WO2011062139A1 - Method for manufacturing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol - Google Patents

Method for manufacturing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol Download PDF

Info

Publication number
WO2011062139A1
WO2011062139A1 PCT/JP2010/070287 JP2010070287W WO2011062139A1 WO 2011062139 A1 WO2011062139 A1 WO 2011062139A1 JP 2010070287 W JP2010070287 W JP 2010070287W WO 2011062139 A1 WO2011062139 A1 WO 2011062139A1
Authority
WO
WIPO (PCT)
Prior art keywords
tert
optically active
butoxycarbonylamino
propanol
fluoro
Prior art date
Application number
PCT/JP2010/070287
Other languages
French (fr)
Japanese (ja)
Inventor
章央 石井
隆司 増田
たか子 山崎
英之 鶴田
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2011062139A1 publication Critical patent/WO2011062139A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B51/00Introduction of protecting groups or activating groups, not provided for in the preceding groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/32Preparation of optical isomers by stereospecific synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a process for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol important as a pharmaceutical intermediate.
  • Patent Documents 1 and 2 disclose a method for producing the compound (see Scheme 1).
  • Bn, Me, Boc, *, THF, Pd (OH) 2 / C, EtOH, (Boc) 2 O and Aqueous dioxane are benzyl group, methyl group, tert-butoxycarbonyl group, asymmetric carbon, respectively.
  • the conventional method for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol has the following problems.
  • Patent Document 2 discloses that “a pure product was obtained as a light brown oil” regarding the color tone and physical properties of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol. It was very different from the high-purity product (white crystals) of the compound obtained in 1.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and to provide an industrial production method of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol.
  • the amount of palladium catalyst used can be remarkably reduced (1 mol% or less), and the reaction can be completed in one time. It has also been found that the dedibenzylation in the first step proceeds very smoothly by adding an acid as an additive.
  • a highly pure product of the compound can be obtained by deriving the optically active 3-amino-2-fluoropropionic acid ester obtained by dedibenzylation in the first step into a salt with an acid and carrying out salt purification.
  • the optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol finally obtained by subjecting this high purity product to tert-butoxycarbonylation in the second step and hydride reduction in the third step It was found that a high purity product of the final target product can be obtained by recrystallization purification.
  • the tert-butoxycarbonylation in the second step was found to proceed very smoothly by adding a base as an additive.
  • the final target optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol obtained as a crystal has a melting point as low as 39 ° C. and is not necessarily a desirable physical property for recrystallization purification. It has also been found that a high-purity product can be recovered with good yield by using it.
  • the present invention includes [Invention 1] to [Invention 5], an industrial production method of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol, and a key intermediate in the production method
  • an optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester is provided.
  • R represents an alkyl group having 1 to 6 carbon atoms
  • Bn represents a benzyl group
  • Boc represents a tert-butoxycarbonyl group
  • * represents an asymmetric carbon.
  • invention 3 The optically active 3-tert-2-butoxycarbonylamino-2 obtained in the third step is subjected to salt purification by derivatizing the optically active 3-amino-2-fluoropropionic acid ester obtained in the first step into a salt with an acid.
  • the production method according to invention 1 or 2 characterized in that recrystallization purification of fluoro-1-propanol is performed.
  • the recrystallization solvent of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol obtained in the third step is an aliphatic hydrocarbon type, an aromatic hydrocarbon type or a mixed solvent thereof.
  • the debenzylation is performed in the first step, the amount of the palladium catalyst used can be remarkably reduced and the reaction can be completed at one time, so that the production cost is low.
  • the final product is crystallized and recrystallized to obtain a high-purity product. Therefore, according to the present invention, all the problems of the prior art can be solved, and optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol can be produced industrially advantageously.
  • the present invention also provides optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester as a key intermediate in the production of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol. it can.
  • the optically active 3-dibenzylamino-2-fluoropropionic acid ester represented by the general formula [1] is dedibenzylated with hydrogen gas in the presence of a palladium catalyst.
  • a first step of converting to an optically active 3-amino-2-fluoropropionic acid ester represented by formula (1) and tert-butoxycarbonyl (Boc) conversion of the ester represented by the general formula [2] with di-t-butyl dicarbonate Thereby converting the optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester represented by the general formula [3] into a lithium borohydride, and converting the ester compound represented by the general formula [3] into lithium borohydride.
  • an optically active 3-tert-butoxycal represented by the general formula [4] by hydride reduction with sodium borohydride
  • R of the optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group can be linear or branched, or cyclic (when the number of carbon atoms is 3 or more).
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group and an n-hexyl group are preferable, and a methyl group, an ethyl group, an n-propyl group and an isopropyl group are particularly preferable.
  • Bn in the optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] represents a benzyl group.
  • optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] represents an asymmetric carbon
  • the absolute configuration can be R-form or S-form
  • the optical purity is 80% ee (enantiomeric excess Rate) or higher, 90% ee or higher is preferable, and 95% ee or higher is particularly preferable.
  • Palladium catalysts include palladium black, palladium sponge, palladium / activated carbon, palladium / alumina, palladium / calcium carbonate, palladium / strontium carbonate, palladium / barium sulfate, palladium hydroxide / activated carbon, palladium hydroxide / alumina, palladium acetate, chloride. Palladium etc. are mentioned. Among these, palladium / activated carbon, palladium / alumina, palladium hydroxide / activated carbon and palladium hydroxide / alumina are preferable, and palladium / activated carbon and palladium hydroxide / activated carbon are particularly preferable.
  • palladium catalysts can be used alone or in combination.
  • the supported content may be 0.1 to 50% by weight, preferably 0.5 to 40% by weight, and particularly preferably 1 to 30% by weight.
  • a water-containing product can also be used as the palladium catalyst.
  • the one stored in water or an inert liquid can also be used.
  • the amount of the palladium catalyst used may be 0.05 mol or less, preferably 0.00001 to 0.03 mol, relative to 1 mol of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1]. 0.0001 to 0.01 mol is particularly preferred.
  • the hydrogen gas may be used in an amount of 2 moles or more per mole of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1]. Is particularly preferred.
  • the pressure condition of hydrogen gas may be 5 MPa or less, preferably 0.005 to 4 MPa, and particularly preferably 0.01 to 3 MPa. Therefore, it is preferable to use a pressure resistant reaction vessel made of a material such as stainless steel (SUS) or glass (glass lining).
  • SUS stainless steel
  • glass glass lining
  • the first step it is preferable to carry out dedibenzylation by adding an acid as an additive because the reaction proceeds very smoothly ([Invention 2]).
  • an acid as an additive because the reaction proceeds very smoothly ([Invention 2]).
  • the additive examples include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, methanesulfonic acid and paratoluenesulfonic acid.
  • inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, acetic acid, trifluoroacetic acid, methanesulfonic acid and paratoluenesulfonic acid
  • organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, methanesulfonic acid and paratoluenesulfonic acid.
  • hydrogen chloride, hydrogen bromide, sulfuric acid, acetic acid, trifluoroacetic acid, methanesulfonic acid and paratoluenesulfonic acid are preferable, and hydrogen chloride, acetic acid, trifluoroacetic acid and paratolu
  • the amount used may be 0.1 mol or more per mol of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1], preferably 0.2 to 100 mol. 0.3 to 50 mol is particularly preferred.
  • reaction solvent examples include ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, methanol, ethanol, n-propanol, isopropanol, n-butanol, 2,2,2-triol.
  • ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, methanol, ethanol, n-propanol, isopropanol, n-butanol, 2,2,2-triol.
  • alcohols such as fluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, water, and the like. Of these, alcohols are preferred, and methanol, ethanol, n-propanol and isopropanol are particularly preferred.
  • the reaction solvent may be used in an amount of 0.05 L (liter) or more, preferably 0.1 to 20 L, based on 1 mol of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1]. .15 to 10 L is particularly preferred.
  • the reaction temperature may be + 150 ° C. or less, preferably ⁇ 30 ° C. to + 100 ° C., particularly preferably ⁇ 20 ° C. to + 50 ° C.
  • the reaction time may be 48 hours or less, but it varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, and nuclear magnetic resonance.
  • the end point is preferably the time point at which almost no decrease in the reaction substrate is observed.
  • the target optically active 3-amino-2-fluoropropionic acid ester [2] can be obtained by performing a general post-treatment operation in organic synthesis on the reaction end solution.
  • a general post-treatment operation in organic synthesis on the reaction end solution.
  • an operation of filtering the palladium catalyst in the reaction completion liquid and concentrating the filtrate washing liquid to obtain a residue is effective.
  • the target product having high water solubility can also be recovered with high yield.
  • the stereochemistry at the 2-position of the target product is maintained throughout this step, and no decrease in optical purity is observed. Moreover, it can also refine
  • the optically active 3-amino-2-fluoropropionic acid ester [2] produced in the first step is preferable because it can be obtained as a high-purity product by conducting salt purification by inducing a salt with an acid.
  • the actual operations are “induction to a salt with an acid” and “salt purification”, but they can be performed as general operations in organic synthesis.
  • the specific operation of “induction to a salt with an acid” is not particularly limited, but is preferably performed by adding an acid to the reaction completion liquid, the filtrate washing liquid or the concentrated residue.
  • an acid By adding an acid before the concentration, the target product having a low boiling point can be recovered in a high yield as a salt.
  • an acid when an acid is added to the concentrated residue, it is effective to use a salt-derived solvent.
  • activated carbon treatment, concentration of a salt-derived solvent, and the like can be performed in an arbitrary process as necessary.
  • Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid and nitric acid, formic acid, acetic acid, propionic acid, benzoic acid, trifluoroacetic acid, mandelic acid (R-form, S-form or racemic form), oxalic acid, malee
  • examples include acids, fumaric acid, phthalic acid, malic acid (D-form, L-form or racemic form), tartaric acid (D-form, L-form or racemic form), methanesulfonic acid, paratoluenesulfonic acid and the like.
  • hydrogen chloride, hydrogen bromide, sulfuric acid, acetic acid, trifluoroacetic acid, oxalic acid, fumaric acid, phthalic acid, malic acid, tartaric acid, methanesulfonic acid, and paratoluenesulfonic acid are preferred.
  • Hydrogen chloride, acetic acid, trifluoroacetic acid Particularly preferred are oxalic acid, phthalic acid, tartaric acid and paratoluenesulfonic acid. It is also possible to combine the acid of the additive for making the reaction proceed very smoothly and the acid of “derivation to the salt with the acid”. You can handle it.
  • the amount of the acid used may be 0.35 mol or more, preferably 0.4 to 10 mol, preferably 0.45 to 5 per 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2]. Mole is particularly preferred.
  • salt purification is not particularly limited, but is preferably performed by “isolation with crystals”, “washing of isolated crystals” or “recrystallization of isolated crystals”.
  • Salt refining can be applied to non-crystallized salts (for example, oily substances, viscous liquids, cakes, amorphouss, etc.).
  • a method of stirring and washing, a method of separating (or separating) and recovering by adding a poor solvent after dissolving in a rich solvent, and the like can be employed.
  • a salt that crystallizes is preferable because it has a higher purification efficiency, and in particular, “isolation with crystals” and “washing of isolated crystals” are easy to obtain, but easy to obtain a high-purity product.
  • the “salt purification” can be performed by arbitrarily combining arbitrary operations depending on the required degree of purification. Moreover, it can also be purified to a higher purity by repeating the same operation. Furthermore, activated carbon treatment, salt purification solvent concentration, and the like can be performed in an arbitrary process as necessary. In “salt purification”, the chemical purity, optical purity, or both can be increased.
  • Solvents used for “induction to salt with acid” or “salt purification” include aliphatic hydrocarbons such as n-hexane, cyclohexane, n-heptane, n-octane, benzene, toluene, ethylbenzene, xylene, mesitylene Aromatic hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, etc., ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, acetone, methyl ethyl ketone , Ketone systems such as methyl isobutyl ketone, ester systems such as ethyl acetate and n-butyl acetate, amide systems such as N, N-dimethylformamide, N, N-dimethylacet
  • salt induction solvents or salt purification solvents can be used alone or in combination. Further, the reaction solvent, the salt-inducing solvent, and the salt purification solvent can be combined, and among them, it is preferable to combine any two solvents, and it is particularly preferable to combine three solvents.
  • the amount of the solvent used for the “derivation to a salt with an acid” or “salt purification” is 0.05 L with respect to 1 mol of the optically active 3-amino-2-fluoropropionic acid ester [2] or a salt of the compound. What is necessary is just to use the above, 0.07 to 20L is preferable, and 0.09 to 10L is especially preferable.
  • “Isolation by crystal” or “recrystallization of isolated crystal” may cause the crystal to precipitate smoothly and efficiently by adding a seed crystal (by using a combination of suitable purification conditions, There is no need to add seed crystals).
  • the amount used may be 0.00001 mol or more with respect to 1 mol of the salt of the optically active 3-amino-2-fluoropropionic acid ester [2], and 0.0001 to 0.1 mol. Is preferable, and 0.0002 to 0.05 mol is particularly preferable.
  • the temperature condition of “induction to salt with acid” or “salt purification” may be performed at + 150 ° C. or less, preferably ⁇ 30 to + 125 ° C., particularly preferably ⁇ 20 to + 100 ° C.
  • the time condition of “derivation to salt with acid” or “salt purification” may be within 48 hours, but it varies depending on the basic substance and the induction or purification conditions. Therefore, gas chromatography, thin layer chromatography, liquid chromatography It is preferable that the progress of induction or purification is tracked by analytical means such as chromatography or nuclear magnetic resonance, and that the end point is when no further progress is observed.
  • the operation for recovering the salt obtained by “induction to a salt with an acid” is not particularly limited, but it is preferably used for “salt purification” in a solution or in a concentrated residue.
  • the operation for recovering the salt obtained by “salt purification” is not particularly limited, but preferably a high-purity product can be obtained by filtering, separating or separating crystals, oily substances, viscous liquids, cakes, amorphouss, etc. . Moreover, washing
  • the salt of the optically active 3-amino-2-fluoropropionic acid ester [2] obtained as a high-purity product can be subjected to the tert-butoxycarbonylation in the next step as it is or converted back to the free base.
  • the method for returning to the free base is not particularly limited, but preferably includes an operation in which the salt is neutralized with an aqueous solution of an inorganic base and extracted with an organic solvent, and the recovered organic layer is concentrated to obtain a residue. Moreover, it can also be dried with a desiccant (for example, anhydrous sodium sulfate, anhydrous magnesium sulfate, etc.), a vacuum pump, etc. in arbitrary processes as needed.
  • This inorganic base can be arbitrarily selected from inorganic bases added as an additive in the second step described later.
  • the organic solvent can be arbitrarily selected from those that can be separated from an aqueous solution of an inorganic base from among salt-derived solvents and salt-purifying solvents. However, it is preferable to use the salt as it is in the next step because the operation is simple.
  • the optically active 3-amino-2-fluoropropionic acid ester [2] is left as a salt in this step. It can also be subjected to tert-butoxycarbonylation.
  • Boc of the target optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3] represents a tert-butoxycarbonyl group.
  • the amount of di-t-butyl dicarbonate used may be 0.7 mol or more per 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2] or a salt of the compound. To 5 mol is preferred, and 0.9 to 3 mol is particularly preferred.
  • lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and other inorganic bases triethylamine, diisopropylethylamine, tri-n- Butylamine, pyridine, 2,6-lutidine, 2,4,6-collidine, 4-dimethylaminopyridine (DMAP), 1,5-diazabicyclo [4.3.0] non-5-ene (DBN), 1, And organic bases such as 8-diazabicyclo [5.4.0] undec-7-ene (DBU).
  • sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, 2,4,6-collidine, 4-dimethylaminopyridine, 1,8-diazabicyclo [5 4.0] undec-7-ene is preferred, with sodium carbonate, potassium carbonate, triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine and 4-dimethylaminopyridine being particularly preferred.
  • These bases can be used alone or in combination.
  • the amount used may be 0.01 mol or more, preferably 0.03 to 5 mol, based on 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2]. 0.05 to 3 moles is particularly preferred.
  • the optically active 3-amino-2-fluoropropionic acid ester [2] is used in this step in the form of a salt, it must be returned to the free base in the reaction system.
  • a reaction may be performed. This base can be arbitrarily selected from the bases of additives for allowing the reaction to proceed very smoothly, but it is preferable to carry out the reaction with both of them being the same base.
  • reaction solvent examples include aliphatic hydrocarbons such as n-hexane, cyclohexane, n-heptane, and n-octane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and mesitylene, methylene chloride, chloroform, 1, Halogens such as 2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, esters such as ethyl acetate and n-butyl acetate, acetonitrile, propionitrile, etc.
  • aliphatic hydrocarbons such as n-hexane, cyclohexane, n-heptane, and n-octane
  • aromatic hydrocarbons such as benzene
  • Nitrile type water and the like.
  • n-hexane, cyclohexane, n-heptane, toluene, ethylbenzene, xylene, methylene chloride, tetrahydrofuran, tert-butyl methyl ether, 1,4-dioxane, ethyl acetate, acetonitrile and water are preferred, and n-hexane, n- Particularly preferred are heptane, toluene, xylene, methylene chloride, tetrahydrofuran, 1,4-dioxane, ethyl acetate, acetonitrile and water.
  • reaction solvents can be used alone or in combination. When water is used, the reaction can be performed in a heterogeneous system.
  • the reaction solvent may be used in an amount of 0.05 L or more with respect to 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2] or a salt of the compound, preferably 0.1 to 20 L, .15 to 10 L is particularly preferred.
  • the reaction temperature may be + 150 ° C. or less, preferably ⁇ 30 ° C. to + 125 ° C., particularly preferably ⁇ 20 ° C. to + 100 ° C.
  • the reaction time may be 48 hours or less, but it varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, and nuclear magnetic resonance.
  • the end point is preferably the time point at which almost no decrease in the reaction substrate is observed.
  • the target optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3] is obtained by performing a general post-treatment operation in organic synthesis on the reaction end solution. Can do.
  • the operation of washing the reaction end solution with an aqueous solution of an inorganic base and concentrating the recovered organic layer to obtain a residue is effective.
  • the amount of di-t-butyl dicarbonate used for the optically active 3-amino-2-fluoropropionic acid ester [2] is controlled to exactly 1 equivalent, unreacted di-t-butyl dicarbonate is the target product. Remain. If necessary, it can be purified by activated carbon treatment, column chromatography or the like. Further, the stereochemistry at the 2-position of the target product is maintained throughout this step, and no decrease in optical purity is observed.
  • the first step and the second step can produce optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3], which is a novel substance, as a key intermediate in the production method of the present invention. ([Invention 5]).
  • the amount of lithium borohydride or sodium borohydride used may be 0.35 mol or more per 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3]. 4 to 5 mol is preferred, and 0.45 to 3 mol is particularly preferred.
  • reaction solvent examples include ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, and 1,4-dioxane, and alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol. .
  • ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, and 1,4-dioxane
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol.
  • tetrahydrofuran, tert-butyl methyl ether, 1,4-dioxane, methanol, ethanol, n-propanol and isopropanol are preferred, and tetrahydrofuran, 1,
  • the reaction solvent may be used in an amount of 0.05 L or more, preferably 0.1 to 20 L, based on 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3]. 15 to 10 L is particularly preferred.
  • the reaction temperature may be + 150 ° C. or less, preferably ⁇ 50 ° C. to + 125 ° C., particularly preferably ⁇ 40 ° C. to + 100 ° C.
  • the reaction time may be 48 hours or less, but it varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, and nuclear magnetic resonance.
  • the end point is preferably the time point at which almost no decrease in the reaction substrate is observed.
  • the target optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol [4] is crystallized by subjecting the reaction end solution to a general post-treatment operation in organic synthesis.
  • a general post-treatment operation in organic synthesis can be obtained as Preferably, an operation of adding an aqueous solution of an inorganic base to the reaction completion liquid and concentrating, adding water to the residue and extracting with an organic solvent, washing the recovered organic layer with water, and concentrating to obtain a residue is effective. Even if a reaction substrate in which unreacted di-t-butyl dicarbonate remains is decomposed under the reaction conditions of this step, di-t-butyl dicarbonate does not remain at all in the target product. If necessary, it can be purified by activated carbon treatment, column chromatography or the like. Further, the stereochemistry at the 2-position of the target product is maintained throughout this step, and no decrease in optical purity is observed.
  • the optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol produced in the third step is preferable because it can be obtained as a high purity product by recrystallization purification ([Invention 3]).
  • As an actual operation it can be performed as a general operation in organic synthesis [The Chemical Society of Japan, edited by Fifth Edition, Experimental Chemistry Lecture 1 (Basics I: Basics of Experiments and Information, published by Maruzen in 2003), 4 (Basics Part IV IV Organic / Polymer / Biochemistry, published by Maruzen in 2003), 5 (Basic technology for chemical experiments, published by Maruzen in 2005), etc.]
  • recrystallization purification it can be purified to a higher purity.
  • activated carbon treatment etc. can also be performed as needed.
  • the purity of chemical purity, optical purity, or both can be increased.
  • Recrystallization solvents include n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane and other aliphatic hydrocarbons, benzene, toluene, ethylbenzene, xylene, mesitylene, etc.
  • Aromatic hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, esters such as ethyl acetate and n-butyl acetate, nitriles such as acetonitrile and propionitrile, methanol, ethanol, n-propanol, isopropanol, n-butanol, etc.
  • halogens such as methylene chloride, chloroform, 1,2-dichloroethane
  • ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether
  • aliphatic hydrocarbons, aromatic hydrocarbons and mixed solvents thereof are preferable, and n-hexane, cyclohexane, n-heptane, n-octane, toluene, ethylbenzene, xylene and mixed solvents thereof are particularly preferable.
  • This recrystallization purification is preferable because a high-purity product can be recovered with good yield by using an aliphatic hydrocarbon type, an aromatic hydrocarbon type or a mixed solvent thereof as a recrystallization solvent ([Invention 4]). .
  • These recrystallization solvents can be used alone or in combination.
  • the recrystallization solvent may be used in an amount of 0.05 L or more with respect to 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol [4], preferably 0.07 to 20 L, 0.09 to 10 L is particularly preferred.
  • the amount used may be 0.00001 mol or more with respect to 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol [4]. 0.1 mole is preferred, with 0.0002 to 0.05 mole being particularly preferred.
  • the temperature condition for recrystallization purification may be + 150 ° C. or less, preferably ⁇ 30 ° C. to + 125 ° C., particularly preferably ⁇ 20 ° C. to + 100 ° C. Moreover, it is preferable to age at + 15 ° C. or lower by gradually cooling or cooling.
  • the recrystallization purification time condition may be within 48 hours, but since it varies depending on the recrystallization substrate and the purification conditions, it can be purified by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc. It is preferable that the progress is tracked and the end point is the point at which no further progress is recognized.
  • the operation for recovering the high-purity product obtained by recrystallization purification is not particularly limited.
  • the precipitated crystal is filtered, washed with a poor solvent as necessary, and dried at 30 ° C. or less to obtain high purity. Goods can be obtained.
  • Example 1 90.4 g of methyl (R) -3-dibenzylamino-2-fluoropropionate represented by the following formula (gas chromatographic purity: 88) produced in the same manner from L-serine with reference to the pamphlet of International Publication No. 2009/133789 0.4%, 265 mmol, 1.00 eq) in methanol solution (solvent usage 300 mL, 0.9 M) and 5% palladium on carbon (water content 50%) 6.38 g (1.50 mmol, 0.00566 eq) Acetic acid 36.0 g (600 mmol, 2.26 eq) was added, the hydrogen gas pressure was set to 0.9 MPa, and the mixture was stirred at room temperature overnight.
  • gas chromatographic purity: 88 gas chromatographic purity
  • the conversion rate was 100% from 19 F-NMR of the reaction completed liquid.
  • the reaction-terminated liquid was filtered through Celite, washed with a small amount of methanol, and 13.0 g (357 mmol, 1.35 eq) of hydrogen chloride gas (HCl) was blown into the filtrate with ice cooling, followed by concentration under reduced pressure.
  • Toluene 200 mL, 1.3 M was added to the residue (crude crystals), and the mixture was stirred and washed under ice cooling (heterogeneous system). The crystals were filtered, washed with toluene (40 mL), and vacuum-dried.
  • the reaction-terminated liquid was washed with an aqueous potassium carbonate solution [prepared from 13.2 g (95.5 mmol, 1.00 eq) of potassium carbonate and 60 mL of water], and the recovered organic layer was concentrated under reduced pressure and vacuum-dried, and expressed by the following formula. 21.4 g of methyl (R) -3-tert-butoxycarbonylamino-2-fluoropropionate (oil) was obtained (theoretical yield 21.1 g). The purity by gas chromatography was 94.7% (3.7% of di-t-butyl dicarbonate remained, and the purity excluding di-t-butyl dicarbonate was 98.4%). 1 H-NMR and 19 F-NMR are shown below.
  • Example 2 Example 1 Using methyl (S) -3-dibenzylamino-2-fluoropropionate represented by the following formula, which was prepared in the same manner from D-serine with reference to the pamphlet of International Publication No. 2009/133789, as a starting material, Example 1 The reaction (debenzylation, tert-butoxycarbonylation, hydride reduction) was carried out in the same manner as described above. As a result, (S) -3-tert-butoxycarbonylamino-2-fluoro-1-propanol represented by the following formula could be produced.
  • Example 1 The color tone, physical properties, yield, total yield, gas chromatography purity, 1 H-NMR and 19 F-NMR of the final product obtained were the same as in Example 1 (other than the absolute configuration of the asymmetric carbon). .
  • the color tone, physical properties, recovery amount, recovery rate, melting point, gas chromatography purity and optical purity in recrystallization purification were also the same as in Example 1. Further, the gas chromatography purity, recovery rate and optical purity in the second recrystallization were also the same as in Example 1.
  • the resulting reaction mixture was stirred under hydrogen gas at a pressure of 0.9 MPa, and the progress of the reaction was followed by 19 F-NMR.
  • the reaction check (1) was performed “after stirring overnight at room temperature”, and the reaction check (2) was performed “after further stirring overnight at 50 ° C.”.
  • the reaction mixture was filtered through Celite, and 70% of the filtrate (to 169 mmol, 1.00 eq) was added to 5.09 g [1.20 mmol, 0% of 5% palladium carbon (water content 50%). .00710 eq (total usage 0.01417 eq)] was added again.
  • the resulting mixture was stirred under hydrogen gas at a pressure of 0.9 MPa, and the progress of the reaction was followed by 19 F-NMR.
  • a reaction check (3) was performed “after 3 hours of stirring at room temperature”, and a reaction check (4) was performed “after further stirring overnight at room temperature”.
  • Table 1 summarizes the composition ratios (dibenzyl: monobenzyl: target) of the reaction mixture in each reaction check.
  • the amount of palladium catalyst used is significantly reduced by performing debenzylation in the first step. Since the reaction can be completed in one time, the production cost is low and the operation is simple. In addition, a high-purity product can be obtained by crystallization of the final target product and recrystallization purification. Therefore, according to the present invention, optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol can be produced industrially more advantageously than the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a three-step method for manufacturing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol. The provided method can dramatically reduce the amount of a palladium catalyst used and can complete the reaction in one cycle, thereby reducing manufacturing costs and simplifying the procedure. Furthermore, the final target substance is crystallized and purified through recrystallization, yielding a high-purity result. Also provided is optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester, a novel substance which is a key intermediate in the provided manufacturing method.

