WO2021230409A1 - 수중생물 측정장치 및 방법 - Google Patents

수중생물 측정장치 및 방법 Download PDF

Info

Publication number
WO2021230409A1
WO2021230409A1 PCT/KR2020/006673 KR2020006673W WO2021230409A1 WO 2021230409 A1 WO2021230409 A1 WO 2021230409A1 KR 2020006673 W KR2020006673 W KR 2020006673W WO 2021230409 A1 WO2021230409 A1 WO 2021230409A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving object
tracking
lidar sensor
tracking information
aquatic
Prior art date
Application number
PCT/KR2020/006673
Other languages
English (en)
French (fr)
Inventor
박석원
김성태
권경안
이광호
Original Assignee
(주) 테크로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크로스 filed Critical (주) 테크로스
Publication of WO2021230409A1 publication Critical patent/WO2021230409A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to an apparatus and method for measuring aquatic organisms, and more particularly, to an apparatus and method for measuring zooplankton in ballast water so as to be applicable to a ballast water treatment apparatus and to more accurately measure zooplankton.
  • ballast water or ballast water is a ballast tank installed on a ship so that the ship can maintain balance when the ship is operated in a state in which cargo is unloaded from the ship or the amount of cargo loaded on the ship is very small. It refers to the seawater that fills the
  • ballast water treatment system mounted on a ship must go through an onshore test and onboard test in accordance with the standards of the International Maritime Organization (IMO) and receive a certificate before operation, the ballast water treated by the ballast water treatment system must be operated by the International Maritime Organization.
  • IMO International Maritime Organization
  • the present invention has been devised to solve the above problems, and in particular, it is an object of the present invention to provide an aquatic organism measuring apparatus and method capable of more rapidly and accurately measuring zooplankton in ballast water.
  • An aquatic organism measuring apparatus devised in order to achieve the above object includes: a chamber in which the sample water is accommodated; a lidar sensor for measuring the position of the moving object in the sample water through one side of the chamber; and a control unit that analyzes a moving object based on the position of the moving object continuously measured through a lidar sensor; including, but the controller includes, a first tracking generated by tracing the movement path of a moving object classified into living and inanimate objects (tracking) information is received and model data generated through machine learning is used, the second tracking information is generated by tracking the moving object detected by the lidar sensor, the model data and the second tracking information It is compared to determine whether the moving object is a living organism or an inanimate object.
  • a first tracking generated by tracing the movement path of a moving object classified into living and inanimate objects (tracking) information is received and model data generated through machine learning is used
  • the second tracking information is generated by tracking the moving object detected by the lidar sensor, the model data and the second tracking information It is compared to determine
  • the first or second tracking information may be composed of a tracking image generated by continuously tracking a moving object at predetermined time intervals and connecting each location with a line.
  • the first or second tracking information may be composed of a chart in which each position is displayed as coordinates by continuously tracking a moving object at predetermined time intervals.
  • the control unit converts the size of the moving object based on the number of horizontal and vertical pixels and the actual size per pixel of the detected moving object, and tracks only the moving object of a predetermined size or larger to provide second tracking information create
  • the size of the moving object generating the second tracking information may be 10 ⁇ m or more and 50 ⁇ m or less, or 50 ⁇ m or more.
  • control unit may determine that a pixel cluster within a predetermined distance is one moving object.
  • the first tracking information may be input by labeling living or inanimate objects so that a moving entity whose movement path is tracked is distinguished.
  • the chamber is composed of a hexahedron having a receiving space therein, and the surface opposite to the lidar sensor may be formed of a transparent material or open.
  • the material of the chamber may be formed of opaque plastic or metal except for the surface facing the lidar sensor.
  • the lidar sensor includes a transmitter for transmitting a laser and a receiver for receiving a laser reflected from a moving object, and the output wavelength of the transmitter may be 400 nm to 1500 nm.
  • the position of the moving object may be composed of X-axis coordinates, Y-axis coordinates, and three-dimensional coordinates based on distance.
  • the method for measuring aquatic life comprises the steps of: receiving first tracking information generated by tracing the movement path of a moving entity classified into living and non-living objects, respectively, and generating model data through machine learning; Measuring the position of the moving object included in the number of samples in the chamber with a lidar sensor; generating second tracking information by tracking the moving object detected by the lidar sensor; and determining whether the moving object is a living organism or an inanimate object by comparing the model data and the second tracking information.
  • a ship environment in which vibration or shaking occurs by tracking the position of a moving object in the sample water with a lidar sensor to obtain three-dimensional movement coordinates and using this to more accurately distinguish floating objects and living aquatic organisms in the sample water It has the effect of performing high-precision life-and-death discrimination under
  • FIG. 1 is a block diagram of an aquatic organism measuring device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method for measuring aquatic organisms according to an embodiment of the present invention
  • Figure 3 shows the result of measuring the position of the moving object included in the number of samples in the chamber with a lidar sensor in the aquatic organism measuring method according to an embodiment of the present invention
  • FIG. 4 shows tracking information generated by tracking a moving object (living organism) detected in the aquatic organism measurement method according to an embodiment of the present invention
  • FIG. 5 is a view showing tracking information generated by tracking a moving object (float) detected in the method for measuring aquatic life according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing an aquatic organism measuring apparatus according to an embodiment of the present invention.
  • the aquatic organism measuring apparatus 100 includes a chamber 110 in which a sample number 130 containing various kinds of aquatic organisms 140 is accommodated, and the chamber Based on the lidar sensor 120 measuring the position of the aquatic creature 140 by irradiating light to the number of samples 130 in 110 and the position of the aquatic creature 140 measured by the lidar sensor 120 . and a control unit 150 that analyzes the aquatic life 140 as a .
  • the number of samples 130 in the chamber 110 may be sampled in various fields in which it is necessary to analyze the aquatic organisms 140 included in the number of samples 130 .
  • ballast water is treated in various ways such as electrolysis or chemical input during ballasting, then flows into the ballast tank and is stored, and then discharged out of the ship through the discharge pipe during deballasting.
  • the discharged ballast water is sampled and the type of aquatic life present in the ballast water is analyzed, such as determining whether or not it is alive or not. will do
  • the present invention is not limited thereto and may be applied to other fields.
  • purified water sterilized in a water purification plant may be sampled and analyzed through the aquatic organism measuring device 100 of the present invention.
  • the chamber 110 is configured so that the number of samples to be measured 140 can be accommodated and moored for the measurement time.
  • the surface of the chamber 110 opposite to the lidar sensor 120 is formed of a transparent material or configured to be open, so that the light (laser) output from the lidar sensor 120 is the number of samples inside the chamber 110 . (140) can be reached.
  • the material of the chamber 110 except for the surface opposite to the lidar sensor 120, which is transparent or open so that the light output from the lidar sensor 120 passes, lidar It is preferable to be formed of a material capable of reflecting the light output from the sensor 120 .
  • a material capable of reflecting the light output from the sensor 120 may be formed of opaque plastic or metal.
  • the chamber 110 is made of a material capable of reflecting light, the light output from the lidar sensor 120 is reflected while the chamber 110 is formed. It is possible to measure the distance to each side of the interior, and it is possible to measure the position of the aquatic organism 140 in the sample water 130 accommodated in the chamber 110 based on the measured distance.
