WO2011062119A1 - 無線基地局 - Google Patents

無線基地局 Download PDF

Info

Publication number
WO2011062119A1
WO2011062119A1 PCT/JP2010/070201 JP2010070201W WO2011062119A1 WO 2011062119 A1 WO2011062119 A1 WO 2011062119A1 JP 2010070201 W JP2010070201 W JP 2010070201W WO 2011062119 A1 WO2011062119 A1 WO 2011062119A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
base station
signal
radio base
estimation unit
Prior art date
Application number
PCT/JP2010/070201
Other languages
English (en)
French (fr)
Inventor
尚人 大久保
耕平 清嶋
石井 啓之
輝雄 川村
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN2010800524079A priority Critical patent/CN102640530A/zh
Priority to EP10831514A priority patent/EP2503817A1/en
Priority to US13/510,466 priority patent/US20120269084A1/en
Publication of WO2011062119A1 publication Critical patent/WO2011062119A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]

Definitions

  • the present invention relates to a radio base station.
  • a reference signal (RS: Reference Signal) transmitted in the uplink is configured by a CAZAC sequence.
  • the radio base station eNB uses the received reference signal to estimate the reception quality at the radio base station eNB, for example, SIR (Signal to Interference Ratio), and uses the estimated SIR.
  • SIR Signal to Interference Ratio
  • the predetermined control process is performed.
  • the LTE system has a problem that the radio base station eNB does not specify how to estimate the SIR.
  • an object of the present invention is to provide a radio base station that can estimate reception quality in the radio base station eNB with high accuracy using a reference signal.
  • a first feature of the present invention is configured to receive a predetermined signal formed from a mobile station using a predetermined sequence having constant amplitude and zero autocorrelation in the time domain and the frequency domain.
  • a radio base station a predetermined number of consecutive samples in the sequence constituting the transmission signal of the predetermined signal transmitted by the mobile station, and the sequence constituting the reception signal of the predetermined signal in the radio base station
  • a signal power estimation unit configured to calculate a correlation value between a predetermined number of consecutive samples and to calculate received power of the predetermined signal using the correlation value.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a radio base station according to the first embodiment of the present invention.
  • 5 is a flowchart showing an operation of the radio base station according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating an operation of estimating signal power in the radio base station according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating an operation of estimating interference power in the radio base station according to the first embodiment of the present invention.
  • the mobile communication system is an LTE mobile communication system, and includes a radio base station eNB and a mobile station UE as shown in FIG.
  • the mobile station UE is configured to transmit SRS (Sounding Reference Signal, Sounding Reference Signal), DRS (Demodulation Reference Signal, Demodulation Reference Signal), etc., as physical signals in the uplink.
  • SRS Sounding Reference Signal, Sounding Reference Signal
  • DRS Demodulation Reference Signal, Demodulation Reference Signal
  • the SRS is a reference signal used by the radio base station eNB for measurement of uplink reception quality, measurement of timing between the radio base station eNB and the mobile station UE, and the like.
  • SRS is an uplink data signal transmitted via PUSCH (Physical Uplink Shared Channel, physical uplink shared channel) or an uplink control signal transmitted via PUCCH (Physical Uplink Control Channel, physical uplink control channel). Transmitted independently and periodically.
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • DRS is a reference signal for demodulation that is time-multiplexed with PUSCH or PUCCH.
  • the mobile station UE transmits acknowledgment information (ACK / NACK) for downlink data signals transmitted via PDSCH (Physical Downlink Shared Channel, physical downlink shared channel) as uplink control signals via PUCCH. ), Downlink reception quality (CQI: Channel Quality Indicator), and the like.
  • ACK / NACK acknowledgment information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • CQI Channel Quality Indicator
  • the above-described SRS, DRS, and uplink control signal are formed using a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence that is a predetermined sequence having a constant amplitude and zero autocorrelation in the time domain and the frequency domain. Is a predetermined signal.
  • CAZAC Constant Amplitude Zero Auto-Correlation
  • a cyclic shift to the CAZAC sequence, a plurality of orthogonal sequences can be generated. That is, in the CAZAC sequence, when the maximum number that can be multiplexed by cyclic shift is “N MAX ”, the correlation value between arbitrary K samples constituting two different sequences generated by cyclic shift is “0”. It has the feature of becoming.
  • the cyclic shift amount is determined in consideration of the influence of the delayed wave and intersymbol interference, and the number of sequences generated using the cyclic shift amount corresponds to the maximum multiplexing number “N MAX ”.
  • N MAX maximum multiplexing number
  • a Zadoff-Chu sequence for example, a binary sequence by Computer search, or the like is used as the CAZAC sequence.
  • the radio base station eNB transmits a downlink control signal including a scheduling signal, a transmission power control signal (TPC (Transmission Power Control) command), and the like via a PDCCH (Physical Downlink Control Channel, physical downlink control channel) in the downlink. Is configured to send.
  • TPC Transmission Power Control
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the radio base station eNB includes an SRS receiver 11A, a signal power estimator 11B, an interference power estimator 11C, a reception quality estimator 11D, a DRS receiver 12A, and a signal power estimator. 12B, interference power estimation unit 12C, reception quality estimation unit 12D, PUCCH reception unit 13A, signal power estimation unit 13B, interference power estimation unit 13C, reception quality estimation unit 13D, scheduling processing unit 14, And a TPC command generation unit 15.
  • the SRS receiver 11A is configured to receive SRS periodically transmitted by the mobile station UE.
  • the signal power estimation unit 11B is configured to calculate the received power S power of the SRS transmitted by the mobile station UE, for example, by the method shown in FIG. 4 described later.
  • the interference power estimation unit 11C is configured to calculate the interference power I power included in the SRS received signal r (n) in the radio base station eNB, for example, by the method shown in FIG. 5 described later.
  • the reception quality estimator 11D uses the received power S power calculated by the signal power estimator 11B and the interference power I power calculated by the interference power estimator 11C, for each subframe.
  • the reception quality (for example, SIR) is configured to be calculated.
  • the reception quality estimation unit 11D performs an averaging process in the time direction on the reception power S power calculated by the signal power estimation unit 11B and the interference power I power calculated by the interference power estimation unit 11C (that is, a plurality of times) SRS of the SBS in the radio base station eNB is calculated based on the result of performing averaging in the subframes) and averaging in the frequency direction (that is, averaging over the transmission bands of a plurality of SRSs) It may be configured to.
  • the reception quality estimation unit 11D performs an averaging process in the time direction (that is, an averaging process over a plurality of subframes) on the interference power I power calculated by the interference power estimation unit 11C, and a frequency direction Based on the result of averaging (that is, averaging processing over a plurality of SRS transmission bands) and the instantaneous received power S power calculated by the signal power estimation unit 11B at the SRS reception timing, You may be comprised so that SIR of SRS in the station eNB may be calculated.
  • the instantaneous received power S power calculated by the signal power estimation unit 11B may be subjected to averaging in the frequency direction (that is, averaging processing over the transmission bands of a plurality of SRSs). .
  • the DRS receiving unit 12A is configured to receive the DRS transmitted by the mobile station UE.
  • the signal power estimation unit 12B is configured to calculate the received power S power of the DRS transmitted by the mobile station UE, for example, by the method shown in FIG. 4 described later.
  • the interference power estimation unit 12C is configured to calculate the interference power I power included in the DRS received signal r (n) in the radio base station eNB, for example, by the method shown in FIG. 5 described later.
  • the reception quality estimator 12D uses the received power S power calculated by the signal power estimator 12B and the interference power I power calculated by the interference power estimator 12C, for each subframe, in the DRS of the radio base station eNB.
  • the reception quality (for example, SIR) is configured to be calculated.
  • the reception quality estimation unit 12D performs an averaging process in the time direction on the reception power S power calculated by the signal power estimation unit 12B and the interference power I power calculated by the interference power estimation unit 12C (that is, a plurality of times) And DRS SIR in the radio base station eNB based on the result of averaging in the frequency direction (that is, averaging processing over a plurality of DRS transmission bands) It may be configured to.
  • the reception quality estimation unit 12D performs averaging processing in the time direction (that is, averaging processing over a plurality of subframes) on the interference power I power calculated by the interference power estimation unit 12C, and frequency direction Based on the result of averaging (that is, averaging processing over a plurality of DRS transmission bands) and the instantaneous received power S power calculated by the signal power estimation unit 12B at the DRS reception timing, It may be configured to calculate the SIR of the DRS in the station eNB.
  • the instantaneous received power S power calculated by the signal power estimator 12C may be subjected to averaging in the frequency direction (that is, averaging processing over transmission bands of a plurality of DRSs). .
  • the PUCCH receiving unit 13A is configured to receive an uplink control signal transmitted via the PUCCH by the mobile station UE.
  • the signal power estimation unit 13B is configured to calculate the reception power S power of the uplink control signal transmitted by the mobile station UE, for example, by the method shown in FIG. 4 described later.
  • the interference power estimation unit 13C is configured to calculate the interference power I power included in the reception signal r (n) of the uplink control signal in the radio base station eNB, for example, by the method shown in FIG. 5 described later.
  • the reception quality estimation unit 13D uses the reception power S power calculated by the signal power estimation unit 13B and the interference power I power calculated by the interference power estimation unit 13C to perform uplink control in the radio base station eNB for each subframe.
  • the reception quality (for example, SIR) of the signal is configured to be calculated.
  • the reception quality estimation unit 13D performs an averaging process in the time direction (that is, a plurality of the received power S power calculated by the signal power estimation unit 13B and the interference power I power calculated by the interference power estimation unit 13C).
  • SIR of the uplink control signal in the radio base station eNB based on the result of performing averaging in the frequency direction (that is, averaging processing over the transmission bands of a plurality of PUCCHs) May be configured to calculate.
  • the reception quality estimation unit 13D performs averaging processing in the time direction (that is, averaging processing over a plurality of subframes) on the interference power I power calculated by the interference power estimation unit 13C, and frequency direction Based on the result of averaging (that is, the averaging process over the transmission bands of a plurality of PUCCHs) and the instantaneous received power S power calculated by the signal power estimation unit 13B at the reception timing of the uplink control signal,
  • the radio base station eNB may be configured to calculate the SIR of the uplink control signal.
  • the instantaneous received power S power calculated by the signal power estimation unit 13C may be subjected to averaging in the frequency direction (that is, averaging processing over transmission bands of a plurality of PUCCHs). .
  • the scheduling processing unit 14 Based on the SIR in the radio base station eNB calculated by the reception quality estimation unit 11D and the reception quality estimation unit 12D, the scheduling processing unit 14 performs predetermined control processing, that is, time / frequency scheduling processing and adaptive modulation / demodulation (AMC: Adaptive Modulation). and channel coding) (modulation method and coding rate selection process) and the like.
  • predetermined control processing that is, time / frequency scheduling processing and adaptive modulation / demodulation (AMC: Adaptive Modulation). and channel coding) (modulation method and coding rate selection process) and the like.
  • the TPC command generation unit 15 performs predetermined control processing, that is, transmission power in the uplink, based on the SIR in the radio base station eNB calculated by the reception quality estimation unit 11D, the reception quality estimation unit 12D, and the reception quality estimation unit 13D. It is configured to perform a control process (for example, a TPC command generation process and a transmission process to the mobile station UE via the PDCCH).