Description

光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法Process for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol
 本発明は、医薬中間体として重要な光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法に関する。 The present invention relates to a process for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol important as a pharmaceutical intermediate.
 光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールは医薬中間体として重要であり、特許文献1及び2において、該化合物の製造方法が開示されている(スキーム1を参照)。
Figure JPOXMLDOC01-appb-C000006
[式中、Bn、Me、Boc、*、THF、Pd(OH)2/C、EtOH、(Boc)2OおよびAqueous dioxaneは、それぞれベンジル基、メチル基、tert-ブトキシカルボニル基、不斉炭素、テトラヒドロフラン、炭素に担持された水酸化パラジウム、エタノール、2炭酸ジ-t-ブチル、ジオキサン水溶液を表す。]
Optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol is important as a pharmaceutical intermediate, and Patent Documents 1 and 2 disclose a method for producing the compound (see Scheme 1).
Figure JPOXMLDOC01-appb-C000006
[In the formula, Bn, Me, Boc, *, THF, Pd (OH) 2 / C, EtOH, (Boc) 2 O and Aqueous dioxane are benzyl group, methyl group, tert-butoxycarbonyl group, asymmetric carbon, respectively. , Tetrahydrofuran, palladium hydroxide supported on carbon, ethanol, di-t-butyl dicarbonate, dioxane aqueous solution. ]
特表2003-516346号公報Special table 2003-516346 gazette 特表2008-503501号公報Special table 2008-503501 gazette
 従来の光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法には、次のような問題点が存在する。 The conventional method for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol has the following problems.
 特許文献1及び2では、第2工程の脱ジベンジル化が工業的に採用され難いものであった。反応を完結させるためには、水素ガスの吸収が認められなくなった時点で新しいパラジウム触媒に置き換えて何度も同じ反応を繰り返す必要があり、操作が煩雑であった。例えば、特許文献1の実施例I 7では計2回、実施例I 13では計3回、同じ反応を繰り返す必要があり、結果的に高価なパラジウム触媒のトータル使用量も増加した(実施例I 7;6.5モル%、実施例I 13;7.6モル%)。特許文献2では1回で反応を完結させているが、パラジウム触媒の使用量が格段に多く[実施例18(工程D:脱保護);24.0モル%]、製造コストが高かった。 In Patent Documents 1 and 2, debenzylation in the second step is difficult to be industrially employed. In order to complete the reaction, it was necessary to replace the palladium catalyst with a new one when hydrogen gas absorption was no longer observed, and the same reaction had to be repeated many times, and the operation was complicated. For example, it is necessary to repeat the same reaction twice in Example I-7 of Patent Document 1 and 3 times in Example I-13, resulting in an increase in the total amount of expensive palladium catalyst used (Example I). 7; 6.5 mol%, Example I IV 13; 7.6 mol%). In Patent Document 2, the reaction is completed once, but the amount of the palladium catalyst used is remarkably large [Example 18 (Step D: Deprotection); 24.0 mol%], and the production cost is high.
 また、最終目的物である光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールは高沸点の油状物質であるために、蒸留や再結晶等の大量規模でも実施容易な精製方法を採用することができず、医薬中間体として要求される高純度品を工業的に製造することが困難であった。特許文献2では、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの色調や物性に関して“淡褐色油状物として純粋な生成物を得た”との開示があるが、本発明で得られる該化合物の高純度品(白色結晶)とは甚だ異なっていた。 In addition, since optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol, which is the final target, is a high boiling oily substance, a purification method that can be easily carried out even on a large scale such as distillation or recrystallization is used. Therefore, it was difficult to industrially produce a high-purity product required as a pharmaceutical intermediate. Patent Document 2 discloses that “a pure product was obtained as a light brown oil” regarding the color tone and physical properties of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol. It was very different from the high-purity product (white crystals) of the compound obtained in 1.
 この様に、操作が簡便で、製造コストが安く、且つ高純度品が得られる、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの工業的な製造方法が強く望まれていた。 Thus, there is a strong demand for an industrial production method of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol that is simple in operation, low in production cost, and capable of obtaining a high-purity product. It was.
 そこで本発明は、上記の従来技術の問題点を解決し、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの工業的な製造方法を提供することを目的とする。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide an industrial production method of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol.
 上記課題に鑑み、本発明者らは、スキーム1の第2工程の脱ジベンジル化が完結し難い現象を参考例1にて再現したところ、光学活性3-ジベンジルアミノ-2-フルオロ-1-プロパノール(ジベンジル体)から光学活性3-ベンジルアミノ-2-フルオロ-1-プロパノール(モノベンジル体)への変換は良好に進行するが、モノベンジル体から目的物である光学活性3-アミノ-2-フルオロ-1-プロパノールへの変換が極めて遅いことが判明した。この結果より、アミノ基(第2級または第1級)とヒドロキシル基を同時に有する2座配位性の化合物がパラジウム触媒の触媒毒として働く可能性があると推測される。 In view of the above problems, the present inventors reproduced the phenomenon in which dedibenzylation in the second step of Scheme 1 was difficult to complete in Reference Example 1, and found that optically active 3-dibenzylamino-2-fluoro-1- Although the conversion from propanol (dibenzyl compound) to optically active 3-benzylamino-2-fluoro-1-propanol (monobenzyl compound) proceeds satisfactorily, the optically active 3-amino-2 which is the target product from the monobenzyl compound. The conversion to -fluoro-1-propanol was found to be very slow. From this result, it is presumed that a bidentate compound having an amino group (secondary or primary) and a hydroxyl group simultaneously may act as a catalyst poison of the palladium catalyst.
 そこで、本発明者らは、この様な2座配位性の化合物を経ない製造方法について鋭意検討した結果、同じ出発原料を用いて反応工程の順序を入れ替えるだけで脱ジベンジル化が極めて良好に進行し、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールが工業的に製造できることを見出した(スキーム2を参照)。また、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造における鍵中間体として、新規物質である光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルが工業的に製造できることも見出した。
Figure JPOXMLDOC01-appb-C000007
[式中、RおよびPdは、それぞれ炭素数1から6のアルキル基、パラジウム触媒を表す。]
Therefore, as a result of intensive studies on a production method that does not go through such a bidentate compound, the present inventors have achieved very good dedibenzylation simply by changing the order of the reaction steps using the same starting materials. It has been found that optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol can be produced industrially (see Scheme 2). As a key intermediate in the production of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol, a novel optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester is industrially used. It was also found that it can be manufactured.
Figure JPOXMLDOC01-appb-C000007
[Wherein, R and Pd represent an alkyl group having 1 to 6 carbon atoms and a palladium catalyst, respectively. ]
 第1工程で脱ジベンジル化を行うことにより、パラジウム触媒の使用量を格段に低減することができ(1モル%以下)、且つ1回で反応を完結させることができる。この第1工程の脱ジベンジル化は、添加剤として酸を加えることにより反応が極めて円滑に進行することも見出した。 By performing dedibenzylation in the first step, the amount of palladium catalyst used can be remarkably reduced (1 mol% or less), and the reaction can be completed in one time. It has also been found that the dedibenzylation in the first step proceeds very smoothly by adding an acid as an additive.
 また、第1工程の脱ジベンジル化で得られる光学活性3-アミノ-2-フルオロプロピオン酸エステルを酸との塩に誘導して塩精製を行うことにより該化合物の高純度品を得ることができ、この高純度品を第2工程のtert-ブトキシカルボニル化および第3工程のヒドリド還元に供することで最終的に得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールが結晶化し、再結晶精製を行うことにより最終目的物の高純度品が得られることを見出した。従来、油状物質と考えられていた最終目的物の光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールが結晶化する理由として、光学活性3-アミノ-2-フルオロプロピオン酸エステルでの塩精製による高純度化以外に、tert-ブトキシカルボニル化で用いる2炭酸ジ-t-ブチルが最終目的物に全く残存せず純度を低下させないことも挙げられる。第2工程のtert-ブトキシカルボニル化に引き続いて第3工程のヒドリド還元を行うため、第2工程で未反応の2炭酸ジ-t-ブチルが残存しても第3工程の反応条件下で完全に分解されるためである(スキーム1の製造方法では最終工程でtert-ブトキシカルボニル化を行うため、この様な効果を期待することができない)。従って、反応工程の順序は極めて重要な意味を持つ。 In addition, a highly pure product of the compound can be obtained by deriving the optically active 3-amino-2-fluoropropionic acid ester obtained by dedibenzylation in the first step into a salt with an acid and carrying out salt purification. The optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol finally obtained by subjecting this high purity product to tert-butoxycarbonylation in the second step and hydride reduction in the third step It was found that a high purity product of the final target product can be obtained by recrystallization purification. The reason why the optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol of the final product, which has been conventionally considered as an oily substance, is crystallized is because of the optically active 3-amino-2-fluoropropionic acid ester. In addition to the purification by salt purification, di-t-butyl dicarbonate used in tert-butoxycarbonylation does not remain at all in the final product and does not lower the purity. Subsequent to tert-butoxycarbonylation in the second step followed by hydride reduction in the third step, even if unreacted di-t-butyl dicarbonate remains in the second step, it is completely removed under the reaction conditions of the third step. (Since the production method of Scheme 1 performs tert-butoxycarbonylation in the final step, such an effect cannot be expected). Therefore, the order of the reaction steps is extremely important.
 さらに、第2工程のtert-ブトキシカルボニル化は、添加剤として塩基を加えることにより反応が極めて円滑に進行することを見出した。 Furthermore, the tert-butoxycarbonylation in the second step was found to proceed very smoothly by adding a base as an additive.
 結晶として得られる最終目的物の光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールは融点が39℃と低く、必ずしも再結晶精製に好ましい物性ではないが、好適な再結晶溶媒を用いることにより高純度品が収率良く回収できることも見出した。 The final target optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol obtained as a crystal has a melting point as low as 39 ° C. and is not necessarily a desirable physical property for recrystallization purification. It has also been found that a high-purity product can be recovered with good yield by using it.
 当初、スキーム2に示す製造方法には、種々の副反応が予想された。例えば、第1工程で得られる光学活性3-アミノ-2-フルオロプロピオン酸エステルのラクタム化や(ポリ)アミド化、第2工程で得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルのラセミ化や3-tert-ブトキシカルボニルアミノアクリル酸エステルへの脱フッ化水素(電子求引性のアミノ保護基の導入によるα位およびβ位プロトンの酸性度が高くなることに由来)、第3工程で得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの光学純度の低下(光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルのヒドリド還元条件下でのラセミ化)等である。しかしながら、本発明で開示する反応条件を採用することにより、これらの副反応が殆ど起こらないことも明らかにした。 Initially, various side reactions were expected in the production method shown in Scheme 2. For example, lactamization or (poly) amidation of optically active 3-amino-2-fluoropropionic acid ester obtained in the first step, optically active 3-tert-butoxycarbonylamino-2-fluoropropion obtained in the second step Racemization of acid esters and dehydrofluorination of 3-tert-butoxycarbonylaminoacrylic acid esters (derived from high acidity of α-position and β-position protons by introduction of electron-withdrawing amino protecting group) Reduction of optical purity of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol obtained in the third step (hydride reduction conditions for optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester) Racemization below) and the like. However, it has also been clarified that these side reactions hardly occur by adopting the reaction conditions disclosed in the present invention.
 すなわち、本発明は、[発明1]から[発明5]を含み、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの工業的な製造方法、および該製造方法における鍵中間体として新規物質である光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルを提供する。 That is, the present invention includes [Invention 1] to [Invention 5], an industrial production method of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol, and a key intermediate in the production method As a novel substance, an optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester is provided.
 [発明1]
 一般式[1]で示される光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステルをパラジウム触媒の存在下に水素ガス(H2)で脱ジベンジル化することにより一般式[2]で示される光学活性3-アミノ-2-フルオロプロピオン酸エステルに変換する第1工程と、一般式[2]で示されるエステル体を2炭酸ジ-t-ブチル[(Boc)2O]でtert-ブトキシカルボニル化することにより一般式[3]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルに変換する第2工程と、一般式[3]で示されるエステル体を水素化ホウ素リチウム(LiBH4)または水素化ホウ素ナトリウム(NaBH4)でヒドリド還元する第3工程と、を含む、一般式[4]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
[式中、Rは炭素数1から6のアルキル基を表し、Bnはベンジル基を表し、Bocはtert-ブトキシカルボニル基を表し、*は不斉炭素を表す。]
[Invention 1]
The optically active 3-dibenzylamino-2-fluoropropionic acid ester represented by the general formula [1] is dedibenzylated with hydrogen gas (H 2 ) in the presence of a palladium catalyst, and represented by the general formula [2]. A first step of converting to an optically active 3-amino-2-fluoropropionic acid ester, and an ester represented by the general formula [2] with tert-butoxycarbonyl di-t-butyl dicarbonate [(Boc) 2 O] A second step of converting to an optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester represented by the general formula [3] by converting the ester compound represented by the general formula [3] to borohydride lithium light represented by (LiBH 4) or sodium borohydride and a third step of hydride reduction with (NaBH 4), the general formula [4] Production method of the active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
[Wherein, R represents an alkyl group having 1 to 6 carbon atoms, Bn represents a benzyl group, Boc represents a tert-butoxycarbonyl group, and * represents an asymmetric carbon. ]
 [発明2]
 第1工程の脱ジベンジル化を添加剤として酸を加えて行い、さらに第2工程のtert-ブトキシカルボニル化を添加剤として塩基を加えて行うことを特徴とする、発明1に記載の製造方法。
[Invention 2]
2. The production method according to claim 1, wherein the dedibenzylation in the first step is performed by adding an acid as an additive, and further the tert-butoxycarbonylation in the second step is performed by adding a base as an additive.
 [発明3]
 第1工程で得られる光学活性3-アミノ-2-フルオロプロピオン酸エステルを酸との塩に誘導して塩精製を行い、さらに第3工程で得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの再結晶精製を行うことを特徴とする、発明1または発明2に記載の製造方法。
[Invention 3]
The optically active 3-tert-2-butoxycarbonylamino-2 obtained in the third step is subjected to salt purification by derivatizing the optically active 3-amino-2-fluoropropionic acid ester obtained in the first step into a salt with an acid. The production method according to invention 1 or 2, characterized in that recrystallization purification of fluoro-1-propanol is performed.
 [発明4]