  • the chamber 110 is configured in the form of a bowl that does not have an inlet (not shown) and an outlet (not shown), so an experimenter can use it by manually putting water, but it is connected to a sampling port (not shown).
  • An inlet (not shown) and an outlet (not shown) may be provided so that the sample water concentrated by the concentrating device (not shown) automatically flows in and out.
  • the LiDAR (Light Detection And Ranging, LiDAR) sensor 120 is a device that scans light (laser) through one side of the chamber 110 to measure the position of a moving object in the sample number 130, It may be configured to include a transmitter (not shown) that transmits, and a receiver (not shown) that receives the laser reflected from the moving object.
  • the lidar sensor 120 may be installed in the upper, lower, or lateral direction of the chamber 110 to measure aquatic organisms included in the sample water of the chamber 110 .
  • the lidar sensor 120 configured in this way measures the time when the laser output from the transmitter (not shown) is reflected from the moving object (eg, aquatic creature 140) and returns to measure the coordinates of the position of the moving object. do.
  • the surface opposite to the lidar sensor 120 is transparent or open to allow light to pass through, and the remaining surface is formed of opaque plastic or metal. Therefore, the light (laser) output from the lidar sensor 120 flows into the chamber 110, passes through the transparent sample water 140, collides with the aquatic creature 140, and the reflected light is reflected by the lidar sensor. By receiving at 120, it is possible to measure the position of the aquatic creature 140. On the other hand, the laser scanned to a place where there is no reflector such as aquatic life 140 or floating object (not shown) is reflected on the inner wall of the chamber 110 .
  • the output wavelength of the transmitter (not shown) of the lidar sensor 120 may be 400 nm to 1500 nm.
  • infrared wavelengths for example, 1064 nm
  • the output wavelength of the lidar sensor 120 is a green wavelength suitable for underwater measurement (for example, 532 nm) because when an infrared wavelength used in air is used, it is absorbed well in water and a measurement error occurs greatly. It is preferable to use
  • control unit 150 is a configuration that analyzes whether a moving object is animate or inanimate based on the positions continuously measured through the lidar sensor 120, and in particular, moves within the number of samples. It detects an object, tracks the detected moving object, generates a tracking image, and compares it with model data generated through machine learning in advance to analyze whether the moving object is alive or dead. This process will be described in detail.
  • the aquatic life measuring method of the present invention is generated by tracing the movement path of a moving entity classified into living and inanimate objects.
  • the method for measuring aquatic organisms first, generates a plurality of first tracking information, and inputs this as learning data to generate model data through machine learning (S110). A more detailed process will be described later in detail with reference to FIGS. 4 and 5 .
  • the position of the aquatic life in the sample water is measured with the lidar sensor 120 (S120).
  • 3 shows the results of measuring the position of the moving object with the lidar sensor 120 in the method for measuring aquatic life according to an embodiment of the present invention.
  • the moving object is a plurality of pixels. is displayed
  • each pixel may be specified by X-axis coordinates and Y-axis coordinates to be positioned at a specific point on a two-dimensional plane.
  • the distance information may be additionally included in the two-dimensional position information displayed in the X-axis and Y-axis coordinates.
  • the controller 150 may determine the clustered pixel as a single moving entity.
  • the size of the moving object indicated as the cluster pixel in FIG. 3 may be calculated based on the size of the cluster pixel (the number of pixels on the X and Y axes of the moving object) and the actual size per pixel. For example, when the resolution of the lidar sensor 12 is 1 ⁇ m, if the clustered pixels are 50 on the X-axis and 100 on the Y-axis, the actual size of the moving object is 50 ⁇ m * 100 ⁇ m.
  • the moving object detected by the lidar sensor is tracked to generate second tracking information (S130).
  • the measurement result of FIG. 3 may be used to generate the second tracking information as described above, and may also be used to generate the first tracking information in advance in the same way. However, if it is used to generate the first tracking information, the process of classifying whether it is a living organism or an inanimate object (float) is additionally performed, and then the machine learning process is performed.
  • the process of classifying whether it is a living organism or an inanimate object (float) is additionally performed, and then the machine learning process is performed.
  • FIGS. 4 and 5 are first tracking information or second tracking information generated by tracing a movement path of a living organism (see FIG. 4) and a movement path of an inanimate object (see FIG. 5) to generate model data, respectively.
  • An example of the is shown.
  • the controller 150 of the present invention generates model data through a process of receiving and learning a first tracking image input during machine learning, that is, learning data.
  • the model data may be generated by the control unit 150 of the present invention, but may be generated in a separate server or control device and configured to be used in the aquatic organism measuring device of the present invention.
  • a first tracking image in which a moving object is classified as a living organism (eg, zooplankton) and a floating object can be used.
  • the "tracking image” is an embodiment of the tracking information that is diagrammed by tracking and recording a moving object in a predetermined time unit, and can be replaced in more various ways.
  • the schematic tracking information may be composed of a table in which the position for each predetermined time unit is displayed in two-dimensional coordinates.
  • the coordinates a rectangular coordinate system composed of (x,y) or a cylindrical coordinate system composed of (r, ⁇ ) may be used.
  • these coordinates may be displayed as numbers, or may be displayed as graphs in which numbers are expressed correspondingly to pictures.
  • the position is measured by applying the lidar sensor, it may be displayed as 3D position information.
  • the first tracking image may further include a label so that images of living organisms (eg, zooplankton) and floating objects are distinguished from each other.
  • each image may be classified by a file name, or a storage space may be distinguished and classified.
  • the first tracking image or the second tracking image is generated by connecting the positions at multiple points of the moving object acquired for a predetermined time period. should be set to time.
  • model data is generated through machine learning, and the aquatic organism measuring device of the present invention compares these model data with the second tracking image to determine the A life-and-death determination will be performed.
  • the controller 150 converts the size of the moving object based on the number of horizontal and vertical pixels of the detected moving object and the actual size per pixel, and tracks only the moving object of a predetermined size or larger to produce 2You can also create tracking images. For example, by setting the size of the moving object generating the second tracking image to 10 ⁇ m or more and 50 ⁇ m or less or 50 ⁇ m or more, it is possible to check whether the result of the ballast water sterilization treatment, which is the number of samples, satisfies the IMO standard.
  • the first tracking image and the second tracking image are measured for substantially the same time, so that the tracking image can be analyzed and compared under the same time condition.
  • the aquatic organism measuring apparatus 100 receives the position information of the aquatic organism measured by the lidar sensor 120 from the control unit 150, and based on this, By separating and analyzing floating objects and living organisms, it is possible to judge whether the results of the ballast water sterilization treatment satisfy the IMO standards.
  • the lidar sensor 120 cannot acquire a color image captured by a general camera, it can measure the shape and size of a moving object and its location (distance, etc.) Therefore, it has the advantage of being able to perform the life or death discrimination of aquatic organisms quickly and with higher accuracy.
  • the apparatus 100 for measuring aquatic organisms when applied to a ballast water treatment apparatus installed on a ship in which vibration or shaking is generated, the actual tracking image of the moving object and the model data generated in advance By automatically distinguishing living plankton from floating matter using It is possible to more quickly and accurately determine whether the ballast water treated by the IMO satisfies the IMO emission standards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Catching Or Destruction (AREA)