  • the radio base station eNB estimates the received power S power of the SRS, DRS, and uplink control signal transmitted by the mobile station UE.
  • the radio base station eNB estimates the received power S power of the SRS, DRS, and uplink control signal transmitted by the mobile station UE.
  • the signal power estimation unit 11B of the radio base station eNB in step S101A, continuously in the sequence constituting the SRS transmission signal X L (n) transmitted by the mobile station UE # L.
  • a predetermined number N of samples “a” to “a + N ⁇ 1” to be performed, and a predetermined number N of samples “a” to “a + N ⁇ ” in a sequence constituting the SRS received signal r (n) in the radio base station eNB. 1 ” is calculated, and the received power S power of the SRS is calculated using the correlation value Z (a) in step S101B.
  • the received signal r (n) of SRS is
  • N is a parameter that takes an integer value within the range of “0” to “M”, and “M” is the length of the sequence that constitutes the SRS.
  • X k (n) is a transmission signal in the frequency domain of the SRS transmitted by the mobile station UE # k
  • H k (n) is the mobile station UE # k
  • the radio base station eNB Is the frequency response
  • N (n) is the interference power received at the radio base station eNB.
  • the interference power is the sum of thermal noise added by the radio base station eNB and interference power from other cells.
  • K is the number of mobile stations UE multiplexed on the SRS in the subframe, and “K ⁇ N MAX ” is established. Note that the variance of “N (n)” is “ ⁇ 2 ”.
  • the signal power estimation unit 11B calculates the signal power estimation unit 11B
  • the radio base station eNB configures the SRS transmitted by each mobile station UE in order to assign the sequence constituting the SRS to be transmitted, the transmission timing of the SRS, and the transmission frequency of the SRS to each mobile station UE. Since the sequence “X (n)” to be transmitted is known, the sequence “X L (n)” constituting the SRS transmitted by the mobile station UE # L is used, and the correlation value Z (a) is as follows: Is calculated.
  • Z (a) is a correlation between across N consecutive samples in the case of starting from the sample in the sequence "a” and “X L (n)” and “r (n)” is there.
  • Equation 3 The first term of “Z (a)” shown in (Equation 3) is equivalent to the estimated value of the propagation path state between the mobile station UE # L and the radio base station eNB, and is transmitted by the mobile station UE # L.
  • the received SRS received power component is equivalent to the estimated value of the propagation path state between the mobile station UE # L and the radio base station eNB, and is transmitted by the mobile station UE # L.
  • the second term of “Z (a)” shown in (Expression 3) is an interference power component from the mobile station UE other than the mobile station UE # L multiplexed on the same SRS in the same cell.
  • the third term of “Z (a)” shown in (Expression 3) is an interference power component from another cell.
  • the third term of “Z (a)” shown in (Equation 3) suppresses the noise component “N (n)” by the averaging effect, and is ideal. Thus, it is “0”.
  • the third term of “Z (a)” shown in (Expression 3) is not actually “0”, but it is the received power component of SRS of “Z (a)” shown in (Expression 3). Since it is sufficiently smaller than the first term, it can be ignored.
  • the received power S power of SRS can be calculated as follows.
  • the signal power estimation unit 12B of the radio base station eNB may be configured to calculate the received power S power of the DRS by the same method as the signal power estimation unit 11B described above.
  • the signal power estimation unit 13B of the radio base station eNB may be configured to calculate the reception power S power of the uplink control signal by the same method as the signal power estimation unit 11B described above.
  • step S102 the radio base station eNB estimates the interference power I power included in the received signal r (n) of the SRS, DRS, and uplink control signal in the radio base station eNB.
  • n the received signal r (n) of the SRS
  • DRS downlink control signal
  • the radio base station eNB estimates the interference power I power included in the received signal r (n) of the SRS, DRS, and uplink control signal in the radio base station eNB.
  • a method for estimating the interference power I power using SRS will be described with reference to FIG.
  • the interference power estimation unit 11C of the radio base station eNB performs sliding correlation in step S102A, that is, slides the first sample “a” in the predetermined number N of consecutive samples described above. To calculate Z (a), Z (a + 1) and Z (a + 2).
  • Z (a), Z (a + 1) and Z (a + 2) are calculated as follows.
  • the desired interference power I power is a variance ⁇ 2 of N (n).
  • S (a), S (a + 1), and S (a + 2) are ideal SRS received power components in this case, and are expressed as follows.
  • step S102B the interference power estimation unit 11C of the radio base station eNB uses the Z (a), Z (a + 1), and Z (a + 2) to generate a plurality of interference power samples I as shown in (Expression 5). tmp (a) is calculated.
  • the first term is the received power component of the SRS transmitted by the mobile station UE # L
  • the second term is the interference power component to be calculated.
  • step S102C the interference power estimation unit 11C of the radio base station eNB performs an averaging process on the plurality of interference power samples I tmp (a) as illustrated in (Equation 6), so that the radio base station eNB The interference power I power included in the received signal r (n) of the predetermined signal is calculated.
  • the interference power estimation unit 11C of the radio base station eNB performs sliding correlation, that is, the above-described predetermined predetermined number N
  • the interference power I power described above is calculated by performing a set averaging process on tmp (a).
  • I tmp (a) is a complex signal of an interference component, and therefore, complex conjugate “I tmp ” of “I tmp (a)” with respect to “I tmp (a)”.
  • (A) Calculates a component corresponding to electric power by multiplying * ”.
  • E [] indicates the operation of the set averaging process, and it is assumed that the power value of “X L (n)” that is the CAZAC sequence is “1” in the operation of the set averaging process. .
  • the interference power estimation unit 12C of the radio base station eNB may be configured to calculate the interference power I power included in the DRS received signal r (n) in the same manner as the interference power estimation unit 11C described above. Good.
  • the interference power estimation unit 13C of the radio base station eNB is also configured to calculate the interference power I power included in the reception signal r (n) of the uplink control signal by the same method as the interference power estimation unit 11C described above. May be.
  • step S103 the reception quality estimation unit 11D of the radio base station eNB performs a time direction and a frequency with respect to the reception power S power calculated by the signal power estimation unit 11B and the interference power I power calculated by the interference power estimation unit 11C.
  • Direction averaging processing is performed, and in step S104, reception quality (for example, SIR) of SRS at the radio base station eNB is calculated based on the result of the averaging processing.
  • the reception quality estimation unit 12D of the radio base station eNB performs the time direction with respect to the reception power S power calculated by the signal power estimation unit 12B and the interference power I power calculated by the interference power estimation unit 12C in step S103.
  • DRS reception quality for example, SIR
  • step S103 the reception quality estimation unit 13D of the radio base station eNB performs time with respect to the reception power S power calculated by the signal power estimation unit 13B and the interference power I power calculated by the interference power estimation unit 13C.
  • An averaging process in the direction I tmp (a) is performed, and in step S104, the reception quality (for example, SIR) of the uplink control signal in the radio base station eNB is calculated based on the result of the averaging process.
  • a plurality of mobile stations UE are orthogonally multiplexed by cyclic shift on uplink control signals transmitted via SRS, DRS, and PUCCH. Therefore, if interference within the own cell (inter-code interference between mobile stations UE) cannot be suppressed, the radio base station eNB observes interference power that is larger than the actual interference power. I can't do it.
  • the mobile communication system uses a sliding correlation to suppress a plurality of interference samples “I tmp (a ) ”And using such a plurality of interference samples“ I tmp (a) ”to increase the averaging effect, the estimation accuracy of the interference power I power from other cells can be increased.
  • the influence of interference between mobile stations UE in its own cell is suppressed, the received power S power of SRS is estimated with high accuracy, and from other cells.
  • the interference power I power it is possible to estimate with high accuracy, improving the accuracy of such time-frequency scheduling process and AMC process and TPC treatment, thereby improving the system performance.
  • the SIR of the SRS can be estimated with high accuracy, whether or not the mobile station UE is transmitting SRS with high accuracy. Judgment can be made.
  • the radio base station eNB refers to the SIR described above when the SRS setting is changed by “RRC Reconfiguration” or the like, and the reflection is not in time due to the processing delay of the mobile station UE. It can be determined that the station UE does not transmit the SRS or that the setting change is not reflected.
  • the DRS is multiplexed between the mobile stations UE.
  • the DRS is multiplexed. Since the SIR of DRS can be estimated with high accuracy, the accuracy of AMC processing, TPC processing, etc. can be improved, and the performance of the system can be improved.
  • the SIR of the uplink control signal transmitted via the PUCCH can be estimated with high accuracy. Can improve performance.
  • the radio base station eNB performs ternary determination of the acknowledgment information (ACK / NACK / DTX) transmitted via the PUCCH with high accuracy. It can be carried out.
  • a first feature of the present embodiment is that a predetermined signal (predetermined sequence having a constant amplitude and zero autocorrelation in the time domain and the frequency domain) is generated from the mobile station UE # L by the mobile station UE # L.
  • SRS, DRS, PUCCH signal, etc. which are configured to receive a radio base station eNB within a sequence that constitutes a transmission signal X L (n) of a predetermined signal transmitted by the mobile station UE # L
  • a power value estimation unit 11B, 12B configured to calculate a correlation value Z (a) with respect to “a + N ⁇ 1” and calculate a received power S power of a predetermined signal using the correlation value Z (a). , 13B And effect.
  • the signal power estimation units 11B, 12B, 13B are configured to estimate the signal power estimation units 11B, 12B, 13B
  • the first sample “a” in a predetermined number N of consecutive samples is slid to calculate a plurality of interference power samples I tmp (a), and the interference power samples I tmp ( Interference power estimators 11C and 12C configured to calculate the interference power I power included in the received signal r (n) of the predetermined signal in the radio base station eNB by performing an averaging process on a) , 13C.
  • the interference power estimation units 11C, 12C, and 13C are configured to estimate the interference power estimation units 11C, 12C, and 13C
  • interference power I power may be calculated.
  • reception power S power calculated by the signal power estimation units 11B, 12B, and 13B and the interference power I power calculated by the interference power estimation units 11C, 12C, and 13C wirelessly using the reception power S power calculated by the signal power estimation units 11B, 12B, and 13B and the interference power I power calculated by the interference power estimation units 11C, 12C, and 13C.
  • Reception quality estimation units 11D, 12D, and 13D configured to calculate reception quality (for example, SIR) of a predetermined signal in the base station eNB, and based on the reception quality, predetermined control processing (for example, scheduling processing, A scheduling processing unit 14 and a TPC command generation unit 15 configured to perform a modulation scheme and coding rate selection processing or uplink transmission power control processing) may be provided.
  • predetermined control processing for example, scheduling processing, A scheduling processing unit 14 and a TPC command generation unit 15 configured to perform a modulation scheme and coding rate selection processing or uplink transmission power control processing
  • the reception quality estimation units 11D, 12D, and 13D are calculated by the reception power S power and the interference power estimation units 11C, 12C, and 13C calculated by the signal power estimation units 11B, 12B, and 13B.
  • the reception quality at the radio base station eNB may be calculated based on the result of performing the averaging process in the time direction and the frequency direction on the interference power I power that has been performed.
  • radio base station eNB and the mobile station UE described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, and Hard Disk). Alternatively, it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • Such a storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Such a storage medium and processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB and the mobile station UE. Further, the storage medium and the processor may be provided in the radio base station eNB and the mobile station UE as discrete components.
  • the present invention it is possible to provide a radio base station that can estimate the reception quality in the radio base station eNB with high accuracy using a reference signal.