 第3工程で得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの再結晶溶媒が脂肪族炭化水素系、芳香族炭化水素系またはこれらの混合溶媒であることを特徴とする、発明3に記載の製造方法。
[Invention 4]
The recrystallization solvent of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol obtained in the third step is an aliphatic hydrocarbon type, an aromatic hydrocarbon type or a mixed solvent thereof. The manufacturing method according to claim 3.
 [発明5]
 一般式[3]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル。
Figure JPOXMLDOC01-appb-C000012
[式中、Rは炭素数1から6のアルキル基を表し、Bocはtert-ブトキシカルボニル基を表し、*は不斉炭素を表す。]
[Invention 5]
An optically active 3-tert-butoxycarbonylamino-2-fluoropropionate represented by the general formula [3].
Figure JPOXMLDOC01-appb-C000012
[Wherein, R represents an alkyl group having 1 to 6 carbon atoms, Boc represents a tert-butoxycarbonyl group, and * represents an asymmetric carbon. ]
 本発明の製造方法では、脱ベンジル化を第1工程で行うことにより、パラジウム触媒の使用量を格段に低減することができ、且つ1回で反応を完結させることができるため、製造コストが安く、操作が簡便である上、最終目的物が結晶化し、再結晶精製を行うことにより高純度品が得られる。よって、本発明によれば、従来技術の問題点を全て解決し、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールを工業的に有利に製造することができる。また、本発明によれば、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造における鍵中間体として光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルを提供できる。 In the production method of the present invention, since the debenzylation is performed in the first step, the amount of the palladium catalyst used can be remarkably reduced and the reaction can be completed at one time, so that the production cost is low. In addition to simple operation, the final product is crystallized and recrystallized to obtain a high-purity product. Therefore, according to the present invention, all the problems of the prior art can be solved, and optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol can be produced industrially advantageously. The present invention also provides optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester as a key intermediate in the production of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol. it can.
 以下、本発明の光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法について詳細に説明する。 Hereinafter, the production method of the optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol of the present invention will be described in detail.
 本発明の製造方法は、一般式[1]で示される光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステルをパラジウム触媒の存在下に水素ガスで脱ジベンジル化することにより一般式[2]で示される光学活性3-アミノ-2-フルオロプロピオン酸エステルに変換する第1工程と、一般式[2]で示されるエステル体を2炭酸ジ-t-ブチルでtert-ブトキシカルボニル(Boc)化することにより一般式[3]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルに変換する第2工程と、一般式[3]で示されるエステル体を水素化ホウ素リチウムまたは水素化ホウ素ナトリウムでヒドリド還元することにより一般式[4]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールに変換する第3工程からなる。 In the production method of the present invention, the optically active 3-dibenzylamino-2-fluoropropionic acid ester represented by the general formula [1] is dedibenzylated with hydrogen gas in the presence of a palladium catalyst. A first step of converting to an optically active 3-amino-2-fluoropropionic acid ester represented by formula (1) and tert-butoxycarbonyl (Boc) conversion of the ester represented by the general formula [2] with di-t-butyl dicarbonate Thereby converting the optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester represented by the general formula [3] into a lithium borohydride, and converting the ester compound represented by the general formula [3] into lithium borohydride. Alternatively, an optically active 3-tert-butoxycal represented by the general formula [4] by hydride reduction with sodium borohydride And a third step of converting the Niruamino-2-fluoro-1-propanol.
 最初に、第1工程の脱ジベンジル化について詳細に説明する。 First, the dedibenzylation in the first step will be described in detail.
 光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]のRは、炭素数1から6のアルキル基を表す。該アルキル基は、直鎖または枝分れの鎖式、または環式(炭素数が3以上の場合)を採ることができる。その中でもメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基およびn-ヘキシル基が好ましく、メチル基、エチル基、n-プロピル基およびイソプロピル基が特に好ましい。 R of the optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] represents an alkyl group having 1 to 6 carbon atoms. The alkyl group can be linear or branched, or cyclic (when the number of carbon atoms is 3 or more). Of these, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group and an n-hexyl group are preferable, and a methyl group, an ethyl group, an n-propyl group and an isopropyl group are particularly preferable.
 光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]のBnは、ベンジル基を表す。 Bn in the optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] represents a benzyl group.
 光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]の*は、不斉炭素を表し、絶対配置はR体またはS体を採ることができ、光学純度は80%ee(エナンチオマー過剰率)以上を用いればよく、90%ee以上が好ましく、95%ee以上が特に好ましい。 * In the optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] represents an asymmetric carbon, the absolute configuration can be R-form or S-form, and the optical purity is 80% ee (enantiomeric excess Rate) or higher, 90% ee or higher is preferable, and 95% ee or higher is particularly preferable.
 光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]は、Journal of the American Chemical Society(米国),1982年,第104巻,p.5836-5837、国際公開2006/038872号パンフレット、国際公開2009/133789号パンフレット等を参考にして同様に製造することができる。 Optically active 3-dibenzylamino-2-fluoropropionic acid ester [1] is disclosed in Journal of America, American Chemical, Society (USA), 1982, Vol. 104, p. 5836-5837, International Publication No. 2006/038872 pamphlet, International Publication No. 2009/133789 pamphlet, and the like, can be similarly produced.
 パラジウム触媒としては、パラジウム黒、パラジウムスポンジ、パラジウム/活性炭、パラジウム/アルミナ、パラジウム/炭酸カルシウム、パラジウム/炭酸ストロンチウム、パラジウム/硫酸バリウム、水酸化パラジウム/活性炭、水酸化パラジウム/アルミナ、酢酸パラジウム、塩化パラジウム等が挙げられる。その中でもパラジウム/活性炭、パラジウム/アルミナ、水酸化パラジウム/活性炭および水酸化パラジウム/アルミナが好ましく、パラジウム/活性炭および水酸化パラジウム/活性炭が特に好ましい。これらのパラジウム触媒は単独または組み合わせて用いることができる。パラジウムまたは水酸化パラジウムを担体に担持させる場合の担持含量は、0.1から50重量%を用いればよく、0.5から40重量%が好ましく、1から30重量%が特に好ましい。また、パラジウム触媒は含水品を用いることもできる。さらに、取り扱いの安全性を高めるためにまたは金属表面の酸化を防ぐために、水または不活性な液体中に保存したものを用いることもできる。最後に、後述の後処理において反応終了液から回収されるパラジウム触媒を再利用することもできる。 Palladium catalysts include palladium black, palladium sponge, palladium / activated carbon, palladium / alumina, palladium / calcium carbonate, palladium / strontium carbonate, palladium / barium sulfate, palladium hydroxide / activated carbon, palladium hydroxide / alumina, palladium acetate, chloride. Palladium etc. are mentioned. Among these, palladium / activated carbon, palladium / alumina, palladium hydroxide / activated carbon and palladium hydroxide / alumina are preferable, and palladium / activated carbon and palladium hydroxide / activated carbon are particularly preferable. These palladium catalysts can be used alone or in combination. When the palladium or palladium hydroxide is supported on the carrier, the supported content may be 0.1 to 50% by weight, preferably 0.5 to 40% by weight, and particularly preferably 1 to 30% by weight. A water-containing product can also be used as the palladium catalyst. Furthermore, in order to increase the safety of handling or prevent the oxidation of the metal surface, the one stored in water or an inert liquid can also be used. Finally, it is possible to reuse the palladium catalyst recovered from the reaction end solution in the after-treatment described later.
 パラジウム触媒の使用量は、光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]1モルに対して0.05モル以下を用いればよく、0.00001から0.03モルが好ましく、0.0001から0.01モルが特に好ましい。 The amount of the palladium catalyst used may be 0.05 mol or less, preferably 0.00001 to 0.03 mol, relative to 1 mol of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1]. 0.0001 to 0.01 mol is particularly preferred.
 水素ガスの使用量は、光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]1モルに対して2モル以上を用いればよいが、過剰量が好ましく、加圧条件での過剰量が特に好ましい。 The hydrogen gas may be used in an amount of 2 moles or more per mole of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1]. Is particularly preferred.
 水素ガスの加圧条件は、5MPa以下で行えばよく、0.005から4MPaが好ましく、0.01から3MPaが特に好ましい。従って、ステンレス鋼(SUS)またはガラス(グラスライニング)の様な材質でできた耐圧反応容器を用いることが好ましい。 The pressure condition of hydrogen gas may be 5 MPa or less, preferably 0.005 to 4 MPa, and particularly preferably 0.01 to 3 MPa. Therefore, it is preferable to use a pressure resistant reaction vessel made of a material such as stainless steel (SUS) or glass (glass lining).
 第1工程では、添加剤として酸を加えて脱ジベンジル化を行うと、反応が極めて円滑に進行するため好ましい([発明2])。しかしながら、好適な反応条件を組み合わせて採用することにより、第1工程において必ずしも添加剤を加える必要はない。 In the first step, it is preferable to carry out dedibenzylation by adding an acid as an additive because the reaction proceeds very smoothly ([Invention 2]). However, by employing a combination of suitable reaction conditions, it is not always necessary to add an additive in the first step.
 添加剤としては、塩化水素、臭化水素、硫酸、硝酸等の無機酸、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、メタンスルホン酸、パラトルエンスルホン酸等の有機酸が挙げられる。その中でも塩化水素、臭化水素、硫酸、酢酸、トリフルオロ酢酸、メタンスルホン酸およびパラトルエンスルホン酸が好ましく、塩化水素、酢酸、トリフルオロ酢酸およびパラトルエンスルホン酸が特に好ましい。これらの酸は単独または組み合わせて用いることができる。 Examples of the additive include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, methanesulfonic acid and paratoluenesulfonic acid. Among these, hydrogen chloride, hydrogen bromide, sulfuric acid, acetic acid, trifluoroacetic acid, methanesulfonic acid and paratoluenesulfonic acid are preferable, and hydrogen chloride, acetic acid, trifluoroacetic acid and paratoluenesulfonic acid are particularly preferable. These acids can be used alone or in combination.
 添加剤を用いる場合の使用量は、光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]1モルに対して0.1モル以上を用いればよく、0.2から100モルが好ましく、0.3から50モルが特に好ましい。 When the additive is used, the amount used may be 0.1 mol or more per mol of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1], preferably 0.2 to 100 mol. 0.3 to 50 mol is particularly preferred.
 反応溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、1,4-ジオキサン等のエーテル系、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等のアルコール系、水等が挙げられる。その中でもアルコール系が好ましく、メタノール、エタノール、n-プロパノールおよびイソプロパノールが特に好ましい。これらの反応溶媒は単独または組み合わせて用いることができる。 Examples of the reaction solvent include ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, methanol, ethanol, n-propanol, isopropanol, n-butanol, 2,2,2-triol. Examples thereof include alcohols such as fluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, water, and the like. Of these, alcohols are preferred, and methanol, ethanol, n-propanol and isopropanol are particularly preferred. These reaction solvents can be used alone or in combination.
 反応溶媒の使用量は、光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステル[1]1モルに対して0.05L(リットル)以上を用いればよく、0.1から20Lが好ましく、0.15から10Lが特に好ましい。 The reaction solvent may be used in an amount of 0.05 L (liter) or more, preferably 0.1 to 20 L, based on 1 mol of optically active 3-dibenzylamino-2-fluoropropionic acid ester [1]. .15 to 10 L is particularly preferred.
 反応温度は、+150℃以下で行えばよく、-30℃から+100℃が好ましく、-20℃から+50℃が特に好ましい。 The reaction temperature may be + 150 ° C. or less, preferably −30 ° C. to + 100 ° C., particularly preferably −20 ° C. to + 50 ° C.
 反応時間は、48時間以内で行えばよいが、反応基質および反応条件により異なるため、ガスクロマトグラフィー、薄層クロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、反応基質の減少が殆ど認められなくなる時点を終点とすることが好ましい。 The reaction time may be 48 hours or less, but it varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, and nuclear magnetic resonance. The end point is preferably the time point at which almost no decrease in the reaction substrate is observed.
 第1工程では、反応終了液に対して有機合成における一般的な後処理操作を行うことにより、目的とする光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]を得ることができる。好ましくは、反応終了液中のパラジウム触媒を濾過し、濾洗液を濃縮して残渣を得る操作が効果的である。この操作により、水溶性が高い目的物も収率良く回収することができる。目的物の2位の立体化学は本工程を通して保持され、光学純度の低下も認められない。また、必要に応じてカラムクロマトグラフィー等により精製することもできる。 In the first step, the target optically active 3-amino-2-fluoropropionic acid ester [2] can be obtained by performing a general post-treatment operation in organic synthesis on the reaction end solution. Preferably, an operation of filtering the palladium catalyst in the reaction completion liquid and concentrating the filtrate washing liquid to obtain a residue is effective. By this operation, the target product having high water solubility can also be recovered with high yield. The stereochemistry at the 2-position of the target product is maintained throughout this step, and no decrease in optical purity is observed. Moreover, it can also refine | purify by column chromatography etc. as needed.
 特に、第1工程で生成された光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]は、酸との塩に誘導して塩精製を行うと、高純度品として得ることができるため好ましい([発明3])。実際の操作としては「酸との塩への誘導」と「塩精製」であるが、有機合成における一般的な操作として行うことができる[日本化学会編 第5版実験化学講座1(基礎編I 実験・情報の基礎、平成15年丸善発行)、4(基礎編IV 有機・高分子・生化学、平成15年丸善発行)、5(化学実験のための基礎技術、平成17年丸善発行)等を参考にして同様に行うことができる]。これらの操作は、必要に応じて後述の「酸との塩への誘導」または「塩精製」に用いる溶媒(それぞれ塩誘導溶媒、塩精製溶媒とする)を用いて行うことができる。 In particular, the optically active 3-amino-2-fluoropropionic acid ester [2] produced in the first step is preferable because it can be obtained as a high-purity product by conducting salt purification by inducing a salt with an acid. ([Invention 3]). The actual operations are “induction to a salt with an acid” and “salt purification”, but they can be performed as general operations in organic synthesis. I Basics of experiments and information, published by Maruzen in 2003), 4 (Basics IV IV Organic / Polymer / Biochemistry, published by Maruzen in 2003), 5 (Basic technologies for chemical experiments, published by Maruzen in 2005) It can be performed in the same manner with reference to the like.] These operations can be carried out using a solvent (hereinafter referred to as a salt-inducing solvent and a salt-purifying solvent, respectively) used in “derivation to a salt with an acid” or “salt purification” as described below, as necessary.