Abstract

본 발명은 수중생물 측정장치에 관한 것으로, 샘플수가 수용되는 챔버; 챔버의 일측면을 통해 샘플수 내의 이동개체의 위치를 측정하는 라이다 센서; 및 라이다 센서를 통해 연속적으로 측정된 이동개체의 위치를 기반으로 이동개체를 분석하는 제어부;를 포함하되, 제어부는, 생물 및 무생물로 분류된 이동개체의 이동경로를 추적하여 생성되는 제1트래킹(tracking) 정보를 각각 입력받아 기계학습을 통해 생성된 모델데이터(model data)를 이용하고, 라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성하고, 모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단한다.

Description

수중생물 측정장치 및 방법
본 발명은 수중생물 측정장치 및 방법에 관한 것으로, 보다 상세하게는 선박평형수 처리장치에 적용가능하도록 선박평형수 내의 동물성 플랑크톤을 보다 정확하게 측정할 수 있도록 하는 수중생물 측정장치 및 방법에 관한 것이다.
일반적으로, 선박평형수 또는 밸러스트수(Ballast Water)는 선박으로부터 화물을 하역시킨 상태 또는 선박에 적재된 화물량이 매우 적은 상태에서 선박을 운행할 경우, 선박이 균형을 유지할 수 있도록 선박에 설치된 밸러스트 탱크에 채우는 해수를 말하는 것이다.
이러한 선박평형수에는 각종 수중생물이 서식하고 있으므로, 이를 아무런 처리없이 타지역에서 배출시킬 경우 심각한 해양오염 및 생태계 파괴를 유발시킬 우려가 높게 된다.
이에 따라 국제해사기구(IMO: International Maritime Organization)에서는 국제협약을 체결하여 선박평형수의 살균 및 정화처리에 필요한 장치를 선박에 탑재토록 하였다.
선박에 탑재된 선박평형수 처리장치는, 국제해사기구(IMO)의 기준에 맞추어 육상시험 및 선상시험을 거쳐 인증서를 받은 다음 운항하여야 하기 때문에 선박평형수 처리장치에 의하여 처리된 평형수가 국제해사기구에서 규정한 배출기준에 적합한 것인지를 모니터링하는 시스템이 필요하게 된다.
그러나, 선박평형수 처리장치의 배출기준 만족여부를 판단하기 위한 수중생물의 생사판별 측정이나 동물성 플랑크톤을 분석할 때, 영상분석 장치의 화면에 표시된 물체의 움직임(Mobility)만으로 판단하였기 때문에 선박과 같이 진동이나 흔들림(rolling)이 빈번하게 발생되는 환경하에서는 동물성 플랑크톤의 움직임과 생물이 아닌 물체(예를 들면, 부유물)의 움직임이 구분되기 어려워 정확도가 떨어지는 문제점이 있었다.
또한, 살아있는 동물성 플랑크톤의 개체수를 사람이 직접 계수하여야 하기 때문에 인적 오류(Human error)가 발생되는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 특히 선박평형수 내의 동물성 플랑크톤을 보다 신속하고 정확하게 측정할 수 있는 수중생물 측정장치 및 방법을 제공하는 데 그 목적이 있다.
상기 목적을 달성하기 위해 안출된 본 발명의 일관점에 따른 수중생물 측정장치는, 샘플수가 수용되는 챔버; 챔버의 일측면을 통해 샘플수 내의 이동개체의 위치를 측정하는 라이다 센서; 및 라이다 센서를 통해 연속적으로 측정된 이동개체의 위치를 기반으로 이동개체를 분석하는 제어부;를 포함하되, 제어부는, 생물 및 무생물로 분류된 이동개체의 이동경로를 추적하여 생성되는 제1트래킹(tracking) 정보를 각각 입력받아 기계학습을 통해 생성된 모델데이터(model data)를 이용하고, 라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성하고, 모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단한다.
일실시예로서, 제1 또는 제2트래킹 정보는, 소정시간 간격으로 이동개체를 연속적으로 추적하여 각각의 위치를 선으로 연결시킴으로써 생성되는 트래킹 이미지로 구성될 수 있다.
다른 실시예로서, 제1 또는 제2트래킹 정보는, 소정시간 간격으로 이동개체를 연속적으로 추적하여 각각의 위치를 좌표로 표시한 도표로 구성될 수도 있다.
본 발명의 일실시예에 따른 제어부는, 검출된 이동개체의 가로 및 세로의 화소수와 화소당 실제 크기를 근거로 이동개체의 크기로 환산하고, 소정 크기 이상의 이동개체만을 추적하여 제2트래킹 정보를 생성한다.
여기서, 제2트래킹 정보를 생성하는 이동개체의 크기는 10㎛ 이상 50㎛ 이하 또는 50㎛ 이상일 수 있다.
또한, 제어부는, 소정 거리내의 군집 화소는 하나의 이동개체로 판단할 수 있다.
본 발명의 일실시예에서 제1트래킹 정보는, 이동경로가 추적된 이동개체가 구분되도록 생물 또는 무생물이 라벨링(labeling)되어 입력될 수 있다.
또한, 본 발명의 일실시예에서 챔버는, 내부에 수용공간이 형성된 육면체로 구성되고, 라이다 센서와 대향되는 면은, 투명한 재질로 형성되거나 개방될 수 있다.
여기서, 챔버의 재질은, 라이다 센서와 대향되는 면을 제외한 불투명한 플라스틱 또는 금속으로 형성될 수 있다.
