WO2011058717A1 - Apparatus for measuring amount of water vapor transmission and method for measuring amount of water vapor transmission - Google Patents

Apparatus for measuring amount of water vapor transmission and method for measuring amount of water vapor transmission Download PDF

Info

Publication number
WO2011058717A1
WO2011058717A1 PCT/JP2010/006452 JP2010006452W WO2011058717A1 WO 2011058717 A1 WO2011058717 A1 WO 2011058717A1 JP 2010006452 W JP2010006452 W JP 2010006452W WO 2011058717 A1 WO2011058717 A1 WO 2011058717A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
water vapor
valve
dry gas
amount
Prior art date
Application number
PCT/JP2010/006452
Other languages
French (fr)
Japanese (ja)
Inventor
庄太 金井
村上 裕彦
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011540404A priority Critical patent/JP5275473B2/en
Publication of WO2011058717A1 publication Critical patent/WO2011058717A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Definitions

  • the present invention relates to a water vapor transmission amount measuring apparatus and a water vapor transmission amount measurement method for measuring the water vapor transmission amount of a measurement object.
  • the water vapor transmission rate is the rate at which water vapor passes through the measurement object, and is represented by the water vapor transmission rate (g / m 2 / day) per unit time and unit area.
  • the amount of water vapor permeation is very small, especially when the speed at which water vapor permeates the measurement object is low. It has been.
  • Patent Document 1 describes “apparatus and method for measuring water vapor permeability”.
  • the apparatus the first chamber and the second chamber are partitioned by the measurement object, and a circulation path is connected to the second chamber.
  • the circuit is provided with a pump and a dew point meter.
  • purge gas is circulated through the circulation path to remove moisture.
  • water vapor is introduced into the first chamber, and the water vapor that has passed through the measurement object and reached the second chamber circulates in the circulation path by the pump.
  • the amount of water vapor flowing through the circulation path is measured by the dew point meter, and the water vapor permeability of the measurement object is determined.
  • an object of the present invention is to provide a water vapor transmission amount measuring apparatus and a measurement method thereof for measuring a water vapor transmission amount with high accuracy.
  • a water vapor permeation amount measuring apparatus includes a chamber, a dry gas introduction path, a dry gas discharge path, and a water vapor amount measuring device.
  • the chamber is divided into a first chamber and a second chamber by a measurement object.
  • the dry gas introduction path has a first valve, is connected to the second chamber of the chamber, and introduces the dry gas into the second chamber.
  • the dry gas discharge path has a second valve, is connected to the second chamber of the chamber, and discharges the dry gas from the second chamber.
  • the water vapor amount measuring device is disposed between the first valve and the second chamber, and is formed by closing the first valve and the second valve from the first chamber. The amount of water vapor that has passed through the measurement object is measured toward the measurement space.
  • the measurement object is arranged so as to divide the chamber into two chambers, a first chamber and a second chamber.
  • the dry gas is introduced into the second chamber by opening the first valve provided in the dry gas introduction path, and the second valve is provided by opening the second valve provided in the dry gas discharge path. Discharged from the chamber.
  • the introduction of the dry gas into the second chamber and the discharge of the dry gas from the second chamber are stopped by closing the first valve and the second valve.
  • the amount of water vapor that has passed through the measurement object from the first chamber toward the measurement space formed by closing the first valve and the second valve is the same as that of the first valve. It is measured by a water vapor amount measuring device arranged between the second chambers.
  • a water vapor permeation amount measuring apparatus includes a chamber, a dry gas introduction path, a dry gas discharge path, and a water vapor amount measuring device.
  • the chamber is divided into a first chamber and a second chamber by a measurement object.
  • the dry gas introduction path has a first valve, is connected to the second chamber of the chamber, and introduces the dry gas into the second chamber.
  • the dry gas discharge path has a second valve, is connected to the second chamber of the chamber, and discharges the dry gas from the second chamber.
  • the water vapor amount measuring device is disposed between the first valve and the second chamber, and is formed by closing the first valve and the second valve from the first chamber. The amount of water vapor that has passed through the measurement object is measured toward the measurement space.
  • the first valve and the second valve are opened, the drying gas is introduced into the second chamber from the drying gas introduction path, and is discharged through the drying gas discharge path.
  • the water vapor amount measuring device is provided in the dry gas introduction path, that is, located upstream of the second chamber in the dry gas flow path, so that water removed from the second chamber adheres to the water vapor amount measuring device. Is prevented.
  • the first valve and the second valve are closed, water vapor is introduced into the first chamber, and the amount of water vapor that has permeated the measurement object from the first chamber toward the measurement space (water vapor transmission amount). Is measured by a water vapor meter.
  • moisture content removed from the 2nd chamber in the drying process has not adhered to the water vapor
  • the water vapor amount measuring device may be a dew point meter.
  • Dew point meter makes it possible to measure minute water vapor transmission with high accuracy.
  • the measurement object is arranged so as to divide the chamber into two chambers, a first chamber and a second chamber.
  • the dry gas is introduced into the second chamber by opening the first valve provided in the dry gas introduction path, and the second valve is provided by opening the second valve provided in the dry gas discharge path. Discharged from the chamber.
  • the introduction of the dry gas into the second chamber and the discharge of the dry gas from the second chamber are stopped by closing the first valve and the second valve.
  • the amount of water vapor that has passed through the measurement object from the first chamber toward the measurement space formed by closing the first valve and the second valve is the same as that of the first valve. It is measured by a water vapor amount measuring device arranged between the second chambers.
  • the water vapor amount measuring device is provided in the dry gas introduction path, that is, upstream of the second chamber in the flow path of the dry gas, the water removed from the second chamber adheres to the water vapor amount measuring device. It is possible to prevent and measure the water vapor transmission rate with high accuracy.
  • FIG. 1 is a diagram showing a schematic configuration of a water vapor transmission amount measuring apparatus 1 according to an embodiment of the present invention. (First embodiment) FIG. 1 is a schematic diagram showing a schematic configuration of a water vapor transmission amount measuring apparatus 1 according to the first embodiment.
  • the water vapor transmission amount measuring apparatus 1 includes a chamber 2, a gas supply system 3, a sample gas introduction path 4, a dry gas introduction path 5, a sample gas discharge path 6, a dry gas discharge path 7, and a water vapor amount measurement.
  • a container 8 is provided.
  • the sample gas introduction path 4, the dry gas introduction path 5, the sample gas discharge path 6 and the dry gas discharge path 7 are each connected to the chamber 2.
  • the gas supply system 3 is connected to the sample gas introduction path 4 and the dry gas introduction path 5.
  • the water vapor amount measuring device 8 is disposed on the dry gas introduction path 5.
  • a film F that is a measurement object is attached to the chamber 2.
  • FIG. 2 is a cross-sectional view showing the configuration of the chamber 2.
  • the chamber 2 includes a first chamber portion 9, a second chamber portion 10, a fastener 11, and a gasket 12.
  • the first chamber portion 9 and the second chamber portion 10 are fastened by a fastener 11, and the gasket 12 is disposed at a joint portion between the first chamber portion 9 and the second chamber portion 10.
  • the first chamber portion 9 is made of a material such as stainless steel, and has a concave portion 9a and a flange portion 9b.
  • the concave portion 9a is a concave portion having an opening.
  • a flange portion 9b is formed at the opening edge of the recess 9a, and a groove is formed in the flange portion 9b along the opening of the recess 9a.
  • the recess 9a is formed with a hole to which the pipe 18 of the sample gas introduction path 4 and the pipe 26 of the sample gas discharge path 6 are connected.
  • the second chamber portion 10 is made of a material having low adsorptivity and permeability to water vapor such as stainless steel, and is formed with a concave portion 10a and a flange portion 10b.
