러나 위와 같은 오염 시작 위치 등은 짧은 시간 내에 위치가 변화되는 것이 아니므로, 본 발명에 따라 시간을 달리한 전,후 영상 간의 색농도 차이 즉, 히스토그램 데이터를 비교하게 되면, 오염 시작 위치에서 시간에 따른 히스토그램 데이터의 변화는, 액체 경계면으로 간주하기에 충분하지 않은 것이 될 것이며, 따라서 본 발명에 따르면 이러한 오염 시작 위치를 액체 경계면으로 인식하게 되는 오류가 발생하지 않게 되는 것이다.
반면에 액체 경계면은 색농도가 급변한다는 특징 이외에 일반적으로 계속 움직이는 특징을 가지고 있으므로 액체 경계면에서는 시간을 달리한 전,후 영상 간의 히스토그램 데이터의 차이가 크게 발생하게 되며, 본 발명은 이러한 시간을 달리한 전,후 영상 간의 히스토그램 데이터의 차이에 근거하여 액체 경계면을 인식하게 되므로, 정확한 액체 경계면을 인식할 수 있으며, 그에 따라 액체의 경계면 높이를 정확하게 측정할 수 있게 된다.
위에서 첨부도면을 참조하면서 본 발명의 바람직한 실시예를 더욱 구체적으로 설명한다. 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 하나의 실시예로서 설명되는 것이며 이것에 의해 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지 않는다.
본 발명은 수위 측정에 매우 유용하게 사용될 수 있다.

Claims (3)

  1. 액체 경계면이 포함되도록 수위표(101)를 연속적으로 촬영하여 취득한 영상으로부터 액체 경계면을 인식하는 방법으로서,
    액체 경계면이 포함되도록 촬영된 영상을 그레이(Gray) 영상처리하여 X방향과 Y방향으로 분포되어 있는 각 픽셀을 농도에 따라 수치화하는 단계(S1);
    각 픽셀이 수치화된 영상으로부터, 수위표(101)에서 X방향으로 주 눈금과 보조 눈금이 표시되어 있는 눈금 영역에 대한 영상만을 추출하는 단계(S2);
    추출된 눈금 영역에 대한 영상에서 Y방향으로 동일한 위치에 있는 X방향의 모든 픽셀의 수치를 합산하고, 합산된 Y방향으로의 각 픽셀의 수치를 구하여 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하는 단계(S3);
    연속적인 촬영 영상 각각에 대해 픽셀의 Y방향에 대한 히스토그램 데이터 형성 단계를 반복하여 연속적으로 수행하여, 시간적으로 전, 후 관계를 갖는 촬영영상에 대해 히스토그램 데이터를 서로 비교하여, 상기 시간적으로 전, 후 관계를 갖는 촬영영상 간의 히스토그램 데이터에 미리 설정한 증가값 이상의 차이가 발생하는지 여부를 판단하는 단계(S4); 및
    미리 설정한 증가값 이상의 차이가 발생하기 시작하게 되는 픽셀을 액체의 경계면에 위치하는 픽셀로 보아 해당 픽셀의 Y방향 위치(높이)를 액체 경계면으로 인식하는 단계(S5)를 포함하는 것을 특징으로 하는 액체 경계면 인식방법.
  2. 제1항에 있어서,
    촬영한 영상의 밝기가 사전 설정된 밝기 이하일 때에는 상기 촬영 영상의 픽셀 수치화 단계(S1)에서는, 픽셀의 변화를 제거하고 수위표의 표시내용을 명확하게 보이도록 하기 위하여, 영상의 이진화 처리를 통해 영상을 에지(edge) 처리하는 작업을 더 수행하는 것을 특징으로 하는 액체 경계면 인식방법.
  3. 영상취득장치(102)를 통해 액체 경계면이 포함되도록 수위표(101)를 연속적으로 촬영하여 취득한 영상으로부터 액체 경계면을 인식하여 액체(105)의 높이를 결정하는 액체높이인식장치(103)로서,
    액체 경계면이 포함되도록 수위표(101)를 연속적으로 촬영한 영상을 영상취득장치(102)으로부터 수신하는 영상수신부(203)와, 촬영한 영상으로부터 액체의 높이를 결정하는 주제어부(201)와, 상기 주제어부(201)의 제어에 따라 영상취득장치(102)를 작동시키는 촬영신호 제어모듈(202)을 포함하여 구성되며;
    상기 주제어부(201)는,
    액체 경계면이 포함되도록 촬영된 영상을 그레이(Gray) 영상처리하여 X방향과 Y방향으로 분포되어 있는 각 픽셀을 농도에 따라 수치화하는 단계(S1);
    각 픽셀이 수치화된 영상으로부터, 수위표(101)에서 X방향으로 주 눈금과 보조 눈금이 표시되어 있는 눈금 영역에 대한 영상만을 추출하는 단계(S2);
    추출된 눈금 영역에 대한 영상에서 Y방향으로 동일한 위치에 있는 X방향의 모든 픽셀의 수치를 합산하고, 합산된 Y방향으로의 각 픽셀의 수치를 구하여 픽셀의 Y방향에 대한 히스토그램 데이터를 형성하는 단계(S3);
    연속적인 촬영 영상 각각에 대해 픽셀의 Y방향에 대한 히스토그램 데이터 형성 단계를 반복하여 연속적으로 수행하여, 시간적으로 전, 후 관계를 갖는 촬영영상에 대해 히스토그램 데이터를 서로 비교하여, 상기 시간적으로 전, 후 관계를 갖는 촬영영상 간의 히스토그램 데이터에 미리 설정한 증가값 이상의 차이가 발생하는지 여부를 판단하는 단계(S4); 및
    미리 설정한 증가값 이상의 차이가 발생하기 시작하게 되는 픽셀을 액체의 경계면에 위치하는 픽셀로 보아 해당 픽셀의 Y방향 위치(높이)를 액체 경계면으로 인식하는 단계(S5)를 통해 액체의 높이를 결정하게 되는 것을 특징으로 하는 액체높이인식장치.
PCT/KR2010/005065 2009-11-19 2010-08-02 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치 WO2011062352A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800027019A CN102165288B (zh) 2009-11-19 2010-08-02 使用影像在时间上的像素的浓度分布变化的液体边界面识别方法和使用该方法的液体高度识别装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0111894 2009-11-19
KR1020090111894A KR100998885B1 (ko) 2009-11-19 2009-11-19 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치