Abstract

参照信号を用いて、高精度に、無線基地局eNBにおける受信品質を推定する。 本発明に係る無線基地局eNBは、移動局UE#Lによって送信された所定信号の送信信号X(n)を構成する系列内の連続する所定数Nのサンプル「a」~「a+N-1」と、無線基地局eNBにおける所定信号の受信信号r(n)を構成する系列内の連続する所定数Nのサンプル「a」~「a+N-1」との間の相関値Z(a)を算出し、相関値Z(a)を用いて所定信号の受信電力Spowerを算出するように構成されている信号電力推定部11B、12B、13Bを具備する。

Description

無線基地局
 本発明は、無線基地局に関する。
 LTE(Long Term Evolution)方式の移動通信システムでは、上りリンクにおいて送信される参照信号(RS:Reference Signal)は、CAZAC系列によって構成されている。
 かかるLTE方式の移動通信システムでは、無線基地局eNBは、受信した参照信号を用いて、無線基地局eNBにおける受信品質、例えば、SIR(Signal to Interference Ratio)を推定し、推定したSIRを用いて、所定制御処理を行うように構成されている。
 しかしながら、LTE方式では、無線基地局eNBにおいて、どのように、SIRを推定すべきかについて仕様化されていないという問題点があった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、参照信号を用いて、高精度に、無線基地局eNBにおける受信品質を推定することができる無線基地局を提供することを目的とする。
 本発明の第1の特徴は、移動局から、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を用いて形成されている所定信号を受信するように構成されている無線基地局であって、前記移動局によって送信された前記所定信号の送信信号を構成する系列内の連続する所定数のサンプルと、前記無線基地局における該所定信号の受信信号を構成する系列内の連続する所定数のサンプルとの間の相関値を算出し、該相関値を用いて該所定信号の受信電力を算出するように構成されている信号電力推定部を具備することを要旨とする。
本発明の第1の実施形態に係る移動通信システムの全体構成図である。 本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 本発明の第1の実施形態に係る無線基地局の動作を示すフローチャートである。 本発明の第1の実施形態に係る無線基地局において信号電力を推定する動作を示すフローチャートである。 本発明の第1の実施形態に係る無線基地局において干渉電力を推定する動作を示すフローチャートである。
(本発明の第1の実施形態に係る移動通信システムの構成)
 図1及び図2を参照して、本発明の第1の実施形態に係る移動通信システムの構成について説明する。
 本実施形態に係る移動通信システムは、LTE方式の移動通信システムであって、図1に示すように、無線基地局eNBと、移動局UEとを具備している。
 図1に示すように、移動局UEは、上りリンクにおいて、物理信号として、SRS(Sounding Reference Signal、サウンディング参照信号)や、DRS(Demodulation Reference Signal、復調用参照信号)等を送信するように構成されている。
 ここで、SRSは、無線基地局eNBによって、上りリンクの受信品質の測定や無線基地局eNBと移動局UEとの間のタイミングの測定等に用いられる参照信号である。
 なお、SRSは、PUSCH(Physical Uplink Shared Channel、物理上り共有チャネル)を介して送信される上りデータ信号やPUCCH(Physical Uplink Control Channel、物理上り制御チャネル)を介して送信される上り制御信号とは独立に周期的に送信される。
 また、DRSは、PUSCHやPUCCHに時間多重される復調用の参照信号である。
 また、移動局UEは、上りリンクにおいて、PUCCHを介して、上り制御信号として、PDSCH(Physical Downlink Shared Channel、物理下り共有チャネル)を介して送信された下りデータ信号に対する送達確認情報(ACK/NACK)や、下りリンクの受信品質(CQI:Channel Quality Indicator)等を送信するように構成されている。
 ここで、上述したSRSやDRSや上り制御信号は、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列であるCAZAC(Constant Amplitude Zero Auto-Correlation)系列を用いて形成されている所定信号である。
 ここで、CAZAC系列に対して、サイクリックシフト(Cyclic Shift)を施すことによって、直交する複数の系列を生成することができる。すなわち、CAZAC系列は、サイクリックシフトによる多重可能な最大数を「NMAX」とした場合、サイクリックシフトにより生成された2つの異なる系列を構成する任意のKサンプル同士の相関値が「0」となるという特徴を有する。
 一般に、CAZAC系列の系列長を「M」とすると、1サンプルずつサイクリックシフトして系列を生成した場合に、最大でM個の系列を生成可能である。
 しかしながら、マルチパスフェージング環境では、遅延波の影響により、どのサイクリックシフト量による系列なのかを見分けることが不可能になるため、マルチパスの最大遅延量よりも大きな値にサイクリックシフト量を決定する必要がある。
 また、サイクリックシフト量を小さくして、系列数を多く取った場合には、符号多重数の増加による符号間干渉が大きくなるため、信号の分離精度が劣化する。
 したがって、上記の遅延波及び符号間干渉の影響を考慮してサイクリックシフト量を決定し、かかるサイクリックシフト量用いて生成した系列数が、前記最大多重数「NMAX」に相当する。ここで、「NMAX」には「NMAX≦M」の関係が成り立つ。
 本実施形態に係る移動通信システムでは、例えば、CAZAC系列として、Zadoff-Chu系列や、Computer searchによるバイナリ系列等が用いられるように構成されている。
 また、無線基地局eNBは、下りリンクにおいて、PDCCH(Physical Downlink Control Channel、物理下り制御チャネル)を介して、スケジューリング信号や送信電力制御信号(TPC(Transmission Power Control)コマンド)等を含む下り制御信号を送信するように構成されている。
 図2に示すように、無線基地局eNBは、SRS受信部11Aと、信号電力推定部11Bと、干渉電力推定部11Cと、受信品質推定部11Dと、DRS受信部12Aと、信号電力推定部12Bと、干渉電力推定部12Cと、受信品質推定部12Dと、PUCCH受信部13Aと、信号電力推定部13Bと、干渉電力推定部13Cと、受信品質推定部13Dと、スケジューリング処理部14と、TPCコマンド生成部15とを具備している。
 SRS受信部11Aは、移動局UEによって周期的に送信されているSRSを受信するように構成されている。
 信号電力推定部11Bは、例えば、後述する図4に示す方法によって、移動局UEによって送信されたSRSの受信電力Spowerを算出するように構成されている。
 干渉電力推定部11Cは、例えば、後述する図5に示す方法によって、無線基地局eNBにおけるSRSの受信信号r(n)に含まれる干渉電力Ipowerを算出するように構成されている。
 受信品質推定部11Dは、信号電力推定部11Bによって算出された受信電力Spower及び干渉電力推定部11Cによって算出された干渉電力Ipowerを用いて、サブフレームごとに、無線基地局eNBにおけるSRSの受信品質(例えば、SIR)を算出するように構成されている。
 ここで、受信品質推定部11Dは、信号電力推定部11Bによって算出された受信電力Spower及び干渉電力推定部11Cによって算出された干渉電力Ipowerに対して時間方向の平均化処理(すなわち、複数のサブフレームに渡る平均化処理)、及び、周波数方向の平均化(すなわち、複数のSRSの送信帯域に渡る平均化処理)を施した結果に基づいて、無線基地局eNBにおけるSRSのSIRを算出するように構成されていてもよい。
 また、受信品質推定部11Dは、干渉電力推定部11Cによって算出された干渉電力Ipowerに対して時間方向の平均化処理(すなわち、複数のサブフレームに渡る平均化処理)、及び、周波数方向の平均化(すなわち、複数のSRSの送信帯域に渡る平均化処理)を施した結果、及び、SRSの受信タイミングにおける信号電力推定部11Bによって算出された瞬時の受信電力Spowerに基づいて、無線基地局eNBにおけるSRSのSIRを算出するように構成されていてもよい。