  • the concave portion 10a is a concave portion having an opening.
  • a flange portion 10b is formed at the opening edge of the recess 10a, and a groove is formed in the flange portion 10b along the opening of the recess 10a.
  • the recess 10a is formed with a hole to which the pipe 22 of the dry gas introduction path 5 and the pipe 28 of the dry gas discharge path 7 are connected.
  • the first chamber portion 9 and the second chamber portion 10 may be formed in the same shape or different shapes. However, the opening shapes of the recess 9a and the recess 10a and the joint surfaces of the flange portion 9b and the flange portion 10b need to correspond. In addition, the time required for the water vapor
  • the fastener 11 fastens the flange portion 9b and the flange portion 10b.
  • the fastener 11 for example, a bolt, a nut, a clamp, or the like that can be easily attached and detached is used.
  • the gasket 12 seals the inside and the outside of the chamber 2.
  • the gasket 12 is, for example, an O-ring made of rubber.
  • One gasket 12 is fitted into each of the groove of the flange portion 9b and the groove of the flange portion 10b. When the flange portion 9b and the flange portion 10b are fastened, the gasket 12 faces through the film F and blocks the gas communication between the film F and the flange portion 9b and between the film F and the flange portion 10b.
  • the first chamber portion 9 and the second chamber portion 10 are coupled with the film F attached, the first chamber 13 surrounded by the recess 9a and the film F, the recess 10a, and the film are contained in the chamber 2.
  • Two chambers of the second chamber 14 surrounded by F are formed.
  • the gas supply system 3 includes a gas source 15 and a pipe 16.
  • the gas source 15 is connected to the humidifier 17 in the sample gas introduction path 4 and the purifier 20 in the dry gas introduction path 5 by a pipe 16.
  • the gas source 15 is a gas cylinder or the like, and supplies the source gas that is the source of the sample gas and the dry gas to the sample gas introduction path 4 and the dry gas introduction path 5.
  • the source gas is, for example, nitrogen.
  • the sample gas introduction path 4 includes a humidifier 17, a pipe 18 and a third valve 19.
  • the humidifier 17 is connected to the first chamber 13 of the chamber 2 by a pipe 18.
  • the humidifier 17 causes the raw material gas supplied from the gas supply system 3 to contain water vapor to generate a sample gas.
  • the third valve 19 is provided in the pipe 18 and opens and closes the pipe 18.
  • the dry gas introduction path 5 includes a purifier 20, a pipe 22, a first valve 24, and a fourth valve 25.
  • the purifier 20 is connected to the second chamber 14 of the chamber 2 by a pipe 22 via a water vapor amount measuring device 8 described later.
  • the purifier 20 is a filter or the like, and removes moisture and impurities from the source gas supplied from the gas supply system 3. Drying gas is generated from the raw material gas by the purifier 20.
  • the first valve 24 is provided between the purifier 20 of the pipe 22 and the water vapor amount measuring device 8 and opens and closes the pipe 22.
  • the fourth valve 25 is provided between the water vapor amount measuring device 8 in the pipe 22 and the chamber 2 and opens and closes the pipe 22.
  • the sample gas discharge path 6 has a pipe 26 and a fifth valve 27.
  • One end of the pipe 26 is connected to the first chamber 13 of the chamber 2, and the other end is connected to an exhaust system (not shown).
  • the exhaust system may be an exhaust mechanism such as a vacuum pump or may be open to the atmosphere.
  • the fifth valve 27 is provided in the pipe 26 and opens and closes the pipe 26.
  • the dry gas discharge path 7 has a pipe 28 and a second valve 29.
  • One end of the pipe 28 is connected to the second chamber 14 of the chamber 2, and the other end is connected to the exhaust system.
  • the exhaust system may be an exhaust mechanism such as a vacuum pump or may be open to the atmosphere.
  • the second valve 29 is provided in the pipe 28 and opens and closes the pipe 28.
  • the water vapor amount measuring device 8 is disposed between the first valve 24 and the second chamber 14 of the chamber 2 in the pipe 22 of the dry gas introduction path 5.
  • the water vapor amount measuring device 8 can be appropriately selected from those capable of measuring the water vapor amount (humidity). For example, use a polymer resistance hygrometer, polymer capacitive hygrometer, aluminum oxide capacitive hygrometer, infrared hygrometer, microwave hygrometer, lithium chloride dew point meter, mirror cooled dew point meter, alpha ray dew point meter, etc. Is possible. Of these, a minute amount of water vapor can be measured with high accuracy by using a dew point meter.
  • the water vapor transmission amount measuring device 1 is configured as described above. When the first valve 24 and the second valve 29 are closed, the second chamber 14 and the pipe 22 are measured by the chamber 2 side from the first valve 24 and the second valve 29 of the pipe 28 by the chamber 2 side. A space is formed.
  • the water vapor transmission amount measuring device 1 includes a heater (not shown) that maintains the temperature of the chamber 2 and each pipe at a predetermined temperature.
  • the operation of the water vapor transmission amount measuring apparatus 1 Before the water vapor permeation amount of the film F is measured, it is necessary to remove water vapor present in the measurement space from the beginning, and therefore, the drying process of the measurement space is performed as follows.
  • the film F as the measurement object is set between the flange portion 9b of the first chamber portion 9 and the flange portion 10b of the second chamber portion 10, and the temperature of the water vapor transmission amount measuring device 1 is maintained constant.
  • the temperature of the chamber 2 is 80 ° C.
  • the temperature of each pipe is 50 ° C.
  • the second valve 29, the fourth valve 25, and the first valve 24 are opened in this order.
  • the raw material gas is supplied from the gas source 15 through the pipe 16 to the purifier 20, and is dried and impurities are removed by the purifier 20 to generate a dry gas.
  • the dry gas is introduced into the second chamber 14 through the pipe 22 and the water vapor amount measuring device 8.
  • the dry gas introduced into the second chamber 14 is discharged through the pipe 28.
  • the drying gas has a flow rate of, for example, 5 L / min.
  • the water vapor transmission amount measuring device 1 is maintained in this state for a predetermined time, for example, 20 hours.
  • the first valve 24 and the second valve 29 are closed in this order, and the circulation of the dry gas is stopped.
  • the third valve 19 and the fifth valve 27 may be opened in a state where the humidifier 17 is not operated, and the source gas may be circulated into the first chamber.
  • the water vapor existing in the measurement space is removed by the circulation of the dry gas performed in this way.
  • the water vapor amount measuring device 8 is provided in the pipe 22 upstream of the second chamber 14, the water vapor released from the second chamber 14 does not adhere to the water vapor amount measuring device 8.
  • the amount of water vapor permeation through the film F is measured as follows.
  • the temperature of the chamber 2 and the piping is changed to 40 ° C.
  • the fifth valve 27 and the third valve 19 are opened in this order.
  • the source gas is humidified by the humidifier 17 from the gas source 15 through the pipe 16, and sample gas is generated.
  • the sample gas is introduced into the first chamber 13 through the pipe 18.
  • the sample gas introduced into the first chamber 13 is discharged through the pipe 26.
  • a part of the water vapor contained in the sample gas introduced into the first chamber 13 is transmitted from the film F, which is a measurement object, into the measurement space.
  • the transmitted water vapor diffuses in the measurement space and is measured by the water vapor amount measuring device 8. From the water vapor amount measured by the water vapor amount measuring device 8, the area of the film F, and the measurement elapsed time, the water vapor transmission amount (g / m 2 / day) is obtained.
  • the water vapor transmission amount of the film F is measured.
  • the water vapor released from the second chamber 14 does not adhere to the water vapor amount measuring device 8, so that the influence of the water vapor on the measurement value is eliminated, and the water vapor transmission amount is measured with high accuracy. It becomes possible to do.
  • the required amount can be reduced as compared with the case where the dry gas is constantly circulated during the measurement. Further, since water vapor that has passed through the film F remains in the measurement space without being discharged, measurement can be performed even when the speed at which the water vapor passes through the film F is low.
  • the present invention is not limited to the above-described embodiment, and can be modified within the scope not departing from the gist of the present invention.
  • the gas supply system has a gas source that supplies the source gas to the dry gas supply path and the sample gas supply path, but is not limited thereto, and a gas source and a sample gas supply that supply the source gas to the dry gas supply path You may have another gas source which supplies source gas to a path

