WO2011062105A1 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
WO2011062105A1
WO2011062105A1 PCT/JP2010/070067 JP2010070067W WO2011062105A1 WO 2011062105 A1 WO2011062105 A1 WO 2011062105A1 JP 2010070067 W JP2010070067 W JP 2010070067W WO 2011062105 A1 WO2011062105 A1 WO 2011062105A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
resin composition
metal salt
graphite
Prior art date
Application number
PCT/JP2010/070067
Other languages
French (fr)
Japanese (ja)
Inventor
敬直 竹内
誠一 前場
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN2010800512298A priority Critical patent/CN102612542A/en
Publication of WO2011062105A1 publication Critical patent/WO2011062105A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/186Block or graft polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a polycarbonate resin composition and a molded article comprising the resin composition, and flame retardancy (particularly thin-walled flame retardancy) without using a chlorine-based flame retardant, a bromine-based flame retardant, or a phosphorus-based flame retardant.
  • the present invention relates to a polycarbonate resin composition excellent in thermal conductivity and impact properties and a molded product comprising the same.
  • Polycarbonate resin is widely used for the casings of the above electronic devices, but halogen flame retardants such as chlorinated flame retardants and brominated flame retardants are added to make molded products made of polycarbonate resin flame retardant. It is known to do.
  • halogen flame retardants such as chlorinated flame retardants and brominated flame retardants
  • a flame retardant method using a flame retardant containing no halogen is required from the market.
  • an organic phosphorus flame retardant particularly an organic phosphate ester compound
  • a relatively large amount of the phosphate ester compound is blended.
  • the molding temperature tends to be high. Therefore, although the phosphate ester compound generally contributes to flame retardancy, it may not always be sufficient in terms of molding environment and appearance of the molded product, such as die corrosion during molding and generation of gas. Therefore, without using halogen-based flame retardants such as chlorine-based flame retardants and bromine-based flame retardants, and phosphorus-based flame retardants, the required flame resistance (particularly thin-walled flame retardant properties) of molded products is achieved and heat is achieved. It is desired to find a polycarbonate resin composition having excellent conductivity.
  • Patent Document 1 discloses that a thermoplastic resin composition having low metal corrosivity and excellent thermal conductivity can be obtained by blending specific graphite with a thermoplastic resin.
  • an organic halogen flame retardant such as a halogenated carbonate oligomer or a halogenated epoxy compound or a phosphate ester flame retardant. It does not disclose a technique that does not use a flame retardant and a phosphorus-based flame retardant.
  • Patent Document 2 relates to a heat radiating housing in which a heating element is accommodated, but there is no description regarding flame retardancy required for a housing such as an electronic device, and organic bromine as an additive to be blended as necessary.
  • flame retardants such as flame retardants and phosphorous flame retardants are disclosed, technology that does not actively use chlorine flame retardants, bromine flame retardants and phosphorus flame retardants is not disclosed, and its implementation In the example, since there is no addition of a flame retardant or an anti-drip agent, it is considered that the flame retardant is not sufficient.
  • Patent Document 3 discloses an aromatic polycarbonate resin composition containing a specific silicone compound in a blend composed of an aromatic polycarbonate resin and graphite, and its antistatic property and flame retardancy are evaluated. There is no description of the technical content that can provide sufficient flame retardancy with a thin wall of about 1.5 mm required for a housing of an electronic device or the like.
  • Patent Document 4 discloses a flame retardant comprising a polycarbonate resin, graphite, and an alkali (earth) metal salt of an organic sulfonate as a technique not actively using a chlorine-based flame retardant, a bromine-based flame retardant, and a phosphorus-based flame retardant.
  • a flame retardant evaluation only evaluation with a molded body having a thickness of 2.5 mm has been made, and as in Patent Document 3, about 1.5 mm required for a housing of an electronic device or the like. Insufficient flame retardancy is not obtained with the thin wall.
  • flame retardancy (thickness: 1.2 to 1.0 mm, hereinafter referred to as “thin flame retardant”) without using a chlorine-based flame retardant, bromine-based flame retardant, and phosphorus-based flame retardant. It is an object of the present invention to provide a polycarbonate resin composition and a molded article excellent in impact characteristics having excellent thermal conductivity.
  • an aromatic polycarbonate resin containing a polycarbonate-polyorganosiloxane copolymer, graphite, polytetrafluoroethylene, and an organic alkali metal salt and / or an organic alkaline earth metal salt By blending at a specific ratio, it was found that a polycarbonate resin composition having excellent thin-wall flame retardancy and further excellent thermal conductivity and impact properties was obtained, and the present invention was completed.
  • the present invention (1) (B) 30-100 parts by mass of graphite, (C) 1-10 parts by mass of polytetrafluoroethylene, with respect to 100 parts by mass of (A) an aromatic polycarbonate resin containing a polycarbonate-polyorganosiloxane copolymer, And (D) a polycarbonate resin composition comprising 0.05 to 1 part by mass of an organic alkali metal salt and / or an organic alkaline earth metal salt, (2) The polycarbonate resin composition according to the above (1), wherein the content of polyorganosiloxane in (A) is 1 to 6% by mass, (3) The polycarbonate resin composition according to the above (1) or (2), wherein the polyorganosiloxane of the aromatic polycarbonate-polyorganosiloxane copolymer is polydimethylsiloxane, (4) The polycarbonate resin composition according to any one of the above (1) to (3), wherein the graphite is natural graphite, (5) The polycarbonate resin composition according to any one of
  • the present invention is excellent in thin-wall flame retardancy, impact properties, and thermal conductivity without impairing the original mechanical properties of polycarbonate, and it can suppress the decrease in molecular weight during granulation, thereby increasing the strength of the product.
  • a resin composition that can be kept high can be obtained.
  • the polycarbonate resin of the present invention (hereinafter sometimes abbreviated as “PC resin”) is composed of (A) aromatic polycarbonate resin, (B) graphite, (C) polytetrafluoroethylene, and (D) organic.
  • the aromatic polycarbonate resin (A) in the present invention includes (A-1) an aromatic polycarbonate containing a polycarbonate-polyorganosiloxane copolymer (hereinafter sometimes abbreviated as “PC-POS copolymer”). Resin is used.
  • the (A-1) PC-POS copolymer alone or a (A-2) aromatic polycarbonate resin (hereinafter referred to as “general”) produced by reaction of a dihydric phenol and a carbonate precursor.
  • PC resin aromatic polycarbonate resin having a content of the PC-POS copolymer of 10 to 100% by mass is preferably used.
  • the production method of the general PC resin which is the component (A-2) in the component (A) is not particularly limited, and those produced by various conventional methods can be used.
  • a dihydric phenol and a carbonate precursor produced by a solution method (interfacial polycondensation method) or a melting method (transesterification method), that is, a dihydric phenol and phosgene are reacted in the presence of a terminal terminator.
  • An interfacial polycondensation method to be produced or a product produced by a reaction by a transesterification method of a dihydric phenol and diphenyl carbonate in the presence of a terminal terminator can be used.
  • dihydric phenols can be mentioned, and in particular, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis (4 -Hydroxyphenyl) ethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkane, bis (4-hydroxyphenyl) Examples thereof include oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone.
  • hydroquinone, resorcin, catechol and the like can also be mentioned. These may be used alone or in combination of two or more. Among them, bis (hydroxyphenyl) alkanes are preferable, and bisphenol A is particularly preferable.
  • the carbonate precursor is carbonyl halide, carbonyl ester, haloformate or the like, specifically, phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, diethyl carbonate or the like.
  • the general PC resin may have a branched structure, and 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4 -Hydroxyphenyl) -1,3,5-triisopropylbenzene, phloroglysin, trimellitic acid and isatin bis (o-cresol).
  • the viscosity average molecular weight (Mv) of the general PC resin used as the component (A-2) is usually 10,000 to 50,000, preferably 13,000 to 35,000, more preferably 15, 000 to 20,000.
  • the (A-1) PC-POS copolymer is composed of a polycarbonate part and a polyorganosiloxane part.
  • An oligomer hereinafter abbreviated as PC oligomer
  • a polyorganosiloxane moiety having a reactive group such as an o-allylphenol residue, a p-hydroxystyrene residue, or an eugenol residue at the terminal.
  • organosiloxane in a solvent such as methylene chloride, chlorobenzene, or chloroform, add a caustic aqueous solution of dihydric phenol, and use a tertiary amine (such as triethylamine) or a quaternary ammonium salt (trimethylbenzylammonium chloride) as a catalyst.
  • a solvent such as methylene chloride, chlorobenzene, or chloroform
  • a caustic aqueous solution of dihydric phenol and use a tertiary amine (such as triethylamine) or a quaternary ammonium salt (trimethylbenzylammonium chloride) as a catalyst.
  • a tertiary amine such as triethylamine
  • quaternary ammonium salt trimethylbenzylammonium chloride
  • the PC oligomer used for the production of this PC-POS copolymer is obtained by reacting the aforementioned dihydric phenol with a carbonate precursor such as phosgene in a solvent such as methylene chloride, or with a dihydric phenol. It can be easily produced by reacting a carbonate ester compound, for example, a carbonate precursor such as diphenyl carbonate. Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
  • the PC oligomer used for the production of the PC-POS copolymer may be a homo-oligomer using one kind of the aforementioned dihydric phenol or a co-oligomer using two or more kinds. Furthermore, the thermoplastic random branched oligomer obtained by using a polyfunctional aromatic compound together with the said bihydric phenol may be sufficient. In that case, 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3 is used as a branching agent (polyfunctional aromatic compound).
  • the PC-POS copolymer those having a polymerization degree of the polycarbonate part of about 3 to 100 and a polymerization degree of the polyorganosiloxane part of about 2 to 500 are preferably used.
  • the content of the polyorganosiloxane part in the PC-POS copolymer in the total component (A) is such that the flame retardancy imparting effect, impact resistance imparting effect, and economic efficiency of the obtained PC resin composition From the viewpoint of balance and the like, the content is preferably 1 to 6% by mass.
  • the viscosity average molecular weight (Mv) of the PC-POS copolymer is usually 5,000 to 100,000, preferably 10,000 to 30,000, particularly preferably 12,000 to 30,000.
  • the polyorganosiloxane portion in the PC-POS copolymer is preferably a segment made of polydimethylsiloxane, polydiethylsiloxane, polymethylphenylsiloxane, or the like, and particularly preferably a polydimethylsiloxane segment.
  • the ratio of the (A-1) PC-POS copolymer in the component (A) to the general PC resin as the component (A-2) depends on the polyorganosiloxane part in the PC-POS copolymer (
  • the content in the whole component A) is 1 to 6% by mass, and the raw material molecular weight (viscosity average molecular weight) as the whole component (A) is preferably in the range of 17,000 to 30,000, preferably Is preferably adjusted to 18,000 to 26,000.
  • a large amount of general PC resin can be used.
  • the content in the total component (A) is 1 to 6% by mass by using no general PC resin or a small amount of general PC resin. And can be adjusted.
  • the (A-1) PC-POS copolymer in the component (A) is used in the range of 10 to 100% by mass.
  • any molecular weight regulator may be used as long as it is usually used for polymerization of polycarbonate, and various monohydric phenols can be used. Specific examples include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, bromophenol, tribromophenol, nonylphenol and the like.
  • a bifunctional carboxylic acid such as terephthalic acid, or an ester thereof, as long as the object of the present invention is not impaired, in addition to the aromatic PC resin and the PC-POS copolymer.
  • a copolymer resin such as a polyester-polycarbonate resin obtained by polymerizing a polycarbonate in the presence of an ester precursor such as a forming derivative, or other polycarbonate resin can be appropriately contained.
  • the polycarbonate resin composition of the present invention is blended with (B) graphite mainly for imparting thermal conductivity.
  • graphite used in the present invention either natural graphite or various artificial graphites can be used.
  • natural graphite any of earth-like graphite, scale-like graphite (Vein Graphite also called massive graphite), and scale-like graphite (Flake Graphite) can be used.
  • scaly graphite can be suitably used.
  • Artificial graphite is obtained by heat-treating amorphous carbon and artificially aligning irregularly arranged fine graphite crystals.
  • Kish graphite, cracked graphite, and Includes pyrolytic graphite Artificial graphite used for general carbon materials is usually produced by graphitization treatment using petroleum coke or coal-based pitch coke as a main raw material.
  • Such artificial graphite has a merit that high weld strength can be improved, although elasticity and thermal conductivity are lowered as compared with natural graphite.
  • the blending amount of component (B) is required to be in the range of 30 to 100 parts by weight, preferably in the range of 30 to 70 parts by weight, with respect to 100 parts by weight of component (A). When the blending amount is less than 30 parts by mass, it is difficult to obtain sufficient thermal conductivity, and when it exceeds 100 parts by mass, there is a problem that the impact strength tends to decrease.
  • graphite having a 50% cumulative diameter of 30 to 180 ⁇ m can be suitably used.
  • the fixed carbon amount of graphite is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 98% by weight or more.
  • the volatile content of graphite is preferably 3% by weight or less, more preferably 1.5% by weight or less, and still more preferably 1% by weight or less.
  • the surface of the graphite is subjected to surface treatment such as epoxy treatment, urethane treatment, silane coupling treatment, and oxidation treatment in order to increase the affinity with the thermoplastic resin as long as the characteristics of the composition of the present invention are not impaired. May be.
  • the polycarbonate resin composition of the present invention is blended with (C) polytetrafluoroethylene (PTFE) in order to improve thin flame retardancy.
  • This component (C) gives the resin composition of the present invention a melt dripping preventing effect, and exhibits excellent thin flame retardancy.
  • the component (C) preferably has a fibril forming ability.
  • fibril forming ability means that resins tend to be bonded and become fibrous due to an external action such as shearing force.
  • Examples of the component (C) of the present invention include polytetrafluoroethylene, a tetrafluoroethylene copolymer (for example, a tetrafluoroethylene / hexafluoropropylene copolymer) and the like.
  • polytetrafluoroethylene is preferred.
  • PTFE having fibril-forming ability has a very high molecular weight, and the number average molecular weight determined from the standard specific gravity is usually 500,000 or more, preferably 500,000 to 15 million, more preferably 1,000,000 to 10 million.
  • tetrafluoroethylene is polymerized in an aqueous solvent in the presence of sodium, potassium or ammonium peroxydisulfide at a pressure of about 7 to 700 kPa and a temperature of about 0 to 200 ° C., preferably 20 to 100 ° C. Can be obtained.
  • those in the form of an aqueous dispersion can also be used, and those classified as type 3 according to the ASTM standard can be used.