 このとき、信号電力推定部11Bによって算出された瞬時の受信電力Spowerは、周波数方向の平均化(すなわち、複数のSRSの送信帯域に渡る平均化処理)が施されたものであってもよい。
 DRS受信部12Aは、移動局UEによって送信されているDRSを受信するように構成されている。
 信号電力推定部12Bは、例えば、後述する図4に示す方法によって、移動局UEによって送信されたDRSの受信電力Spowerを算出するように構成されている。
 干渉電力推定部12Cは、例えば、後述する図5に示す方法によって、無線基地局eNBにおけるDRSの受信信号r(n)に含まれる干渉電力Ipowerを算出するように構成されている。
 受信品質推定部12Dは、信号電力推定部12Bによって算出された受信電力Spower及び干渉電力推定部12Cによって算出された干渉電力Ipowerを用いて、サブフレームごとに、無線基地局eNBにおけるDRSの受信品質(例えば、SIR)を算出するように構成されている。
 ここで、受信品質推定部12Dは、信号電力推定部12Bによって算出された受信電力Spower及び干渉電力推定部12Cによって算出された干渉電力Ipowerに対して時間方向の平均化処理(すなわち、複数のサブフレームに渡る平均化処理)、及び、周波数方向の平均化(すなわち、複数のDRSの送信帯域に渡る平均化処理)を施した結果に基づいて、無線基地局eNBにおけるDRSのSIRを算出するように構成されていてもよい。
 また、受信品質推定部12Dは、干渉電力推定部12Cによって算出された干渉電力Ipowerに対して時間方向の平均化処理(すなわち、複数のサブフレームに渡る平均化処理)、及び、周波数方向の平均化(すなわち、複数のDRSの送信帯域に渡る平均化処理)を施した結果、及び、DRSの受信タイミングにおける信号電力推定部12Bによって算出された瞬時の受信電力Spowerに基づいて、無線基地局eNBにおけるDRSのSIRを算出するように構成されていてもよい。
 このとき、信号電力推定部12Cによって算出された瞬時の受信電力Spowerは、周波数方向の平均化(すなわち、複数のDRSの送信帯域に渡る平均化処理)が施されたものであってもよい。
 PUCCH受信部13Aは、移動局UEによってPUCCHを介して送信されている上り制御信号を受信するように構成されている。
 信号電力推定部13Bは、例えば、後述する図4に示す方法によって、移動局UEによって送信された上り制御信号の受信電力Spowerを算出するように構成されている。
 干渉電力推定部13Cは、例えば、後述する図5に示す方法によって、無線基地局eNBにおける上り制御信号の受信信号r(n)に含まれる干渉電力Ipowerを算出するように構成されている。
 受信品質推定部13Dは、信号電力推定部13Bによって算出された受信電力Spower及び干渉電力推定部13Cによって算出された干渉電力Ipowerを用いて、サブフレームごとに、無線基地局eNBにおける上り制御信号の受信品質(例えば、SIR)を算出するように構成されている。
 ここで、受信品質推定部13Dは、信号電力推定部13Bによって算出された受信電力Spower及び干渉電力推定部13Cによって算出された干渉電力Ipowerに対して時間方向の平均化処理(すなわち、複数のサブフレームに渡る平均化処理)、及び、周波数方向の平均化(すなわち、複数のPUCCHの送信帯域に渡る平均化処理)を施した結果に基づいて、無線基地局eNBにおける上り制御信号のSIRを算出するように構成されていてもよい。
 また、受信品質推定部13Dは、干渉電力推定部13Cによって算出された干渉電力Ipowerに対して時間方向の平均化処理(すなわち、複数のサブフレームに渡る平均化処理)、及び、周波数方向の平均化(すなわち、複数のPUCCHの送信帯域に渡る平均化処理)を施した結果、及び、上り制御信号の受信タイミングにおける信号電力推定部13Bによって算出された瞬時の受信電力Spowerに基づいて、無線基地局eNBにおける上り制御信号のSIRを算出するように構成されていてもよい。
 このとき、信号電力推定部13Cによって算出された瞬時の受信電力Spowerは、周波数方向の平均化(すなわち、複数のPUCCHの送信帯域に渡る平均化処理)が施されたものであってもよい。
 スケジューリング処理部14は、受信品質推定部11D及び受信品質推定部12Dによって算出された無線基地局eNBにおけるSIRに基づいて、所定制御処理、すなわち、時間・周波数スケジューリング処理や適応変復調(AMC:Adaptive Modulation and channel Coding)処理(変調方式及び符号化率の選択処理)等を行うように構成されている。
 TPCコマンド生成部15は、受信品質推定部11Dと受信品質推定部12Dと受信品質推定部13Dとによって算出された無線基地局eNBにおけるSIRに基づいて、所定制御処理、すなわち、上りリンクにおける送信電力制御処理(例えば、TPCコマンドの生成処理及びPDCCHを介した移動局UEへの送信処理)を行うように構成されている。
(本発明の第1の実施形態に係る移動通信システムの動作)
 図3乃至図5を参照して、本発明の第1の実施形態に係る移動通信システムの動作について、具体的には、本発明の第1の実施形態に係る無線基地局eNBの動作について説明する。
 図3に示すように、ステップS101において、無線基地局eNBは、移動局UEによって送信されたSRSやDRSや上り制御信号の受信電力Spowerを推定する。ここで、図4を参照して、SRSを用いた受信電力Spowerの推定方法について説明する。
 図4に示すように、例えば、無線基地局eNBの信号電力推定部11Bは、ステップS101Aにおいて、移動局UE#Lによって送信されたSRSの送信信号X(n)を構成する系列内の連続する所定数Nのサンプル「a」~「a+N-1」と、無線基地局eNBにおけるSRSの受信信号r(n)を構成する系列内の連続する所定数Nのサンプル「a」~「a+N-1」との間の相関値Z(a)を算出し、ステップS101Bにおいて、相関値Z(a)を用いてSRSの受信電力Spowerを算出する。
 具体的には、SRSの受信信号r(n)は、
Figure JPOXMLDOC01-appb-M000005
によって表される。
 「n」は、「0」乃至「M」の範囲内の整数の値を取るパラメータであり、「M」は、SRSを構成する系列の長さである。また、「X(n)」は、移動局UE#kによって送信されたSRSの周波数領域の送信信号であり、「H(n)」は、移動局UE#kと無線基地局eNBとの間の伝搬路状態、すなわち、周波数応答であり、「N(n)」は、無線基地局eNBにおいて受信される干渉電力である。
 ここで、干渉電力とは、無線基地局eNBで付加される熱雑音及び他セルからの干渉電力の和である。さらに、「K」は、当該サブフレームにおけるSRSに多重されている移動局UEの数であり、「K≦NMAX」が成立する。なお、「N(n)」の分散は、「σ」であるものとする。
 ここで、信号電力推定部11Bは、
Figure JPOXMLDOC01-appb-M000006
によって、相関値Z(a)を算出し、
Figure JPOXMLDOC01-appb-M000007
によって、SRSの受信電力Spowerを算出するように構成されていてもよい。
 以下、(式1)及び(式2)によって、SRSの受信電力Spowerを算出する理由について説明する。
 第1に、移動局UE#Lによって送信されたSRSの受信電力を算出することを想定する。
 かかる場合、無線基地局eNBは、各移動局UEに対して、送信すべきSRSを構成する系列やSRSの送信タイミングやSRSの送信周波数を割り当てるため、各移動局UEによって送信されるSRSを構成する系列「X(n)」について既知であるため、移動局UE#Lによって送信されたSRSを構成する系列「X(n)」を用いて、以下のように、相関値Z(a)を算出する。
Figure JPOXMLDOC01-appb-M000008
 ここで、「Z(a)」は、系列内のサンプル「a」からスタートした場合の連続するNサンプルに渡る「X(n)」と「r(n)」との間の相関値である。
 (式3)に示す「Z(a)」の第1項は、移動局UE#Lと無線基地局eNBとの間の伝搬路状態の推定値と等価であり、移動局UE#Lによって送信されたSRSの受信電力成分である。
 また、(式3)に示す「Z(a)」の第2項は、同一のセル内で同一のSRSに多重された移動局UE#L以外の移動局UEからの干渉電力成分である。さらに、(式3)に示す「Z(a)」の第3項は、他セルからの干渉電力成分である。