Abstract

An apparatus and a method for measuring the amount of water vapor transmission with high accuracy. An apparatus for measuring the amount of water vapor transmission is provided with a chamber, a dry gas introduction path, a dry gas discharge path, and a water vapor amount measuring unit. The chamber is partitioned into a first chamber and a second chamber by an object to be measured. The dry gas introduction path has a first valve, is connected to the second chamber of the chamber, and introduces dry gas into the second chamber. The dry gas discharge path has a second valve, is connected to the second chamber of the chamber, and discharges the dry gas from the second chamber. The water vapor amount measuring unit is disposed between the first valve and the second chamber and measures the amount of water vapor transmitted from the first chamber through the object to be measured toward a measurement space formed when the first valve and the second valve are closed.

Description

水蒸気透過量測定装置及び水蒸気透過量測定方法Water vapor permeation measuring device and water vapor permeation measuring method
 本発明は、測定対象物の水蒸気透過量を測定するための水蒸気透過量測定装置及び水蒸気透過量測定方法に関するに関する。 The present invention relates to a water vapor transmission amount measuring apparatus and a water vapor transmission amount measurement method for measuring the water vapor transmission amount of a measurement object.
 食品包装用のフィルム等の評価要件の一つに水蒸気透過量がある。水蒸気透過量は水蒸気が測定対象物を透過する速度であり、単位時間、単位面積当たりの水蒸気の透過量(g/m/day)で表される。水蒸気透過量は、特に水蒸気が測定対象物を透過する速度が小さい場合等には非常に小さい値になり、また水蒸気は空気中に存在することもあって、高精度に測定されることが求められている。 One of the evaluation requirements for food packaging films is the water vapor transmission rate. The water vapor transmission rate is the rate at which water vapor passes through the measurement object, and is represented by the water vapor transmission rate (g / m 2 / day) per unit time and unit area. The amount of water vapor permeation is very small, especially when the speed at which water vapor permeates the measurement object is low. It has been.
 水蒸気透過量を測定するための測定装置及び測定方法には種々の形態のものが存在する。例えば、特許文献1には、「水蒸気透過度を測定するための装置とその方法」が記載されている。当該装置では、測定対象物によって第1の室と第2の室とが区画され、第2の室には循環路が接続されている。循環路にはポンプと露点計が設けられている。測定前に、循環路にパージガスが流通され、水分が除去される。測定では、第1の室に水蒸気が導入され、測定対象物を透過して第2の室に到達した水蒸気はポンプによって循環路を循環する。露点計によって循環路を流通する水蒸気の量が測定され、測定対象物の水蒸気透過性が判断される。 There are various types of measuring apparatuses and measuring methods for measuring the water vapor transmission rate. For example, Patent Document 1 describes “apparatus and method for measuring water vapor permeability”. In the apparatus, the first chamber and the second chamber are partitioned by the measurement object, and a circulation path is connected to the second chamber. The circuit is provided with a pump and a dew point meter. Prior to measurement, purge gas is circulated through the circulation path to remove moisture. In the measurement, water vapor is introduced into the first chamber, and the water vapor that has passed through the measurement object and reached the second chamber circulates in the circulation path by the pump. The amount of water vapor flowing through the circulation path is measured by the dew point meter, and the water vapor permeability of the measurement object is determined.
国際公開WO 2009/041632号公報(段落[0010]、図1)International Publication WO 2009/041632 (paragraph [0010], FIG. 1)
 しかしながら、特許文献1に記載の装置では、測定中にパージガスが循環路中を流通するため、第2の室から除去された水分が循環路に設けられた露点計に付着する。この水分によって測定値に誤差が生じ、特に測定対象物の水蒸気透過性が小さい場合には正確な水蒸気透過量の測定できないおそれがある。 However, in the apparatus described in Patent Document 1, since purge gas circulates in the circulation path during measurement, moisture removed from the second chamber adheres to a dew point meter provided in the circulation path. This moisture causes an error in the measured value. In particular, when the water vapor permeability of the object to be measured is small, there is a possibility that the accurate water vapor transmission amount cannot be measured.
 以上のような事情に鑑み、本発明の目的は、水蒸気透過量を高精度に測定するための水蒸気透過量測定装置及びその測定方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a water vapor transmission amount measuring apparatus and a measurement method thereof for measuring a water vapor transmission amount with high accuracy.
 上記目的を達成するため、本発明の一形態に係る水蒸気透過量測定装置は、チャンバと、乾燥ガス導入経路と、乾燥ガス排出経路と、水蒸気量測定器とを具備する。
 上記チャンバは、測定対象物により第1の室と第2の室とに区画される。
 上記乾燥ガス導入経路は、第1のバルブを有し、チャンバの上記第2の室に接続され、上記第2の室に乾燥ガスを導入する。
 上記乾燥ガス排出経路は、第2のバルブを有し、上記チャンバの上記第2の室に接続され、上記第2の室から上記乾燥ガスを排出する。
 上記水蒸気量測定器は、上記第1のバルブと上記第2の室の間に配置され、上記第1の室から、上記第1のバルブ及び上記第2のバルブが閉止されることで形成される測定空間に向けて上記測定対象物を透過した水蒸気の量を測定する。
In order to achieve the above object, a water vapor permeation amount measuring apparatus according to an embodiment of the present invention includes a chamber, a dry gas introduction path, a dry gas discharge path, and a water vapor amount measuring device.
The chamber is divided into a first chamber and a second chamber by a measurement object.
The dry gas introduction path has a first valve, is connected to the second chamber of the chamber, and introduces the dry gas into the second chamber.
The dry gas discharge path has a second valve, is connected to the second chamber of the chamber, and discharges the dry gas from the second chamber.
The water vapor amount measuring device is disposed between the first valve and the second chamber, and is formed by closing the first valve and the second valve from the first chamber. The amount of water vapor that has passed through the measurement object is measured toward the measurement space.
 上記目的を達成するため、本発明の一形態に係る水蒸気透過量測定方法は、チャンバを第1の室と第2の室との2室に区画するように測定対象物を配置する。
 乾燥ガスは、乾燥ガス導入経路に設けられた第1のバルブを開放することで上記第2の室に導入され、乾燥ガス排出経路に設けられた第2のバルブを開放することで上記第2の室から排出される。
 上記第2の室への乾燥ガスの導入及び上記第2の室からの乾燥ガスの排出は、上記第1のバルブ及び上記第2のバルブを閉止することで停止される。
 上記第1の室から、上記第1のバルブ及び上記第2のバルブが閉止されることで形成される測定空間に向けて上記測定対象物を透過した水蒸気の量は、上記第1のバルブと上記第2の室の間に配置された水蒸気量測定器によって測定される。
In order to achieve the above object, in the method for measuring the amount of water vapor permeation according to one aspect of the present invention, the measurement object is arranged so as to divide the chamber into two chambers, a first chamber and a second chamber.
The dry gas is introduced into the second chamber by opening the first valve provided in the dry gas introduction path, and the second valve is provided by opening the second valve provided in the dry gas discharge path. Discharged from the chamber.
The introduction of the dry gas into the second chamber and the discharge of the dry gas from the second chamber are stopped by closing the first valve and the second valve.
The amount of water vapor that has passed through the measurement object from the first chamber toward the measurement space formed by closing the first valve and the second valve is the same as that of the first valve. It is measured by a water vapor amount measuring device arranged between the second chambers.
本発明の実施形態に係る水蒸気量測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the water vapor content measuring apparatus which concerns on embodiment of this invention. 当該水蒸気量測定装置のチャンバの構成を示す断面図である。It is sectional drawing which shows the structure of the chamber of the said water vapor amount measuring apparatus.