Publications (1)

Publication Number Publication Date
WO2011062352A1 true WO2011062352A1 (ko) 2011-05-26

Family

ID=43512453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005065 WO2011062352A1 (ko) 2009-11-19 2010-08-02 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치

Country Status (3)

Country Link
KR (1) KR100998885B1 (ko)
CN (1) CN102165288B (ko)
WO (1) WO2011062352A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670473B (zh) * 2018-09-12 2019-09-01 財團法人工業技術研究院 液位檢測方法及其裝置
CN111968086A (zh) * 2020-08-13 2020-11-20 南通市海视光电有限公司 一种基于机器视觉的化工视镜分相检测方法
CN113049060A (zh) * 2021-03-26 2021-06-29 东北石油大学 一种基于图像识别技术的储罐液位计量方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200107B1 (ko) 2010-07-29 2012-11-12 숭실대학교산학협력단 영상 기반의 수위 계측 시스템 그 방법
CN102519540A (zh) * 2011-12-10 2012-06-27 山东明佳包装检测科技有限公司 一种啤酒泡沫补偿液位的检测方法
KR101409394B1 (ko) 2013-11-14 2014-06-20 한국건설기술연구원 가상수위표를 이용한 수위측정 지원시스템 및 수위측정 지원방법
KR102098770B1 (ko) * 2014-03-19 2020-04-08 재단법인 포항산업과학연구원 전기로에서 탕면의 높이를 측정하기 위한 영상 처리 장치 및 방법
KR101616432B1 (ko) * 2014-06-10 2016-04-28 삼성중공업 주식회사 영상 내 해수면 검출방법 및 그를 이용한 선박의 흘수 측정방법
KR101596820B1 (ko) * 2014-08-08 2016-03-07 아몽솔루션(주) 수위 자동인식 방법
CN105547185B (zh) * 2016-01-15 2018-03-09 中国人民解放军国防科学技术大学 液体横向射流边界的获取方法
KR101873124B1 (ko) * 2016-12-30 2018-06-29 부산대학교 산학협력단 액체 저장 탱크의 수위 계측 방법 및 액체 저장 탱크의 수위 계측 시스템
CN107437244B (zh) * 2017-06-20 2020-10-16 广东工业大学 一种药用袋装点滴容量视觉检测方法
CN110836705A (zh) * 2018-08-15 2020-02-25 珠海格力电器股份有限公司 一种液位视频分析方法及装置
TWI690231B (zh) 2018-09-07 2020-04-01 財團法人工業技術研究院 無線定位校準系統及其方法
JP6612411B1 (ja) * 2018-10-04 2019-11-27 株式会社シュア・テクノ・ソリューション. 水位計測プログラム及びこれに用いられるリング状指標
KR102127405B1 (ko) * 2018-11-28 2020-06-26 홍익대학교 산학협력단 인공위성 영상을 이용한 하천의 유량추정방법 및 장치
CN112541885B (zh) * 2020-11-26 2021-11-16 蓝箭航天空间科技股份有限公司 一种用于检测火箭贮箱液位的方法和系统
KR102597692B1 (ko) * 2020-12-11 2023-11-03 주식회사 제로클래스랩 영상을 이용한 물건 부피의 측정 장치, 방법, 및 컴퓨터 프로그램