  • Commercially available products classified as Type 3 include, for example, “Teflon 6-J” (trade name, manufactured by Mitsui Dupont Fluoro Chemical Co., Ltd.), “Polyflon D-1” and “Polyflon F-103” [trade name. , Manufactured by Daikin Industries, Ltd.].
  • Other than Type 3, “Algoflon F5” (trade name, manufactured by Solvay Solexis), “Polyflon MPAFA-100” (trade name, manufactured by Daikin Industries, Ltd.) and the like can be mentioned.
  • the PTFE may be used alone or in combination of two or more.
  • the blending amount of (C) polytetrafluoroethylene (PTFE) is in the range of 1 to 10 parts by mass, preferably 1.5 to 9 parts by mass with respect to 100 parts by mass of the above-mentioned (A) aromatic polycarbonate resin. .
  • the blending amount is less than 1 part by mass, the effect of preventing dripping is lost, and when it exceeds 10 parts by mass, impact characteristics are deteriorated.
  • the blending amount is 1 to 1.5 parts by mass, it has an effect as an anti-dripping agent. However, when it exceeds 1.5 parts by mass, not only as an anti-dripping agent, but also an effect of improving impact strength and mold release properties The mold release action during molding is also improved.
  • organic alkali metal salts and / or organic alkaline earth metal salts include various organic acids, organic acids having at least one carbon atom, or alkali metal salts of organic acid esters and organic alkaline earth metals Salt can be used.
  • the organic acid or the organic acid ester is an organic sulfonic acid, an organic carboxylic acid, or the like.
  • the alkali metal is lithium, sodium, potassium, cesium or the like
  • the alkaline earth metal is magnesium, calcium, strontium, barium or the like, and among these, sodium and potassium salts are preferably used.
  • the salt of the organic acid may be substituted with a halogen such as fluorine, chlorine or bromine.
  • Alkali metal salts and organic alkaline earth metal salts can be used singly or in combination of two or more.
  • a salt is preferably used.
  • e represents an integer of 1 to 10
  • M represents an alkaline metal such as lithium, sodium, potassium or cesium, or an alkaline earth metal such as magnesium, calcium, strontium or barium
  • f represents the valence of M. Show. As these compounds, for example, those described in Japanese Patent Publication No. 47-40445 correspond to this.
  • examples of perfluoroalkanesulfonic acid include perfluoromethanesulfonic acid, perfluoroethanesulfonic acid, perfluoropropanesulfonic acid, perfluorobutanesulfonic acid, perfluoromethylbutanesulfonic acid, Fluorohexanesulfonic acid, perfluoroheptanesulfonic acid, perfluorooctanesulfonic acid and the like can be mentioned.
  • these potassium salts are preferably used.
  • p-toluenesulfonic acid 2,5-dichlorobenzenesulfonic acid; 2,4,5-trichlorobenzenesulfonic acid; diphenylsulfone-3-sulfonic acid; diphenylsulfone-3,3′-disulfonic acid; naphthalenetrisulfonic acid And alkali metal salts of organic sulfonic acids such as
  • organic carboxylic acid examples include perfluoroformic acid, perfluoromethanecarboxylic acid, perfluoroethanecarboxylic acid, perfluoropropanecarboxylic acid, perfluorobutanecarboxylic acid, perfluoromethylbutanecarboxylic acid, perfluorohexanecarboxylic acid.
  • Perfluoroheptanecarboxylic acid, perfluorooctanecarboxylic acid and the like, and alkali metal salts of these organic carboxylic acids are used.
  • a sulfonate group-containing aromatic vinyl resin represented by the following general formula (2) may be used as the alkali metal salt and / or alkaline earth metal salt of polystyrene sulfonic acid that can be used as the component (D). It can.
  • Z 1 represents a sulfonate group
  • Z 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • g is an integer of 1 to 5.
  • h represents a mole fraction, and 0 ⁇ h ⁇ 1.
  • the sulfonate group is an alkali metal salt and / or alkaline earth metal salt of sulfonic acid, and examples of the metal include sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium and the like. It is done.
  • Z 2 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a methyl group.
  • the sulfonate group (Z 1 ) may be a fully substituted or partially substituted aromatic ring.
  • the substitution ratio of the sulfonate group is determined in consideration of the content of the sulfonate group-containing aromatic vinyl resin, and is generally Is used with 10 to 100% substitution.
  • the sulfonate group-containing aromatic vinyl resin is not limited to the polystyrene resin of the above general formula (2), but a styrene-based single resin. It may be a copolymer with another monomer copolymerizable with the monomer.
  • a method for producing a sulfonate group-containing aromatic vinyl resin (I) the above aromatic vinyl monomer having a sulfonic acid group or the like, or another monomer copolymerizable therewith (II) Aromatic vinyl polymers, copolymers of aromatic vinyl monomers and other copolymerizable monomers, or mixed polymers of these And neutralizing with an alkali metal compound and / or an alkaline earth metal compound.
  • a polystyrene sulfone oxide is produced by adding a mixture of concentrated sulfuric acid and acetic anhydride to a 1,2-dichloroethane solution of polystyrene resin, heating the mixture, and reacting for several hours.
  • polystyrene sulfonate potassium salt or sodium salt can be obtained by neutralizing with sulfonic acid group and equimolar amount of potassium hydroxide or sodium hydroxide.
  • the weight average molecular weight of the sulfonate group-containing aromatic vinyl resin used in the present invention is about 1,000 to 300,000, preferably about 2,000 to 200,000.
  • the weight average molecular weight can be measured by the GPC method.
  • the above (D) organic alkali metal salt and / or organic alkaline earth metal salt may be used singly or in combination of two or more.
  • the content thereof is 0.05 to 1 part by weight, preferably 0.1 to 0.9 part by weight, based on 100 parts by weight of the (A) aromatic polycarbonate resin. When the content is less than 0.05 parts by mass, it is difficult to achieve the target thin-walled flame retardancy.
  • the components comprising the above (A) to (D) are added with phenol, phosphorus, A sulfur-based (E) antioxidant and (F) a release agent can be contained.
  • E) The amount of antioxidant added is preferably 0.001 to 0.5 parts by mass for phosphorus antioxidants. If it is 0.001 part by mass or more, thermal stability in the granulation step / molding step can be maintained, and if it is less than 0.5 part by mass, it is difficult to cause a decrease in molecular weight.
  • the release agent is not particularly limited as long as it can be mixed with a polycarbonate resin to improve the release property at the time of molding.
  • organic compounds such as beeswax, glycerin monostearate, glycerin tristearate, pentaerythritol monostearate, pentaerythritol tristearate, pentaerythritol tetrastearate, montanic acid ester wax, carboxylic acid ester have excellent release properties. Shown and used preferably.
  • the blending amount is preferably 0.001 to 2 parts by mass.
  • additive components commonly used in other synthetic resins, elastomers, and thermoplastic resins can be included as necessary.
  • the above additives include antistatic agents, polyamide polyether block copolymers (permanent antistatic performance), benzotriazole and benzophenone UV absorbers, hindered amine light stabilizers (weathering agents), plasticizers, antibacterial agents Agents, compatibilizers and colorants (dyes, pigments) and the like.
  • the amount of the optional component is not particularly limited as long as the characteristics of the polycarbonate resin composition of the present invention are maintained.
  • the polycarbonate resin composition of the present invention can be obtained by blending the above components (A) to (D) in the above proportions and various optional components used as necessary in an appropriate proportion and kneading.
  • the compounding and kneading are premixed with commonly used equipment such as a ribbon blender, drum tumbler, etc., Henschel mixer, Banbury mixer, single screw extruder, twin screw extruder, multi screw extruder and It can be performed by a method using a conida or the like.
  • the heating temperature at the time of kneading is usually appropriately selected within the range of 240 to 320 ° C.
  • melt-kneading molding it is preferable to use an extrusion molding machine, particularly a vent type extrusion molding machine.
  • the components other than the polycarbonate resin can be added in advance as a master batch with melt-kneading with the polycarbonate resin or other thermoplastic resin.
  • the polycarbonate resin composition of the present invention is an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, a vacuum molding method, using the above melt kneading molding machine or the obtained pellets as a raw material.
  • Various molded bodies can be produced by a foam molding method or the like.
  • the obtained pellets can be used suitably for the production of injection molded articles by injection molding and injection compression molding.
  • the molded body comprising the polycarbonate resin composition of the present invention is, for example, (1) TV, radio cassette, video camera, video tape recorder, audio player, DVD player, air conditioner, mobile phone, display, computer, register, calculator, copier, printer, facsimile, etc. (2)
  • the housing for the electric / electronic device according to 1 above, (3) Chassis for electrical / electronic equipment according to 1 above, Etc. can be suitably used.
  • the pellet molecular weight measured the molecular weight of the extracted polycarbonate resin by melt
  • the UL standard 94 is a method for evaluating the flame retardancy from the afterflame time after the burner flame is indirectly fired for 10 seconds on a test piece of a predetermined size held vertically.
  • Thermal conductivity was measured by a hot disk method using a thermal conductivity measuring device “TPA-501” [manufactured by Kyoto Electronics Industry Co., Ltd.].
  • (4) Density The density was measured in accordance with JIS K7112.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction liquid exiting the tubular reactor was continuously introduced into a baffled tank reactor having an internal volume of 40 liters equipped with a receding blade, and further 2.8 liters / hr of sodium hydroxide aqueous solution of BPA, 25
  • the reaction was carried out by adding 0.07 L / hr of a mass% aqueous sodium hydroxide solution, 17 L / hr of water, and 0.64 L / hr of a 1 mass% aqueous triethylamine solution.
  • the reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer thus obtained had a concentration of 318 g / l and a chloroformate group concentration of 0.75 mol / l.
  • a methylene chloride solution of pt-butylphenol (PTBP) 140 g of PTBP dissolved in 2.0 L of methylene chloride
  • a sodium hydroxide aqueous solution of BPA 577 g of NaOH and 2.0 g of sodium dithionite
  • a solution obtained by dissolving 1012 g of BPA in an aqueous solution dissolved in 8.4 L) was added, and a polymerization reaction was carried out for 50 minutes.
  • 10 L of methylene chloride was added and stirred for 10 minutes.
  • the organic phase was separated into an organic phase containing a polycarbonate-polydimethylsiloxane copolymer and an aqueous phase containing excess BPA and NaOH, and the organic phase was isolated.
  • the methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer thus obtained was sequentially washed with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2 mol / L hydrochloric acid with respect to the solution. Washing with pure water was repeated until the electrical conductivity in the aqueous phase became 0.01 ⁇ S / m or less.
  • the methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
  • the amount of PDMS residue (PDMS copolymerization amount) determined by nuclear magnetic resonance (NMR) of the obtained polycarbonate-polydimethylsiloxane copolymer was 6.6% by mass, measured according to ISO 1628-4 (1999).
  • the viscosity number was 46.7, and the viscosity average molecular weight Mv was 17,300.
  • Production Example 2 (Production Example 2 of Polycarbonate-Polydimethylsiloxane Copolymer) Repetition of 15 L of polycarbonate oligomer solution, 8.9 L of methylene chloride, and dimethylsilanooxy unit used in the production of A-1 (2) above in a 50 L tank reactor equipped with baffle plates, paddle type stirring blades and cooling jacket 670 g of allylphenol-terminated PDMS having a number of 40 and 8.8 mL of triethylamine were charged, and 1389 g of a 6.4% by mass aqueous sodium hydroxide solution was added thereto under stirring, and the reaction between the polycarbonate oligomer and allylphenol-end-modified PDMS was performed for 10 minutes. Went.
  • the methylene chloride solution of the polycarbonate thus obtained was washed successively with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2N hydrochloric acid, and the electric conductivity in the aqueous phase after washing was 0. Washing with pure water was repeated until the pressure became 0.01 ⁇ S / m or less.
  • the methylene chloride solution of polycarbonate obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
  • A-2 (1): polycarbonate [made by Idemitsu Kosan Co., Ltd., homopolycarbonate “Taflon FN1900A” manufactured from bisphenol A, viscosity average molecular weight 19,500]
  • A-2 (2): polycarbonate [made by Idemitsu Kosan Co., Ltd., homopolycarbonate “Taflon FN2200A” manufactured from bisphenol A, viscosity average molecular weight 21,500]
  • A-2 (3): Polycarbonate [Homopolycarbonate “Taflon FN2600A” produced from bisphenol A, manufactured by Idemitsu Kosan Co., Ltd., viscosity average molecular weight 26,000]
  • surface Polyorganosiloxane content (mass%) in (A) component is shown.
  • PTFE Polytetrafluoroethylene
  • D Organic alkali (earth) metal salt
  • D-1 potassium perfluorobutane sulfonate
  • D-2 Sodium paratoluenesulfonate
  • DH DIING CHEMICAL INDUSTRY purity 93% product, sodium sulfate 3% by mass or less, moisture 5% by mass or less as impurities
  • E Other additives Antioxidant E-1; Phosphorous antioxidant (diphenylisooctyl phosphite) [manufactured by ADEKA, “ADK STAB C”] E-2: Phenol antioxidant (octadecyl-3- (3,5-di-t-butyl-hydroxyphenyl) propionate) [Ciba Japan Co., Ltd., “Irganox1076”] (F) Other additives Mold release agent F-1: Stearic acid monoglyceride [“Riquemar S-100A” manufactured by Riken Vitamin Co., Ltd.]
  • F-2 Pentaerythritol tetrastearate [Rikenstar EW-440A, manufactured by Riken Vitamin Co., Ltd.]
  • Examples 1 to 13 and Comparative Examples 1 to 7 Each component is mixed in the proportions shown in Tables 1 and 2 and supplied to a vent type twin screw extruder (Toshiba Machine Co., Ltd .: TEM35), barrel temperature 300 to 320 ° C., screw rotation speed 200 to 600 rotations, discharge The mixture was melt-kneaded at an amount of 10 to 30 kg / hr to obtain a pellet sample for evaluation. Using this pellet sample for evaluation, the viscosity average molecular weight was measured. Moreover, the test piece for performing each test was created with the injection molding machine, and each test was done. The results are shown in Tables 1 and 2.
  • Tables 1 and 2 revealed the following. From Table 1, in Examples 1 to 13, which satisfy all the components (A) to (D) of the present invention, thin-walled (thickness 1.2 mm) flame retardancy, thermal conductivity, bending characteristics, and impact strength And a polycarbonate resin composition in which a decrease in the molecular weight of the polycarbonate resin during granulation is suppressed is obtained. From Table 2, in the comparative example 1 which consists only of homopolycarbonate resin, thin-walled flame retardance falls. In Comparative Example 2 in which the graphite content of the component (B) is low, the thermal conductivity is reduced, and in Comparative Example 3 in which the component (B) is too much, the impact strength is reduced.