본 발명의 일실시예에서 라이다 센서는, 레이저를 송신하는 송신부와, 이동개체로부터 반사되는 레이저를 수신하는 수신부를 포함하되, 송신부의 출력 파장은 400nm에서 1500nm일 수 있다.
본 발명의 일실시예에서 이동개체의 위치는, X축 좌표, Y축 좌표, 거리를 근거로 한 3차원 좌표로 구성될 수 있다.
한편, 본 발명의 다른 관점에 따른 수중생물 측정방법은, 생물 및 무생물로 분류된 이동개체의 이동경로를 추적하여 생성되는 제1트래킹 정보를 각각 입력받아 기계학습을 통해 모델데이터를 생성하는 단계; 라이다 센서로 챔버 내의 샘플수에 포함된 이동개체의 위치를 측정하는 단계; 라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성하는 단계; 및 모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단하는 단계;를 포함한다.
본 발명에 의하면 라이다 센서로 샘플수 내의 이동개체의 위치를 추적하여 3차원 이동좌표를 획득하고 이를 이용하여 샘플수 내의 부유물과 살아있는 수중생물을 보다 정확하게 구분하도록 함으로써 진동이나 흔들림이 발생되는 선박 환경하에서 정밀도 높은 생사판별을 수행할 수 있는 효과가 있다.
또한, 본 발명에 의하면 기계학습을 통해 생성된 모델데이터를 이용하여 자동으로 살아있는 동물성 플랑크톤을 판단하여 인적 오류를 제거하는 효과가 있다.
또한, 동물성 플랑크톤으로 판단된 이동개체의 크기를 50㎛를 기준으로 자동으로 계수하도록 구성됨으로써 선박평형수 처리장치에 의해 처리된 선박평형수가 IMO의 배출기준에 만족하는 지를 보다 신속하고 정확하게 판단할 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 수중생물 측정장치의 구성도이고,
도 2는 본 발명의 일실시예에 따른 수중생물 측정방법을 도시한 순서도이고,
도 3는 본 발명의 일실시예에 따른 수중생물 측정방법에서 라이다 센서로 챔버 내의 샘플수에 포함된 이동개체의 위치를 측정한 결과를 도시한 것이고,
도 4는 본 발명의 일실시예에 따른 수중생물 측정방법에서 검출된 이동개체(살아있는 생물)를 트래킹하여 생성된 트래킹 정보를 도시한 것이고,
도 5는 본 발명의 일실시예에 따른 수중생물 측정방법에서 검출된 이동개체(부유물)를 트래킹하여 생성된 트래킹 정보를 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "부"와 "기", "모듈"과 "부", "유닛"과 "부", "장치"와 "시스템" 등은 명세서 작성의 용이함 만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도면들을 참조하여 본 발명의 실시 예에 대해 상세히 설명하기로 한다. 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
도 1은 본 발명의 일실시예에 따른 수중생물 측정장치를 도시한 구성도이다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 수중생물 측정장치(100)는, 다양한 종류의 수중생물(140)이 포함된 샘플수(130)가 수용되는 챔버(110)와, 챔버(110) 내의 샘플수(130)에 빛을 조사하여 수중생물(140)의 위치를 측정하는 라이다 센서(120)와, 라이다 센서(120)에서 측정된 수중생물(140)의 위치를 기반으로 수중생물(140)을 분석하는 제어부(150)를 포함한다.
여기서, 챔버(110) 내의 샘플수(130)는, 샘플수(130) 내에 포함된 수중생물(140)을 분석할 필요가 있는 다양한 분야에서 샘플링될 수 있다.
일례로, 선박평형수는 밸러스팅(ballasting)시에 전기분해 또는 화학약품 투입 등 다양한 방식으로 처리된 다음, 밸러스트 탱크로 유입되어 저장되었다가 디밸러스팅(deballasting)시 배출배관을 통해 선박 밖으로 배출되는데, 배출되는 선박평형수는 국제해사기구에서 규정한 배출기준에 적합한 것인지를 판단하여야 하기 때문에, 배출되는 선박평형수를 샘플링하여 선박평형수 내에 존재하는 수중생물의 종류, 생사판별 등의 분석작업을 하게 된다. 본 발명은 이에 한정되지 않고 다른 분야에도 적용될 수 있다. 일예로, 정수장에서 살균처리된 정수를 샘플링하여 본 발명의 수중생물 측정장치(100)를 통해 분석할 수도 있다.
챔버(110)는, 측정할 샘플수(140)가 수용되어 측정시간 동안 계류될 수 있도록 구성되는데, 일실시예로서 내부에 수용공간이 형성된 육면체로 구성될 수 있다.
여기서, 챔버(110)의 라이다 센서(120)와 대향되는 면은, 투명한 재질로 형성되거나 개방되게 구성됨으로써 라이다 센서(120)에서 출력되는 빛(레이저)이 챔버(110) 내부의 샘플수(140)로 도달할 수 있도록 한다.