 本発明の一実施形態に係る水蒸気透過量測定装置は、チャンバと、乾燥ガス導入経路と、乾燥ガス排出経路と、水蒸気量測定器とを具備する。
 上記チャンバは、測定対象物により第1の室と第2の室とに区画される。
 上記乾燥ガス導入経路は、第1のバルブを有し、チャンバの上記第2の室に接続され、上記第2の室に乾燥ガスを導入する。
 上記乾燥ガス排出経路は、第2のバルブを有し、上記チャンバの上記第2の室に接続され、上記第2の室から上記乾燥ガスを排出する。
 上記水蒸気量測定器は、上記第1のバルブと上記第2の室の間に配置され、上記第1の室から、上記第1のバルブ及び上記第2のバルブが閉止されることで形成される測定空間に向けて上記測定対象物を透過した水蒸気の量を測定する。
A water vapor permeation amount measuring apparatus according to an embodiment of the present invention includes a chamber, a dry gas introduction path, a dry gas discharge path, and a water vapor amount measuring device.
The chamber is divided into a first chamber and a second chamber by a measurement object.
The dry gas introduction path has a first valve, is connected to the second chamber of the chamber, and introduces the dry gas into the second chamber.
The dry gas discharge path has a second valve, is connected to the second chamber of the chamber, and discharges the dry gas from the second chamber.
The water vapor amount measuring device is disposed between the first valve and the second chamber, and is formed by closing the first valve and the second valve from the first chamber. The amount of water vapor that has passed through the measurement object is measured toward the measurement space.
 測定前の乾燥工程において、第1のバルブ及び第2のバルブが開放されて第2の室に乾燥ガス導入経路から乾燥ガスが導入され、乾燥ガス排出経路によって排出される。水蒸気量測定器は乾燥ガス導入経路に設けられ、即ち、乾燥ガスの流通経路において第2の室より上流に位置するため、第2の室から除去された水分が水蒸気量測定器に付着することが防止される。
 測定では、第1のバルブ及び第2のバルブが閉止されて第1の室に水蒸気が導入され、第1の室から測定空間に向けて測定対象物を透過した水蒸気の量(水蒸気透過量)が水蒸気量測定器によって測定される。ここで、水蒸気量測定器には、乾燥工程において第2の室から除去された水分が付着していないため、水蒸気透過量を高精度に測定することが可能である。
In the drying process before the measurement, the first valve and the second valve are opened, the drying gas is introduced into the second chamber from the drying gas introduction path, and is discharged through the drying gas discharge path. The water vapor amount measuring device is provided in the dry gas introduction path, that is, located upstream of the second chamber in the dry gas flow path, so that water removed from the second chamber adheres to the water vapor amount measuring device. Is prevented.
In the measurement, the first valve and the second valve are closed, water vapor is introduced into the first chamber, and the amount of water vapor that has permeated the measurement object from the first chamber toward the measurement space (water vapor transmission amount). Is measured by a water vapor meter. Here, since the water | moisture content removed from the 2nd chamber in the drying process has not adhered to the water vapor | steam measuring device, it is possible to measure water vapor | steam transmission | permeation amount with high precision.
 上記水蒸気量測定器は露点計であってもよい。 The water vapor amount measuring device may be a dew point meter.
 露点計によって、微少な水蒸気透過量を高精度に測定することが可能となる。 Dew point meter makes it possible to measure minute water vapor transmission with high accuracy.
 本発明の一実施形態に係る水蒸気透過量測定方法は、チャンバを第1の室と第2の室との2室に区画するように測定対象物を配置する。
 乾燥ガスは、乾燥ガス導入経路に設けられた第1のバルブを開放することで上記第2の室に導入され、乾燥ガス排出経路に設けられた第2のバルブを開放することで上記第2の室から排出される。
 上記第2の室への乾燥ガスの導入及び上記第2の室からの乾燥ガスの排出は、上記第1のバルブ及び上記第2のバルブを閉止することで停止される。
 上記第1の室から、上記第1のバルブ及び上記第2のバルブが閉止されることで形成される測定空間に向けて上記測定対象物を透過した水蒸気の量は、上記第1のバルブと上記第2の室の間に配置された水蒸気量測定器によって測定される。
In the water vapor transmission amount measurement method according to an embodiment of the present invention, the measurement object is arranged so as to divide the chamber into two chambers, a first chamber and a second chamber.
The dry gas is introduced into the second chamber by opening the first valve provided in the dry gas introduction path, and the second valve is provided by opening the second valve provided in the dry gas discharge path. Discharged from the chamber.
The introduction of the dry gas into the second chamber and the discharge of the dry gas from the second chamber are stopped by closing the first valve and the second valve.
The amount of water vapor that has passed through the measurement object from the first chamber toward the measurement space formed by closing the first valve and the second valve is the same as that of the first valve. It is measured by a water vapor amount measuring device arranged between the second chambers.
 水蒸気量測定器は乾燥ガス導入経路に設けられ、即ち、乾燥ガスの流通経路において第2の室より上流にあるため、第2の室から除去された水分が水蒸気量測定器に付着することを防止し、水蒸気透過量を高精度に測定することが可能である。 Since the water vapor amount measuring device is provided in the dry gas introduction path, that is, upstream of the second chamber in the flow path of the dry gas, the water removed from the second chamber adheres to the water vapor amount measuring device. It is possible to prevent and measure the water vapor transmission rate with high accuracy.
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る水蒸気透過量測定装置1の概略構成示す図である。
 (第1の実施形態)
 図1は、第1の実施形態に係る水蒸気透過量測定装置1の概略構成を示す模式図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a water vapor transmission amount measuring apparatus 1 according to an embodiment of the present invention.
(First embodiment)
FIG. 1 is a schematic diagram showing a schematic configuration of a water vapor transmission amount measuring apparatus 1 according to the first embodiment.
 同図に示すように、水蒸気透過量測定装置1は、チャンバ2、ガス供給系3、試料ガス導入経路4、乾燥ガス導入経路5、試料ガス排出経路6、乾燥ガス排出経路7、水蒸気量測定器8を有する。
 試料ガス導入経路4、乾燥ガス導入経路5、試料ガス排出経路6及び乾燥ガス排出経路7はそれぞれチャンバ2に接続されている。ガス供給系3は、試料ガス導入経路4及び乾燥ガス導入経路5に接続されている。水蒸気量測定器8は乾燥ガス導入経路5上に配置されている。チャンバ2には、測定対象物であるフィルムFが取り付けられている。
As shown in the figure, the water vapor transmission amount measuring apparatus 1 includes a chamber 2, a gas supply system 3, a sample gas introduction path 4, a dry gas introduction path 5, a sample gas discharge path 6, a dry gas discharge path 7, and a water vapor amount measurement. A container 8 is provided.
The sample gas introduction path 4, the dry gas introduction path 5, the sample gas discharge path 6 and the dry gas discharge path 7 are each connected to the chamber 2. The gas supply system 3 is connected to the sample gas introduction path 4 and the dry gas introduction path 5. The water vapor amount measuring device 8 is disposed on the dry gas introduction path 5. A film F that is a measurement object is attached to the chamber 2.
 図2はチャンバ2の構成を示す断面図である。
 同図に示すように、チャンバ2は、第1チャンバ部9、第2チャンバ部10、締結具11及びガスケット12を有する。第1チャンバ部9と第2チャンバ部10とが締結具11により締結され、ガスケット12は第1チャンバ部9と第2チャンバ部10の接合箇所に配置される。
FIG. 2 is a cross-sectional view showing the configuration of the chamber 2.
As shown in the figure, the chamber 2 includes a first chamber portion 9, a second chamber portion 10, a fastener 11, and a gasket 12. The first chamber portion 9 and the second chamber portion 10 are fastened by a fastener 11, and the gasket 12 is disposed at a joint portion between the first chamber portion 9 and the second chamber portion 10.
 第1チャンバ部9はステンレス等の材料からなり、凹部9aと、フランジ部9bとが形成されている。凹部9aは開口を有する凹状部分である。凹部9aの開口縁にフランジ部9bが形成され、フランジ部9bに、凹部9aの開口に沿って溝が形成されている。また凹部9aには試料ガス導入経路4の配管18及び試料ガス排出経路6の配管26が接続される孔が形成されている。 The first chamber portion 9 is made of a material such as stainless steel, and has a concave portion 9a and a flange portion 9b. The concave portion 9a is a concave portion having an opening. A flange portion 9b is formed at the opening edge of the recess 9a, and a groove is formed in the flange portion 9b along the opening of the recess 9a. The recess 9a is formed with a hole to which the pipe 18 of the sample gas introduction path 4 and the pipe 26 of the sample gas discharge path 6 are connected.