  • Comparative Example 4 In Comparative Example 4 in which the PTFE content of the component (C) is low, the thin-wall flame retardancy is reduced, and in Comparative Example 5 in which the component (C) is too much, the impact strength is reduced. In Comparative Example 6 where the metal salt content of the component (D) is low, the thin-wall flame retardancy is reduced, and in Comparative Example 7 where there is too much component (D), the molecular weight of the polycarbonate resin is greatly reduced during granulation.

Abstract

Provided are: a polycarbonate resin composition which comprises (A) 100 parts by mass of an aromatic polycarbonate resin that contains a polycarbonate-polyorganosiloxane copolymer, (B) 30 to 100 parts by mass of graphite, (C) 1 to 10 parts by mass of polytetrafluoroethylene, and (D) 0.05 to 1 part by mass of an organoalkali metal salt and/or an organoalkaline earth metal salt and which exhibits excellent flame retardance (even in a thin-wall state), thermal conductivity, and impact characteristics, even without using a chlorinated flame retardant, a brominated flame retardant, or a phosphorus-based flame retardant; and molded products of the composition.

Description

ポリカーボネート樹脂組成物Polycarbonate resin composition
 本発明は、ポリカーボネート樹脂組成物及び該樹脂組成物からなる成形体に関し、塩素系難燃剤、臭素系難燃剤及びリン系難燃剤を使用しなくとも、難燃性(特に薄肉の難燃性)、熱伝導性、衝撃特性に優れたポリカーボネート樹脂組成物及びそれからなる成形体に関する。 The present invention relates to a polycarbonate resin composition and a molded article comprising the resin composition, and flame retardancy (particularly thin-walled flame retardancy) without using a chlorine-based flame retardant, a bromine-based flame retardant, or a phosphorus-based flame retardant. The present invention relates to a polycarbonate resin composition excellent in thermal conductivity and impact properties and a molded product comprising the same.
 電気電子分野の製品開発においては、デジタルカメラ・デジタルビデオカメラでの高画素化・高速処理化、プロジェクターの小型化、パソコン・モバイル機器での高速処理化、各種光源のLED化等に伴い、放熱対策に重点がおかれるようになっている。
 金属部品で放熱回路を構成する対策も取られているが、小型化される機器では、放熱回路が複雑になってしまうため、樹脂筐体と放熱回路を一体化可能な、熱伝導性に優れ、かつ、筐体としての機械的強度にも優れる樹脂材料が要求されている。
 また、小型電子機器においては、筐体、シャーシにおいても薄肉化が要求され、それに伴って薄肉の成形体での難燃性も要求されている。
In product development in the electrical and electronic field, heat dissipation due to high pixel count and high speed processing in digital cameras and digital video cameras, miniaturization of projectors, high speed processing in personal computers and mobile devices, and the use of LEDs for various light sources. Emphasis is placed on countermeasures.
Measures to configure the heat dissipation circuit with metal parts have also been taken, but since the heat dissipation circuit becomes complicated in a downsized device, the resin casing and the heat dissipation circuit can be integrated, and it has excellent thermal conductivity In addition, a resin material having excellent mechanical strength as a housing is required.
Further, in a small electronic device, the casing and the chassis are required to be thin, and accordingly, the flame retardancy of the thin molded body is also required.
 上記電子機器の筐体等にポリカーボネート樹脂が汎用されているが、ポリカーボネート樹脂組成物からなる成形体を難燃化するために、塩素系難燃剤、臭素系難燃剤等のハロゲン系難燃剤を添加することが知られている。しかしながら、近時、安全性や、廃棄・焼却時の環境への影響の観点から、ハロゲンを含まない難燃剤による難燃化方法が市場より求められている。このような、ノンハロゲン系難燃剤として、有機リン系難燃剤、特に有機リン酸エステル化合物をポリカーボネート樹脂組成物に配合し、難燃化するためには、リン酸エステル化合物を比較的多量に配合する必要がある。ポリカーボネート樹脂は成形温度が高く、溶融粘度も高いために、成形温度が高くなる傾向にある。このため、リン酸エステル化合物は一般的に難燃性には寄与するものの、成形加工時の金型腐食、ガスの発生など、成形環境や成形品外観上必ずしも十分でない場合がある。
 そこで、塩素系難燃剤、臭素系難燃剤等のハロゲン系難燃剤やリン系難燃剤を用いないで、要求される成形体での難燃性(特に薄肉の難燃性)を達成するとともに熱伝導性に優れたポリカーボネート樹脂組成物を見出すことが求められている。
Polycarbonate resin is widely used for the casings of the above electronic devices, but halogen flame retardants such as chlorinated flame retardants and brominated flame retardants are added to make molded products made of polycarbonate resin flame retardant. It is known to do. However, recently, from the viewpoint of safety and impact on the environment at the time of disposal / incineration, a flame retardant method using a flame retardant containing no halogen is required from the market. As such a non-halogen flame retardant, an organic phosphorus flame retardant, particularly an organic phosphate ester compound, is blended into the polycarbonate resin composition, and in order to make it flame retardant, a relatively large amount of the phosphate ester compound is blended. There is a need. Since the polycarbonate resin has a high molding temperature and a high melt viscosity, the molding temperature tends to be high. Therefore, although the phosphate ester compound generally contributes to flame retardancy, it may not always be sufficient in terms of molding environment and appearance of the molded product, such as die corrosion during molding and generation of gas.
Therefore, without using halogen-based flame retardants such as chlorine-based flame retardants and bromine-based flame retardants, and phosphorus-based flame retardants, the required flame resistance (particularly thin-walled flame retardant properties) of molded products is achieved and heat is achieved. It is desired to find a polycarbonate resin composition having excellent conductivity.
 熱可塑性樹脂に上記の放熱性を付与する手段として黒鉛を配合することが知られている(特許文献1、特許文献2参照)。特許文献1には、熱可塑性樹脂に特定の黒鉛を配合することにより、金属腐食性が少なく、かつ熱伝導性に優れた熱可塑性樹脂組成物が得られることが開示されているが、難燃性を改良するために、ハロゲン化カーボネートオリゴマー、ハロゲン化エポキシ化合物等の有機ハロゲン系難燃剤やリン酸エステル系難燃剤を用いることが好ましいことが記載されており、塩素系難燃剤、臭素系難燃剤およびリン系難燃剤を使用しない技術を開示するものではない。
 また、特許文献2には、発熱体が収容される放熱筐体に関するが、電子機器等の筐体に要求される難燃性に関する記述はなく、必要に応じて配合される添加剤として有機臭素系難燃剤やリン系難燃剤等の難燃剤を開示しているが、塩素系難燃剤、臭素系難燃剤およびリン系難燃剤を積極的に使用しない技術を開示するものではなく、またその実施例では難燃剤、ドリップ防止剤の添加がないことから、十分な難燃性を有していないと考えられる。
 さらにポリカーボネート樹脂に帯電防止性や、導電性を付与するために黒鉛を配合するとともに難燃剤を配合したポリカーボネート樹脂組成物が知られている(特許文献3、特許文献4参照)。特許文献3には、芳香族ポリカーボネート樹脂と黒鉛からなる配合物に、特定のシリコーン化合物を含んでなる芳香族ポリカーボネート樹脂組成物が開示され、帯電防止性とともに難燃性が評価されているが、電子機器等の筐体に要求される1.5mm程度の薄肉で十分な難燃性が得られる技術内容の記載はない。また、特許文献4には塩素系難燃剤、臭素系難燃剤およびリン系難燃剤を積極的に使用しない技術として、ポリカーボネート樹脂、黒鉛、及び有機スルホン酸アルカリ(土類)金属塩からなる難燃性樹脂組成物が開示され、難燃性評価においては厚み2.5mmの成形体での評価のみがなされており、特許文献3と同様に電子機器等の筐体に要求される1.5mm程度の薄肉で十分な難燃性が得られるものではない。
It is known that graphite is blended as a means for imparting heat dissipation to the thermoplastic resin (see Patent Document 1 and Patent Document 2). Patent Document 1 discloses that a thermoplastic resin composition having low metal corrosivity and excellent thermal conductivity can be obtained by blending specific graphite with a thermoplastic resin. In order to improve the properties, it is described that it is preferable to use an organic halogen flame retardant such as a halogenated carbonate oligomer or a halogenated epoxy compound or a phosphate ester flame retardant. It does not disclose a technique that does not use a flame retardant and a phosphorus-based flame retardant.
Further, Patent Document 2 relates to a heat radiating housing in which a heating element is accommodated, but there is no description regarding flame retardancy required for a housing such as an electronic device, and organic bromine as an additive to be blended as necessary. Although flame retardants such as flame retardants and phosphorous flame retardants are disclosed, technology that does not actively use chlorine flame retardants, bromine flame retardants and phosphorus flame retardants is not disclosed, and its implementation In the example, since there is no addition of a flame retardant or an anti-drip agent, it is considered that the flame retardant is not sufficient.
Furthermore, a polycarbonate resin composition is known in which graphite is blended in order to impart antistatic properties and electrical conductivity to the polycarbonate resin and a flame retardant is blended (see Patent Document 3 and Patent Document 4). Patent Document 3 discloses an aromatic polycarbonate resin composition containing a specific silicone compound in a blend composed of an aromatic polycarbonate resin and graphite, and its antistatic property and flame retardancy are evaluated. There is no description of the technical content that can provide sufficient flame retardancy with a thin wall of about 1.5 mm required for a housing of an electronic device or the like. Further, Patent Document 4 discloses a flame retardant comprising a polycarbonate resin, graphite, and an alkali (earth) metal salt of an organic sulfonate as a technique not actively using a chlorine-based flame retardant, a bromine-based flame retardant, and a phosphorus-based flame retardant. In the flame retardant evaluation, only evaluation with a molded body having a thickness of 2.5 mm has been made, and as in Patent Document 3, about 1.5 mm required for a housing of an electronic device or the like. Insufficient flame retardancy is not obtained with the thin wall.
特開2007-31611号公報JP 2007-31611 A 特開2008-31358号公報JP 2008-31358 A 特開2007-126499号公報JP 2007-126499 A 特開2006-273931号公報JP 2006-273931 A
 本発明は、塩素系難燃剤、臭素系難燃剤及びリン系難燃剤を用いることなく薄肉成形体での難燃性(厚さ1.2~1.0mm、以下「薄肉難燃性」という。)に優れ、高熱伝導性を有する衝撃特性に優れたポリカーボネート樹脂組成物及び成形体を提供することを目的とするものである。 In the present invention, flame retardancy (thickness: 1.2 to 1.0 mm, hereinafter referred to as “thin flame retardant”) without using a chlorine-based flame retardant, bromine-based flame retardant, and phosphorus-based flame retardant. It is an object of the present invention to provide a polycarbonate resin composition and a molded article excellent in impact characteristics having excellent thermal conductivity.
 本発明者らは、鋭意研究を重ねた結果、ポリカーボネート-ポリオルガノシロキサン共重合体を含む芳香族ポリカーボネート樹脂、黒鉛、ポリテトラフルオロエチレン、及び有機アルカリ金属塩及び/又は有機アルカリ土類金属塩を特定比率で配合することにより、薄肉難燃性に優れ、さらには、熱伝導性、衝撃特性にも優れたポリカーボネート樹脂組成物が得られることを見出し、本発明を完成した。 As a result of extensive research, the present inventors have found that an aromatic polycarbonate resin containing a polycarbonate-polyorganosiloxane copolymer, graphite, polytetrafluoroethylene, and an organic alkali metal salt and / or an organic alkaline earth metal salt. By blending at a specific ratio, it was found that a polycarbonate resin composition having excellent thin-wall flame retardancy and further excellent thermal conductivity and impact properties was obtained, and the present invention was completed.
 すなわち、本発明は、
(1)(A)ポリカーボネート-ポリオルガノシロキサン共重合体を含む芳香族ポリカーボネート樹脂100質量部に対して、(B)黒鉛30~100質量部、(C)ポリテトラフルオロエチレン1~10質量部、及び(D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩0.05~1質量部を配合してなるポリカーボネート樹脂組成物、
(2)(A)中のポリオルガノシロキサンの含有量が1~6質量%である上記(1)に記載のポリカーボネート樹脂組成物、
(3)芳香族ポリカーボネート-ポリオルガノシロキサン共重合体のポリオルガノシロキサンが、ポリジメチルシロキサンである上記(1)又は(2)に記載のポリカーボネート樹脂組成物、
(4)黒鉛が天然黒鉛である上記(1)~(3)のいずれかに記載のポリカーボネート樹脂組成物、
(5)黒鉛が人造黒鉛である上記(1)~(3)のいずれかに記載のポリカーボネート樹脂組成物、
(6)(D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩が、有機スルホン酸アルカリ金属塩、有機スルホン酸アルカリ土類金属塩、ポリスチレンスルホン酸アルカリ金属塩及びポリスチレンスルホン酸アルカリ土類金属塩から選ばれる少なくとも一種である上記(1)~(5)のいずれかに記載のポリカーボネート樹脂組成物、
(7)上記(1)~(6)のいずれかに記載のポリカーボネート樹脂組成物からなる成形体、
(8)電気・電子機器用部品である上記(7)に記載の成形体、
(9)電気・電子機器用筐体である上記(7)に記載の成形体、
(10)電気・電子機器用シャーシである上記(7)に記載の成形体、
を提供するものである。
That is, the present invention
(1) (B) 30-100 parts by mass of graphite, (C) 1-10 parts by mass of polytetrafluoroethylene, with respect to 100 parts by mass of (A) an aromatic polycarbonate resin containing a polycarbonate-polyorganosiloxane copolymer, And (D) a polycarbonate resin composition comprising 0.05 to 1 part by mass of an organic alkali metal salt and / or an organic alkaline earth metal salt,
(2) The polycarbonate resin composition according to the above (1), wherein the content of polyorganosiloxane in (A) is 1 to 6% by mass,
(3) The polycarbonate resin composition according to the above (1) or (2), wherein the polyorganosiloxane of the aromatic polycarbonate-polyorganosiloxane copolymer is polydimethylsiloxane,
(4) The polycarbonate resin composition according to any one of the above (1) to (3), wherein the graphite is natural graphite,
(5) The polycarbonate resin composition according to any one of the above (1) to (3), wherein the graphite is artificial graphite,
(6) (D) An organic alkali metal salt and / or an organic alkaline earth metal salt is an organic sulfonic acid alkali metal salt, an organic sulfonic acid alkaline earth metal salt, a polystyrene sulfonic acid alkali metal salt, or a polystyrene sulfonic acid alkaline earth. The polycarbonate resin composition according to any one of the above (1) to (5), which is at least one selected from metal salts;
(7) A molded article comprising the polycarbonate resin composition according to any one of (1) to (6) above,
(8) The molded product according to (7), which is a part for electrical / electronic equipment,
(9) The molded product according to (7), which is a casing for an electric / electronic device,
(10) The molded body according to (7), which is a chassis for electric / electronic devices,
Is to provide.