 ここで、簡素化のため、任意のNサンプルにおいて、周波数応答が一定である、すなわち、コヒーレントとであると見なせるものと仮定すると、「n=a,a+1,…a+N-1」のN個の周波数応答のサンプルは全て等しくなる。かかる周波数応答を「H(n)=H’」とする。
 かかる場合、周波数応答の変動に起因するサイクリックシフトによる多重を行った際の直交性の崩れを無視することができ、CAZAC系列をサイクリックシフトすることによって生成された系列は全て直交する、したがって、(式3)に示す「Z(a)」の第2項は、理想的には「0」となる。
 また、サンプル数Nが十分大きい場合には、(式3)に示す「Z(a)」の第3項は、平均化効果によって、ノイズ成分である「N(n)」が抑圧され、理想的には「0」となる。(式3)に示す「Z(a)」の第3項は、実際には、「0」にはならないが、SRSの受信電力成分である(式3)に示す「Z(a)」の第1項と比べて十分に小さくなるので無視することが可能である。
 したがって、理想的には、(式3)に示されるZ(a)について、以下のように単純化することができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、CAZAC系列を構成するサンプルの振幅値の二乗値は「1」であるものと仮定している。
 したがって、以下のように、SRSの受信電力Spowerを算出することができる。
Figure JPOXMLDOC01-appb-M000010
 ここで、サンプル数Nは、サイクリックシフトによる多重可能な最大数NMAXの整数倍であれば、任意の値を取ることができる。したがって、「N=NMAX」とすれば、最小の平均化区間となるため、小さい周波数帯域幅あたりのSRSの受信電力Spowerを算出することができ、「N=M」とすれば、系列全体に渡っての平均化区間となるため、大きい周波数帯域幅あたりのSRSの受信電力Spowerを算出することができる。このため、算出すべきSIRの用途に応じて、サンプル数Nを使い分けることが可能である。
 例えば、SRSの系列の長さが「120」である場合、SRSは、1サブキャリアおきに周波数方向にマッピングされるため、最大で20リソースブロック(RB:Resource Block)に渡ってSRSの受信電力Spowerを算出することができる。
 ここで、SRSが、両端のRBを除くRB#2~#21に渡ってマッピングされているものとする。
 かかる場合、Z(a)を算出する場合に、「a=0」及び「N=24」とすると、RB#2~#5の4RBに渡ってのSRSの受信電力Spowerを算出することができ、Z(a)を算出する場合に、「a=24」及び「N=24」とすると、RB#6~#9の4RBに渡ってのSRSの受信電力Spowerを算出することができ、Z(a)を算出する場合に、「a=48」及び「N=24」とすると、RB#10~#13の4RBに渡ってのSRSの受信電力Spowerを算出することができ、Z(a)を算出する場合に、「a=72」及び「N=24」とすると、RB#14~#17の4RBに渡ってのSRSの受信電力Spowerを算出することができ、Z(a)を算出する場合に、「a=96」及び「N=24」とすると、RB#18~#21の4RBに渡ってのSRSの受信電力Spowerを算出することができる。
 一方、Z(a)を算出する場合に、「a=0」及び「N=120」とすると、RB#2~#21の広帯域に渡ってのSRSの受信電力Spowerを算出することができる。
 無線基地局eNBの信号電力推定部12Bは、上述した信号電力推定部11Bと同様の方法で、DRSの受信電力Spowerを算出するように構成されていてもよい。
 また、無線基地局eNBの信号電力推定部13Bも、上述した信号電力推定部11Bと同様の方法で、上り制御信号の受信電力Spowerを算出するように構成されていてもよい。
 ステップS102において、無線基地局eNBは、無線基地局eNBにおけるSRS、DRS及び上り制御信号の受信信号r(n)に含まれる干渉電力Ipowerを推定する。ここで、図5を参照して、SRSを用いた干渉電力Ipowerの推定方法について説明する。
 図5に示すように、例えば、無線基地局eNBの干渉電力推定部11Cは、ステップS102Aにおいて、スライディング相関を行う、すなわち、上述の連続する所定数Nのサンプル内の先頭サンプル「a」をスライドさせて、Z(a)、Z(a+1)及びZ(a+2)を算出する。
 ここで、Z(a)、Z(a+1)及びZ(a+2)は、以下のように算出される。
Figure JPOXMLDOC01-appb-M000011
 ここで、サイクリックシフトによる直交が理想的に実現できており、所望の移動局UE#L以外の移動局UEからの受信電力成分は、完全に除去できていると仮定している。かかる場合、所望の干渉電力Ipowerは、N(n)の分散σとなる。S(a)、S(a+1)及びS(a+2)は、かかる場合の理想的なSRSの受信電力成分であり、以下のように表される。
Figure JPOXMLDOC01-appb-M000012
 ステップS102Bにおいて、無線基地局eNBの干渉電力推定部11Cは、かかるZ(a)、Z(a+1)及びZ(a+2)を用いて、(式5)に示すように、複数の干渉電力サンプルItmp(a)を算出する。
Figure JPOXMLDOC01-appb-M000013
 以下、(式5)によって、干渉電力サンプルItmp(a)を算出する理由について説明する。
 (式4)において、第1項は、移動局UE#Lによって送信されたSRSの受信電力成分であり、第2項は、算出すべき干渉電力成分である。
 例えば、隣接するサブキャリアの周波数応答が等しい、すなわち、周波数変動が小さい場合には、S(a)及びS(a+1)がほぼ等しくなると解することができるため、Z(a)とZ(a+1)との差分によって、上述の干渉電力成分を算出することが可能であると解する。
 しかしながら、実際には、周波数変動は多少なりとも存在するため、(式5)に示すように、Z(a)とZ(a+2)との平均値、すなわち、Z(a)とZ(a+1)との間の中間値を、Z(a+1)から減算することによって、精度よく、移動局UE#Lによって送信されたSRSの受信電力成分を除去し、干渉電力サンプルItmp(a)を算出することができる。
 ステップS102Cにおいて、無線基地局eNBの干渉電力推定部11Cは、(式6)に示すように、複数の干渉電力サンプルItmp(a)に対して平均化処理を施すことによって、無線基地局eNBにおける所定信号の受信信号r(n)に含まれる干渉電力Ipowerを算出する。
Figure JPOXMLDOC01-appb-M000014
 以下、(式6)によって、干渉電力Ipowerを算出する理由について説明する。
 複数の干渉電力サンプルItmp(a)を計算する際に登場する理想的な受信電力成分であるS(a)、S(a+1)及びS(a+2)に注目すると、S(a)、S(a+1)及びS(a+2)は、N個のサンプルにわたっての周波数応答成分の平均値である。したがって、S(a)とS(a+1)との間で、周波数変動が十分小さい、すなわち、コヒーレントである場合には、「n=a,a+1,…a+N-1」のN個の周波数応答のサンプルは全て等しくなるため、「S(a)≒S(a+1)」の関係が成り立つ。また、同様に、「S(a+1)≒S(a+2)」の関係も成り立つ。
 したがって、かかる関係を利用すると、上述の(式5)は、以下のように展開することができる。
Figure JPOXMLDOC01-appb-M000015
 1個の干渉電力サンプルItmp(a)では、サンプル数が少なく、誤差も大きくなるため、無線基地局eNBの干渉電力推定部11Cは、スライディング相関を行う、すなわち、上述の連続する所定数Nのサンプル内の先頭サンプル「a」をスライドさせて、複数の干渉電力サンプルItmp(a),(a=0,1,…M-N-2)を算出し、かかる複数の干渉電力サンプルItmp(a)に対して集合平均処理を施すことによって、上述の干渉電力Ipowerを算出する。
 (式6)に示すように、「Itmp(a)」は、干渉成分の複素信号であるため、「Itmp(a)」に対して「Itmp(a)」の複素共役「Itmp(a)」を乗算することによって、電力相当の成分を算出する。
 なお、(式6)は、以下の(式7)ように、展開可能である。
Figure JPOXMLDOC01-appb-M000016
 ここで、E[]は、集合平均化処理の演算を示し、かかる集合平均化処理の演算では、CAZAC系列である「X(n)」の電力値が「1」となるものと仮定する。
 なお、(式7)では、(1/N)という係数が存在するため、(式8)に示すように、「Itmp(a)」と「Itmp(a)」の複素共役「Itmp(a)」とを乗算した場合、(式8)に、(1/N)という係数が存在することになる。ここで、算出すべき干渉電力Ipowerは、干渉成分である「σ」であるため、(1/N)という係数の効果を打ち消すために、(式8)において、「N」を乗算する必要がある。