 第2チャンバ部10はステンレス等の水蒸気に対する吸着性、透過性が低い材料からなり、凹部10aと、フランジ部10bとが形成されている。凹部10aは開口を有する凹状部分である。凹部10aの開口縁にフランジ部10bが形成され、フランジ部10bに、凹部10aの開口に沿って溝が形成されている。また、凹部10aには乾燥ガス導入経路5の配管22及び乾燥ガス排出経路7の配管28が接続される孔が形成されている。 The second chamber portion 10 is made of a material having low adsorptivity and permeability to water vapor such as stainless steel, and is formed with a concave portion 10a and a flange portion 10b. The concave portion 10a is a concave portion having an opening. A flange portion 10b is formed at the opening edge of the recess 10a, and a groove is formed in the flange portion 10b along the opening of the recess 10a. The recess 10a is formed with a hole to which the pipe 22 of the dry gas introduction path 5 and the pipe 28 of the dry gas discharge path 7 are connected.
 第1チャンバ部9と第2チャンバ部10とは同一形状に形成されてもよく、異なる形状に形成されてもよい。ただし、凹部9aと凹部10aの開口形状及びフランジ部9bとフランジ部10bの接合面は対応する必要がある。なお、凹部10aの容積が小さくなるように第2チャンバ部10を形成することにより、フィルムFを透過した水蒸気が拡散するのに必要な時間を低減することができる。 The first chamber portion 9 and the second chamber portion 10 may be formed in the same shape or different shapes. However, the opening shapes of the recess 9a and the recess 10a and the joint surfaces of the flange portion 9b and the flange portion 10b need to correspond. In addition, the time required for the water vapor | steam which permeate | transmitted the film F to diffuse can be reduced by forming the 2nd chamber part 10 so that the volume of the recessed part 10a may become small.
 締結具11はフランジ部9bとフランジ部10bを締結する。締結具11は例えばボルトとナット、クランプ等、着脱が容易なものが用いられる。
 ガスケット12は、チャンバ2の内部と外部とをシールする。ガスケット12は例えばゴムからなるOリング等である。ガスケット12は、フランジ部9bの溝、フランジ部10bの溝にそれぞれ一つずつ嵌めこまれる。ガスケット12はフランジ部9bとフランジ部10bが締結されるとフィルムFを介して対向し、フィルムFとフランジ部9b、フィルムFとフランジ部10bとの間のガスの連通を遮断する。
The fastener 11 fastens the flange portion 9b and the flange portion 10b. As the fastener 11, for example, a bolt, a nut, a clamp, or the like that can be easily attached and detached is used.
The gasket 12 seals the inside and the outside of the chamber 2. The gasket 12 is, for example, an O-ring made of rubber. One gasket 12 is fitted into each of the groove of the flange portion 9b and the groove of the flange portion 10b. When the flange portion 9b and the flange portion 10b are fastened, the gasket 12 faces through the film F and blocks the gas communication between the film F and the flange portion 9b and between the film F and the flange portion 10b.
 フィルムFが取り付けられた状態で第1チャンバ部9と第2チャンバ部10が結合されると、チャンバ2内に、凹部9aとフィルムFで囲まれた第1の室13と、凹部10aとフィルムFで囲まれた第2の室14の二室が形成される。 When the first chamber portion 9 and the second chamber portion 10 are coupled with the film F attached, the first chamber 13 surrounded by the recess 9a and the film F, the recess 10a, and the film are contained in the chamber 2. Two chambers of the second chamber 14 surrounded by F are formed.
 図1に示すように、ガス供給系3はガス源15と配管16を有する。ガス源15は配管16によって試料ガス導入経路4の加湿器17及び乾燥ガス導入経路5の純化器20に接続されている。ガス源15はガスボンベ等であり、試料ガス導入経路4及び乾燥ガス導入経路5に試料ガス及び乾燥ガスの元となる原料ガスを供給する。原料ガスは例えば窒素である。 As shown in FIG. 1, the gas supply system 3 includes a gas source 15 and a pipe 16. The gas source 15 is connected to the humidifier 17 in the sample gas introduction path 4 and the purifier 20 in the dry gas introduction path 5 by a pipe 16. The gas source 15 is a gas cylinder or the like, and supplies the source gas that is the source of the sample gas and the dry gas to the sample gas introduction path 4 and the dry gas introduction path 5. The source gas is, for example, nitrogen.
 試料ガス導入経路4は、加湿器17、配管18及び第3のバルブ19を有する。加湿器17は配管18によってチャンバ2の第1の室13に接続されている。加湿器17はガス供給系3から供給される原料ガスに水蒸気を含有させ試料ガスを生成する。第3のバルブ19は配管18に設けられ、配管18を開閉する。 The sample gas introduction path 4 includes a humidifier 17, a pipe 18 and a third valve 19. The humidifier 17 is connected to the first chamber 13 of the chamber 2 by a pipe 18. The humidifier 17 causes the raw material gas supplied from the gas supply system 3 to contain water vapor to generate a sample gas. The third valve 19 is provided in the pipe 18 and opens and closes the pipe 18.
 乾燥ガス導入経路5は、純化器20、配管22、第1のバルブ24及び第4のバルブ25を有する。純化器20は、配管22によって、後述する水蒸気量測定器8を介してチャンバ2の第2の室14に接続されている。純化器20はフィルター等であり、ガス供給系3から供給される原料ガスから水分及び不純物を除去する。純化器20によって原料ガスから乾燥ガスが生成される。第1のバルブ24は配管22の純化器20と水蒸気量測定器8の間に設けられ、配管22を開閉する。第4のバルブ25は配管22の水蒸気量測定器8とチャンバ2の間に設けられ、配管22を開閉する。 The dry gas introduction path 5 includes a purifier 20, a pipe 22, a first valve 24, and a fourth valve 25. The purifier 20 is connected to the second chamber 14 of the chamber 2 by a pipe 22 via a water vapor amount measuring device 8 described later. The purifier 20 is a filter or the like, and removes moisture and impurities from the source gas supplied from the gas supply system 3. Drying gas is generated from the raw material gas by the purifier 20. The first valve 24 is provided between the purifier 20 of the pipe 22 and the water vapor amount measuring device 8 and opens and closes the pipe 22. The fourth valve 25 is provided between the water vapor amount measuring device 8 in the pipe 22 and the chamber 2 and opens and closes the pipe 22.
 試料ガス排出経路6は、配管26及び第5のバルブ27を有する。配管26は一端がチャンバ2の第1の室13に接続され、他端は図示しない排気系に接続されている。排気系は、真空ポンプ等の排気機構であってもよく、また大気開放であってもよい。第5のバルブ27は配管26に設けられ、配管26を開閉する。 The sample gas discharge path 6 has a pipe 26 and a fifth valve 27. One end of the pipe 26 is connected to the first chamber 13 of the chamber 2, and the other end is connected to an exhaust system (not shown). The exhaust system may be an exhaust mechanism such as a vacuum pump or may be open to the atmosphere. The fifth valve 27 is provided in the pipe 26 and opens and closes the pipe 26.
 乾燥ガス排出経路7は、配管28及び第2のバルブ29を有する。配管28は一端がチャンバ2の第2の室14に接続され、他端は排気系に接続されている。排気系は、真空ポンプ等の排気機構であってもよく、また大気開放であってもよい。第2のバルブ29は配管28に設けられ、配管28を開閉する。 The dry gas discharge path 7 has a pipe 28 and a second valve 29. One end of the pipe 28 is connected to the second chamber 14 of the chamber 2, and the other end is connected to the exhaust system. The exhaust system may be an exhaust mechanism such as a vacuum pump or may be open to the atmosphere. The second valve 29 is provided in the pipe 28 and opens and closes the pipe 28.
 水蒸気量測定器8は、乾燥ガス導入経路5の配管22の、第1のバルブ24とチャンバ2の第2の室14の間に配置されている。水蒸気量測定器8は、水蒸気量(湿度)を測定することが可能なものから適宜選択することが可能である。例えば高分子抵抗式湿度計、高分子容量式湿度計、酸化アルミ容量式湿度計、赤外線湿度計、マイクロ波湿度計、塩化リチウム露点計、鏡面冷却式露点計、アルファ線露点計等を用いることが可能である。このうち、露点計を用いることにより、微少な水蒸気量を高精度に測定することが可能である。 The water vapor amount measuring device 8 is disposed between the first valve 24 and the second chamber 14 of the chamber 2 in the pipe 22 of the dry gas introduction path 5. The water vapor amount measuring device 8 can be appropriately selected from those capable of measuring the water vapor amount (humidity). For example, use a polymer resistance hygrometer, polymer capacitive hygrometer, aluminum oxide capacitive hygrometer, infrared hygrometer, microwave hygrometer, lithium chloride dew point meter, mirror cooled dew point meter, alpha ray dew point meter, etc. Is possible. Of these, a minute amount of water vapor can be measured with high accuracy by using a dew point meter.