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070032412A (ko) * 2005-09-16 2007-03-22 한국건설기술연구원 영상을 이용한 액체 높이 측정 장치 및 방법
KR20090048847A (ko) * 2007-11-12 2009-05-15 (주)태민메카트로닉스 수위 관측 시스템 및 수위레벨 원격 측정 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070032412A (ko) * 2005-09-16 2007-03-22 한국건설기술연구원 영상을 이용한 액체 높이 측정 장치 및 방법
KR20090048847A (ko) * 2007-11-12 2009-05-15 (주)태민메카트로닉스 수위 관측 시스템 및 수위레벨 원격 측정 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Institute of Control, Robotics and Systems, Journal of 2008 Conference, Daejon, Korea", 10 December 2008, article PARK, SANG BUM ET AL.: "The Robust Water Level Measurement Method based on the Accumulated Histogram", pages: 80 - 83 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670473B (zh) * 2018-09-12 2019-09-01 財團法人工業技術研究院 液位檢測方法及其裝置
US10699433B2 (en) 2018-09-12 2020-06-30 Industrial Technology Research Institute Liquid level detecting method and device using the same
CN111968086A (zh) * 2020-08-13 2020-11-20 南通市海视光电有限公司 一种基于机器视觉的化工视镜分相检测方法
CN111968086B (zh) * 2020-08-13 2024-04-16 南通市海视光电有限公司 一种基于机器视觉的化工视镜分相检测方法
CN113049060A (zh) * 2021-03-26 2021-06-29 东北石油大学 一种基于图像识别技术的储罐液位计量方法

Also Published As

Publication number Publication date
CN102165288A (zh) 2011-08-24
KR100998885B1 (ko) 2010-12-08
CN102165288B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2011062352A1 (ko) 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치
CN111294589B (zh) 摄像模组镜头表面检测方法
CN103675588B (zh) 印刷电路元件极性的机器视觉检测方法及设备
CN109752394A (zh) 一种显示屏缺陷高精度检测方法及系统
CN106525735A (zh) 通过水面影像获得水质情况的水情监测系统及其工作方法
KR20090101356A (ko) 결함 검출 장치 및 결함 검출 방법
CN102988052B (zh) 足长测量方法及系统
CN115053258A (zh) 一种显示面板的检测方法、装置及系统
KR20140075042A (ko) 표시패널 검사 장치 및 그 방법
CN113554667A (zh) 一种基于图像识别的三维位移检测方法及装置
CN113192063B (zh) 一种桥梁线形监测系统以及桥梁线形监测方法
WO2018101746A2 (ko) 도로면 폐색 영역 복원 장치 및 방법
CN100518335C (zh) 数码影像解析度测试图的制作方法
CN106500577A (zh) 一种医用直线加速器多页光栅位置检测方法
GB2470741A (en) Liquid level detection method
KR101519975B1 (ko) 수중 내에서의 어류 수 감지를 통한 수질 측정 장치 및 그 방법
JP2010230423A (ja) 変位量測定装置及び同測定方法
CN112858331A (zh) 一种vr屏幕的检测方法及检测系统
CN117078682B (zh) 一种大规模网格化空气质量等级精准评估方法
KR100759029B1 (ko) 피 측정물의 실시간 높이 추출을 위한 캘리브레이션 장치및 방법
CN102243380B (zh) 分划板、数字影像水准仪及影像辨识方法
JPH0794971B2 (ja) 断面形状検知方法
TW471230B (en) Picture noise measuring method for picture reader, and recording medium therefor
WO2021230409A1 (ko) 수중생물 측정장치 및 방법
WO2013151191A1 (ko) 평판패널 기판의 자동광학검사 방법 및 그 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002701.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10831719

Country of ref document: EP

Kind code of ref document: A1