 また、「N(a)」については、平均値「0」であり、分散値「σ」であるガウス平均を用いることを想定している。したがって、「E[N(x)×N(y)]=σ(x=y)」及び「E[N(x)×N(y)]=0(x≠y)」の関係が成立する。かかる関係を利用することによって、(式8)の2行目から3行目への展開が可能となる。
 無線基地局eNBの干渉電力推定部12Cは、上述した干渉電力推定部11Cと同様の方法で、DRSの受信信号r(n)に含まれる干渉電力Ipowerを算出するように構成されていてもよい。
 また、無線基地局eNBの干渉電力推定部13Cも、上述した干渉電力推定部11Cと同様の方法で、上り制御信号の受信信号r(n)に含まれる干渉電力Ipowerを算出するように構成されていてもよい。
 無線基地局eNBの受信品質推定部11Dは、ステップS103において、信号電力推定部11Bによって算出された受信電力Spower及び干渉電力推定部11Cによって算出された干渉電力Ipowerに対して時間方向及び周波数方向の平均化処理を施し、ステップS104において、かかる平均化処理の結果に基づいて、無線基地局eNBにおけるSRSの受信品質(例えば、SIR)を算出する。
 また、無線基地局eNBの受信品質推定部12Dは、ステップS103において、信号電力推定部12Bによって算出された受信電力Spower及び干渉電力推定部12Cによって算出された干渉電力Ipowerに対して時間方向及び周波数方向の平均化処理を施し、ステップS104において、かかる平均化処理の結果に基づいて、無線基地局eNBにおけるDRSの受信品質(例えば、SIR)を算出する。
 同様に、無線基地局eNBの受信品質推定部13Dは、ステップS103において、信号電力推定部13Bによって算出された受信電力Spower及び干渉電力推定部13Cによって算出された干渉電力Ipowerに対して時間方向Itmp(a)の平均化処理を施し、ステップS104において、かかる平均化処理の結果に基づいて、無線基地局eNBにおける上り制御信号の受信品質(例えば、SIR)を算出する。
(本発明の第1の実施形態に係る移動通信システムの作用・効果)
 SRSやDRSやPUCCHを介して送信される上り制御信号には、サイクリックシフトによって複数の移動局UEが直交多重される。したがって、自セル内の干渉(移動局UE間のコード間干渉)を抑圧できないと、無線基地局eNBは、実際の干渉電力よりも大きな干渉電力を観測してしまうため、所定制御処理を正確に行うことができない。
 かかる問題点に対して、本発明の第1の実施形態に係る移動通信システムによれば、スライディング相関によって、自セル内のCAZAC系列の多重による干渉を抑圧した複数の干渉サンプル「Itmp(a)」を生成し、かかる複数の干渉サンプル「Itmp(a)」を用いて、平均化効果を高めることによって、他セルからの干渉電力Ipowerの推定精度を上げることができる。
 また、本発明の第1の実施形態に係る移動通信システムによれば、自セル内の移動局UE間の干渉の影響を抑え、SRSの受信電力Spowerを高精度に推定し、他セルからの干渉電力Ipowerを高精度に推定することができるため、時間・周波数スケジューリング処理やAMC処理やTPC処理等の精度を向上させ、システムのパフォーマンスを向上させることができる。
 また、本発明の第1の実施形態に係る移動通信システムによれば、SRSのSIRを高精度に推定することができるため、移動局UEがSRSを送信しているか否かについて、高精度に判断することができる。
 例えば、無線基地局eNBは、「RRC Reconfiguration」等によってSRSの設定を変更した場合等で、移動局UEの処理遅延によって反映が間に合っていなかった場合に、上述のSIRを参照して、かかる移動局UEがSRSを送信していない、或いは、設定の変更が反映されていないと判断することができる。
 また、「Multi-user MIMO」が適用されている場合に、DRSは、移動局UE間で多重されることになるが、本発明の第1の実施形態に係る移動通信システムによれば、高精度にDRSのSIRを推定することができるため、AMC処理やTPC処理等の精度を向上させ、システムのパフォーマンスを向上させることができる。
 本発明の第1の実施形態に係る移動通信システムによれば、高精度にPUCCHを介して送信される上り制御信号のSIRを推定することができるため、TPC処理等の精度を向上させ、システムのパフォーマンスを向上させることができる。
 また、本発明の第1の実施形態に係る移動通信システムによれば、無線基地局eNBは、PUCCHを介して送信される送達確認情報(ACK/NACK/DTX)の3値判定を高精度に行うことができる。
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。
 本実施形態の第1の特徴は、移動局UE#Lから、CAZAC系列(時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列)を用いて形成されている所定信号(SRS、DRS、PUCCH信号等)を受信するように構成されている無線基地局eNBであって、移動局UE#Lによって送信された所定信号の送信信号X(n)を構成する系列内の連続する所定数Nのサンプル「a」~「a+N-1」と、無線基地局eNBにおける所定信号の受信信号r(n)を構成する系列内の連続する所定数Nのサンプル「a」~「a+N-1」との間の相関値Z(a)を算出し、相関値Z(a)を用いて所定信号の受信電力Spowerを算出するように構成されている信号電力推定部11B、12B、13Bを具備することを要旨とする。
 本実施形態の第1の特徴において、信号電力推定部11B、12B、13Bは、
Figure JPOXMLDOC01-appb-M000017
によって、相関値Z(a)を算出し、
Figure JPOXMLDOC01-appb-M000018
によって、所定信号の受信電力Spowerを算出するように構成されていてもよい。
 本実施形態の第1の特徴において、連続する所定数Nのサンプル内の先頭サンプル「a」をスライドさせて、複数の干渉電力サンプルItmp(a)を算出し、かかる干渉電力サンプルItmp(a)に対して平均化処理を施すことによって、無線基地局eNBにおける所定信号の受信信号r(n)に含まれる干渉電力Ipowerを算出するように構成されている干渉電力推定部11C、12C、13Cを具備してもよい。
 本実施形態の第1の特徴において、干渉電力推定部11C、12C、13Cは、
Figure JPOXMLDOC01-appb-M000019
によって、上述の複数の干渉電力サンプルItmp(a)を算出し、
Figure JPOXMLDOC01-appb-M000020
によって、上述の干渉電力Ipowerを算出するように構成されていてもよい。
 本実施形態の第1の特徴において、信号電力推定部11B、12B、13Bによって算出された受信電力Spower及び干渉電力推定部11C、12C、13Cによって算出された干渉電力Ipowerを用いて、無線基地局eNBにおける所定信号の受信品質(例えば、SIR)を算出するように構成されている受信品質推定部11D、12D、13Dと、かかる受信品質に基づいて、所定制御処理(例えば、スケジューリング処理、変調方式及び符号化率の選択処理或いは上りリンクにおける送信電力制御処理)を行うように構成されているスケジューリング処理部14及びTPCコマンド生成部15とを具備してもよい。
 本実施形態の第1の特徴において、受信品質推定部11D、12D、13Dは、信号電力推定部11B、12B、13Bによって算出された受信電力Spower及び干渉電力推定部11C、12C、13Cによって算出された干渉電力Ipowerに対して時間方向及び周波数方向の平均化処理を施した結果に基づいて、無線基地局eNBにおける受信品質を算出するように構成されていてもよい。
 なお、上述の無線基地局eNB及び移動局UEの動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD-ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNB及び移動局UE内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNB及び移動局UE内に設けられていてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
産業上の利用の可能性
 以上説明したように、本発明によれば、参照信号を用いて、高精度に、無線基地局eNBにおける受信品質を推定することができる無線基地局を提供することができる。