 水蒸気透過量測定装置1は以上のように構成される。第1のバルブ24及び第2のバルブ29が閉止されると、第2の室14、配管22の第1のバルブ24よりチャンバ2側及び配管28の第2のバルブ29よりチャンバ2側によって測定空間が形成される。なお、水蒸気透過量測定装置1は、チャンバ2及び各配管の温度をそれぞれ所定の温度に維持する図示しないヒータを備える。 The water vapor transmission amount measuring device 1 is configured as described above. When the first valve 24 and the second valve 29 are closed, the second chamber 14 and the pipe 22 are measured by the chamber 2 side from the first valve 24 and the second valve 29 of the pipe 28 by the chamber 2 side. A space is formed. The water vapor transmission amount measuring device 1 includes a heater (not shown) that maintains the temperature of the chamber 2 and each pipe at a predetermined temperature.
 以下、水蒸気透過量測定装置1の動作を説明する。
 フィルムFの水蒸気透過量を測定する前に、当初から測定空間に存在する水蒸気を除去する必要があるため、以下のようにして測定空間の乾燥工程が行われる。
Hereinafter, the operation of the water vapor transmission amount measuring apparatus 1 will be described.
Before the water vapor permeation amount of the film F is measured, it is necessary to remove water vapor present in the measurement space from the beginning, and therefore, the drying process of the measurement space is performed as follows.
 第1チャンバ部9のフランジ部9bと、第2チャンバ部10のフランジ部10bの間に測定対象物であるフィルムFがセットされ、水蒸気透過量測定装置1の温度が一定に維持される。例えば、チャンバ2の温度は80℃、各配管の温度は50℃とされる。 The film F as the measurement object is set between the flange portion 9b of the first chamber portion 9 and the flange portion 10b of the second chamber portion 10, and the temperature of the water vapor transmission amount measuring device 1 is maintained constant. For example, the temperature of the chamber 2 is 80 ° C., and the temperature of each pipe is 50 ° C.
 第2のバルブ29、第4のバルブ25及び第1のバルブ24がこの順に開放される。原料ガスがガス源15から配管16を通って純化器20に供給され、純化器20によって乾燥及び不純物除去され、乾燥ガスが生成される。乾燥ガスは配管22及び水蒸気量測定器8を通って第2の室14に導入される。第2の室14に導入された乾燥ガスは、配管28を通って排出される。なお、乾燥ガスは、例えば流量5L/minとされる。水蒸気透過量測定装置1は、この状態で所定時間、例えば20時間維持される。所定時間経過後、第1のバルブ24及び第2のバルブ29がこの順で閉止され、乾燥ガスの流通が停止される。この際、加湿器17が作動していない状態で第3のバルブ19及び第5のバルブ27が開放され、原料ガスが第1の室に流通されてもよい。 The second valve 29, the fourth valve 25, and the first valve 24 are opened in this order. The raw material gas is supplied from the gas source 15 through the pipe 16 to the purifier 20, and is dried and impurities are removed by the purifier 20 to generate a dry gas. The dry gas is introduced into the second chamber 14 through the pipe 22 and the water vapor amount measuring device 8. The dry gas introduced into the second chamber 14 is discharged through the pipe 28. Note that the drying gas has a flow rate of, for example, 5 L / min. The water vapor transmission amount measuring device 1 is maintained in this state for a predetermined time, for example, 20 hours. After a predetermined time has elapsed, the first valve 24 and the second valve 29 are closed in this order, and the circulation of the dry gas is stopped. At this time, the third valve 19 and the fifth valve 27 may be opened in a state where the humidifier 17 is not operated, and the source gas may be circulated into the first chamber.
 このように行われる乾燥ガスの流通により、測定空間に存在する水蒸気が除去される。ここで、水蒸気量測定器8は、第2の室14の上流にあたる配管22に設けられているため、第2の室14から放出された水蒸気が水蒸気量測定器8に付着することがない。 The water vapor existing in the measurement space is removed by the circulation of the dry gas performed in this way. Here, since the water vapor amount measuring device 8 is provided in the pipe 22 upstream of the second chamber 14, the water vapor released from the second chamber 14 does not adhere to the water vapor amount measuring device 8.
 乾燥工程に続いて、測定対象物であるフィルムFの水蒸気透過量が以下のようにして測定される。チャンバ2及び配管の温度が40℃に変更される。 Subsequent to the drying step, the amount of water vapor permeation through the film F, which is the object to be measured, is measured as follows. The temperature of the chamber 2 and the piping is changed to 40 ° C.
 第5のバルブ27及び第3のバルブ19がこの順で開放される。原料ガスがガス源15から配管16を通って加湿器17によって加湿され、試料ガスが生成される。試料ガスは配管18を徒って第1の室13に導入される。第1の室13に導入された試料ガスは、配管26を通って排出される。 The fifth valve 27 and the third valve 19 are opened in this order. The source gas is humidified by the humidifier 17 from the gas source 15 through the pipe 16, and sample gas is generated. The sample gas is introduced into the first chamber 13 through the pipe 18. The sample gas introduced into the first chamber 13 is discharged through the pipe 26.
 第1の室13に導入された試料ガスに含まれる水蒸気の一部は、測定対象物であるフィルムFから測定空間に透過する。透過した水蒸気は測定空間内を拡散し、水蒸気量測定器8によって測定される。水蒸気量測定器8により測定された水蒸気量と、フィルムFの面積と、測定経過時間から、水蒸気透過量(g/m/day)が得られる。 A part of the water vapor contained in the sample gas introduced into the first chamber 13 is transmitted from the film F, which is a measurement object, into the measurement space. The transmitted water vapor diffuses in the measurement space and is measured by the water vapor amount measuring device 8. From the water vapor amount measured by the water vapor amount measuring device 8, the area of the film F, and the measurement elapsed time, the water vapor transmission amount (g / m 2 / day) is obtained.
 以上のようにして、フィルムFの水蒸気透過量が測定される。乾燥工程において、第2の室14から放出された水蒸気が水蒸気量測定器8に付着することがないため、このような水蒸気による測定値への影響が排除され、高精度に水蒸気透過量を測定することが可能となる。 As described above, the water vapor transmission amount of the film F is measured. In the drying process, the water vapor released from the second chamber 14 does not adhere to the water vapor amount measuring device 8, so that the influence of the water vapor on the measurement value is eliminated, and the water vapor transmission amount is measured with high accuracy. It becomes possible to do.
 乾燥ガスは測定中は流通されないため、測定中に乾燥ガスを常時流通させる場合に比べてその必要量を少ないものとすることが可能である。また、フィルムFを透過した水蒸気は排出されることなく測定空間内に留まるため、水蒸気がフィルムFを透過する速度が小さい場合であっても測定することが可能となる。 Since the dry gas is not circulated during the measurement, the required amount can be reduced as compared with the case where the dry gas is constantly circulated during the measurement. Further, since water vapor that has passed through the film F remains in the measurement space without being discharged, measurement can be performed even when the speed at which the water vapor passes through the film F is low.
 本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更され得る。 The present invention is not limited to the above-described embodiment, and can be modified within the scope not departing from the gist of the present invention.
 例えば、ガス供給系は乾燥ガス供給経路及び試料ガス供給経路に原料ガスを供給するガス源を有するものとしたがこれに限られず、乾燥ガス供給経路に原料ガスを供給するガス源と試料ガス供給経路に原料ガスを供給する別のガス源とを有していてもよい。 For example, the gas supply system has a gas source that supplies the source gas to the dry gas supply path and the sample gas supply path, but is not limited thereto, and a gas source and a sample gas supply that supply the source gas to the dry gas supply path You may have another gas source which supplies source gas to a path | route.
 1  水蒸気透過量測定装置
 2  チャンバ
 5  乾燥ガス導入経路
 7  乾燥ガス排出経路
 8  水蒸気量測定器
 13 第1の室
 14 第2の室
 24 第1のバルブ
 29 第2のバルブ
DESCRIPTION OF SYMBOLS 1 Water vapor | steam transmission amount measuring apparatus 2 Chamber 5 Dry gas introduction path 7 Dry gas discharge path 8 Water vapor amount measuring device 13 1st chamber 14 2nd chamber 24 1st valve 29 2nd valve