 本発明によれば、ポリカーボネートが持つ本来の機械的物性を損なうことなく、薄肉難燃性、衝撃特性、及び熱伝導性に優れると共に、造粒時の分子量低下が抑えられて製品の強度をより高く維持できる樹脂組成物を得ることができる。 According to the present invention, it is excellent in thin-wall flame retardancy, impact properties, and thermal conductivity without impairing the original mechanical properties of polycarbonate, and it can suppress the decrease in molecular weight during granulation, thereby increasing the strength of the product. A resin composition that can be kept high can be obtained.
 以下、本発明を詳細に説明する。
 本発明のポリカーボネート樹脂(以下、「PC樹脂」と略記することがある。)組成物は、(A)芳香族ポリカーボネート樹脂、(B)黒鉛、(C)ポリテトラフルオロエチレン、及び(D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩を必須成分とするポリカーボネート樹脂組成物である。
 本発明における(A)芳香族ポリカーボネート樹脂としては、(A-1)ポリカーボネート-ポリオルガノシロキサン共重合体(以下、「PC-POS共重合体」と略記することがある。)を含む芳香族ポリカーボネート樹脂が用いられる。
 具体的には、前記(A-1)PC-POS共重合体単独、又はこれに二価フェノールとカーボネート前駆体との反応により製造される(A-2)芳香族ポリカーボネート樹脂(以下、「一般PC樹脂」と略記することがある。)を含む。前記PC-POS共重合体の含有量が10~100質量%である芳香族ポリカーボネート樹脂が好ましく用いられる。
Hereinafter, the present invention will be described in detail.
The polycarbonate resin of the present invention (hereinafter sometimes abbreviated as “PC resin”) is composed of (A) aromatic polycarbonate resin, (B) graphite, (C) polytetrafluoroethylene, and (D) organic. A polycarbonate resin composition containing an alkali metal salt and / or an organic alkaline earth metal salt as an essential component.
The aromatic polycarbonate resin (A) in the present invention includes (A-1) an aromatic polycarbonate containing a polycarbonate-polyorganosiloxane copolymer (hereinafter sometimes abbreviated as “PC-POS copolymer”). Resin is used.
Specifically, the (A-1) PC-POS copolymer alone or a (A-2) aromatic polycarbonate resin (hereinafter referred to as “general”) produced by reaction of a dihydric phenol and a carbonate precursor. Abbreviated as “PC resin”). An aromatic polycarbonate resin having a content of the PC-POS copolymer of 10 to 100% by mass is preferably used.
 (A)成分における(A-2)成分である一般PC樹脂は、その製造方法に特に制限はなく、従来の各種方法により製造されたものを用いることができる。例えば、二価フェノールとカーボネート前駆体とを溶液法(界面重縮合法)又は溶融法(エステル交換法)により製造されたもの、すなわち、末端停止剤の存在下に、二価フェノールとホスゲンを反応させる界面重縮合法、又は末端停止剤の存在下に、二価フェノールとジフェニルカーボネートなどとのエステル交換法などにより反応させて製造されたものを用いることができる。
 二価フェノールとしては、様々なものを挙げることができるが、特に2,2-ビス(4-ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド及びビス(4-ヒドロキシフェニル)ケトン等を挙げることができる。この他、ハイドロキノン、レゾルシン及びカテコール等を挙げることもできる。これらは、それぞれ単独で用いてもよいし、二種以上を組み合わせて用いてもよいが、これらの中で、ビス(ヒドロキシフェニル)アルカン系のものが好ましく、特にビスフェノールAが好適である。
The production method of the general PC resin which is the component (A-2) in the component (A) is not particularly limited, and those produced by various conventional methods can be used. For example, a dihydric phenol and a carbonate precursor produced by a solution method (interfacial polycondensation method) or a melting method (transesterification method), that is, a dihydric phenol and phosgene are reacted in the presence of a terminal terminator. An interfacial polycondensation method to be produced or a product produced by a reaction by a transesterification method of a dihydric phenol and diphenyl carbonate in the presence of a terminal terminator can be used.
Various dihydric phenols can be mentioned, and in particular, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, 1,1-bis (4 -Hydroxyphenyl) ethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkane, bis (4-hydroxyphenyl) Examples thereof include oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, and bis (4-hydroxyphenyl) ketone. In addition, hydroquinone, resorcin, catechol and the like can also be mentioned. These may be used alone or in combination of two or more. Among them, bis (hydroxyphenyl) alkanes are preferable, and bisphenol A is particularly preferable.
 一方、カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、又はハロホルメート等であり、具体的にはホスゲン、二価フェノールのジハロホーメート、ジフェニルカーボネート、ジメチルカーボネート及びジエチルカーボネート等である。
 なお、この一般PC樹脂は、分岐構造を有していてもよく、分岐剤としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α’’-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログリシン、トリメリット酸及びイサチンビス(o-クレゾール)等がある。
 本発明において、(A-2)成分として用いられる一般PC樹脂の粘度平均分子量は(Mv)は、通常10,000~50,000、好ましくは13,000~35,000、さらに好ましくは15,000~20,000である。
 この粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
           [η]=1.23×10-5Mv0.83
On the other hand, the carbonate precursor is carbonyl halide, carbonyl ester, haloformate or the like, specifically, phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dimethyl carbonate, diethyl carbonate or the like.
The general PC resin may have a branched structure, and 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4 -Hydroxyphenyl) -1,3,5-triisopropylbenzene, phloroglysin, trimellitic acid and isatin bis (o-cresol).
In the present invention, the viscosity average molecular weight (Mv) of the general PC resin used as the component (A-2) is usually 10,000 to 50,000, preferably 13,000 to 35,000, more preferably 15, 000 to 20,000.
This viscosity average molecular weight (Mv) is obtained by measuring the viscosity of a methylene chloride solution at 20 ° C. using an Ubbelohde viscometer, obtaining the intrinsic viscosity [η] from this, and calculating the viscosity by the following formula.
[Η] = 1.23 × 10 −5 Mv 0.83
 当該(A)成分の芳香族ポリカーボネート樹脂において、(A-1)PC-POS共重合体は、ポリカーボネート部とポリオルガノシロキサン部からなるものであり、例えば、予め製造されたポリカーボネート部を構成するポリカーボネートオリゴマー(以下、PCオリゴマーと略称する。)と、ポリオルガノシロキサン部(セグメント)を構成する末端にo-アリルフェノール残基、p-ヒドロキシスチレン残基、オイゲノール残基等の反応性基を有するポリオルガノシロキサンとを、塩化メチレン、クロロベンゼン、クロロホルム等の溶媒に溶解させ、二価フェノールの苛性アルカリ水溶液を加え、触媒として、第三級アミン(トリエチルアミン等)や第四級アンモニウム塩(トリメチルベンジルアンモニウムクロライドなど)を用い、末端停止剤の存在下、界面重縮合反応することにより製造することができる。
 このPC-POS共重合体の製造に使用されるPCオリゴマーは、例えば塩化メチレンなどの溶媒中で、前述の二価フェノールとホスゲン等のカーボネート前駆体とを反応させることにより、又は二価フェノールと炭酸エステル化合物、例えばジフェニルカーボネートのようなカーボネート前駆体とを反応させることによって容易に製造することができる。
 また、炭酸エステル化合物としては、ジフェニルカーボネート等のジアリールカーボネートやジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネートを挙げることができる。
In the aromatic polycarbonate resin of the component (A), the (A-1) PC-POS copolymer is composed of a polycarbonate part and a polyorganosiloxane part. For example, a polycarbonate constituting a polycarbonate part produced in advance. An oligomer (hereinafter abbreviated as PC oligomer) and a polyorganosiloxane moiety (segment) having a reactive group such as an o-allylphenol residue, a p-hydroxystyrene residue, or an eugenol residue at the terminal. Dissolve organosiloxane in a solvent such as methylene chloride, chlorobenzene, or chloroform, add a caustic aqueous solution of dihydric phenol, and use a tertiary amine (such as triethylamine) or a quaternary ammonium salt (trimethylbenzylammonium chloride) as a catalyst. Etc.) Presence of the end terminating agent, can be prepared by interfacial polycondensation reaction.
The PC oligomer used for the production of this PC-POS copolymer is obtained by reacting the aforementioned dihydric phenol with a carbonate precursor such as phosgene in a solvent such as methylene chloride, or with a dihydric phenol. It can be easily produced by reacting a carbonate ester compound, for example, a carbonate precursor such as diphenyl carbonate.
Examples of the carbonate compound include diaryl carbonates such as diphenyl carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
 PC-POS共重合体の製造に供されるPCオリゴマーは、前述の二価フェノール一種を用いたホモオリゴマーであってもよく、又二種以上を用いたコオリゴマーであってもよい。更に、多官能性芳香族化合物を上記二価フェノールと併用して得られる熱可塑性ランダム分岐オリゴマーであってもよい。
 その場合、分岐剤(多官能性芳香族化合物)として、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α’’-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4’’-ヒドロキシフェニル)エチル]ベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等を使用することができる。
 このPC-POS共重合体は、例えば、特開平3-292359号公報、特開平4-202465号公報、特開平8-81620号公報、特開平8-302178号公報及び特開平10-7897号公報等に開示されている。
The PC oligomer used for the production of the PC-POS copolymer may be a homo-oligomer using one kind of the aforementioned dihydric phenol or a co-oligomer using two or more kinds. Furthermore, the thermoplastic random branched oligomer obtained by using a polyfunctional aromatic compound together with the said bihydric phenol may be sufficient.
In that case, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3 is used as a branching agent (polyfunctional aromatic compound). , 5-triisopropylbenzene, 1- [α-methyl-α- (4′-hydroxyphenyl) ethyl] -4- [α ′, α′-bis (4 ″ -hydroxyphenyl) ethyl] benzene, phloroglucin, Trimellitic acid, isatin bis (o-cresol) and the like can be used.
This PC-POS copolymer is disclosed in, for example, JP-A-3-292359, JP-A-4-202465, JP-A-8-81620, JP-A-8-302178, and JP-A-10-7897. Etc. are disclosed.
 当該PC-POS共重合体としては、ポリカーボネート部の重合度が、3~100程度、ポリオルガノシロキサン部の重合度が2~500程度のものが好ましく用いられる。
 また、当該PC-POS共重合体におけるポリオルガノシロキサン部の(A)成分全体中での含有量は、得られるPC樹脂組成物に対する難燃性付与効果、耐衝撃性付与効果、及び経済性のバランスなどの観点から、1~6質量%とすることが好ましい。
 さらに、当該PC-POS共重合体の粘度平均分子量(Mv)は、通常5,000~100,000、好ましくは10,000~30,000、特に好ましくは12,000~30,000である。ここで、これらの粘度平均分子量(Mv)は、前記の一般PC樹脂と同様に求めることができる。
 当該PC-POS共重合体におけるポリオルガノシロキサン部としては、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリメチルフェニルシロキサン等からなるセグメントが好ましく、ポリジメチルシロキサンセグメントが特に好ましい。
As the PC-POS copolymer, those having a polymerization degree of the polycarbonate part of about 3 to 100 and a polymerization degree of the polyorganosiloxane part of about 2 to 500 are preferably used.
In addition, the content of the polyorganosiloxane part in the PC-POS copolymer in the total component (A) is such that the flame retardancy imparting effect, impact resistance imparting effect, and economic efficiency of the obtained PC resin composition From the viewpoint of balance and the like, the content is preferably 1 to 6% by mass.
Further, the viscosity average molecular weight (Mv) of the PC-POS copolymer is usually 5,000 to 100,000, preferably 10,000 to 30,000, particularly preferably 12,000 to 30,000. Here, these viscosity average molecular weights (Mv) can be obtained in the same manner as in the general PC resin.
The polyorganosiloxane portion in the PC-POS copolymer is preferably a segment made of polydimethylsiloxane, polydiethylsiloxane, polymethylphenylsiloxane, or the like, and particularly preferably a polydimethylsiloxane segment.
(A)成分中の(A-1)PC-POS共重合体と、(A-2)成分である一般PC樹脂との使用比率は、当該PC-POS共重合体におけるポリオルガノシロキサン部の(A)成分全体中での含有量が、1~6質量%となるように、また、(A)成分全体としての原料分子量(粘度平均分子量)は、17,000~30,000の範囲、好ましくは18,000~26,000になるように調整することが好ましい。
 例えば、ポリオルガノシロキサン部の含有量については、6質量%を超える高含有率のポリオルガノシロキサン部を有するPC-POS共重合体を使用する場合は、多量の一般PC樹脂を用いることにより、また低含有率のPC-POS共重合体を使用する場合は、一般PC樹脂を用いないか又は少量の一般PC樹脂を用いることにより(A)成分全体中での含有量が、1~6質量%と調整することができる。
 通常は、(A)成分中の(A-1)PC-POS共重合体は、10~100質量%の範囲内で使用される。PC-POS共重合体の比率は多いほうが成形体の衝撃強度を得やすく、また、造粒時の分子量低下が抑制される。
The ratio of the (A-1) PC-POS copolymer in the component (A) to the general PC resin as the component (A-2) depends on the polyorganosiloxane part in the PC-POS copolymer ( The content in the whole component A) is 1 to 6% by mass, and the raw material molecular weight (viscosity average molecular weight) as the whole component (A) is preferably in the range of 17,000 to 30,000, preferably Is preferably adjusted to 18,000 to 26,000.
For example, regarding the content of the polyorganosiloxane part, when using a PC-POS copolymer having a polyorganosiloxane part having a high content exceeding 6% by mass, a large amount of general PC resin can be used. When using a low content PC-POS copolymer, the content in the total component (A) is 1 to 6% by mass by using no general PC resin or a small amount of general PC resin. And can be adjusted.
Usually, the (A-1) PC-POS copolymer in the component (A) is used in the range of 10 to 100% by mass. When the ratio of the PC-POS copolymer is large, it is easier to obtain the impact strength of the molded article, and the molecular weight reduction during granulation is suppressed.