본 발명의 일실시예에서, 챔버(110)의 재질은, 라이다 센서(120)에서 출력된 빛이 통과되도록 투명하거나 개방되는 라이다 센서(120)와 대향되는 면을 제외하고는, 라이다 센서(120)에서 출력된 빛을 반사시킬 수 있는 재질로 형성되는 것이 바람직하다. 일례로, 불투명한 플라스틱 또는 금속으로 형성될 수 있는데, 이와 같이 빛을 반사시킬 수 있는 소재로 챔버(110)가 구성될 경우, 라이다 센서(120)에서 출력된 빛이 반사되면서 챔버(110) 내부의 각 면까지의 거리를 측정할 수 있게 되고, 측정된 상기 거리를 기준으로 하여 챔버(110)에 수용된 샘플수(130) 내의 수중생물(140)의 위치를 측정할 수 있게 된다.
또한, 챔버(110)는 유입부(미도시) 및 유출부(미도시)를 구비하지 않는 그릇 등의 형태로 구성되어 실험자가 수작업으로 물을 담아서 사용할 수도 있지만, 샘플링 포트(미도시)와 연결된 농축장치(미도시)에 의해 농축된 샘플수가 자동으로 유입 및 유출되도록 유입부(미도시) 및 유출부(미도시)를 구비할 수도 있다.
라이다(Light Detection And Ranging, LiDAR) 센서(120)는, 챔버(110)의 일측면을 통해 빛(레이저)를 주사하여 샘플수(130) 내의 이동개체의 위치를 측정하는 장치로서, 레이저를 송신하는 송신부(미도시)와, 이동개체로부터 반사되는 레이저를 수신하는 수신부(미도시)를 포함하여 구성될 수 있다.
여기서, 라이다 센서(120)는 챔버(110)의 샘플수 내에 포함된 수중생물을 측정하도록 챔버(110)의 상측, 하측 방향, 또는 측면 방향에 설치될 수 있다.
이와 같이 구성된 라이다 센서(120)는 송신부(미도시)에서 출력된 레이저가 이동개체(일례로 수중생물(140))에서 반사되어 돌아오는 시간을 시간을 측정하여 이동개체의 위치 좌표를 측정하게 된다.
전술된 바와 같이, 본 발명의 일실시예에 따른 챔버(110)에서는, 라이다 센서(120)와 대향되는 면은 빛이 통과되도록 투명하거나 개방되고, 나머지 면은 불투명한 플라스틱 또는 금속 등으로 형성되기 때문에 라이다 센서(120)에서 출력된 빛(레이저)는 챔버(110) 내부로 유입되고, 투명한 샘플수(140)을 통과하여 수중생물(140)에 부딪혀 반사되고 반사된 빛을 라이다 센서(120)에서 수신함으로써 수중생물(140)의 위치를 측정할 수 있게 된다. 한편, 수중생물(140)이나 부유물(미도시) 등의 반사체가 없는 곳으로 주사된 레이저는 챔버(110)의 내벽에 반사된다.
라이다 센서(120) 송신부(미도시)의 출력 파장은 400nm에서 1500nm일 수 있다. 일반적으로 공기중에서 지형을 탐지할 때에는 적외선 파장(일례로, 1064nm)을 주로 사용하지만, 본 발명에서는 샘플수(130) 내의 이동개체를 측정하기 때문에 매질의 굴절률 차이로 인해 공기 중의 측정값과 오차가 발생하게 되는데, 이러한 물과 공기간의 굴절률 차이를 고려하여 미리 거리 오차를 보정하는 것이 바람직하다.
또한, 본 발명에서 라이다 센서(120)의 출력 파장은, 공기중에 사용되는 적외선 파장을 사용할 경우 물에 흡수가 잘되어 측정 오차가 크게 발생하기 때문에 수중 측정에 맞는 녹색 파장(일례로, 532nm)을 사용하는 것이 바람직하다.
한편, 본 발명의 일실시예에 따른 제어부(150)는, 라이다 센서(120)를 통해 연속적으로 측정된 위치들을 근거로 이동개체를 생물인지 무생물인지 분석하는 구성으로, 특히 샘플수 내에서 이동개체를 검출하고, 검출된 이동개체를 추적하여 트래킹(tracking) 이미지를 생성하고 이를 사전에 기계학습을 통해 생성된 모델데이터와 비교하여 이동개체의 생사여부를 분석할 수 있도록 구성되는 데, 이하에서 이 과정을 상세히 설명한다.
도 2는 본 발명의 일실시예에 따른 수중생물 측정방법을 도시한 순서도로서, 이를 참조하면, 본 발명의 수중생물 측정방법은, 생물 및 무생물로 분류된 이동개체의 이동경로를 추적하여 생성되는 제1트래킹 정보를 각각 입력받아 기계학습을 통해 모델데이터를 생성하는 단계(S110)와, 라이다 센서로 챔버 내의 샘플수에 포함된 이동개체의 위치를 측정하는 단계(S120)와, 라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성하는 단계(S130)와, 모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단하는 단계(S140)를 포함한다.
본 발명의 일실시예에 따른 수중생물 측정방법은, 먼저, 다수의 제1트래킹 정보를 생성하고, 이것을 학습데이터로 입력하여 기계학습을 통해 모델데이터를 생성한다(S110). 보다 상세한 과정은 도 4 및 도 5를 통해 상세히 후술한다.
다음으로, 라이다 센서(120)로 샘플수 내의 수중생물의 위치를 측정한다(S120). 도 3은 본 발명의 일실시예에 따른 수중생물 측정방법에서 라이다 센서(120)로 이동개체의 위치를 측정한 결과를 도시한 것으로, 도 3에 도시된 바와 같이 이동개체는 다수의 화소로 표시된다.