Claims (3)

  1.  測定対象物により第1の室と第2の室とに区画されるチャンバと、
     第1のバルブを有し、前記チャンバの前記第2の室に接続され、前記第2の室に乾燥ガスを導入する乾燥ガス導入経路と、
     第2のバルブを有し、前記チャンバの前記第2の室に接続され、前記第2の室から前記乾燥ガスを排出する乾燥ガス排出経路と、
     前記第1の室から、前記第1のバルブ及び前記第2のバルブが閉止されることで形成される測定空間に向けて前記測定対象物を透過した水蒸気の量を測定する、前記第1のバルブと前記第2の室の間に配置された水蒸気量測定器と
     を具備する水蒸気透過量測定装置。
    A chamber partitioned into a first chamber and a second chamber by a measurement object;
    A drying gas introduction path having a first valve, connected to the second chamber of the chamber, and for introducing a drying gas into the second chamber;
    A dry gas discharge path having a second valve, connected to the second chamber of the chamber, and discharging the dry gas from the second chamber;
    Measuring the amount of water vapor that has passed through the measurement object from the first chamber toward a measurement space formed by closing the first valve and the second valve; A water vapor permeation measuring device comprising: a water vapor amount measuring device disposed between a valve and the second chamber.
  2.  請求項1に記載の水蒸気透過量測定装置であって、
     前記水蒸気量測定器は露点計である
     水蒸気透過量測定装置。
    The water vapor transmission amount measuring device according to claim 1,
    The water vapor amount measuring device is a dew point meter.
  3.  チャンバを第1の室と第2の室との2室に区画するように測定対象物を配置し、
     乾燥ガス導入経路に設けられた第1のバルブを開放することで前記第2の室に乾燥ガスを導入し、乾燥ガス排出経路に設けられた第2のバルブを開放することで前記第2の室から乾燥ガスを排出し、
     前記第1のバルブ及び前記第2のバルブを閉止することで前記第2の室への乾燥ガスの導入及び前記第2の室からの乾燥ガスの排出を停止し、
     前記第1の室から、前記第1のバルブ及び前記第2のバルブが閉止されることで形成される測定空間に向けて前記測定対象物を透過した水蒸気の量を、前記第1のバルブと前記第2の室の間に配置された水蒸気量測定器によって測定する
     水蒸気透過量測定方法。
    An object to be measured is arranged so as to divide the chamber into two chambers, a first chamber and a second chamber,
    By opening the first valve provided in the dry gas introduction path, the dry gas is introduced into the second chamber, and by opening the second valve provided in the dry gas discharge path, the second valve is provided. Exhaust the dry gas from the chamber,
    Close the first valve and the second valve to stop the introduction of the dry gas into the second chamber and the discharge of the dry gas from the second chamber,
    The amount of water vapor that has passed through the measurement object from the first chamber toward the measurement space formed by closing the first valve and the second valve is defined as the first valve. A method for measuring a water vapor permeation amount, which is measured by a water vapor amount measuring device disposed between the second chambers.
PCT/JP2010/006452 2009-11-10 2010-11-02 Apparatus for measuring amount of water vapor transmission and method for measuring amount of water vapor transmission WO2011058717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011540404A JP5275473B2 (en) 2009-11-10 2010-11-02 Water vapor permeation measuring device and water vapor permeation measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-257443 2009-11-10
JP2009257443 2009-11-10