 当該(A)成分の芳香族PC樹脂における分子末端基として使用される分子量調節剤としては、通常、ポリカーボネートの重合に用いられるものであればよく、各種の一価フェノールを用いることができる。具体的には、例えば、フェノール、p-クレゾール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、ブロモフェノール、トリブロモフェノール、ノニルフェノール等が挙げられる。 As the molecular weight regulator used as the molecular end group in the aromatic PC resin as the component (A), any molecular weight regulator may be used as long as it is usually used for polymerization of polycarbonate, and various monohydric phenols can be used. Specific examples include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, bromophenol, tribromophenol, nonylphenol and the like.
 本発明のPC樹脂組成物においては、前記の芳香族PC樹脂及びPC-POS共重合体以外に、本発明の目的が損なわれない範囲で、テレフタル酸等の2官能性カルボン酸、又はそのエステル形成誘導体等のエステル前駆体の存在下でポリカーボネートの重合を行うことによって得られるポリエステル-ポリカーボネート樹脂等の共重合樹脂、あるいはその他のポリカーボネート樹脂を適宣含有することができる。 In the PC resin composition of the present invention, a bifunctional carboxylic acid such as terephthalic acid, or an ester thereof, as long as the object of the present invention is not impaired, in addition to the aromatic PC resin and the PC-POS copolymer. A copolymer resin such as a polyester-polycarbonate resin obtained by polymerizing a polycarbonate in the presence of an ester precursor such as a forming derivative, or other polycarbonate resin can be appropriately contained.
 本発明のポリカーボネート樹脂組成物には、主に熱伝導性を付与させるために、(B)黒鉛を配合する。
 本発明で使用する黒鉛としては、天然黒鉛、または各種の人造黒鉛のいずれも利用することができる。天然黒鉛としては、土状黒鉛、鱗状黒鉛(塊状黒鉛とも称されるVein Graphite)、及び鱗片状黒鉛(Flake Graphite)のいずれを利用することもできる。上記例示した天然黒鉛の中では、鱗片状黒鉛が好適に使用できる。天然黒鉛の適用により、より高い熱伝導性と高い弾性率を得ることができる。
The polycarbonate resin composition of the present invention is blended with (B) graphite mainly for imparting thermal conductivity.
As the graphite used in the present invention, either natural graphite or various artificial graphites can be used. As natural graphite, any of earth-like graphite, scale-like graphite (Vein Graphite also called massive graphite), and scale-like graphite (Flake Graphite) can be used. Of the natural graphites exemplified above, scaly graphite can be suitably used. By applying natural graphite, higher thermal conductivity and higher elastic modulus can be obtained.
 人造黒鉛は、無定形炭素を熱処理し不規則な配列の微小黒鉛結晶の配向を人工的に行わせたものであり、一般炭素材料に使用される人造黒鉛の他、キッシュ黒鉛、分解黒鉛、および熱分解黒鉛などを含む。一般炭素材料に使用される人造黒鉛は、通常石油コークスや石炭系ピッチコークスを主原料として黒鉛化処理により製造される。
 このような、人造黒鉛は、上記の天然黒鉛に比較すると弾性、熱伝導性が低くなるが、高いウエルド強度を改良できるというメリットがある。
 (B)成分の配合量は、前述の(A)成分100質量部に対して、30~100質量部の範囲とすることを要し、好ましくは30~70質量部の範囲である。配合量が30質量部未満では、十分な熱伝導性が得られ難く、100質量部を超えると衝撃強度が低下し易いという問題がある。
Artificial graphite is obtained by heat-treating amorphous carbon and artificially aligning irregularly arranged fine graphite crystals. In addition to artificial graphite used for general carbon materials, Kish graphite, cracked graphite, and Includes pyrolytic graphite. Artificial graphite used for general carbon materials is usually produced by graphitization treatment using petroleum coke or coal-based pitch coke as a main raw material.
Such artificial graphite has a merit that high weld strength can be improved, although elasticity and thermal conductivity are lowered as compared with natural graphite.
The blending amount of component (B) is required to be in the range of 30 to 100 parts by weight, preferably in the range of 30 to 70 parts by weight, with respect to 100 parts by weight of component (A). When the blending amount is less than 30 parts by mass, it is difficult to obtain sufficient thermal conductivity, and when it exceeds 100 parts by mass, there is a problem that the impact strength tends to decrease.
 本発明において、黒鉛の粒径は、50%累積径が30~180μmのものが好適に使用できる。黒鉛の固定炭素量は、好ましくは80重量%以上、より好ましくは90重量%以上、更に好ましくは98重量%以上である。また、黒鉛の揮発分は、好ましくは3重量%以下、より好ましくは1.5重量%以下、更に好ましくは1重量%以下である。
 黒鉛の表面は、本発明の組成物の特性を損なわない限りにおいて熱可塑性樹脂との親和性を増すために、表面処理、例えばエポキシ処理、ウレタン処理、シランカップリング処理、および酸化処理等を施してもよい。
In the present invention, graphite having a 50% cumulative diameter of 30 to 180 μm can be suitably used. The fixed carbon amount of graphite is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 98% by weight or more. The volatile content of graphite is preferably 3% by weight or less, more preferably 1.5% by weight or less, and still more preferably 1% by weight or less.
The surface of the graphite is subjected to surface treatment such as epoxy treatment, urethane treatment, silane coupling treatment, and oxidation treatment in order to increase the affinity with the thermoplastic resin as long as the characteristics of the composition of the present invention are not impaired. May be.
 本発明のポリカーボネート樹脂組成物には、薄肉難燃性を向上させるために、(C)ポリテトラフルオロエチレン(PTFE)を配合する。この(C)成分は、本発明の樹脂組成物に溶融滴下防止効果を付与し、優れた薄肉難燃性を発現させる。
 (C)成分は、フィブリル形成能を有するものが好ましい。ここで、「フィブリル形成能」とは、せん断力等の外的作用により、樹脂同士が結合して繊維状になる傾向を示すことをいう。本発明の(C)成分としては、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体等)等を挙げることができる。これらの中では、ポリテトラフルオロエチレンが好ましい。
 フィブリル形成能を有するPTFEは、極めて高い分子量を有し、標準比重から求められる数平均分子量で、通常50万以上、好ましくは50万~1500万、より好ましく100万~1000万である。具体的には、テトラフルオロエチレンを水性溶媒中で、ナトリウム、カリウムあるいはアンモニウムパーオキシジスルフィドの存在下で、7~700kPa程度の圧力下、温度0~200℃程度、好ましくは20~100℃で重合することによって得ることができる。
The polycarbonate resin composition of the present invention is blended with (C) polytetrafluoroethylene (PTFE) in order to improve thin flame retardancy. This component (C) gives the resin composition of the present invention a melt dripping preventing effect, and exhibits excellent thin flame retardancy.
The component (C) preferably has a fibril forming ability. Here, “fibril forming ability” means that resins tend to be bonded and become fibrous due to an external action such as shearing force. Examples of the component (C) of the present invention include polytetrafluoroethylene, a tetrafluoroethylene copolymer (for example, a tetrafluoroethylene / hexafluoropropylene copolymer) and the like. Of these, polytetrafluoroethylene is preferred.
PTFE having fibril-forming ability has a very high molecular weight, and the number average molecular weight determined from the standard specific gravity is usually 500,000 or more, preferably 500,000 to 15 million, more preferably 1,000,000 to 10 million. Specifically, tetrafluoroethylene is polymerized in an aqueous solvent in the presence of sodium, potassium or ammonium peroxydisulfide at a pressure of about 7 to 700 kPa and a temperature of about 0 to 200 ° C., preferably 20 to 100 ° C. Can be obtained.
 また、固体形状の他、水性分散液形態のものも使用可能であり、ASTM規格によりタイプ3に分類されるものを用いることができる。このタイプ3に分類される市販品としては、例えば、「テフロン6-J」[商品名、三井デュポンフロロケミカル(株)製]、「ポリフロンD-1」及び「ポリフロンF-103」[商品名、ダイキン工業(株)製]等が挙げられる。また、タイプ3以外では、「アルゴフロンF5」[商品名、ソルベイソレクシス社製]、及び「ポリフロンMPAFA-100」[商品名、ダイキン工業(株)製]等が挙げられる。
 上記PTFEは、単独で又は2種以上を組合せて使用することができる。
In addition to solid forms, those in the form of an aqueous dispersion can also be used, and those classified as type 3 according to the ASTM standard can be used. Commercially available products classified as Type 3 include, for example, “Teflon 6-J” (trade name, manufactured by Mitsui Dupont Fluoro Chemical Co., Ltd.), “Polyflon D-1” and “Polyflon F-103” [trade name. , Manufactured by Daikin Industries, Ltd.]. Other than Type 3, “Algoflon F5” (trade name, manufactured by Solvay Solexis), “Polyflon MPAFA-100” (trade name, manufactured by Daikin Industries, Ltd.) and the like can be mentioned.
The PTFE may be used alone or in combination of two or more.
 (C)ポリテトラフルオロエチレン(PTFE)の配合量は、前述の(A)芳香族ポリカーボネート樹脂100質量部に対して、1~10質量部の範囲、好ましくは1.5~9質量部である。その配合量が1質量部未満であると滴下防止効果がなくなり、10質量部を超えると、衝撃特性が低下する。
 配合量が1~1.5質量部では滴下防止剤としての効果を有するが、1.5質量部を超えて配合すると滴下防止剤としてだけでなく、衝撃強度、離型性の向上効果も発揮でき、成形時の離型作用もよくなる。
The blending amount of (C) polytetrafluoroethylene (PTFE) is in the range of 1 to 10 parts by mass, preferably 1.5 to 9 parts by mass with respect to 100 parts by mass of the above-mentioned (A) aromatic polycarbonate resin. . When the blending amount is less than 1 part by mass, the effect of preventing dripping is lost, and when it exceeds 10 parts by mass, impact characteristics are deteriorated.
When the blending amount is 1 to 1.5 parts by mass, it has an effect as an anti-dripping agent. However, when it exceeds 1.5 parts by mass, not only as an anti-dripping agent, but also an effect of improving impact strength and mold release properties The mold release action during molding is also improved.
 本発明のポリカーボネート樹脂組成物の薄肉難燃性をさらに向上させるために、(D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩を配合する。
 (D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩としては種々のものが挙げられるが、少なくとも一つの炭素原子を有する有機酸、又は有機酸エステルのアルカリ金属塩及び有機アルカリ土類金属塩を使用することができる。
 ここで、有機酸又は有機酸エステルは、有機スルホン酸、有機カルボン酸などである。一方、アルカリ金属は、リチウム、ナトリウム、カリウム、セシウムなど、アルカリ土類金属は、マグネシウム、カルシウム、ストロンチウム、バリウムなどであり、この中で、ナトリウム、カリウムの塩が好ましく用いられる。また、その有機酸の塩は、フッ素、塩素、臭素のようなハロゲンが置換されていてもよい。アルカリ金属塩及び有機アルカリ土類金属塩は、一種を単独で又は二種以上を組み合わせて用いることができる。
 上記各種の有機アルカリ金属塩及び有機アルカリ土類金属塩の中で、例えば、有機スルホン酸の場合、下記一般式(1)で表されるパーフルオロアルカンスルホン酸のアルカリ金属塩及びアルカリ土類金属塩が好ましく用いられる。
  (Ce F2e+1SO3 )M  (1)
 式中、eは1~10の整数を示し、Mはリチウム、ナトリウム、カリウム、セシウムなどのアリカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属を示し、fはMの原子価を示す。
 これらの化合物としては、例えば、特公昭47-40445号公報に記載されているものがこれに該当する。
In order to further improve the thin flame retardancy of the polycarbonate resin composition of the present invention, (D) an organic alkali metal salt and / or an organic alkaline earth metal salt is blended.
(D) Organic alkali metal salts and / or organic alkaline earth metal salts include various organic acids, organic acids having at least one carbon atom, or alkali metal salts of organic acid esters and organic alkaline earth metals Salt can be used.
Here, the organic acid or the organic acid ester is an organic sulfonic acid, an organic carboxylic acid, or the like. On the other hand, the alkali metal is lithium, sodium, potassium, cesium or the like, and the alkaline earth metal is magnesium, calcium, strontium, barium or the like, and among these, sodium and potassium salts are preferably used. The salt of the organic acid may be substituted with a halogen such as fluorine, chlorine or bromine. Alkali metal salts and organic alkaline earth metal salts can be used singly or in combination of two or more.
Among the above various organic alkali metal salts and organic alkaline earth metal salts, for example, in the case of organic sulfonic acid, the alkali metal salt and alkaline earth metal of perfluoroalkanesulfonic acid represented by the following general formula (1) A salt is preferably used.
(C e F 2e + 1 SO 3 ) f M (1)
In the formula, e represents an integer of 1 to 10, M represents an alkaline metal such as lithium, sodium, potassium or cesium, or an alkaline earth metal such as magnesium, calcium, strontium or barium, and f represents the valence of M. Show.
As these compounds, for example, those described in Japanese Patent Publication No. 47-40445 correspond to this.
 上記一般式(1)において、パーフルオロアルカンスルホン酸としては、例えば、パーフルオロメタンスルホン酸、パーフルオロエタンスルホン酸、パーフルオロプロパンスルホン酸、パーフルオロブタンスルホン酸、パーフルオロメチルブタンスルホン酸、パーフルオロヘキサンスルホン酸、パーフルオロヘプタンスルホン酸、パーフルオロオクタンスルホン酸等を挙げることができる。特に、これらのカリウム塩が好ましく用いられる。その他、パラトルエンスルホン酸、2,5-ジクロロベンゼンスルホン酸;2,4,5-トリクロロベンゼンスルホン酸;ジフェニルスルホン-3-スルホン酸;ジフェニルスルホン-3,3'-ジスルホン酸;ナフタレントリスルホン酸等の有機スルホン酸のアルカリ金属塩等を挙げることができる。 In the general formula (1), examples of perfluoroalkanesulfonic acid include perfluoromethanesulfonic acid, perfluoroethanesulfonic acid, perfluoropropanesulfonic acid, perfluorobutanesulfonic acid, perfluoromethylbutanesulfonic acid, Fluorohexanesulfonic acid, perfluoroheptanesulfonic acid, perfluorooctanesulfonic acid and the like can be mentioned. In particular, these potassium salts are preferably used. In addition, p-toluenesulfonic acid, 2,5-dichlorobenzenesulfonic acid; 2,4,5-trichlorobenzenesulfonic acid; diphenylsulfone-3-sulfonic acid; diphenylsulfone-3,3′-disulfonic acid; naphthalenetrisulfonic acid And alkali metal salts of organic sulfonic acids such as
 また、有機カルボン酸としては、例えば、パーフルオロ蟻酸、パーフルオロメタンカルボン酸、パーフルオロエタンカルボン酸、パーフルオロプロパンカルボン酸、パーフルオロブタンカルボン酸、パーフルオロメチルブタンカルボン酸、パーフルオロヘキサンカルボン酸、パーフルオロヘプタンカルボン酸、パーフルオロオクタンカルボン酸等を挙げることができ、これら有機カルボン酸のアルカリ金属塩が用いられる。 Examples of the organic carboxylic acid include perfluoroformic acid, perfluoromethanecarboxylic acid, perfluoroethanecarboxylic acid, perfluoropropanecarboxylic acid, perfluorobutanecarboxylic acid, perfluoromethylbutanecarboxylic acid, perfluorohexanecarboxylic acid. Perfluoroheptanecarboxylic acid, perfluorooctanecarboxylic acid and the like, and alkali metal salts of these organic carboxylic acids are used.