 「酸との塩への誘導」の具体的な操作としては、特に制限はないが、好ましくは反応終了液、濾洗液または濃縮残渣に酸を加えて行う。濃縮前に酸を加えることにより、沸点が低い目的物も塩として収率良く回収することができる。また、濃縮残渣に酸を加える場合は、塩誘導溶媒を用いて行うのが効果的である。さらに、必要に応じて任意の過程において活性炭処理、塩誘導溶媒の濃縮等を行うこともできる。 The specific operation of “induction to a salt with an acid” is not particularly limited, but is preferably performed by adding an acid to the reaction completion liquid, the filtrate washing liquid or the concentrated residue. By adding an acid before the concentration, the target product having a low boiling point can be recovered in a high yield as a salt. In addition, when an acid is added to the concentrated residue, it is effective to use a salt-derived solvent. Furthermore, activated carbon treatment, concentration of a salt-derived solvent, and the like can be performed in an arbitrary process as necessary.
 酸としては、塩化水素、臭化水素、硫酸、硝酸等の無機酸、ギ酸、酢酸、プロピオン酸、安息香酸、トリフルオロ酢酸、マンデル酸(R体、S体またはラセミ体)、シュウ酸、マレイン酸、フマル酸、フタル酸、リンゴ酸(D体、L体またはラセミ体)、酒石酸(D体、L体またはラセミ体)、メタンスルホン酸、パラトルエンスルホン酸等の有機酸が挙げられる。その中でも塩化水素、臭化水素、硫酸、酢酸、トリフルオロ酢酸、シュウ酸、フマル酸、フタル酸、リンゴ酸、酒石酸、メタンスルホン酸およびパラトルエンスルホン酸が好ましく、塩化水素、酢酸、トリフルオロ酢酸、シュウ酸、フタル酸、酒石酸およびパラトルエンスルホン酸が特に好ましい。反応を極めて円滑に進行させるための添加剤の酸と「酸との塩への誘導」の酸を兼ね合わせることもでき、この場合には反応終了液中で既に塩に誘導されているものとして扱えばよい。 Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid and nitric acid, formic acid, acetic acid, propionic acid, benzoic acid, trifluoroacetic acid, mandelic acid (R-form, S-form or racemic form), oxalic acid, malee Examples include acids, fumaric acid, phthalic acid, malic acid (D-form, L-form or racemic form), tartaric acid (D-form, L-form or racemic form), methanesulfonic acid, paratoluenesulfonic acid and the like. Of these, hydrogen chloride, hydrogen bromide, sulfuric acid, acetic acid, trifluoroacetic acid, oxalic acid, fumaric acid, phthalic acid, malic acid, tartaric acid, methanesulfonic acid, and paratoluenesulfonic acid are preferred. Hydrogen chloride, acetic acid, trifluoroacetic acid Particularly preferred are oxalic acid, phthalic acid, tartaric acid and paratoluenesulfonic acid. It is also possible to combine the acid of the additive for making the reaction proceed very smoothly and the acid of “derivation to the salt with the acid”. You can handle it.
 酸の使用量は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]1モルに対して0.35モル以上を用いればよく、0.4から10モルが好ましく、0.45から5モルが特に好ましい。 The amount of the acid used may be 0.35 mol or more, preferably 0.4 to 10 mol, preferably 0.45 to 5 per 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2]. Mole is particularly preferred.
 「塩精製」の具体的な操作としては、特に制限はないが、好ましくは“結晶での単離”、“単離結晶の洗浄”または“単離結晶の再結晶”により行う。「塩精製」は結晶化しない塩(例えば、油状物質、粘性液体、ケーキ、アモルファス等)に対しても適応することができ、後述の塩精製溶媒の内、貧溶媒を用いて不均一系で攪拌洗浄する方法や、富溶媒に溶解した後に貧溶媒を加えて分液(または分離)回収する方法等を採用することができる。しかしながら、結晶化する塩の方が精製効率は高く、特に“結晶での単離”や“単離結晶の洗浄”は操作が簡便な割に高純度品を得易いため好ましい。「塩精製」は、要求される精製度合いに応じて任意の操作を任意に組み合わせて行うことができる。また、同じ操作を繰り返すことによりさらに高い純度に精製することもできる。さらに、必要に応じて任意の過程において活性炭処理、塩精製溶媒の濃縮等を行うこともできる。「塩精製」においては、化学純度、光学純度またはこれら両方の純度を上げることができる。 The specific operation of “salt purification” is not particularly limited, but is preferably performed by “isolation with crystals”, “washing of isolated crystals” or “recrystallization of isolated crystals”. “Salt refining” can be applied to non-crystallized salts (for example, oily substances, viscous liquids, cakes, amorphouss, etc.). A method of stirring and washing, a method of separating (or separating) and recovering by adding a poor solvent after dissolving in a rich solvent, and the like can be employed. However, a salt that crystallizes is preferable because it has a higher purification efficiency, and in particular, “isolation with crystals” and “washing of isolated crystals” are easy to obtain, but easy to obtain a high-purity product. The “salt purification” can be performed by arbitrarily combining arbitrary operations depending on the required degree of purification. Moreover, it can also be purified to a higher purity by repeating the same operation. Furthermore, activated carbon treatment, salt purification solvent concentration, and the like can be performed in an arbitrary process as necessary. In “salt purification”, the chemical purity, optical purity, or both can be increased.
 「酸との塩への誘導」または「塩精製」に用いる溶媒としては、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素系、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン系、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、1,4-ジオキサン等のエーテル系、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系、酢酸エチル、酢酸n-ブチル等のエステル系、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系、アセトニトリル、プロピオニトリル等のニトリル系、ジメチルスルホキシド、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール系、水等が挙げられる。その中でもn-ヘキサン、シクロヘキサン、n-ヘプタン、トルエン、エチルベンゼン、キシレン、塩化メチレン、テトラヒドロフラン、tert-ブチルメチルエーテル、1,4-ジオキサン、アセトン、メチルエチルケトン、酢酸エチル、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、アセトニトリル、ジメチルスルホキシド、メタノール、エタノール、n-プロパノール、イソプロパノールおよび水が好ましく、n-ヘキサン、n-ヘプタン、トルエン、キシレン、塩化メチレン、テトラヒドロフラン、1,4-ジオキサン、アセトン、酢酸エチル、N,N-ジメチルホルムアミド、アセトニトリル、メタノール、エタノール、イソプロパノールおよび水が特に好ましい。これらの塩誘導溶媒または塩精製溶媒は単独または組み合わせて用いることができる。また、反応溶媒、塩誘導溶媒と塩精製溶媒を兼ね合わせることもでき、その中でも任意の2つの溶媒を兼ね合わせることが好ましく、3つの溶媒を兼ね合わせることが特に好ましい。 Solvents used for “induction to salt with acid” or “salt purification” include aliphatic hydrocarbons such as n-hexane, cyclohexane, n-heptane, n-octane, benzene, toluene, ethylbenzene, xylene, mesitylene Aromatic hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, etc., ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, acetone, methyl ethyl ketone , Ketone systems such as methyl isobutyl ketone, ester systems such as ethyl acetate and n-butyl acetate, amide systems such as N, N-dimethylformamide, N, N-dimethylacetamide and 1,3-dimethyl-2-imidazolidinone , Acetonitrile, propionitrile, etc. Tolyl based, dimethyl sulfoxide, methanol, ethanol, n- propanol, isopropanol, alcohol etc. n- butanol, water and the like. Among them, n-hexane, cyclohexane, n-heptane, toluene, ethylbenzene, xylene, methylene chloride, tetrahydrofuran, tert-butyl methyl ether, 1,4-dioxane, acetone, methyl ethyl ketone, ethyl acetate, N, N-dimethylformamide, 1 , 3-dimethyl-2-imidazolidinone, acetonitrile, dimethyl sulfoxide, methanol, ethanol, n-propanol, isopropanol and water are preferred, n-hexane, n-heptane, toluene, xylene, methylene chloride, tetrahydrofuran, 1,4 -Dioxane, acetone, ethyl acetate, N, N-dimethylformamide, acetonitrile, methanol, ethanol, isopropanol and water are particularly preferred. These salt induction solvents or salt purification solvents can be used alone or in combination. Further, the reaction solvent, the salt-inducing solvent, and the salt purification solvent can be combined, and among them, it is preferable to combine any two solvents, and it is particularly preferable to combine three solvents.
 「酸との塩への誘導」または「塩精製」に用いる溶媒の使用量は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]または該化合物の塩1モルに対して0.05L以上を用いればよく、0.07から20Lが好ましく、0.09から10Lが特に好ましい。 The amount of the solvent used for the “derivation to a salt with an acid” or “salt purification” is 0.05 L with respect to 1 mol of the optically active 3-amino-2-fluoropropionic acid ester [2] or a salt of the compound. What is necessary is just to use the above, 0.07 to 20L is preferable, and 0.09 to 10L is especially preferable.
 “結晶での単離”または“単離結晶の再結晶”は、種結晶を加えることにより結晶が円滑に且つ効率良く析出する場合がある(好適な精製条件を組み合わせて採用することにより、必ずしも種結晶を加える必要はない)。 “Isolation by crystal” or “recrystallization of isolated crystal” may cause the crystal to precipitate smoothly and efficiently by adding a seed crystal (by using a combination of suitable purification conditions, There is no need to add seed crystals).
 種結晶を用いる場合の使用量は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]の塩1モルに対して0.00001モル以上を用いればよく、0.0001から0.1モルが好ましく、0.0002から0.05モルが特に好ましい。 When the seed crystal is used, the amount used may be 0.00001 mol or more with respect to 1 mol of the salt of the optically active 3-amino-2-fluoropropionic acid ester [2], and 0.0001 to 0.1 mol. Is preferable, and 0.0002 to 0.05 mol is particularly preferable.
 「酸との塩への誘導」または「塩精製」の温度条件は、+150℃以下で行えばよく、-30から+125℃が好ましく、-20から+100℃が特に好ましい。“結晶での単離”または“単離結晶の再結晶”の場合は、徐々に降温または冷却して+15℃以下で熟成することが好ましい。 The temperature condition of “induction to salt with acid” or “salt purification” may be performed at + 150 ° C. or less, preferably −30 to + 125 ° C., particularly preferably −20 to + 100 ° C. In the case of “isolation with crystals” or “recrystallization of isolated crystals”, it is preferable to age at + 15 ° C. by gradually cooling or cooling.
 「酸との塩への誘導」または「塩精製」の時間条件は、48時間以内で行えばよいが、塩基質および誘導または精製条件により異なるため、ガスクロマトグラフィー、薄層クロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により誘導または精製の進捗状況を追跡し、さらなる進捗が殆ど認められなくなる時点を終点とすることが好ましい。 The time condition of “derivation to salt with acid” or “salt purification” may be within 48 hours, but it varies depending on the basic substance and the induction or purification conditions. Therefore, gas chromatography, thin layer chromatography, liquid chromatography It is preferable that the progress of induction or purification is tracked by analytical means such as chromatography or nuclear magnetic resonance, and that the end point is when no further progress is observed.
 「酸との塩への誘導」で得られる塩の回収操作としては、特に制限はないが、好ましくは溶液のままでまたは濃縮した残渣の状態で「塩精製」に用いる。 The operation for recovering the salt obtained by “induction to a salt with an acid” is not particularly limited, but it is preferably used for “salt purification” in a solution or in a concentrated residue.
 「塩精製」で得られる塩の回収操作としては、特に制限はないが、好ましくは結晶、油状物質、粘性液体、ケーキ、アモルファス等を濾過、分液または分離することにより高純度品が得られる。また、必要に応じて任意の過程において貧溶媒での洗浄、乾燥等を行うこともできる。高純度品として得られる光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]の塩は、塩のままでまたは遊離塩基に戻してから次工程のtert-ブトキシカルボニル化に供することができる。遊離塩基に戻す方法としては、特に制限はないが、好ましくは該塩を無機塩基の水溶液で中和して有機溶媒で抽出し、回収有機層を濃縮して残渣を得る操作が挙げられる。また、必要に応じて任意の過程において乾燥剤(例えば、無水硫酸ナトリウム、無水硫酸マグネシウム等)、真空ポンプ等で乾燥することもできる。この無機塩基は、後述の第2工程の添加剤として加える無機塩基の中から任意に選ぶことができる。この有機溶媒は、塩誘導溶媒または塩精製溶媒の中から無機塩基の水溶液と分液できるものを任意に選ぶことができる。しかしながら、塩のままで次工程に供する方が、操作が簡便で好ましい。 The operation for recovering the salt obtained by “salt purification” is not particularly limited, but preferably a high-purity product can be obtained by filtering, separating or separating crystals, oily substances, viscous liquids, cakes, amorphouss, etc. . Moreover, washing | cleaning with a poor solvent, drying, etc. can also be performed in arbitrary processes as needed. The salt of the optically active 3-amino-2-fluoropropionic acid ester [2] obtained as a high-purity product can be subjected to the tert-butoxycarbonylation in the next step as it is or converted back to the free base. The method for returning to the free base is not particularly limited, but preferably includes an operation in which the salt is neutralized with an aqueous solution of an inorganic base and extracted with an organic solvent, and the recovered organic layer is concentrated to obtain a residue. Moreover, it can also be dried with a desiccant (for example, anhydrous sodium sulfate, anhydrous magnesium sulfate, etc.), a vacuum pump, etc. in arbitrary processes as needed. This inorganic base can be arbitrarily selected from inorganic bases added as an additive in the second step described later. The organic solvent can be arbitrarily selected from those that can be separated from an aqueous solution of an inorganic base from among salt-derived solvents and salt-purifying solvents. However, it is preferable to use the salt as it is in the next step because the operation is simple.
 次に、第2工程のtert-ブトキシカルボニル化について詳細に説明する。 Next, the tert-butoxycarbonylation in the second step will be described in detail.
 上述の通り、第1工程において「酸との塩への誘導」と「塩精製」を行う場合は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]を塩のままで本工程のtert-ブトキシカルボニル化に供することもできる。 As described above, in the case where “induction to a salt with an acid” and “salt purification” are performed in the first step, the optically active 3-amino-2-fluoropropionic acid ester [2] is left as a salt in this step. It can also be subjected to tert-butoxycarbonylation.
 目的とする光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル[3]のBocは、tert-ブトキシカルボニル基を表す。 Boc of the target optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3] represents a tert-butoxycarbonyl group.
 2炭酸ジ-t-ブチルの使用量は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]または該化合物の塩1モルに対して0.7モル以上を用いればよく、0.8から5モルが好ましく、0.9から3モルが特に好ましい。 The amount of di-t-butyl dicarbonate used may be 0.7 mol or more per 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2] or a salt of the compound. To 5 mol is preferred, and 0.9 to 3 mol is particularly preferred.
 第2工程は、添加剤として塩基を加えてtert-ブトキシカルボニル化を行うと、反応が極めて円滑に進行するため好ましい([発明2])。しかしながら、好適な反応条件を組み合わせて採用することにより、必ずしも添加剤を加える必要はない。 In the second step, it is preferable to carry out tert-butoxycarbonylation by adding a base as an additive because the reaction proceeds very smoothly ([Invention 2]). However, it is not necessary to add an additive by adopting a combination of suitable reaction conditions.
 添加剤としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、トリn-ブチルアミン、ピリジン、2,6-ルチジン、2,4,6-コリジン、4-ジメチルアミノピリジン(DMAP)、1,5-ジアザビシクロ[4.3.0]ノン-5-エン(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセ-7-エン(DBU)等の有機塩基が挙げられる。その中でも炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、2,6-ルチジン、2,4,6-コリジン、4-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセ-7-エンが好ましく、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、2,6-ルチジンおよび4-ジメチルアミノピリジンが特に好ましい。これらの塩基は単独または組み合わせて用いることができる。 As additives, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and other inorganic bases, triethylamine, diisopropylethylamine, tri-n- Butylamine, pyridine, 2,6-lutidine, 2,4,6-collidine, 4-dimethylaminopyridine (DMAP), 1,5-diazabicyclo [4.3.0] non-5-ene (DBN), 1, And organic bases such as 8-diazabicyclo [5.4.0] undec-7-ene (DBU). Among them, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine, 2,4,6-collidine, 4-dimethylaminopyridine, 1,8-diazabicyclo [5 4.0] undec-7-ene is preferred, with sodium carbonate, potassium carbonate, triethylamine, diisopropylethylamine, pyridine, 2,6-lutidine and 4-dimethylaminopyridine being particularly preferred. These bases can be used alone or in combination.