Publications (1)

Publication Number Publication Date
WO2011058717A1 true WO2011058717A1 (en) 2011-05-19

Family

ID=43991391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006452 WO2011058717A1 (en) 2009-11-10 2010-11-02 Apparatus for measuring amount of water vapor transmission and method for measuring amount of water vapor transmission

Country Status (3)

Country Link
JP (1) JP5275473B2 (en)
TW (1) TW201140022A (en)
WO (1) WO2011058717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003029A (en) * 2011-06-20 2013-01-07 Sumika Chemical Analysis Service Ltd Gas permeating cell, gas permeability measuring device, and gas permeability measuring method
JP2014160069A (en) * 2013-02-12 2014-09-04 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Method and apparatus for measuring permeation rate of barrier material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119433A (en) * 1985-11-20 1987-05-30 Fuji Electric Co Ltd Hydrogen transmission coefficient measuring apparatus for film
JP2002048703A (en) * 2000-07-31 2002-02-15 Toyo Seiki Seisakusho:Kk Gas permeability measuring device
JP2002357533A (en) * 2001-05-31 2002-12-13 Sony Corp Method and apparatus for evaluating permeability
JP2008170358A (en) * 2007-01-15 2008-07-24 Ulvac Japan Ltd Sample stand, measuring object sample, and moisture permeability measuring device
WO2009041632A1 (en) * 2007-09-28 2009-04-02 Ulvac, Inc. Device for measuring steam permeability, and method for the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119433A (en) * 1985-11-20 1987-05-30 Fuji Electric Co Ltd Hydrogen transmission coefficient measuring apparatus for film
JP2002048703A (en) * 2000-07-31 2002-02-15 Toyo Seiki Seisakusho:Kk Gas permeability measuring device
JP2002357533A (en) * 2001-05-31 2002-12-13 Sony Corp Method and apparatus for evaluating permeability
JP2008170358A (en) * 2007-01-15 2008-07-24 Ulvac Japan Ltd Sample stand, measuring object sample, and moisture permeability measuring device
WO2009041632A1 (en) * 2007-09-28 2009-04-02 Ulvac, Inc. Device for measuring steam permeability, and method for the device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003029A (en) * 2011-06-20 2013-01-07 Sumika Chemical Analysis Service Ltd Gas permeating cell, gas permeability measuring device, and gas permeability measuring method
JP2014160069A (en) * 2013-02-12 2014-09-04 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Method and apparatus for measuring permeation rate of barrier material

Also Published As

Publication number Publication date
TW201140022A (en) 2011-11-16
JPWO2011058717A1 (en) 2013-03-28
JP5275473B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2011132391A1 (en) Measurement device for water vapor transmission rate and measurement method for water vapor transmission rate
JP2010249609A (en) Instrument and method for measuring permeation amount of steam
TWI429895B (en) Measurement device for water vapor permeability and method thereof
JP5357758B2 (en) Method and apparatus for measuring permeability of gas passing through film body and container wall
JP4596928B2 (en) Gas permeability measuring device and gas permeability measuring method for film material
WO2004077006A1 (en) Method of measuring gas barrier property of plastic molding
US11906464B2 (en) System having a pre-separation unit
JP2010190751A (en) Gas permeability measuring device and gas permeability measuring method for film material
JP6281915B2 (en) Gas permeability measuring device
Welp et al. Design and performance of a Nafion dryer for continuous operation at CO 2 and CH 4 air monitoring sites
GB2468043A (en) Determining permeability and diffusivity of a porous solid sample without removing the sample from the apparatus
JP2016105086A (en) Method and device for measuring permeability by mass spectrometry
KR20150110779A (en) Gas-barrier-performance evaluation device and evaluation method
KR20150113090A (en) Gas-barrier-performance evaluation device and evaluation method
JP5275473B2 (en) Water vapor permeation measuring device and water vapor permeation measuring method
JP7041665B2 (en) Gas barrier property evaluation device and gas barrier property evaluation method
JP2011043386A (en) Transmission quantity measuring instrument having freezing trap
JP6002404B2 (en) Mass spectrometer, method of using the same, and method of measuring gas permeation characteristics
CN107907462B (en) Method for testing moisture permeability of container
JP2004279254A (en) Method for measuring water vapor permeability rate of sample
JP2004157035A (en) Gas permeation speed measuring device of barrier film-coated plastic container, gas permeation speed measuring method of barrier film-coated plastic container, gas permeation speed measuring device of barrier film-coated plastic sheet, and gas pearmeation speed measuring method of barrier film-coated plastic sheet
JP2011002303A (en) Instrument for measuring transmission amount of water vapor
US9261451B2 (en) Device and method for determining the permeation rate of barrier elements and ultra-barrier elements
JP6865458B2 (en) Gas barrier test method and test jig
Jena et al. Characterization of water vapor permeable membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540404

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829685

Country of ref document: EP

Kind code of ref document: A1