 次に、(D)成分に使用できるポリスチレンスルホン酸のアルカリ金属塩及び/又アルカリ土類金属塩としては、下記一般式(2)で表わされるスルホン酸塩基含有芳香族ビニル系樹脂を用いることができる。 Next, as the alkali metal salt and / or alkaline earth metal salt of polystyrene sulfonic acid that can be used as the component (D), a sulfonate group-containing aromatic vinyl resin represented by the following general formula (2) may be used. it can.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(2)中、Z1はスルホン酸塩基、Z2は水素原子又は炭素数1~10の炭化水素基を示す。gは1~5の整数である。hはモル分率を表し、0<h≦1である。
 ここで、スルホン酸塩基はスルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩であり、金属としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 式中、Z2は水素原子又は炭素数1~10の炭化水素基であり、好ましくは水素原子又はメチル基である。また、gは1~5の整数であり、hは、0<h≦1の関係である。すなわち、スルホン酸塩基(Z1)は、芳香環に対して、全置換したものであっても、部分置換したものであってもよい。
 本発明のポリカーボネート樹脂組成物の難燃性の効果をより高めるために、スルホン酸塩基の置換比率は、スルホン酸塩基含有芳香族ビニル系樹脂の含有量等を考慮して決定され、一般的には10~100%置換のものが用いられる。
In the above formula (2), Z 1 represents a sulfonate group, Z 2 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. g is an integer of 1 to 5. h represents a mole fraction, and 0 <h ≦ 1.
Here, the sulfonate group is an alkali metal salt and / or alkaline earth metal salt of sulfonic acid, and examples of the metal include sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium and the like. It is done.
In the formula, Z 2 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a methyl group. Further, g is an integer of 1 to 5, and h has a relationship of 0 <h ≦ 1. That is, the sulfonate group (Z 1 ) may be a fully substituted or partially substituted aromatic ring.
In order to further enhance the flame retardancy effect of the polycarbonate resin composition of the present invention, the substitution ratio of the sulfonate group is determined in consideration of the content of the sulfonate group-containing aromatic vinyl resin, and is generally Is used with 10 to 100% substitution.
 なお、ポリスチレンスルホン酸のアルカリ金属塩及び/又アルカリ土類金属塩において、スルホン酸塩基含有芳香族ビニル系樹脂は、上記一般式(2)のポリスチレン樹脂に限定されるものではなく、スチレン系単量体と共重合可能な他の単量体との共重合体であってもよい。
 ここで、スルホン酸塩基含有芳香族ビニル系樹脂の製造方法としては、(I)上記のスルホン酸基等を有する芳香族ビニル系単量体、又はこれらと共重合可能な他の単量体とを重合又は共重合する方法、(II)芳香族ビニル系重合体、又は芳香族ビニル系単量体と他の共重合可能な単量体との共重合体、又はこれらの混合重合体をスルホン化し、アルカリ金属化合物及び/又アルカリ土類金属化合物で中和する方法、等がある。
 例えば、上記(II)の方法としては、ポリスチレン樹脂の1,2-ジクロロエタン溶液に濃硫酸と無水酢酸の混合液を加えて加熱し、数時間反応することにより、ポリスチレンスルホン酸化物を製造する。次いで、スルホン酸基と当モル量の水酸化カリウム又は水酸化ナトリウムで中和することによりポリスチレンスルホン酸カリウム塩又はナトリウム塩を得ることができる。
 本発明で用いる、スルホン酸塩基含有芳香族ビニル系樹脂の重量平均分子量としては、1,000~300,000程度、好ましくは2,000~200,000程度である。なお、重量平均分子量は、GPC法で測定することができる。
In the alkali metal salt and / or alkaline earth metal salt of polystyrene sulfonic acid, the sulfonate group-containing aromatic vinyl resin is not limited to the polystyrene resin of the above general formula (2), but a styrene-based single resin. It may be a copolymer with another monomer copolymerizable with the monomer.
Here, as a method for producing a sulfonate group-containing aromatic vinyl resin, (I) the above aromatic vinyl monomer having a sulfonic acid group or the like, or another monomer copolymerizable therewith (II) Aromatic vinyl polymers, copolymers of aromatic vinyl monomers and other copolymerizable monomers, or mixed polymers of these And neutralizing with an alkali metal compound and / or an alkaline earth metal compound.
For example, as the method (II), a polystyrene sulfone oxide is produced by adding a mixture of concentrated sulfuric acid and acetic anhydride to a 1,2-dichloroethane solution of polystyrene resin, heating the mixture, and reacting for several hours. Then, polystyrene sulfonate potassium salt or sodium salt can be obtained by neutralizing with sulfonic acid group and equimolar amount of potassium hydroxide or sodium hydroxide.
The weight average molecular weight of the sulfonate group-containing aromatic vinyl resin used in the present invention is about 1,000 to 300,000, preferably about 2,000 to 200,000. The weight average molecular weight can be measured by the GPC method.
 上記の(D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩は一種用いてもよく、二種以上を組み合わせて用いてもよい。また、その含有量は、(A)芳香族ポリカーボネート樹脂100質量部に対して、0.05~1質量部、好ましくは0.1~0.9重量部である。上記含有量が0.05質量部未満では、目標とする薄肉難燃性を達成するのが困難であり、1質量部を超えると熱安定性が低下するという問題がある。 The above (D) organic alkali metal salt and / or organic alkaline earth metal salt may be used singly or in combination of two or more. The content thereof is 0.05 to 1 part by weight, preferably 0.1 to 0.9 part by weight, based on 100 parts by weight of the (A) aromatic polycarbonate resin. When the content is less than 0.05 parts by mass, it is difficult to achieve the target thin-walled flame retardancy.
 本発明のポリカーボネート樹脂組成物には、成形性、耐衝撃性、外観改善、耐候性改善及び剛性改善等の目的で、上記(A)~(D)からなる成分に、フェノール系、リン系、イオウ系の(E)酸化防止剤、(F)離型剤を含有させることができる。
 (E)酸化防止剤の配合量について、リン系酸化防止剤では、0.001~0.5質量部が好ましい。0.001質量部以上では、造粒工程・成形工程での熱安定性を維持でき、0.5質量部未満では分子量低下を引き起こし難い。また、フェノール系酸化防止剤では、0.001~0.5質量部の添加が好ましく、衝撃強度が向上し易い。
 (F)離型剤としては、ポリカーボネート樹脂に配合して成形時の離型性を改善できるものであれば、特に限定されるものではない。とりわけ、蜜蝋、グリセリンモノステアレート、グリセリントリステアレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート、モンタン酸エステルワックス、カルボン酸エステル等有機化合物が優れた離型性を示し、好適に使用される。
 これらは例えば、三木化学工業社製の「蜜ロウ・ゴールデンブランド」、理研ビタミン(株)製の「リケマールS- 100A」、「リケマールSL-900」、及び「リケスターEW-440A」、コグニスジャパン社製の「ロキシオールV P G 8 6 1」、クラリアントジャパン社製の「リコワックスE」、コグニスジャパン社製の「ロキシオールEP-32」が挙げられる。その配合量については0.001~2質量部が好ましい。
 さらに、その他の合成樹脂、エラストマー、熱可塑性樹脂に常用されている添加剤成分を必要により含有させることもできる。上記添加剤としては帯電防止剤、ポリアミドポリエーテルブロック共重合体(永久帯電防止性能付与)、ベンゾトリアゾール系やベンゾフェノン系の紫外線吸収剤、ヒンダードアミン系の光安定剤(耐候剤)、可塑剤、抗菌剤、相溶化剤及び着色剤(染料、顔料)等が挙げることができる。
 任意成分の配合量は、本発明のポリカーボネート樹脂組成物の特性が維持される範囲であれば特に制限はない。
In the polycarbonate resin composition of the present invention, for the purpose of moldability, impact resistance, appearance improvement, weather resistance improvement, rigidity improvement, etc., the components comprising the above (A) to (D) are added with phenol, phosphorus, A sulfur-based (E) antioxidant and (F) a release agent can be contained.
(E) The amount of antioxidant added is preferably 0.001 to 0.5 parts by mass for phosphorus antioxidants. If it is 0.001 part by mass or more, thermal stability in the granulation step / molding step can be maintained, and if it is less than 0.5 part by mass, it is difficult to cause a decrease in molecular weight. In addition, in the case of a phenolic antioxidant, it is preferable to add 0.001 to 0.5 parts by mass, and the impact strength is easily improved.
(F) The release agent is not particularly limited as long as it can be mixed with a polycarbonate resin to improve the release property at the time of molding. In particular, organic compounds such as beeswax, glycerin monostearate, glycerin tristearate, pentaerythritol monostearate, pentaerythritol tristearate, pentaerythritol tetrastearate, montanic acid ester wax, carboxylic acid ester have excellent release properties. Shown and used preferably.
These include, for example, “honey wax golden brand” manufactured by Miki Chemical Industry Co., Ltd., “Rikemar S-100A”, “Riquemar SL-900”, and “Riquestar EW-440A” manufactured by Riken Vitamin Co., Ltd., Cognis Japan “Roxyol V P G 8 6 1” manufactured by Clariant Japan, “Rico Wax E” manufactured by Clariant Japan, and “Roxyol EP-32” manufactured by Cognis Japan. The blending amount is preferably 0.001 to 2 parts by mass.
Furthermore, additive components commonly used in other synthetic resins, elastomers, and thermoplastic resins can be included as necessary. The above additives include antistatic agents, polyamide polyether block copolymers (permanent antistatic performance), benzotriazole and benzophenone UV absorbers, hindered amine light stabilizers (weathering agents), plasticizers, antibacterial agents Agents, compatibilizers and colorants (dyes, pigments) and the like.
The amount of the optional component is not particularly limited as long as the characteristics of the polycarbonate resin composition of the present invention are maintained.
 次に、本発明のポリカーボネート樹脂組成物の製造方法について説明する。
 本発明のポリカーボネート樹脂組成物は、前記の各成分(A)~(D)を上記割合で、更に必要に応じて用いられる各種任意成分を適当な割合で配合し、混練することにより得られる。
 配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラーなどで予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機及びコニーダ等を用いる方法で行うことができる。混練の際の加熱温度は、通常240~320℃の範囲で適宜選択される。この溶融混練成形としては、押出成形機、特に、ベント式の押出成形機の使用が好ましい。
 尚、ポリカーボネート樹脂以外の含有成分は、あらかじめ、ポリカーボネート樹脂又は他の熱可塑性樹脂と溶融混練、即ち、マスターバッチとして添加することもできる。
Next, the manufacturing method of the polycarbonate resin composition of this invention is demonstrated.
The polycarbonate resin composition of the present invention can be obtained by blending the above components (A) to (D) in the above proportions and various optional components used as necessary in an appropriate proportion and kneading.
The compounding and kneading are premixed with commonly used equipment such as a ribbon blender, drum tumbler, etc., Henschel mixer, Banbury mixer, single screw extruder, twin screw extruder, multi screw extruder and It can be performed by a method using a conida or the like. The heating temperature at the time of kneading is usually appropriately selected within the range of 240 to 320 ° C. As the melt-kneading molding, it is preferable to use an extrusion molding machine, particularly a vent type extrusion molding machine.
In addition, the components other than the polycarbonate resin can be added in advance as a master batch with melt-kneading with the polycarbonate resin or other thermoplastic resin.
 本発明のポリカーボネート樹脂組成物は、上記の溶融混練成形機、又は、得られたペレットを原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等により各種成形体を製造することができる。特に、得られたペレットを用いて、射出成形及び射出圧縮成形による射出成形体の製造に好適に用いることができる。
 本発明のポリカーボネート樹脂組成物からなる成形体は、例えば、
(1)テレビ、ラジオカセット、ビデオカメラ、ビデオテープレコーダ、オーディオプレーヤー、DVDプレーヤー、エアコンディショナー、携帯電話、ディスプレイ、コンピュータ、レジスター、電卓、複写機、プリンター、ファクシミリ等の電気・電子機器用部品、
(2)上記1の電気・電子機器用の筐体、
(3)上記1の電気・電子機器用のシャーシ、
等として好適に用いることができる。
The polycarbonate resin composition of the present invention is an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, a vacuum molding method, using the above melt kneading molding machine or the obtained pellets as a raw material. Various molded bodies can be produced by a foam molding method or the like. In particular, the obtained pellets can be used suitably for the production of injection molded articles by injection molding and injection compression molding.
The molded body comprising the polycarbonate resin composition of the present invention is, for example,
(1) TV, radio cassette, video camera, video tape recorder, audio player, DVD player, air conditioner, mobile phone, display, computer, register, calculator, copier, printer, facsimile, etc.
(2) The housing for the electric / electronic device according to 1 above,
(3) Chassis for electrical / electronic equipment according to 1 above,
Etc. can be suitably used.
 以下、本発明について実施例及び比較例を示してより具体的に説明するが、本発明はこれらによって、何ら制限されるものではない。
 性能評価方法及び使用原料を次に示す。
〔性能評価方法〕
(1)粘度平均分子量
 ウベローデ型粘度管にて、20℃における塩化メチレン溶液の極限粘度〔η〕を測定し、次の関係式(Schnellの式)より計算した。〔η〕=1.23×10-5×Mv0.83
 なお、ペレット分子量は、評価用ペレットサンプルを塩化メチレンにて溶解し、不溶解分を分離し、抽出したポリカーボネート樹脂の分子量を測定した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited at all by these.
The performance evaluation method and raw materials used are shown below.
[Performance evaluation method]
(1) Viscosity average molecular weight Using an Ubbelohde type viscosity tube, the intrinsic viscosity [η] of a methylene chloride solution at 20 ° C. was measured and calculated from the following relational expression (Schnell's formula). [Η] = 1.23 × 10 −5 × Mv 0.83
In addition, the pellet molecular weight measured the molecular weight of the extracted polycarbonate resin by melt | dissolving the pellet sample for evaluation in a methylene chloride, isolate | separating an insoluble matter.