 添加剤を用いる場合の使用量は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]1モルに対して0.01モル以上を用いればよく、0.03から5モルが好ましく、0.05から3モルが特に好ましい。光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]を塩のままで本工程に供する場合は、反応系内で遊離塩基に戻す必要があり、中和で消費される塩基を予め余分に加えて反応を行えばよい。この塩基は、反応を極めて円滑に進行させるための添加剤の塩基の中から任意に選ぶこともできるが、両者を同じ塩基に揃えて反応を行うことが好ましい。 When the additive is used, the amount used may be 0.01 mol or more, preferably 0.03 to 5 mol, based on 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2]. 0.05 to 3 moles is particularly preferred. When the optically active 3-amino-2-fluoropropionic acid ester [2] is used in this step in the form of a salt, it must be returned to the free base in the reaction system. In addition, a reaction may be performed. This base can be arbitrarily selected from the bases of additives for allowing the reaction to proceed very smoothly, but it is preferable to carry out the reaction with both of them being the same base.
 反応溶媒としては、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素系、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン系、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチル
メチルエーテル、1,4-ジオキサン等のエーテル系、酢酸エチル、酢酸n-ブチル等のエステル系、アセトニトリル、プロピオニトリル等のニトリル系、水等が挙げられる。その中でもn-ヘキサン、シクロヘキサン、n-ヘプタン、トルエン、エチルベンゼン、キシレン、塩化メチレン、テトラヒドロフラン、tert-ブチルメチルエーテル、1,4-ジオキサン、酢酸エチル、アセトニトリルおよび水が好ましく、n-ヘキサン、n-ヘプタン、トルエン、キシレン、塩化メチレン、テトラヒドロフラン、1,4-ジオキサン、酢酸エチル、アセトニトリルおよび水が特に好ましい。これらの反応溶媒は単独または組み合わせて用いることができる。また、水を用いる場合は、不均一系で反応を行うこともできる。
Examples of the reaction solvent include aliphatic hydrocarbons such as n-hexane, cyclohexane, n-heptane, and n-octane, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and mesitylene, methylene chloride, chloroform, 1, Halogens such as 2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, esters such as ethyl acetate and n-butyl acetate, acetonitrile, propionitrile, etc. Nitrile type, water and the like. Of these, n-hexane, cyclohexane, n-heptane, toluene, ethylbenzene, xylene, methylene chloride, tetrahydrofuran, tert-butyl methyl ether, 1,4-dioxane, ethyl acetate, acetonitrile and water are preferred, and n-hexane, n- Particularly preferred are heptane, toluene, xylene, methylene chloride, tetrahydrofuran, 1,4-dioxane, ethyl acetate, acetonitrile and water. These reaction solvents can be used alone or in combination. When water is used, the reaction can be performed in a heterogeneous system.
 反応溶媒の使用量は、光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]または該化合物の塩1モルに対して0.05L以上を用いればよく、0.1から20Lが好ましく、0.15から10Lが特に好ましい。 The reaction solvent may be used in an amount of 0.05 L or more with respect to 1 mol of optically active 3-amino-2-fluoropropionic acid ester [2] or a salt of the compound, preferably 0.1 to 20 L, .15 to 10 L is particularly preferred.
 反応温度は、+150℃以下で行えばよく、-30℃から+125℃が好ましく、-20℃から+100℃が特に好ましい。 The reaction temperature may be + 150 ° C. or less, preferably −30 ° C. to + 125 ° C., particularly preferably −20 ° C. to + 100 ° C.
 反応時間は、48時間以内で行えばよいが、反応基質および反応条件により異なるため、ガスクロマトグラフィー、薄層クロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、反応基質の減少が殆ど認められなくなる時点を終点とすることが好ましい。 The reaction time may be 48 hours or less, but it varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, and nuclear magnetic resonance. The end point is preferably the time point at which almost no decrease in the reaction substrate is observed.
 第2工程では、反応終了液に対して有機合成における一般的な後処理操作を行うことにより、目的とする光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル[3]を得ることができる。好ましくは、反応終了液を無機塩基の水溶液で洗浄し、回収有機層を濃縮して残渣を得る操作が効果的である。光学活性3-アミノ-2-フルオロプロピオン酸エステル[2]に対する2炭酸ジ-t-ブチルの使用量を正確に1当量に制御しても、未反応の2炭酸ジ-t-ブチルが目的物に残存する。必要に応じて活性炭処理、カラムクロマトグラフィー等により精製することができる。また、目的物の2位の立体化学は本工程を通して保持され、光学純度の低下も認められない。 In the second step, the target optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3] is obtained by performing a general post-treatment operation in organic synthesis on the reaction end solution. Can do. Preferably, the operation of washing the reaction end solution with an aqueous solution of an inorganic base and concentrating the recovered organic layer to obtain a residue is effective. Even when the amount of di-t-butyl dicarbonate used for the optically active 3-amino-2-fluoropropionic acid ester [2] is controlled to exactly 1 equivalent, unreacted di-t-butyl dicarbonate is the target product. Remain. If necessary, it can be purified by activated carbon treatment, column chromatography or the like. Further, the stereochemistry at the 2-position of the target product is maintained throughout this step, and no decrease in optical purity is observed.
 この様に、第1工程および第2工程により、本発明の製造方法における鍵中間体として、新規物質である光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル[3]を生成できる([発明5])。 In this way, the first step and the second step can produce optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3], which is a novel substance, as a key intermediate in the production method of the present invention. ([Invention 5]).
 最後に、第3工程のヒドリド還元について詳細に説明する。 Finally, the hydride reduction in the third step will be described in detail.
 水素化ホウ素リチウムまたは水素化ホウ素ナトリウムの使用量は、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル[3]1モルに対して0.35モル以上を用いればよく、0.4から5モルが好ましく、0.45から3モルが特に好ましい。 The amount of lithium borohydride or sodium borohydride used may be 0.35 mol or more per 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3]. 4 to 5 mol is preferred, and 0.45 to 3 mol is particularly preferred.
 反応溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、1,4-ジオキサン等のエーテル系、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール系等が挙げられる。その中でもテトラヒドロフラン、tert-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、n-プロパノールおよびイソプロパノールが好ましく、テトラヒドロフラン、1,4-ジオキサン、メタノール、エタノールおよびイソプロパノールが特に好ましい。これらの反応溶媒は単独または組み合わせて用いることができる。 Examples of the reaction solvent include ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, and 1,4-dioxane, and alcohols such as methanol, ethanol, n-propanol, isopropanol, and n-butanol. . Of these, tetrahydrofuran, tert-butyl methyl ether, 1,4-dioxane, methanol, ethanol, n-propanol and isopropanol are preferred, and tetrahydrofuran, 1,4-dioxane, methanol, ethanol and isopropanol are particularly preferred. These reaction solvents can be used alone or in combination.
 反応溶媒の使用量は、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル[3]1モルに対して0.05L以上を用いればよく、0.1から20Lが好ましく、0.15から10Lが特に好ましい。 The reaction solvent may be used in an amount of 0.05 L or more, preferably 0.1 to 20 L, based on 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester [3]. 15 to 10 L is particularly preferred.
 反応温度は、+150℃以下で行えばよく、-50℃から+125℃が好ましく、-40℃から+100℃が特に好ましい。 The reaction temperature may be + 150 ° C. or less, preferably −50 ° C. to + 125 ° C., particularly preferably −40 ° C. to + 100 ° C.
 反応時間は、48時間以内で行えばよいが、反応基質および反応条件により異なるため、ガスクロマトグラフィー、薄層クロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、反応基質の減少が殆ど認められなくなる時点を終点とすることが好ましい。 The reaction time may be 48 hours or less, but it varies depending on the reaction substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, and nuclear magnetic resonance. The end point is preferably the time point at which almost no decrease in the reaction substrate is observed.
 第3工程では、反応終了液に対して有機合成における一般的な後処理操作を行うことにより、目的とする光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノール[4]を結晶として得ることができる。好ましくは、反応終了液に無機塩基の水溶液を加えて濃縮し、残渣に水を加えて有機溶媒で抽出し、回収有機層を水洗し、濃縮して残渣を得る操作が効果的である。未反応の2炭酸ジ-t-ブチルが残存する反応基質を用いても本工程の反応条件下で完全に分解されるため、目的物に2炭酸ジ-t-ブチルは全く残存しない。必要に応じて活性炭処理、カラムクロマトグラフィー等により精製することができる。また、目的物の2位の立体化学は本工程を通して保持され、光学純度の低下も認められない。 In the third step, the target optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol [4] is crystallized by subjecting the reaction end solution to a general post-treatment operation in organic synthesis. Can be obtained as Preferably, an operation of adding an aqueous solution of an inorganic base to the reaction completion liquid and concentrating, adding water to the residue and extracting with an organic solvent, washing the recovered organic layer with water, and concentrating to obtain a residue is effective. Even if a reaction substrate in which unreacted di-t-butyl dicarbonate remains is decomposed under the reaction conditions of this step, di-t-butyl dicarbonate does not remain at all in the target product. If necessary, it can be purified by activated carbon treatment, column chromatography or the like. Further, the stereochemistry at the 2-position of the target product is maintained throughout this step, and no decrease in optical purity is observed.
 第3工程で生成された光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールは、再結晶精製を行うと高純度品として得ることができるため好ましい([発明3])。実際の操作としては、有機合成における一般的な操作として行うことができる[日本化学会編 第5版実験化学講座1(基礎編I 実験・情報の基礎、平成15年丸善発行)、4(基礎編IV 有機・高分子・生化学、平成15年丸善発行)、5(化学実験のための基礎技術、平成17年丸善発行)等を参考にして同様に行うことができる]。再結晶精製を繰り返すことによりさらに高い純度に精製することができる。また、必要に応じて活性炭処理等を行うこともできる。再結晶精製においては、化学純度、光学純度またはこれら両方の純度を上げることができる。 The optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol produced in the third step is preferable because it can be obtained as a high purity product by recrystallization purification ([Invention 3]). As an actual operation, it can be performed as a general operation in organic synthesis [The Chemical Society of Japan, edited by Fifth Edition, Experimental Chemistry Lecture 1 (Basics I: Basics of Experiments and Information, published by Maruzen in 2003), 4 (Basics Part IV IV Organic / Polymer / Biochemistry, published by Maruzen in 2003), 5 (Basic technology for chemical experiments, published by Maruzen in 2005), etc.] By repeating recrystallization purification, it can be purified to a higher purity. Moreover, activated carbon treatment etc. can also be performed as needed. In recrystallization purification, the purity of chemical purity, optical purity, or both can be increased.
 再結晶溶媒としては、n-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、シクロヘプタン、n-オクタン、シクロオクタン等の脂肪族炭化水素系、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン系、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテル、1,4-ジオキサン等のエーテル系、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系、酢酸エチル、酢酸n-ブチル等のエステル系、アセトニトリル、プロピオニトリル等のニトリル系、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール系、水等が挙げられる。その中でも脂肪族炭化水素系、芳香族炭化水素系およびこれらの混合溶媒が好ましく、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、トルエン、エチルベンゼン、キシレンおよびこれらの混合溶媒が特に好ましい。本再結晶精製は、再結晶溶媒として脂肪族炭化水素系、芳香族炭化水素系またはこれらの混合溶媒を用いることにより高純度品を収率良く回収することができるため好ましい([発明4])。また、これらの再結晶溶媒は単独または組み合わせて用いることができる。 Recrystallization solvents include n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane and other aliphatic hydrocarbons, benzene, toluene, ethylbenzene, xylene, mesitylene, etc. Aromatic hydrocarbons, halogens such as methylene chloride, chloroform, 1,2-dichloroethane, ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, tert-butyl methyl ether, 1,4-dioxane, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone, esters such as ethyl acetate and n-butyl acetate, nitriles such as acetonitrile and propionitrile, methanol, ethanol, n-propanol, isopropanol, n-butanol, etc. Alcohol, water and the like. Of these, aliphatic hydrocarbons, aromatic hydrocarbons and mixed solvents thereof are preferable, and n-hexane, cyclohexane, n-heptane, n-octane, toluene, ethylbenzene, xylene and mixed solvents thereof are particularly preferable. This recrystallization purification is preferable because a high-purity product can be recovered with good yield by using an aliphatic hydrocarbon type, an aromatic hydrocarbon type or a mixed solvent thereof as a recrystallization solvent ([Invention 4]). . These recrystallization solvents can be used alone or in combination.
 再結晶溶媒の使用量は、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノール[4]1モルに対して0.05L以上を用いればよく、0.07から20Lが好ましく、0.09から10Lが特に好ましい。 The recrystallization solvent may be used in an amount of 0.05 L or more with respect to 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol [4], preferably 0.07 to 20 L, 0.09 to 10 L is particularly preferred.
 再結晶精製は、種結晶を加えることにより結晶が円滑に且つ効率良く析出する場合がある(好適な再結晶条件を組み合わせて採用することにより、必ずしも種結晶を加える必要はない)。 In the recrystallization purification, there is a case where crystals are precipitated smoothly and efficiently by adding a seed crystal (a combination of suitable recrystallization conditions is not necessarily required to add a seed crystal).
 種結晶を用いる場合の使用量は、光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノール[4]1モルに対して0.00001モル以上を用いればよく、0.0001から0.1モルが好ましく、0.0002から0.05モルが特に好ましい。 When the seed crystal is used, the amount used may be 0.00001 mol or more with respect to 1 mol of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol [4]. 0.1 mole is preferred, with 0.0002 to 0.05 mole being particularly preferred.
 再結晶精製の温度条件は、+150℃以下で行えばよく、-30℃から+125℃が好ましく、-20℃から+100℃が特に好ましい。また、徐々に降温または冷却して+15℃以下で熟成することが好ましい。 The temperature condition for recrystallization purification may be + 150 ° C. or less, preferably −30 ° C. to + 125 ° C., particularly preferably −20 ° C. to + 100 ° C. Moreover, it is preferable to age at + 15 ° C. or lower by gradually cooling or cooling.
 再結晶精製の時間条件は、48時間以内で行えばよいが、再結晶基質および精製条件により異なるため、ガスクロマトグラフィー、薄層クロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により精製の進捗状況を追跡し、さらなる進捗が殆ど認められなくなる時点を終点とすることが好ましい。 The recrystallization purification time condition may be within 48 hours, but since it varies depending on the recrystallization substrate and the purification conditions, it can be purified by analytical means such as gas chromatography, thin layer chromatography, liquid chromatography, nuclear magnetic resonance, etc. It is preferable that the progress is tracked and the end point is the point at which no further progress is recognized.
 再結晶精製で得られる高純度品の回収操作としては、特に制限はないが、好ましくは析出した結晶を濾過し、必要に応じて貧溶媒で洗浄し、30℃以下で乾燥することにより高純度品を得ることができる。 The operation for recovering the high-purity product obtained by recrystallization purification is not particularly limited. Preferably, the precipitated crystal is filtered, washed with a poor solvent as necessary, and dried at 30 ° C. or less to obtain high purity. Goods can be obtained.