여기서, 각 화소의 위치는, X축 좌표, Y축 좌표로 특정되어 2차원 평면 상의 특정 지점에 위치될 수 있다. 또한, 각 화소는 거리정보에 대응되는 색깔을 포함하여 표시함으로써 X축 및 Y축 좌표로 표시된 2차원 위치정보에 거리정보를 추가로 포함할 수 있다. 이와 같은 방식으로 측정결과를 표시할 경우, 3차원 좌표 정보를 2차원 평면 상에 표시할 수 있게 된다.
본 발명의 일실시예에서 제어부(150)는, 여러개의 화소가 모여서 형성된 군집화소가 소정 거리내에 위치할 경우, 상기 군집 화소를 하나의 이동개체로 판단할 수 있다.
도 3에 군집 화소로 표시된 이동개체의 크기는, 군집 화소의 크기(이동개체의 X축 및 Y축의 화소수)와 화소당 실제 크기를 근거로 산출될 수 있다. 예를 들면, 라이다 센서(12)의 해상도가 1㎛ 일때, 군집 화소가 X축 50개, Y축 100개라면, 이동개체의 실제 크기는 50㎛ * 100㎛가 된다.
이와 같이, 수중생물의 위치를 측정하는 단계(S120)를 수행한 이후에는, 라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성한다(S130).
이후, 모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단하게 된다(S140).
도 3의 측정결과는 전술한 바와 같이 제2트래킹 정보를 생성하는 데 사용될 수도 있으며, 동일한 방식으로 사전에 제1트래킹 정보를 생성하는 데에도 사용할 수 있다. 다만, 제1트래킹 정보를 생성할 때 사용할 경우에는 살아있는 생물인지 무생물(부유물)인지를 분류하는 절차를 추가로 진행한 다음, 기계학습 과정을 진행하게 된다.
즉, 도 4 및 도 5은, 모델데이터를 생성하기 위해 살아있는 생물의 이동경로(도 4 참조) 및 무생물의 이동경로(도 5 참조)를 각각 추적하여 생성된 제1트래킹 정보 또는 제2트래킹 정보의 일례를 도시한 것이다.
도 4 및 도 5를 참조하면, 본 발명의 제어부(150)는, 기계학습시 입력되는 제1트래킹 이미지, 즉 학습데이터를 입력받아 학습하는 과정을 통해 모델데이터(model data)를 생성하게 된다. 모델데이터는 본 발명의 제어부(150)에서 생성할 수도 있지만, 별도의 서버 또는 제어장치에서 생성되고 본 발명의 수중생물 측정장치에서 이를 이용하도록 구성될 수 있다.
본 발명의 일실시예에서 사용된 학습데이터는, 도 4 및 도 5에 도시된 바와 같이 이동개체를 살아 있는 생물(일례로, 동물성 플랑크톤)과 부유물로 각각 분류한 제1트래킹 이미지를 사용할 수 있다.
본 발명에서 "트래킹 이미지"는 이동개체를 소정시간단위로 추적하여 연결 기록함으로써 도식화한 트래킹 정보의 일실시예로서 보다 다양한 방식으로 대체가 가능하다. 일례로, 도식화된 트래킹 정보는 소정시간단위별 위치를 2차원 좌표로 표시한 도표로 구성될 수도 있다. 이 경우, 좌표는 (x,y)로 구성된 직교 좌표계 또는 (r,θ)로 구성된 원통 좌표계 등이 사용될 수 있다. 또한, 이러한 좌표는 숫자로 표시될 수 있고, 숫자를 그림으로 대응되게 표현한 그래프로 표시될 수도 있다. 또한, 라이다 센서를 적용하여 위치를 측정한 경우에는 3차원 위치정보로 표시될 수도 있다.
제1트래킹 이미지는 살아 있는 생물(일례로, 동물성 플랑크톤)과 부유물의 이미지가 각각 구별되도록 라벨(label)이 더 포함될 수 있다. 다른 실시예로는 각각의 이미지를 파일 이름으로 분류할 수도 있으며, 또는 저장공간을 구별하여 분류할 수도 있다.
또한, 제1트래킹 이미지 또는 제2트래킹 이미지는, 소정 시간 동안 취득된 이동개체의 다수 지점에서의 위치를 연결하여 생성되는데, 소정 시간은 제1트래킹 또는 제2트래킹 이미지의 특성을 충분히 나타낼 수 있는 시간으로 설정되어야 한다.
전술된 바와 같이 생성된 제1트래킹 이미지를 입력하여 기계학습을 통해 모델데이터(model data)를 생성하게 되며, 본 발명의 수중생물 측정장치는 이러한 모델데이터와 제2트래킹 이미지를 비교하여 이동개체의 생사 판별을 수행하게 된다.
한편, 본 발명의 실시예에서 제어부(150)는, 검출된 이동개체의 가로 및 세로의 화소수와 화소당 실제 크기를 근거로 이동개체의 크기로 환산하고, 소정 크기 이상의 이동개체만을 추적하여 제2트래킹 이미지를 생성할 수도 있다. 일례로, 제2트래킹 이미지를 생성하는 이동개체의 크기를 10㎛ 이상 50㎛ 이하 또는 50㎛이상으로 설정하여 샘플수인 선박평형수 살균처리 결과가 IMO 기준에 만족하는 지를 확인할 수 있다.
또한, 본 발명의 실시예에서 제1트래킹 이미지와 제2트래킹 이미지는, 실질적으로 동일한 시간동안 측정됨으로써 동일한 시간 조건하에 트래킹 이미지를 분석 비교할 수 있도록 구성될 수 있다.
전술된 바와 같이, 본 발명의 일실시예에 따른 수중생물 측정장치(100)는, 제어부(150)에서 라이다 센서(120)에서 측정된 수중생물의 위치정보를 수신하고 이를 근거로 샘플수내의 부유물과 생물체를 구분하여 분석함으로써 선박평형수 살균처리 결과가 IMO 기준에 만족하는지를 판단할 수 있게 된다. 라이다 센서(120)는 일반적인 카메라로 촬상하는 컬러 영상은 획득할 수 없지만, 이동개체의 형태 및 크기와 그 위치(거리 등)를 측정할 수 있으며 이를 이용하여 이동개체의 3차원 이동좌표를 획득할 수 있으며, 따라서 보다 정확도가 높으며 신속하게 수중생물의 생사판별을 수행할 수 있는 장점이 있다.