(2)難燃性
 UL規格94に準じて作製した、試験片(長さ127mm、幅12.7mm、厚さ1.2mm)の試験片を用いて垂直燃焼試験を行った。試験の結果に基づいてUL94 V-0、V-1、又はV-2の等級に評価し、V-2に達しないものをV-2outとした。
 なお、UL規格94とは、鉛直に保持した所定の大きさの試験片にバーナーの炎を10秒間接炎した後の残炎時間から難燃性を評価する方法である。
(2) Flame retardancy A vertical combustion test was performed using a test piece (length 127 mm, width 12.7 mm, thickness 1.2 mm) prepared according to UL standard 94. Based on the test results, UL94 V-0, V-1, or V-2 grades were evaluated, and those that did not reach V-2 were designated as V-2out.
The UL standard 94 is a method for evaluating the flame retardancy from the afterflame time after the burner flame is indirectly fired for 10 seconds on a test piece of a predetermined size held vertically.
(3)熱伝導率
 熱伝導率測定装置「TPA-501」[京都電子工業(株)製]を用いてホットディスク法にて測定した。
(4)密度
 JIS K7112:0に準拠し測定した。
(3) Thermal conductivity The thermal conductivity was measured by a hot disk method using a thermal conductivity measuring device “TPA-501” [manufactured by Kyoto Electronics Industry Co., Ltd.].
(4) Density The density was measured in accordance with JIS K7112.
(5)曲げ特性
 弾性率;ASTM D790に準拠して測定した。
 曲げ強度;ASTM D790に準拠して測定した。
(5) Flexural properties Elastic modulus: measured in accordance with ASTM D790.
Bending strength: measured in accordance with ASTM D790.
(6)衝撃特性
ノッチ付きアイゾット衝撃強度(IZOD)
 射出成形機で作製した試験片(長さ12.7mm、幅63mm、高さ3.2mm)を用いて、ASTM規格D-256に準拠して、測定温度23℃にて衝撃強度を測定した。
(6) Impact characteristics Notched Izod impact strength (IZOD)
Using a test piece (length 12.7 mm, width 63 mm, height 3.2 mm) produced by an injection molding machine, impact strength was measured at a measurement temperature of 23 ° C. in accordance with ASTM standard D-256.
〔使用原料〕
(A)芳香族ポリカーボネート樹脂
A-1(1);ポリカーボネート-ポリジメチルシロキサン共重合体[出光興産(株)製、「FC1700」;粘度平均分子量=17,800、ポリジメチルシロキサン(PDMS)部の重合度=40、PDMS含有量=3.5質量%]
A-1(2);下記の製造例1により得られたポリカーボネート-ポリジメチルシロキサン共重合体[粘度平均分子量=17,300、ポリジメチルシロキサン(PDMS)部の重合度=90、PDMS含有量=6.6質量%]
[Raw materials]
(A) Aromatic polycarbonate resin A-1 (1); Polycarbonate-polydimethylsiloxane copolymer [Idemitsu Kosan Co., Ltd., “FC1700”; viscosity average molecular weight = 17,800, polydimethylsiloxane (PDMS) part Degree of polymerization = 40, PDMS content = 3.5% by mass]
A-1 (2): Polycarbonate-polydimethylsiloxane copolymer obtained in Production Example 1 below [viscosity average molecular weight = 17,300, degree of polymerization of polydimethylsiloxane (PDMS) part = 90, PDMS content = 6.6% by mass]
製造例1
(ポリカーボネートオリゴマー合成工程)
 5.6質量%水酸化ナトリウム水溶液に後から溶解するビスフェノールA(BPA)に対して2,000ppmの亜二チオン酸ナトリウムを加え、これにBPA濃度が13.5質量%になるようにBPAを溶解し、BPAの水酸化ナトリウム水溶液を調製した。
 このBPAの水酸化ナトリウム水溶液40リットル/hr、塩化メチレン15リットル/hrの流量で、ホスゲンを4.0kg/hrの流量で内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40リットルのバッフル付き槽型反応器へ連続的に導入され、ここにさらにBPAの水酸化ナトリウム水溶液2.8リットル/hr、25質量%水酸化ナトリウム水溶液0.07リットル/hr、水17リットル/hr、1質量%トリエチルアミン水溶液を0.64リットル/hr添加して反応を行なった。槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。
 このようにして得られたポリカーボネートオリゴマーは濃度318g/l、クロロホーメート基濃度0.75mol/lであった。
Production Example 1
(Polycarbonate oligomer synthesis process)
2,000 ppm of sodium dithionite is added to 5.6% by mass sodium hydroxide aqueous solution to bisphenol A (BPA) which is later dissolved, and BPA is added to this so that the BPA concentration becomes 13.5% by mass. After dissolution, an aqueous sodium hydroxide solution of BPA was prepared.
Phosgene was continuously passed through a tubular reactor having an inner diameter of 6 mm and a tube length of 30 m at a flow rate of 4.0 kg / hr at a flow rate of 40 liter / hr of sodium hydroxide aqueous solution of BPA and 15 liter / hr of methylene chloride. The tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
The reaction liquid exiting the tubular reactor was continuously introduced into a baffled tank reactor having an internal volume of 40 liters equipped with a receding blade, and further 2.8 liters / hr of sodium hydroxide aqueous solution of BPA, 25 The reaction was carried out by adding 0.07 L / hr of a mass% aqueous sodium hydroxide solution, 17 L / hr of water, and 0.64 L / hr of a 1 mass% aqueous triethylamine solution. The reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
The polycarbonate oligomer thus obtained had a concentration of 318 g / l and a chloroformate group concentration of 0.75 mol / l.
(ポリカーボネート-ポリジメチルシロキサン共重合体の製造例1)
 邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に上記で製造したポリカーボネートオリゴマー溶液15L、塩化メチレン9.0L、ジメチルシロキサン単位の繰返し数が90であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)396g及びトリエチルアミン8.8mLを仕込み、攪拌下でここに6.4質量%水酸化ナトリウム水溶液1389gを加え、10分間ポリカーボネートオリゴマーとアリルフェノール末端変性PDMSの反応を行った。
 この重合液に、p-t-ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP140gを塩化メチレン2.0Lに溶解したもの)、BPAの水酸化ナトリウム水溶液(NaOH577gと亜二チオン酸ナトリウム2.0gを水8.4Lに溶解した水溶液にBPA1012gを溶解させたもの)を添加し50分間重合反応を行った。
 希釈のため塩化メチレン10Lを加え10分間攪拌した後、ポリカーボネート-ポリジメチルシロキサン共重合体を含む有機相と過剰のBPA及びNaOHを含む水相に分離し、有機相を単離した。
 こうして得られたポリカーボネート-ポリジメチルシロキサン共重合体の塩化メチレン溶液を、その溶液に対して順次、15容積%の0.03mol/LNaOH水溶液、0.2モル/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.01μS/m以下になるまで純水で洗浄を繰り返した。
 洗浄により得られたポリカーボネート-ポリジメチルシロキサン共重合体の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。
 得られたポリカーボネート-ポリジメチルシロキサン共重合体の核磁気共鳴(NMR)により求めたPDMS残基量(PDMS共重合量)は6.6質量%、ISO1628-4(1999)に準拠して測定した粘度数は46.7、粘度平均分子量Mv=17,300であった。
(Production Example 1 of Polycarbonate-Polydimethylsiloxane Copolymer)
Allylphenol terminal-modified poly having a polycarbonate oligomer solution 15L, methylene chloride 9.0L, and a dimethylsiloxane unit repeating number 90 in a 50L tank reactor equipped with a baffle plate, a paddle type stirring blade and a cooling jacket 396 g of dimethylsiloxane (PDMS) and 8.8 mL of triethylamine were charged, and 1389 g of a 6.4% by mass aqueous sodium hydroxide solution was added thereto with stirring, and the reaction between the polycarbonate oligomer and allylphenol terminal-modified PDMS was performed for 10 minutes.
In this polymerization solution, a methylene chloride solution of pt-butylphenol (PTBP) (140 g of PTBP dissolved in 2.0 L of methylene chloride), a sodium hydroxide aqueous solution of BPA (577 g of NaOH and 2.0 g of sodium dithionite) in water A solution obtained by dissolving 1012 g of BPA in an aqueous solution dissolved in 8.4 L) was added, and a polymerization reaction was carried out for 50 minutes.
For dilution, 10 L of methylene chloride was added and stirred for 10 minutes. Then, the organic phase was separated into an organic phase containing a polycarbonate-polydimethylsiloxane copolymer and an aqueous phase containing excess BPA and NaOH, and the organic phase was isolated.
The methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer thus obtained was sequentially washed with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2 mol / L hydrochloric acid with respect to the solution. Washing with pure water was repeated until the electrical conductivity in the aqueous phase became 0.01 μS / m or less.
The methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
The amount of PDMS residue (PDMS copolymerization amount) determined by nuclear magnetic resonance (NMR) of the obtained polycarbonate-polydimethylsiloxane copolymer was 6.6% by mass, measured according to ISO 1628-4 (1999). The viscosity number was 46.7, and the viscosity average molecular weight Mv was 17,300.
A-1(3);下記の製造例2により得られたポリカーボネート-ポリジメチルシロキサン共重合体[粘度平均分子量=17,300、ポリジメチルシロキサン(PDMS)部の重合度=40、PDMS含有量=10質量%] A-1 (3): Polycarbonate-polydimethylsiloxane copolymer obtained in Production Example 2 below [viscosity average molecular weight = 17,300, degree of polymerization of polydimethylsiloxane (PDMS) part = 40, PDMS content = 10% by mass]
製造例2
(ポリカーボネート-ポリジメチルシロキサン共重合体の製造例2)
 邪魔板、パドル型攪拌翼及び冷却用ジャケットを備えた50L槽型反応器に上記のA-1(2)の製造で使用したポリカーボネートオリゴマー溶液15L、塩化メチレン8.9L、ジメチルシラノオキシ単位の繰返し数が40であるアリルフェノール末端変性PDMS 670g及びトリエチルアミン8.8mL、を仕込み、攪拌下でここに6.4質量%水酸化ナトリウム水溶液1389gを加え、10分間ポリカーボネートオリゴマーとアリルフェノール末端変性PDMSの反応を行った。
 この重合液に、p-t-ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP137.9gを塩化メチレン2.0Lに溶解したもの)、BPAの水酸化ナトリウム水溶液(NaOH581gと亜二チオン酸ナトリウム2.3gを水8.5Lに溶解した水溶液にBPA1147gを溶解させたもの)を添加し50分間重合反応を実施した。希釈のため塩化メチレン10Lを加え10分間攪拌した後、ポリカーボネートを含む有機相と過剰のBPA及びNaOHを含む水相に分離し、有機相を単離した。
 こうして得られたポリカーボネートの塩化メチレン溶液を、その溶液に対して順次、15容積%の0.03mol/LNaOH水溶液、0.2N塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.01μS/m以下になるまで純水で洗浄を繰り返した。洗浄により得られたポリカーボネートの塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。
 NMRにより求めたPDMS残基の量は10.0質量%、ISO1628-4(1999)に準拠して測定した粘度数は46.6、粘度平均分子量Mv=17,300であった。
Production Example 2
(Production Example 2 of Polycarbonate-Polydimethylsiloxane Copolymer)
Repetition of 15 L of polycarbonate oligomer solution, 8.9 L of methylene chloride, and dimethylsilanooxy unit used in the production of A-1 (2) above in a 50 L tank reactor equipped with baffle plates, paddle type stirring blades and cooling jacket 670 g of allylphenol-terminated PDMS having a number of 40 and 8.8 mL of triethylamine were charged, and 1389 g of a 6.4% by mass aqueous sodium hydroxide solution was added thereto under stirring, and the reaction between the polycarbonate oligomer and allylphenol-end-modified PDMS was performed for 10 minutes. Went.
In this polymerization solution, methylene chloride solution of pt-butylphenol (PTBP) (PTBP 137.9 g dissolved in 2.0 L of methylene chloride), BPA aqueous solution of sodium hydroxide (NaOH 581 g and sodium dithionite 2.3 g) 1) of BPA dissolved in 8.5 L of water was added, and the polymerization reaction was carried out for 50 minutes. For dilution, 10 L of methylene chloride was added and stirred for 10 minutes, and then the organic phase was separated into an organic phase containing polycarbonate and an aqueous phase containing excess BPA and NaOH, and the organic phase was isolated.
The methylene chloride solution of the polycarbonate thus obtained was washed successively with 15% by volume of 0.03 mol / L NaOH aqueous solution and 0.2N hydrochloric acid, and the electric conductivity in the aqueous phase after washing was 0. Washing with pure water was repeated until the pressure became 0.01 μS / m or less. The methylene chloride solution of polycarbonate obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
The amount of PDMS residue determined by NMR was 10.0% by mass, the viscosity number measured according to ISO 1628-4 (1999) was 46.6, and the viscosity average molecular weight Mv = 17,300.
A-2(1);ポリカーボネート[出光興産(株)製、ビスフェノールAから製造されたホモポリカーボネート「タフロンFN1900A」、粘度平均分子量=19,500]
A-2(2);ポリカーボネート[出光興産(株)製、ビスフェノールAから製造されたホモポリカーボネート「タフロンFN2200A」、粘度平均分子量=21,500]
A-2(3);ポリカーボネート[出光興産(株)製、ビスフェノールAから製造されたホモポリカーボネート「タフロンFN2600A」、粘度平均分子量=26,000]
 なお、表中のPOS含有量:(A)成分中のポリオルガノシロキサン含有量(質量%)を示す。
A-2 (1): polycarbonate [made by Idemitsu Kosan Co., Ltd., homopolycarbonate “Taflon FN1900A” manufactured from bisphenol A, viscosity average molecular weight = 19,500]
A-2 (2): polycarbonate [made by Idemitsu Kosan Co., Ltd., homopolycarbonate “Taflon FN2200A” manufactured from bisphenol A, viscosity average molecular weight = 21,500]
A-2 (3): Polycarbonate [Homopolycarbonate “Taflon FN2600A” produced from bisphenol A, manufactured by Idemitsu Kosan Co., Ltd., viscosity average molecular weight = 26,000]
In addition, POS content in a table | surface: Polyorganosiloxane content (mass%) in (A) component is shown.