 実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 L-セリンから国際公開2009/133789号パンフレットを参考にして同様に製造した、下記式で示される(R)-3-ジベンジルアミノ-2-フルオロプロピオン酸メチル90.4g(ガスクロマトグラフィー純度88.4%、265mmolとする、1.00eq)のメタノール溶液(溶媒使用量300mL、0.9M)に、5%パラジウム炭素(含水率50%)6.38g(1.50mmol、0.00566eq)と酢酸36.0g(600mmol、2.26eq)を加え、水素ガスの圧力を0.9MPaに設定し、室温で終夜攪拌した。
Figure JPOXMLDOC01-appb-C000013
反応終了液の19F-NMRより変換率は100%であった。反応終了液をセライト濾過し、少量のメタノールで洗浄し、濾洗液に塩化水素ガス(HCl)13.0g(357mmol、1.35eq)を氷冷下で吹き込み、減圧濃縮した。残渣(粗結晶)にトルエン200mL(1.3M)を加え、氷冷下で攪拌洗浄し(不均一系)、結晶を濾過し、トルエン40mLで洗浄し、真空乾燥することにより、下記式で示される(R)-3-アミノ-2-フルオロプロピオン酸メチル塩酸塩(精製結晶)を28.8g得た。
Figure JPOXMLDOC01-appb-C000014
収率は69%であった。1H-NMRと19F-NMRを下に示す。
1H-NMR[基準物質;(CH34Si,重溶媒;CD3OD];δ ppm/3.44(m,1H),3.54(m,1H),3.85(s,3H),5.34(m,1H),アミノ基と塩酸のプロトンは帰属できず.
19F-NMR(基準物質;C66,重溶媒;CD3OD);δ ppm/-34.31(m,1F).
[Example 1]
90.4 g of methyl (R) -3-dibenzylamino-2-fluoropropionate represented by the following formula (gas chromatographic purity: 88) produced in the same manner from L-serine with reference to the pamphlet of International Publication No. 2009/133789 0.4%, 265 mmol, 1.00 eq) in methanol solution (solvent usage 300 mL, 0.9 M) and 5% palladium on carbon (water content 50%) 6.38 g (1.50 mmol, 0.00566 eq) Acetic acid 36.0 g (600 mmol, 2.26 eq) was added, the hydrogen gas pressure was set to 0.9 MPa, and the mixture was stirred at room temperature overnight.
Figure JPOXMLDOC01-appb-C000013
The conversion rate was 100% from 19 F-NMR of the reaction completed liquid. The reaction-terminated liquid was filtered through Celite, washed with a small amount of methanol, and 13.0 g (357 mmol, 1.35 eq) of hydrogen chloride gas (HCl) was blown into the filtrate with ice cooling, followed by concentration under reduced pressure. Toluene (200 mL, 1.3 M) was added to the residue (crude crystals), and the mixture was stirred and washed under ice cooling (heterogeneous system). The crystals were filtered, washed with toluene (40 mL), and vacuum-dried. 28.8 g of methyl (R) -3-amino-2-fluoropropionate hydrochloride (purified crystals) was obtained.
Figure JPOXMLDOC01-appb-C000014
The yield was 69%. 1 H-NMR and 19 F-NMR are shown below.
1 H-NMR [reference material; (CH 3 ) 4 Si, heavy solvent; CD 3 OD]; δ ppm / 3.44 (m, 1H), 3.54 (m, 1H), 3.85 (s, 3H), 5.34 (m, 1H), the amino group and the proton of hydrochloric acid cannot be assigned.
19 F-NMR (reference material; C 6 F 6 , heavy solvent; CD 3 OD); δ ppm / −34.31 (m, 1F).
 上記で得られた(R)-3-アミノ-2-フルオロプロピオン酸メチル塩酸塩(精製結晶)15.0g(95.2mmol、1.00eq)と2炭酸ジ-t-ブチル20.8g(95.3mmol、1.00eq)のトルエン溶液(溶媒使用量95mL、1.0M)に、トリエチルアミン11.6g(115mmol、1.21eq)を氷冷下で加え、室温で終夜攪拌した。反応終了液を炭酸カリウム水溶液[炭酸カリウム13.2g(95.5mmol、1.00eq)と水60mLから調製]で洗浄し、回収有機層を減圧濃縮し、真空乾燥することにより、下記式で示される(R)-3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸メチル(油状物質)を21.4g得た(理論収量21.1g)。
Figure JPOXMLDOC01-appb-C000015
ガスクロマトグラフィー純度は94.7%(2炭酸ジ-t-ブチルが3.7%残存、2炭酸ジ-t-ブチルを除いた純度は98.4%)であった。1H-NMRと19F-NMRを下に示す。
1H-NMR[基準物質;(CH34Si,重溶媒;CDCl3];δ ppm/1.44(s,9H),3.65(m,2H),3.81(s,3H),4.90(br,1H),4.99(m,1H).
19F-NMR(基準物質;C66,重溶媒;CDCl3);δ ppm/-34.89(m,1F).
15.0 g (95.2 mmol, 1.00 eq) of (R) -3-amino-2-fluoropropionic acid methyl hydrochloride (purified crystals) obtained above and 20.8 g (95 of di-t-butyl dicarbonate) .3 mmol, 1.00 eq) in toluene (solvent usage 95 mL, 1.0 M) was added 11.6 g (115 mmol, 1.21 eq) of triethylamine under ice-cooling and stirred at room temperature overnight. The reaction-terminated liquid was washed with an aqueous potassium carbonate solution [prepared from 13.2 g (95.5 mmol, 1.00 eq) of potassium carbonate and 60 mL of water], and the recovered organic layer was concentrated under reduced pressure and vacuum-dried, and expressed by the following formula. 21.4 g of methyl (R) -3-tert-butoxycarbonylamino-2-fluoropropionate (oil) was obtained (theoretical yield 21.1 g).
Figure JPOXMLDOC01-appb-C000015
The purity by gas chromatography was 94.7% (3.7% of di-t-butyl dicarbonate remained, and the purity excluding di-t-butyl dicarbonate was 98.4%). 1 H-NMR and 19 F-NMR are shown below.
1 H-NMR [reference material; (CH 3 ) 4 Si, heavy solvent; CDCl 3 ]; δ ppm / 1.44 (s, 9H), 3.65 (m, 2H), 3.81 (s, 3H ), 4.90 (br, 1H), 4.99 (m, 1H).
19 F-NMR (reference material; C 6 F 6 , heavy solvent; CDCl 3 ); δ ppm / −34.89 (m, 1F).
 上記で得られた(R)-3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸メチル(油状物質)20.9g(93.0mmolとする、1.00eq)のエタノール溶液(溶媒使用量70mL、1.3M)に、水素化ホウ素ナトリウム2.68g(70.8mmol、0.76eq)を氷冷下で加え、0℃で1時間攪拌し、さらに室温で4時間攪拌した。反応終了液に炭酸カリウム水溶液[炭酸カリウム13.0g(94.1mmol、1.01eq)と水100mLから調製]を加え、減圧濃縮した。残渣に水10mLを加え、酢酸エチル100mLで抽出し、回収有機層を水30mLで洗浄し、減圧濃縮し、真空乾燥することにより、下記式で示される(R)-3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノール(白色結晶)を17.7g得た。
Figure JPOXMLDOC01-appb-C000016
(R)-3-アミノ-2-フルオロプロピオン酸メチル塩酸塩(精製結晶)からの2工程のトータル収率は98%であった。ガスクロマトグラフィー純度は97.3%(2炭酸ジ-t-ブチルは未検出)であった。1H-NMRと19F-NMRを下に示す。
1H-NMR[基準物質;(CH34Si,重溶媒;CDCl3];δ ppm/1.46(s,9H),3.11(br,1H),3.48(m,2H),3.70(m,2H),4.59(m,1H),4.90(br,1H).
19F-NMR(基準物質;C66,重溶媒;CDCl3);δ ppm/-34.22(m,1F).
A solution of 20.9 g (93.0 mmol, 1.00 eq) of methyl (R) -3-tert-butoxycarbonylamino-2-fluoropropionate (oil substance) obtained above (solvent use 70 mL, 1.3M) was added 2.68 g (70.8 mmol, 0.76 eq) of sodium borohydride under ice cooling, and the mixture was stirred at 0 ° C. for 1 hour and further at room temperature for 4 hours. A potassium carbonate aqueous solution [prepared from 13.0 g (94.1 mmol, 1.01 eq) of potassium carbonate and 100 mL of water] was added to the reaction completion solution, and the mixture was concentrated under reduced pressure. 10 mL of water is added to the residue, followed by extraction with 100 mL of ethyl acetate, and the recovered organic layer is washed with 30 mL of water, concentrated under reduced pressure, and dried under vacuum to give (R) -3-tert-butoxycarbonylamino represented by the following formula. 17.7 g of -2-fluoro-1-propanol (white crystals) was obtained.
Figure JPOXMLDOC01-appb-C000016
The total yield of the two steps from (R) -3-amino-2-fluoropropionic acid methyl hydrochloride (purified crystals) was 98%. The gas chromatographic purity was 97.3% (di-t-butyl dicarbonate was not detected). 1 H-NMR and 19 F-NMR are shown below.
1 H-NMR [reference material; (CH 3 ) 4 Si, heavy solvent; CDCl 3 ]; δ ppm / 1.46 (s, 9H), 3.11 (br, 1H), 3.48 (m, 2H ), 3.70 (m, 2H), 4.59 (m, 1H), 4.90 (br, 1H).
19 F-NMR (reference material; C 6 F 6 , heavy solvent; CDCl 3 ); δ ppm / −34.22 (m, 1F).
 上記で得られた(R)-3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノール(白色結晶)17.5g(90.6mmol)にトルエン26mL(3.5M、1.5mL/g)を加え、30℃で溶解し、さらにn-ヘプタン9mL(10M、0.5mL/g)を加え、10℃まで冷却し、種結晶を加え、0℃で熟成した。析出した結晶を濾過し、予め冷却したn-ヘプタン10mLで洗浄し、室温(25℃)で真空乾燥することにより、上記式で示される(R)-3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノール(白色結晶)の高純度品を13.9g得た。回収率は79%であった。融点は39℃であった。ガスクロマトグラフィー純度は99.5%であった。キラルガスクロマトグラフィー(Mosher’s酸エステルに誘導後)による光学純度は100%eeであった。さらに、トルエンとn-ヘプタンの混合溶媒を用いて同様の再結晶精製を繰り返すことにより(2回目再結晶)、ガスクロマトグラフィー純度が99.9%に向上した(回収率93%、光学純度100%ee)。 26 mL of toluene (3.5 M, 1.5 mL / g) was added to 17.5 g (90.6 mmol) of (R) -3-tert-butoxycarbonylamino-2-fluoro-1-propanol (white crystals) obtained above. The mixture was dissolved at 30 ° C., further added with 9 mL of n-heptane (10 M, 0.5 mL / g), cooled to 10 ° C., added with seed crystals, and aged at 0 ° C. The precipitated crystals are filtered, washed with 10 mL of pre-cooled n-heptane, and vacuum-dried at room temperature (25 ° C.) to give (R) -3-tert-butoxycarbonylamino-2-fluoro represented by the above formula. 13.9 g of a high purity product of -1-propanol (white crystals) was obtained. The recovery rate was 79%. The melting point was 39 ° C. The gas chromatography purity was 99.5%. The optical purity by chiral gas chromatography (after induction to Mosher's acid ester) was 100% ee. Furthermore, by repeating the same recrystallization purification using a mixed solvent of toluene and n-heptane (second recrystallization), the gas chromatography purity was improved to 99.9% (recovery rate 93%, optical purity 100). % Ee).
 [実施例2]
 D-セリンから国際公開2009/133789号パンフレットを参考にして同様に製造した、下記式で示される(S)-3-ジベンジルアミノ-2-フルオロプロピオン酸メチルを出発原料に用い、実施例1を参考にして同様に反応(脱ベンジル化、tert-ブトキシカルボニル化、ヒドリド還元)を行った。
Figure JPOXMLDOC01-appb-C000017
その結果、下記式で示される(S)-3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールを製造することができた。
Figure JPOXMLDOC01-appb-C000018
得られた最終目的物の色調、物性、収量、トータル収率、ガスクロマトグラフィー純度、1H-NMRおよび19F-NMRは、実施例1と同等であった(不斉炭素の絶対配置以外)。また、再結晶精製における色調、物性、回収量、回収率、融点、ガスクロマトグラフィー純度および光学純度も、実施例1と同等であった。さらに、2回目再結晶におけるガスクロマトグラフィー純度、回収率および光学純度も、実施例1と同等であった。
[Example 2]
Example 1 Using methyl (S) -3-dibenzylamino-2-fluoropropionate represented by the following formula, which was prepared in the same manner from D-serine with reference to the pamphlet of International Publication No. 2009/133789, as a starting material, Example 1 The reaction (debenzylation, tert-butoxycarbonylation, hydride reduction) was carried out in the same manner as described above.
Figure JPOXMLDOC01-appb-C000017
As a result, (S) -3-tert-butoxycarbonylamino-2-fluoro-1-propanol represented by the following formula could be produced.
Figure JPOXMLDOC01-appb-C000018
The color tone, physical properties, yield, total yield, gas chromatography purity, 1 H-NMR and 19 F-NMR of the final product obtained were the same as in Example 1 (other than the absolute configuration of the asymmetric carbon). . The color tone, physical properties, recovery amount, recovery rate, melting point, gas chromatography purity and optical purity in recrystallization purification were also the same as in Example 1. Further, the gas chromatography purity, recovery rate and optical purity in the second recrystallization were also the same as in Example 1.
 [参考例1]
 L-セリンから特許文献1を参考にして同様に製造した、下記式で示される(R)-3-ジベンジルアミノ-2-フルオロ-1-プロパノール70.0g(ガスクロマトグラフィー純度94.5%、242mmolとする、1.00eq)のメタノール溶液(溶媒使用量256mL、0.9M)に、5%パラジウム炭素(含水率50%)7.27g(1.71mmol、0.00707eq)と酢酸46.1g(768mmol、3.17eq)を加えた。
Figure JPOXMLDOC01-appb-C000019
得られた反応混合液を圧力0.9MPaの水素ガス下で撹拌し、19F-NMRにより反応の進行状況を追跡した。反応チェック(1)は“室温での終夜攪拌後”、反応チェック(2)は“さらに50℃での終夜攪拌後”に行った。反応チェック(2)後、反応混合液をセライト濾過し、濾液の7割(169mmolとする、1.00eq)に、新しい5%パラジウム炭素(含水率50%)5.09g[1.20mmol、0.00710eq(トータル使用量0.01417eq)]を再び加えた。得られた混合液を圧力0.9MPaの水素ガス下で撹拌し、19F-NMRにより反応の進行状況を追跡した。“室温での3時間攪拌後”に反応チェック(3)、“さらに室温での終夜攪拌後”に反応チェック(4)を行った。
[Reference Example 1]
70.0 g of (R) -3-dibenzylamino-2-fluoro-1-propanol represented by the following formula (gas chromatographic purity: 94.5%) produced in the same manner from L-serine with reference to Patent Document 1 To a 242 mmol, 1.00 eq) methanol solution (solvent usage 256 mL, 0.9 M), 7.27 g (1.71 mmol, 0.00707 eq) of 5% palladium on carbon (water content 50%) and acetic acid 46. 1 g (768 mmol, 3.17 eq) was added.
Figure JPOXMLDOC01-appb-C000019
The resulting reaction mixture was stirred under hydrogen gas at a pressure of 0.9 MPa, and the progress of the reaction was followed by 19 F-NMR. The reaction check (1) was performed “after stirring overnight at room temperature”, and the reaction check (2) was performed “after further stirring overnight at 50 ° C.”. After the reaction check (2), the reaction mixture was filtered through Celite, and 70% of the filtrate (to 169 mmol, 1.00 eq) was added to 5.09 g [1.20 mmol, 0% of 5% palladium carbon (water content 50%). .00710 eq (total usage 0.01417 eq)] was added again. The resulting mixture was stirred under hydrogen gas at a pressure of 0.9 MPa, and the progress of the reaction was followed by 19 F-NMR. A reaction check (3) was performed “after 3 hours of stirring at room temperature”, and a reaction check (4) was performed “after further stirring overnight at room temperature”.
 各反応チェックにおける反応混合液の組成比(ジベンジル体:モノベンジル体:目的物)を表1に纏めた。
Figure JPOXMLDOC01-appb-T000020
Table 1 summarizes the composition ratios (dibenzyl: monobenzyl: target) of the reaction mixture in each reaction check.
Figure JPOXMLDOC01-appb-T000020
 反応チェックにおける反応混合液の19F-NMR(基準物質;C66,重溶媒;CD3OD)を以下に示す。
上記式で示される(R)-3-ジベンジルアミノ-2-フルオロ-1-プロパノール(ジベンジル体);δ ppm/-25.51(m,1F).
下記式で示される(R)-3-ベンジルアミノ-2-フルオロ-1-プロパノール(モノベンジル体);δ ppm/-29.72(m,1F).
Figure JPOXMLDOC01-appb-C000021
下記式で示される(R)-3-アミノ-2-フルオロ-1-プロパノール(目的物);δ ppm/-32.38(m,1F).
Figure JPOXMLDOC01-appb-C000022
The 19 F-NMR (reference material: C 6 F 6 , heavy solvent: CD 3 OD) of the reaction mixture in the reaction check is shown below.
(R) -3-dibenzylamino-2-fluoro-1-propanol (dibenzyl form) represented by the above formula; δ ppm / −25.51 (m, 1F).
(R) -3-benzylamino-2-fluoro-1-propanol (monobenzyl form) represented by the following formula; δ ppm / −29.72 (m, 1F).
Figure JPOXMLDOC01-appb-C000021
(R) -3-amino-2-fluoro-1-propanol represented by the following formula (target product); δ ppm / −32.38 (m, 1F).
Figure JPOXMLDOC01-appb-C000022
 上述の通り、本発明の光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法では、脱ベンジル化を第1工程で行うことにより、パラジウム触媒の使用量を格段に低減することができ、且つ1回で反応を完結させることができるため、製造コストが安く、操作が簡便である。また、最終目的物が結晶化し、再結晶精製を行うことにより高純度品が得られる。よって、本発明によれば、従来技術に比べて工業的に有利に光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールを製造することができる。 As described above, in the method for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol of the present invention, the amount of palladium catalyst used is significantly reduced by performing debenzylation in the first step. Since the reaction can be completed in one time, the production cost is low and the operation is simple. In addition, a high-purity product can be obtained by crystallization of the final target product and recrystallization purification. Therefore, according to the present invention, optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol can be produced industrially more advantageously than the prior art.
 以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。 Although the embodiments of the present invention have been described above, it is needless to say that the following embodiments can be appropriately changed and improved based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Absent.