특히, 본 발명의 일실시예에 따른 수중생물 측정장치(100)는, 진동이나 흔들림이 발생되는 선박에 설치되는 선박평형수 처리장치에 적용될 경우, 이동개체의 실제 트래킹 이미지와 미리 생성된 모델데이터를 이용하여 자동으로 살아있는 플랑크톤과 부유물을 정확하게 구분하도록 함으로써 정밀도 높은 생사판별을 수행할 수 있을 뿐만 아니라, 동물성 플랑크톤으로 판단된 이동개체의 크기를 50㎛를 기준으로 자동으로 계수하여 선박평형수 처리장치에 의해 처리된 선박평형수가 IMO의 배출기준에 만족하는 지를 보다 신속하고 정확하게 판단할 수 있게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 샘플수가 수용되는 챔버;
    챔버의 일측면을 통해 샘플수 내의 이동개체의 위치를 측정하는 라이다 센서; 및
    라이다 센서를 통해 연속적으로 측정된 이동개체의 위치를 기반으로 이동개체를 분석하는 제어부;를 포함하되,
    제어부는,
    생물 및 무생물로 분류된 이동개체의 이동경로를 추적하여 생성되는 제1트래킹(tracking) 정보를 각각 입력받아 기계학습을 통해 생성된 모델데이터(model data)를 이용하고,
    라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성하고,
    모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단하는, 수중생물 측정장치.
  2. 청구항 1에 있어서,
    제1 또는 제2트래킹 정보는,
    소정시간 간격으로 이동개체를 연속적으로 추적하여 각각의 위치를 선으로 연결시킴으로써 생성되는 트래킹 이미지로 구성되는, 수중생물 측정장치.
  3. 청구항 1에 있어서,
    제1 또는 제2트래킹 정보는,
    소정시간 간격으로 이동개체를 연속적으로 추적하여 각각의 위치를 좌표로 표시한 도표로 구성되는, 수중생물 측정장치.
  4. 청구항 1에 있어서,
    제어부는,
    검출된 이동개체의 가로 및 세로의 화소수와 화소당 실제 크기를 근거로 이동개체의 크기로 환산하고, 소정 크기 이상의 이동개체만을 추적하여 제2트래킹 정보를 생성하는, 수중생물 측정장치.
  5. 청구항 4에 있어서,
    제2트래킹 정보를 생성하는 이동개체의 크기는 10㎛ 이상 50㎛ 이하 또는 50㎛ 이상인, 수중생물 측정장치.
  6. 청구항 1에 있어서,
    제어부는,
    소정 거리내의 군집 화소는 하나의 이동개체로 판단하는, 수중생물 측정장치.
  7. 청구항 1에 있어서,
    제1트래킹 정보는,
    이동경로가 추적된 이동개체가 구분되도록 생물 또는 무생물이 라벨링(labeling)되어 입력되는, 수중생물 측정장치.
  8. 청구항 1에 있어서,
    챔버는,
    내부에 수용공간이 형성된 육면체로 구성되고,
    라이다 센서와 대향되는 면은,
    투명한 재질로 형성되거나 개방되는, 수중생물 측정장치.
  9. 청구항 8에 있어서,
    라이다 센서와 대향되는 면을 제외한 챔버의 재질은,
    불투명한 플라스틱 또는 금속으로 형성되는, 수중생물 측정장치.
  10. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서,
    라이다 센서는,
    레이저를 송신하는 송신부와, 이동개체로부터 반사되는 레이저를 수신하는 수신부를 포함하되,
    송신부의 출력 파장은 400nm에서 1500nm인, 수중생물 측정장치.
  11. 청구항 10에 있어서,
    이동개체의 위치는,
    X축 좌표, Y축 좌표, 거리를 근거로 한 3차원 좌표로 구성되는, 수중생물 측정장치.
  12. 생물 및 무생물로 분류된 이동개체의 이동경로를 추적하여 생성되는 제1트래킹 정보를 각각 입력받아 기계학습을 통해 모델데이터를 생성하는 단계;
    라이다 센서로 챔버 내의 샘플수에 포함된 이동개체의 위치를 측정하는 단계;
    라이다 센서에서 검출된 이동개체를 추적하여 제2트래킹 정보를 생성하는 단계; 및
    모델데이터와 제2트래킹 정보를 비교하여 이동개체가 살아있는 생물 또는 무생물인지를 판단하는 단계;를 포함하는, 수중생물 측정방법.
PCT/KR2020/006673 2020-05-11 2020-05-22 수중생물 측정장치 및 방법 WO2021230409A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200056139A KR102324418B1 (ko) 2020-05-11 2020-05-11 수중생물 측정장치 및 방법
KR10-2020-0056139 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230409A1 true WO2021230409A1 (ko) 2021-11-18