(B)黒鉛
B-1;天然黒鉛[日本黒鉛工業社製「CB-150」;鱗片状、粒度分布 63μm以下77~87%、106μm以上5%以下、見かけ密度 0.2~0.3g/cm3、50%累積径 31~48μm、固定炭素 98質量%以上、灰分 1質量%以下、揮発分 1質量%以下]
B-2;人造黒鉛[日本黒鉛工業社製「PAG-420」;不定形、50%累積径 30~40μm(50μm以上 50%以下)、見かけ密度 0.29~0.37g/cm3、固定炭素 99.4質量%以上、灰分 0.3質量%以下、揮発分 0.3質量%以下]
(B) Graphite B-1; natural graphite [“CB-150” manufactured by Nippon Graphite Industries Co., Ltd .; scale-like, particle size distribution 63 μm or less 77 to 87%, 106 μm or more and 5% or less, apparent density 0.2 to 0.3 g / cm 3 , 50% cumulative diameter 31-48 μm, fixed carbon 98 mass% or more, ash content 1 mass% or less, volatile content 1 mass% or less]
B-2; Artificial graphite [“PAG-420” manufactured by Nippon Graphite Industries Co., Ltd .; irregular, 50% cumulative diameter 30-40 μm (50 μm or more and 50% or less), apparent density 0.29 to 0.37 g / cm 3 , fixed Carbon 99.4 mass% or more, ash content 0.3 mass% or less, volatile content 0.3 mass% or less]
(C)ポリテトラフルオロエチレン (PTFE)
C-1;PTFE[ソルベイソレクシス社製、「アルゴフロンF5」;アルゴフロンF5は凝集しやすいので、一旦、PCフレークでマスターバッチ化(混合比率(質量)  PC:PTFE=90:10~80:20)してから配合]
(C) Polytetrafluoroethylene (PTFE)
C-1; PTFE [manufactured by Solvay Solexis, “Algoflon F5”; Algoflon F5 is prone to agglomerate and is once masterbatched with PC flakes (mixing ratio (mass) PC: PTFE = 90: 10 to 80 : 20) then blended]
(D)有機アルカリ(土類)金属塩
D-1;パーフルオロブタンスルホン酸カリウム塩[三菱マテリアル(株)製、「エフトップKFBS」]
D-2;パラトルエンスルホン酸ナトリウム塩[DAH  DIING CHEMICAL INDUSTRY社製、純度93%品、不純物として硫酸ナトリウム3質量%以下、水分5質量%以下]
(D) Organic alkali (earth) metal salt D-1; potassium perfluorobutane sulfonate [Mitsubishi Materials Co., Ltd., “F-top KFBS”]
D-2: Sodium paratoluenesulfonate [DAH DIING CHEMICAL INDUSTRY, purity 93% product, sodium sulfate 3% by mass or less, moisture 5% by mass or less as impurities]
(E)その他添加剤 酸化防止剤
E-1;リン系酸化防止剤(ジフェニルイソオクチルホスファイト)[ADEKA社製、「アデカスタブ C」]
E-2;フェノール系酸化防止剤(オクタデシル-3-(3,5-ジ-t-ブチル-ヒドロキシフェニル)プロピオネート)[チバ・ジャパン(株)製、「Irganox1076」]
(F)その他添加剤 離型剤
F-1;ステアリン酸モノグリセリド[理研ビタミン(株)製「リケマールS-100A」]
F-2;ペンタエリスリトールテトラステアレート[理研ビタミン(株)製「リケスターEW-440A」]
(E) Other additives Antioxidant E-1; Phosphorous antioxidant (diphenylisooctyl phosphite) [manufactured by ADEKA, “ADK STAB C”]
E-2: Phenol antioxidant (octadecyl-3- (3,5-di-t-butyl-hydroxyphenyl) propionate) [Ciba Japan Co., Ltd., “Irganox1076”]
(F) Other additives Mold release agent F-1: Stearic acid monoglyceride [“Riquemar S-100A” manufactured by Riken Vitamin Co., Ltd.]
F-2: Pentaerythritol tetrastearate [Rikenstar EW-440A, manufactured by Riken Vitamin Co., Ltd.]
 実施例1~13、及び比較例1~7
 表1及び表2に示す割合で各成分を混合し、ベント式二軸押出成形機〔東芝機械社製:TEM35〕に供給し、バレル温度300~320℃、スクリュ回転数200~600回転、吐出量10~30kg/hrにて溶融混練し、評価用ペレットサンプルを得た。
 この評価用ペレットサンプルを用いて、粘度平均分子量を測定した。また、射出成形機にて、各試験を行うための試験片を作成し、各試験を行った。その結果を表1及び表2に示す。
Examples 1 to 13 and Comparative Examples 1 to 7
Each component is mixed in the proportions shown in Tables 1 and 2 and supplied to a vent type twin screw extruder (Toshiba Machine Co., Ltd .: TEM35), barrel temperature 300 to 320 ° C., screw rotation speed 200 to 600 rotations, discharge The mixture was melt-kneaded at an amount of 10 to 30 kg / hr to obtain a pellet sample for evaluation.
Using this pellet sample for evaluation, the viscosity average molecular weight was measured. Moreover, the test piece for performing each test was created with the injection molding machine, and each test was done. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2より下記のことが判明した。
 表1より、本発明の(A)成分から(D)成分を全て満足する実施例1乃至実施例13では薄肉(厚さ1.2mm)難燃性、熱伝導性、曲げ特性、及び衝撃強度に優れ、さらに造粒時におけるポリカーボネート樹脂の分子量低下が抑えられたポリカーボネート樹脂組成物が得られる。
 表2より、ホモポリカーボネート樹脂のみからなる比較例1では、薄肉難燃性が低下する。(B)成分の黒鉛含有量が少ない比較例2では、熱伝導性が低下し、(B)成分が多すぎる比較例3では、衝撃強度が低下する。(C)成分のPTFE含有量が少ない比較例4では、薄肉難燃性が低下し、(C)成分が多すぎる比較例5では、衝撃強度が低下する。
 (D)成分の金属塩含有量が少ない比較例6では、薄肉難燃性が低下し、(D)成分が多すぎる比較例7では造粒時におけるポリカーボネート樹脂の分子量低下が大きい。
Tables 1 and 2 revealed the following.
From Table 1, in Examples 1 to 13, which satisfy all the components (A) to (D) of the present invention, thin-walled (thickness 1.2 mm) flame retardancy, thermal conductivity, bending characteristics, and impact strength And a polycarbonate resin composition in which a decrease in the molecular weight of the polycarbonate resin during granulation is suppressed is obtained.
From Table 2, in the comparative example 1 which consists only of homopolycarbonate resin, thin-walled flame retardance falls. In Comparative Example 2 in which the graphite content of the component (B) is low, the thermal conductivity is reduced, and in Comparative Example 3 in which the component (B) is too much, the impact strength is reduced. In Comparative Example 4 in which the PTFE content of the component (C) is low, the thin-wall flame retardancy is reduced, and in Comparative Example 5 in which the component (C) is too much, the impact strength is reduced.
In Comparative Example 6 where the metal salt content of the component (D) is low, the thin-wall flame retardancy is reduced, and in Comparative Example 7 where there is too much component (D), the molecular weight of the polycarbonate resin is greatly reduced during granulation.

Claims (10)

  1.  (A)ポリカーボネート-ポリオルガノシロキサン共重合体を含む芳香族ポリカーボネート樹脂100質量部に対して、(B)黒鉛30~100質量部、(C)ポリテトラフルオロエチレン1~10質量部、及び(D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩0.05~1質量部を配合してなるポリカーボネート樹脂組成物。 (A) 30 to 100 parts by mass of graphite, (C) 1 to 10 parts by mass of polytetrafluoroethylene, and (D) with respect to 100 parts by mass of an aromatic polycarbonate resin containing a polycarbonate-polyorganosiloxane copolymer. ) A polycarbonate resin composition comprising 0.05 to 1 part by mass of an organic alkali metal salt and / or an organic alkaline earth metal salt.
  2.  (A)中のポリオルガノシロキサンの含有量が1~6質量%である請求項1に記載のポリカーボネート樹脂組成物。 2. The polycarbonate resin composition according to claim 1, wherein the content of polyorganosiloxane in (A) is 1 to 6% by mass.
  3.  芳香族ポリカーボネート-ポリオルガノシロキサン共重合体のポリオルガノシロキサンが、ポリジメチルシロキサンである請求項1又は2に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 1 or 2, wherein the polyorganosiloxane of the aromatic polycarbonate-polyorganosiloxane copolymer is polydimethylsiloxane.
  4.  黒鉛が天然黒鉛である請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 3, wherein the graphite is natural graphite.
  5.  黒鉛が人造黒鉛である請求項1~3のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 3, wherein the graphite is artificial graphite.
  6.  (D)有機アルカリ金属塩及び/又は有機アルカリ土類金属塩が、有機スルホン酸アルカリ金属塩、有機スルホン酸アルカリ土類金属塩、ポリスチレンスルホン酸アルカリ金属塩及びポリスチレンスルホン酸アルカリ土類金属塩から選ばれる少なくとも一種である請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。 (D) The organic alkali metal salt and / or the organic alkaline earth metal salt is an organic sulfonic acid alkali metal salt, an organic sulfonic acid alkaline earth metal salt, a polystyrene sulfonic acid alkali metal salt, and a polystyrene sulfonic acid alkaline earth metal salt. The polycarbonate resin composition according to any one of claims 1 to 5, which is at least one selected.
  7.  請求項1~6のいずれかに記載のポリカーボネート樹脂組成物からなる成形体。 A molded body comprising the polycarbonate resin composition according to any one of claims 1 to 6.
  8.  電気・電子機器用部品である請求項7に記載の成形体。 The molded body according to claim 7, which is a part for an electric / electronic device.
  9.  電気・電子機器用筐体である請求項7に記載の成形体。 The molded body according to claim 7, which is a casing for an electric / electronic device.
  10.  電気・電子機器用シャーシである請求項7に記載の成形体。 The molded article according to claim 7, which is a chassis for electrical and electronic equipment.
PCT/JP2010/070067 2009-11-20 2010-11-11 Polycarbonate resin composition WO2011062105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800512298A CN102612542A (en) 2009-11-20 2010-11-11 Polycarbonate resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009265284A JP5654744B2 (en) 2009-11-20 2009-11-20 Polycarbonate resin composition
JP2009-265284 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011062105A1 true WO2011062105A1 (en) 2011-05-26

Family

ID=44059584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070067 WO2011062105A1 (en) 2009-11-20 2010-11-11 Polycarbonate resin composition

Country Status (5)

Country Link
JP (1) JP5654744B2 (en)
KR (1) KR20120092129A (en)
CN (1) CN102612542A (en)
TW (1) TWI490269B (en)
WO (1) WO2011062105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029841A1 (en) * 2013-08-29 2015-03-05 出光興産株式会社 Polycarbonate resin composition and molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111560A (en) * 2009-11-27 2011-06-09 Idemitsu Kosan Co Ltd Polycarbonate resin composition
JP5547953B2 (en) * 2009-12-10 2014-07-16 出光興産株式会社 Polycarbonate-polyorganosiloxane copolymer, process for producing the same, and polycarbonate resin containing the copolymer
CN104479327B (en) * 2014-12-15 2016-06-01 上海锦湖日丽塑料有限公司 A kind of PC/ABS composition and its preparation method improving air-conditioning panel photoetch phenomenon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173276A (en) * 1993-12-17 1995-07-11 Idemitsu Petrochem Co Ltd Polycarbonate resin, production thereof and resin composition
JP2006273931A (en) * 2005-03-28 2006-10-12 Teijin Chem Ltd Flame-retardant resin composition
JP2009143995A (en) * 2007-12-12 2009-07-02 Idemitsu Kosan Co Ltd Polycarbonate resin composition, polycarbonate resin molded article, and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021192B2 (en) * 2004-12-06 2012-09-05 出光興産株式会社 Polycarbonate resin composition and molded body
US7888409B2 (en) * 2006-05-15 2011-02-15 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173276A (en) * 1993-12-17 1995-07-11 Idemitsu Petrochem Co Ltd Polycarbonate resin, production thereof and resin composition
JP2006273931A (en) * 2005-03-28 2006-10-12 Teijin Chem Ltd Flame-retardant resin composition
JP2009143995A (en) * 2007-12-12 2009-07-02 Idemitsu Kosan Co Ltd Polycarbonate resin composition, polycarbonate resin molded article, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029841A1 (en) * 2013-08-29 2015-03-05 出光興産株式会社 Polycarbonate resin composition and molded article
EP3040380A1 (en) * 2013-08-29 2016-07-06 Idemitsu Kosan Co., Ltd Polycarbonate resin composition and molded article
JPWO2015029841A1 (en) * 2013-08-29 2017-03-02 出光興産株式会社 Polycarbonate resin composition and molded body
EP3040380A4 (en) * 2013-08-29 2017-03-29 Idemitsu Kosan Co., Ltd Polycarbonate resin composition and molded article

Also Published As

Publication number Publication date
TW201124469A (en) 2011-07-16
JP5654744B2 (en) 2015-01-14
KR20120092129A (en) 2012-08-20
TWI490269B (en) 2015-07-01
JP2011105914A (en) 2011-06-02
CN102612542A (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5957399B2 (en) Polycarbonate resin composition and molded body
JP5073203B2 (en) Polycarbonate resin composition, molded product thereof, and film and sheet
JP5466445B2 (en) Transparent flame retardant aromatic polycarbonate resin composition and molded article thereof
TW200407385A (en) Polycarbonate resin composition and molded article thereof
JP4746891B2 (en) Flame retardant resin composition and molded body thereof
WO2005085353A1 (en) Polycarbonate resin composition and molded article thereof
JP4212959B2 (en) Polycarbonate resin composition and molded product
JP5276765B2 (en) Aromatic polycarbonate resin composition and molded article using the same
JP5795858B2 (en) Aromatic polycarbonate resin composition and molded article formed by injection molding thereof
JP5654744B2 (en) Polycarbonate resin composition
JP3616791B2 (en) Flame retardant polycarbonate resin composition and molded article
JP5342804B2 (en) Aromatic polycarbonate resin composition and molded article thereof
JP3623117B2 (en) Flame retardant polycarbonate resin composition and molded article
JP5616612B2 (en) Polycarbonate resin composition
WO2011065231A1 (en) Polycarbonate resin composition
JP5086499B2 (en) Polycarbonate resin composition and molded product
JP4691316B2 (en) Polycarbonate resin composition and injection molded body
JP4540804B2 (en) Polycarbonate resin composition and molded article
JP4629856B2 (en) Polycarbonate resin composition
JP2005097363A (en) Polycarbonate resin composition and molded product thereof
JP5463255B2 (en) Polycarbonate resin composition
JP4498552B2 (en) Polycarbonate resin composition and molded article
JP4478300B2 (en) Polycarbonate resin composition and molded product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051229.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127012532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831500

Country of ref document: EP

Kind code of ref document: A1