Claims (5)

  1. 一般式[1]で示される光学活性3-ジベンジルアミノ-2-フルオロプロピオン酸エステルをパラジウム触媒の存在下に水素ガス(H2)で脱ジベンジル化することにより一般式[2]で示される光学活性3-アミノ-2-フルオロプロピオン酸エステルに変換する第1工程と、一般式[2]で示されるエステル体を2炭酸ジ-t-ブチル[(Boc)2O]でtert-ブトキシカルボニル化することにより一般式[3]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステルに変換する第2工程と、一般式[3]で示されるエステル体を水素化ホウ素リチウム(LiBH4)または水素化ホウ素ナトリウム(NaBH4)でヒドリド還元する第3工程と、を含む、一般式[4]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは炭素数1から6のアルキル基を表し、Bnはベンジル基を表し、Bocはtert-ブトキシカルボニル基を表し、*は不斉炭素を表す。]
    The optically active 3-dibenzylamino-2-fluoropropionic acid ester represented by the general formula [1] is dedibenzylated with hydrogen gas (H 2 ) in the presence of a palladium catalyst, and represented by the general formula [2]. A first step of converting to an optically active 3-amino-2-fluoropropionic acid ester, and an ester represented by the general formula [2] with tert-butoxycarbonyl di-t-butyl dicarbonate [(Boc) 2 O] A second step of converting to an optically active 3-tert-butoxycarbonylamino-2-fluoropropionic acid ester represented by the general formula [3] by converting the ester compound represented by the general formula [3] to borohydride lithium light represented by (LiBH 4) or sodium borohydride and a third step of hydride reduction with (NaBH 4), the general formula [4] Production method of the active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, R represents an alkyl group having 1 to 6 carbon atoms, Bn represents a benzyl group, Boc represents a tert-butoxycarbonyl group, and * represents an asymmetric carbon. ]
  2. 第1工程の脱ジベンジル化を添加剤として酸を加えて行い、さらに第2工程のtert-ブトキシカルボニル化を添加剤として塩基を加えて行うことを特徴とする、請求項1に記載の製造方法。 The process according to claim 1, wherein the dedibenzylation in the first step is performed by adding an acid as an additive, and further the tert-butoxycarbonylation in the second step is performed by adding a base as an additive. .
  3. 第1工程で得られる光学活性3-アミノ-2-フルオロプロピオン酸エステルを酸との塩に誘導して塩精製を行い、さらに第3工程で得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの再結晶精製を行うことを特徴とする、請求項1または請求項2に記載の製造方法。 The optically active 3-tert-2-butoxycarbonylamino-2 obtained in the third step is subjected to salt purification by derivatizing the optically active 3-amino-2-fluoropropionic acid ester obtained in the first step into a salt with an acid. 3. The production method according to claim 1, wherein recrystallization purification of fluoro-1-propanol is performed.
  4. 第3工程で得られる光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの再結晶溶媒が脂肪族炭化水素系、芳香族炭化水素系またはこれらの混合溶媒であることを特徴とする、請求項3に記載の製造方法。 The recrystallization solvent of optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol obtained in the third step is an aliphatic hydrocarbon type, an aromatic hydrocarbon type or a mixed solvent thereof. The manufacturing method according to claim 3.
  5. 一般式[3]で示される光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロプロピオン酸エステル。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rは炭素数1から6のアルキル基を表し、Bocはtert-ブトキシカルボニル基を表し、*は不斉炭素を表す。]
    An optically active 3-tert-butoxycarbonylamino-2-fluoropropionate represented by the general formula [3].
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, R represents an alkyl group having 1 to 6 carbon atoms, Boc represents a tert-butoxycarbonyl group, and * represents an asymmetric carbon. ]
PCT/JP2010/070287 2009-11-18 2010-11-15 Method for manufacturing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol WO2011062139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-262562 2009-11-18
JP2009262562A JP5500343B2 (en) 2009-11-18 2009-11-18 Process for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol

Publications (1)

Publication Number Publication Date
WO2011062139A1 true WO2011062139A1 (en) 2011-05-26

Family

ID=44059617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070287 WO2011062139A1 (en) 2009-11-18 2010-11-15 Method for manufacturing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol

Country Status (2)

Country Link
JP (1) JP5500343B2 (en)
WO (1) WO2011062139A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163156A1 (en) 2013-04-04 2014-10-09 味の素株式会社 Deprotection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056280A1 (en) * 2005-11-03 2007-05-18 Ilypsa, Inc. Indole compounds having c4-acidic substituents and use thereof as phospholipase-a2 inhibitors
WO2008136745A1 (en) * 2007-05-04 2008-11-13 Astrazeneca Ab Process for the synthesis of alkyl phosphinic acids by initiation of an amine and an amineoxide
WO2008136746A1 (en) * 2007-05-04 2008-11-13 Astrazeneca Ab Process for the synthesis of alkyl phosphinic acids by initiation of an amine and an amineoxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056280A1 (en) * 2005-11-03 2007-05-18 Ilypsa, Inc. Indole compounds having c4-acidic substituents and use thereof as phospholipase-a2 inhibitors
WO2008136745A1 (en) * 2007-05-04 2008-11-13 Astrazeneca Ab Process for the synthesis of alkyl phosphinic acids by initiation of an amine and an amineoxide
WO2008136746A1 (en) * 2007-05-04 2008-11-13 Astrazeneca Ab Process for the synthesis of alkyl phosphinic acids by initiation of an amine and an amineoxide

Also Published As

Publication number Publication date
JP5500343B2 (en) 2014-05-21
JP2011105648A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
CN109705011B (en) Synthetic method of Upacatinib intermediate and intermediate
CN111587240B (en) Intermediate of optically active piperidine derivative and process for producing the same
US8207370B2 (en) Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
JP5369853B2 (en) Process for producing α-fluoro-β-amino acids
JP5500343B2 (en) Process for producing optically active 3-tert-butoxycarbonylamino-2-fluoro-1-propanol
WO2005121117A1 (en) Processes for production of optically active compounds
JP4887720B2 (en) Process for producing optically active fluorinated benzyl alcohol
KR100743617B1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
JP5233299B2 (en) Method for purifying optically active 1- (2-trifluoromethylphenyl) ethanol
JP3902384B2 (en) Method for purifying optically active α-methyl-bis-3,5- (trifluoromethyl) benzylamines
JP2008115178A (en) PRODUCTION METHOD OF DIPHENYLALANINE-Ni(II) COMPLEX
JP2011121872A (en) Method for purifying optically active n-tert-butoxycarbonyl-trans-4-fluoroproline
JP2009023978A (en) Method for producing trans-2-benzyloxycyclohexylamine
EP2735560A1 (en) Method for producing optically active 2-methylproline derivative
JP5704763B2 (en) Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivative
CN111635335B (en) Synthesis method of chiral gamma-amino acid and chiral gamma-amino acid synthesized by adopting method
US8524913B2 (en) Process for production of α-trifluoromethyl-β-substituted-β-amino acid
JP5397706B2 (en) Method for producing high purity 1-benzyl-3-aminopyrrolidine
CN101506146B (en) Process for preparing 3-amino-5-fluoro-4-dialkoxypentanoi c acid ester
JP5605008B2 (en) Method for producing optically active trans-4-fluoroproline high purity product
WO2024091517A1 (en) Process for preparing 3-amino-1-butanol
JP5510040B2 (en) Optical resolution to obtain optically active (R) -1- (4-fluorophenyl) ethylamine
KR100896087B1 (en) Synthetic method of optically pure 2-methylpyrrolidine and the salt thereof
CN114394921A (en) Preparation method of high-purity brivaracetam
JP2007223964A (en) Method for refining 4-(n-ethyl-n-isopropylamino)aniline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831533

Country of ref document: EP

Kind code of ref document: A1