Claims (8)

  1.  移動局から、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を用いて形成されている所定信号を受信するように構成されている無線基地局であって、
     前記移動局によって送信された前記所定信号の送信信号を構成する系列内の連続する所定数のサンプルと、前記無線基地局における該所定信号の受信信号を構成する系列内の連続する所定数のサンプルとの間の相関値を算出し、該相関値を用いて該所定信号の受信電力を算出するように構成されている信号電力推定部を具備することを特徴とする無線基地局。
  2.  前記信号電力推定部は、
    Figure JPOXMLDOC01-appb-M000001
    によって、前記相関値を算出し、
    Figure JPOXMLDOC01-appb-M000002
    によって、前記所定信号の受信電力を算出するように構成されていることを特徴とする請求項1に記載の無線基地局。
  3.  前記連続する所定数のサンプル内の先頭サンプルをスライドさせて、複数の干渉電力サンプルを算出し、該干渉電力サンプルに対して平均化処理を施すことによって、前記無線基地局における前記所定信号の受信信号に含まれる干渉電力を算出するように構成されている干渉電力推定部を具備することを特徴とする請求項1又は2に記載の無線基地局。
  4.  前記干渉電力推定部は、
    Figure JPOXMLDOC01-appb-M000003
    によって、前記複数の干渉電力サンプルを算出し、
    Figure JPOXMLDOC01-appb-M000004
    によって、前記干渉電力を算出するように構成されていることを特徴とする請求項3に記載の無線基地局。
  5.  前記信号電力推定部によって算出された前記受信電力及び前記干渉電力推定部によって算出された前記干渉電力を用いて、前記無線基地局における前記所定信号の受信品質を算出するように構成されている受信品質推定部と、
     前記受信品質に基づいて、所定制御処理を行うように構成されている所定制御処理部とを具備することを特徴とする請求項3又は4に記載の無線基地局。
  6.  前記受信品質推定部は、前記信号電力推定部によって算出された前記受信電力及び前記干渉電力推定部によって算出された前記干渉電力に対して時間方向及び周波数方向の平均化処理を施した結果に基づいて、前記受信品質を算出するように構成されていることを特徴とする請求項5に記載の無線基地局。
  7.  前記所定信号は、サウンディング参照信号、復調用参照信号或いは物理上り制御チャネルを介して送信される上り制御信号の少なくとも1つであることを特徴とする請求項1乃至6のいずれか一項に記載の無線基地局。
  8.  前記所定制御処理部は、前記移動局についてのスケジューリング処理、変調方式及び符号化率の選択処理或いは上りリンクにおける送信電力制御処理の少なくとも1つであることを特徴とする請求項1乃至7のいずれか一項に記載の無線基地局。
PCT/JP2010/070201 2009-11-18 2010-11-12 無線基地局 WO2011062119A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800524079A CN102640530A (zh) 2009-11-18 2010-11-12 无线基站
EP10831514A EP2503817A1 (en) 2009-11-18 2010-11-12 Wireless base station
US13/510,466 US20120269084A1 (en) 2009-11-18 2010-11-12 Radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263207 2009-11-18
JP2009263207A JP5130276B2 (ja) 2009-11-18 2009-11-18 無線基地局