Family

ID=78502964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006673 WO2021230409A1 (ko) 2020-05-11 2020-05-22 수중생물 측정장치 및 방법

Country Status (2)

Country Link
KR (1) KR102324418B1 (ko)
WO (1) WO2021230409A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367140B2 (ja) * 2004-01-23 2009-11-18 日本電気株式会社 水中生物の移動経路推定方法及び移動経路推定システム
KR20170083572A (ko) * 2014-11-05 2017-07-18 볼라스트 워터 모니터링 에이/에스 평형수 분석 시스템
JP6221210B2 (ja) * 2012-09-11 2017-11-01 株式会社サタケ 微生物の検査方法及びその装置
KR20180005817A (ko) * 2016-07-07 2018-01-17 (주)시스코어 해양 환경 탐지 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531392B1 (ko) 2013-12-02 2015-07-07 서울시립대학교 산학협력단 Toc 분석장치 및 이를 이용한 toc 분석 시스템
US10337996B2 (en) * 2016-08-25 2019-07-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Lidar instrument and method of operation
KR101844928B1 (ko) * 2016-11-24 2018-04-03 (주) 테크로스 샘플수 분석장치 및 방법
WO2020056055A1 (en) * 2018-09-11 2020-03-19 Nalu Scientific, LLC System and method for high-sample rate transient data acquisition with pre-conversion activity detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367140B2 (ja) * 2004-01-23 2009-11-18 日本電気株式会社 水中生物の移動経路推定方法及び移動経路推定システム
JP6221210B2 (ja) * 2012-09-11 2017-11-01 株式会社サタケ 微生物の検査方法及びその装置
KR20170083572A (ko) * 2014-11-05 2017-07-18 볼라스트 워터 모니터링 에이/에스 평형수 분석 시스템
KR20180005817A (ko) * 2016-07-07 2018-01-17 (주)시스코어 해양 환경 탐지 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HWANG SE SEON, OK MYUNG HWANG, JAE HYEONG KWON, GWANG HO LEE: "Identification and limitation of Aquatic Organisms Using Extended Kalman Filter", TAEHAN-HWAN'GYONG-KONGHAKHOE-CHI = JOURNAL OF KOREAN SOCIETY OF ENVIRONMENTAL ENGINEERS, KOREAN SOCIETY OF ENVIRONMENTAL ENGINEERS, KO, vol. 41, no. 3, 31 March 2019 (2019-03-31), KO , pages 149 - 155, XP055865933, ISSN: 1225-5025, DOI: 10.4491/KSEE.2019.41.3.149 *

Also Published As

Publication number Publication date
KR102324418B1 (ko) 2021-11-15

Similar Documents

Publication Publication Date Title
CN110414334B (zh) 一种基于无人机巡视的智能水质识别方法
Davis et al. The video plankton recorder (VPR): design and initial results
WO2011062352A1 (ko) 영상의 시간적 픽셀의 농도 분포 변화를 이용한 액체 경계면 인식방법 및 이를 이용하여 액체높이를 인식하는 액체높이인식장치
JP2006189421A (ja) 高知能デジタルイメージ検査システム及びその検査方法
KR20060132715A (ko) 표면 검사 방법 및 시스템
CN100557417C (zh) 成像装置
CN109253722A (zh) 融合语义分割的单目测距系统、方法、设备及存储介质
WO2018164551A1 (ko) 샘플수 분석장치 및 방법
KR20180057793A (ko) 샘플수 분석장치 및 방법
CN100470578C (zh) 基于计算机视觉的科学仪器工作状态监测方法
KR101844928B1 (ko) 샘플수 분석장치 및 방법
KR102548893B1 (ko) 광센서를 이용한 유속 및 유향 측정방법
CN115077414A (zh) 一种水下航行器测量海面目标物底部轮廓的装置和方法
WO2020119600A1 (zh) 液体中颗粒物的图像采集设备及检测装置
WO2021230409A1 (ko) 수중생물 측정장치 및 방법
WO2022174239A1 (en) Methods and apparatus adapted to identify 3d center location of a specimen container using a single image capture device
CN112903947A (zh) 一种水质在线监测分析系统及方法
CN112184710A (zh) 一种基于视觉感知的线扫激光气泡检测方法及系统
WO2020171652A2 (ko) 버블을 이용한 실시간 수중 파티클 감지시스템
WO2023113274A1 (ko) Ai 기반 제품 표면 검사 장치 및 방법
JP2003329612A (ja) 被検査物の検査方法
RU148827U1 (ru) Подводный видеорегистратор планктона
CN110738641A (zh) 基于图像处理及kelm的医药试剂浓度定性检测方法
KR102574521B1 (ko) 해양오염 기름 두께 측정 방법 및 장치
CN111317462B (zh) 一种基于U-net神经网络的血流成像方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935636

Country of ref document: EP

Kind code of ref document: A1