Publications (1)

Publication Number Publication Date
WO2011062119A1 true WO2011062119A1 (ja) 2011-05-26

Family

ID=44059598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070201 WO2011062119A1 (ja) 2009-11-18 2010-11-12 無線基地局

Country Status (5)

Country Link
US (1) US20120269084A1 (ja)
EP (1) EP2503817A1 (ja)
JP (1) JP5130276B2 (ja)
CN (1) CN102640530A (ja)
WO (1) WO2011062119A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830849B2 (en) * 2010-01-11 2014-09-09 Qualcomm Incorporated Method and apparatus for detecting transmission signals
JP5378337B2 (ja) * 2010-09-28 2013-12-25 Kddi株式会社 無線通信システム
TWI487415B (zh) * 2011-05-02 2015-06-01 Inst Information Industry 網路系統、微型基地台、微型基地台管理裝置、資源分配方法及其電腦程式產品
US9398585B2 (en) 2011-11-07 2016-07-19 Qualcomm Incorporated Methods and apparatus for proximity detection
US8717927B2 (en) 2012-03-15 2014-05-06 Telefonaktiebolaget L M Ericsson (Publ) Combining channel quality measurements based on sounding reference signals and demodulation reference signals
CN102869109B (zh) * 2012-09-19 2014-12-24 大唐移动通信设备有限公司 一种终端的pusch调度方法及装置
WO2017065852A1 (en) * 2015-10-16 2017-04-20 Intel IP Corporation Sas interference mitigation options
JP6151807B1 (ja) * 2016-01-19 2017-06-21 ソフトバンク株式会社 Mu−mimoにおける復調用参照信号を用いた移動局間干渉電力及び雑音電力の推定方法
JP6553533B2 (ja) * 2016-03-11 2019-07-31 株式会社Nttドコモ 基地局
CN111245533A (zh) * 2018-11-28 2020-06-05 中兴通讯股份有限公司 信号质量估计方法、基站和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246958A (ja) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp 移動体通信システム、マルチキャリアcdma送信装置およびマルチキャリアcdma受信装置
JP2005328311A (ja) * 2004-05-13 2005-11-24 Ntt Docomo Inc 雑音電力推定装置、雑音電力推定方法及び信号検出装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237766A (ja) * 2001-02-08 2002-08-23 Nec Corp 適応アンテナ受信装置
CN1527620A (zh) * 2003-03-05 2004-09-08 北京三星通信技术研究有限公司 一种估计干扰信号码功率的方法
WO2004112303A2 (en) * 2003-03-10 2004-12-23 Macphy Modems, Inc. Method and apparatus for single burst equalization of single carrier signals in broadband wireless access systems
US7623569B2 (en) * 2004-01-14 2009-11-24 Samsung Electronics Co., Ltd. Apparatus and method for estimating interference and noise in a communication system
KR100713436B1 (ko) * 2004-10-28 2007-05-07 삼성전자주식회사 통신 시스템에서 cinr 추정 장치 및 방법
US8045927B2 (en) * 2006-04-27 2011-10-25 Nokia Corporation Signal detection in multicarrier communication system
US7864884B2 (en) * 2006-04-27 2011-01-04 Nokia Corporation Signal detection in OFDM system
US8417248B2 (en) * 2006-08-14 2013-04-09 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
KR101491964B1 (ko) * 2007-07-30 2015-03-09 삼성전자주식회사 통신 시스템에서 서로 다른 신호 타입을 송수신하는 방법 및 시스템
JP2009065403A (ja) * 2007-09-06 2009-03-26 Nec Corp 無線通信における受信品質推定方法および装置
KR101441500B1 (ko) * 2008-06-20 2014-11-04 삼성전자주식회사 다중 안테나 및 사운딩 레퍼런스 신호 호핑을 사용하는상향링크 무선 통신 시스템에서의 사운딩 레퍼런스 신호전송 장치 및 방법
JP5445866B2 (ja) * 2009-01-30 2014-03-19 株式会社日立製作所 無線通信システム及び通信制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246958A (ja) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp 移動体通信システム、マルチキャリアcdma送信装置およびマルチキャリアcdma受信装置
JP2005328311A (ja) * 2004-05-13 2005-11-24 Ntt Docomo Inc 雑音電力推定装置、雑音電力推定方法及び信号検出装置

Also Published As

Publication number Publication date
JP2011109473A (ja) 2011-06-02
EP2503817A1 (en) 2012-09-26
JP5130276B2 (ja) 2013-01-30
CN102640530A (zh) 2012-08-15
US20120269084A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5130276B2 (ja) 無線基地局
US11251918B2 (en) Apparatus and methods for wireless channel sounding
JP6088592B2 (ja) アップリンクレファレンス信号のためのシーケンスホッピング及び直交カバーリングコードの適用
US9288020B2 (en) Transmission of sounding reference signals in TDD communication systems
EP2119056B1 (en) Method of transmitting scheduling request in a wireless communication system
RU2455762C2 (ru) Терминал пользователя, базовая станция и способ передачи сигнала
JP5813198B2 (ja) 通信装置及び通信方法
US9866410B2 (en) Method and apparatus for channel estimation and equalization in QAM-FBMC system
EP2026521A2 (en) Method and apparatus for transmitting and receiving different signal types in communication systems
US20130028241A1 (en) Method for sending uplink sounding reference signal, method for estimating channel, mobile terminal, base station and wireless communication system
JP5232660B2 (ja) 移動通信システム、無線基地局及び移動局
WO2007052651A1 (ja) 送信機及び送信方法
JP2010199902A (ja) 無線基地局および送信電力制御方法
US20180103475A1 (en) Information transmission method, apparatus, and system
US9553703B2 (en) Method and apparatus for transmitting downlink hybrid automatic repeat request information in wireless communication system
JP2013157937A (ja) 基地局装置および通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052407.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4657/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010831514

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13510466

Country of ref document: US