JP2010190751A - Gas permeability measuring device and gas permeability measuring method for film material - Google Patents

Gas permeability measuring device and gas permeability measuring method for film material Download PDF

Info

Publication number
JP2010190751A
JP2010190751A JP2009035898A JP2009035898A JP2010190751A JP 2010190751 A JP2010190751 A JP 2010190751A JP 2009035898 A JP2009035898 A JP 2009035898A JP 2009035898 A JP2009035898 A JP 2009035898A JP 2010190751 A JP2010190751 A JP 2010190751A
Authority
JP
Japan
Prior art keywords
gas
container
film material
gas permeability
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035898A
Other languages
Japanese (ja)
Inventor
Hitoshi Asahina
均 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009035898A priority Critical patent/JP2010190751A/en
Publication of JP2010190751A publication Critical patent/JP2010190751A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve remarkably sensitivity in measuring a gas permeability of a film material by avoiding a barrier of detection limit due to fluctuation or drift of background associated with measuring a real time. <P>SOLUTION: In the gas permeability measuring device to measure a gas permeability of a film material, a first vessel and a second vessel separated by the film material are formed when attaching the film material, the first vessel includes a measured gas supply mechanism supplying a measured gas to one side of the film material, the second vessel includes an inactive gas supply mechanism supplying an inactive gas to the side of the film material opposite to the side where the measured gas is supplied, a detector detecting the measured gas in the inactive gas is connected to the second vessel, and a state in which the inactive gas supplied from the inactive gas supply mechanism is sealed into the second vessel and a state in which the inactive gas sealed into the second vessel is introduced into the detector is selectively changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フィルム材料のガス透過度測定装置、及びフィルム材料のガス透過度測定方法に関する。   The present invention relates to a gas permeability measuring device for a film material and a gas permeability measuring method for a film material.

液晶ディスプレイや有機ELディスプレイ、有機太陽電池などの機能素子は水分や酸素によって急激に劣化するため大気と完全にシールする必要があり、現在はガラス薄膜による素子のシールが行われている。しかし、これら機能材のコストの中でガラスの費用が大きく、また、薄膜化、フレキシブル化を目的としてこのガラス薄膜の代わりに樹脂フィルムを用いることが考えられており、従来からガスバリア性フィルム材料の開発が行われている。ガスバリア性フィルム材料を用いて、これら素子をシールするにはフィルム材料の特性として10-6g/m2/dayレベルの透過性が必要と言われている。 Since functional elements such as liquid crystal displays, organic EL displays, and organic solar cells are rapidly deteriorated by moisture and oxygen, it is necessary to completely seal them with the atmosphere. At present, the elements are sealed with a glass thin film. However, the cost of glass is large among the cost of these functional materials, and it has been considered to use a resin film instead of this glass thin film for the purpose of thinning and flexibility. Development is underway. In order to seal these elements by using a gas barrier film material, it is said that a permeability of 10 −6 g / m 2 / day level is required as a characteristic of the film material.

従来のフイルム材料のガス透過測定装置としては、透過室を真空排気してその真空度の変化から透過度を測定する、いわゆる差圧法の装置が知られている(例えば、特許文献1)。また、同じ原理であるが、測定を真空度でなく質量分析装置で測定する装置も知られている(例えば、特許文献2)。更に、被測定ガスが酸素および希ガスに限定されるが、これらを一旦保持蓄積する差圧法の装置も知られている(特許文献3)。また、透過室に高純度ガスを流して、その中の目的成分濃度変化を測定することで透過度を測定する、いわゆる等圧法の装置も公知である(例えば、特許文献4)。   As a conventional gas permeation measuring device for a film material, a so-called differential pressure method device is known in which a permeation chamber is evacuated and a permeation rate is measured from a change in the degree of vacuum (for example, Patent Document 1). Moreover, although the same principle is used, an apparatus for measuring with a mass spectrometer instead of a vacuum degree is also known (for example, Patent Document 2). Furthermore, although the gas to be measured is limited to oxygen and rare gas, a differential pressure apparatus that once holds and accumulates these is also known (Patent Document 3). Also known is a so-called isobaric device that measures the permeability by flowing a high-purity gas into the permeation chamber and measuring the concentration change of the target component therein (for example, Patent Document 4).

しかしながら従来のガス透過率装置、及びガス透過率測定法(以下、それぞれ「従来装置」、「従来方法」という)は食品、薬品などの包装等に使用されるフィルム材料の評価を行う事を主目的に開発されたものが多く、ガス透過率の測定レベルは10-2g/m2/day〜10-4g/m2/day程度が測定限界であった。
また、従来装置は、透過室側の成分濃度を、差圧法では真空度や質量分析装置で測定したり、等圧法では質量分析装置や赤外吸光光度法などで測定したりしているが、その殆どが、フィルム材料を少量透過してくる被測定ガスの目的成分濃度を実時間で測定する、いわゆる連続測定である。フィルム材料のガス透過が安定するには透過度の大きい材料でも、数時間から1日程度の時間がかかるため、その間の測定装置の状態が一定であることが前提となる。しかしながら、どのような測定装置でも、特に高感度での測定の場合には特に、バックグラウンドの変動やドリフトなどの影響を受け、測定開始直前のバックグラウンドが長時間経過後にも同じである事を担保することは極めて困難である。このような理由により、フィルム材料のガス透過率の連続測定の検出レベルは最大でも10-4g/m2/day程度である。
However, conventional gas permeability devices and gas permeability measurement methods (hereinafter referred to as “conventional devices” and “conventional methods”, respectively) mainly evaluate film materials used for packaging foods, medicines, etc. many those developed for, measuring the level of gas permeability 10 -2 g / m 2 / day~10 -4 g / m about 2 / day was measurement limit.
In addition, in the conventional apparatus, the component concentration on the permeation chamber side is measured with a vacuum or a mass spectrometer in the differential pressure method, or is measured with a mass spectrometer or an infrared absorptiometric method in the isobaric method. Most of them are so-called continuous measurements in which the target component concentration of the gas to be measured that permeates a small amount of the film material is measured in real time. In order to stabilize the gas permeation of the film material, it takes a time of several hours to about a day even for a material having a high permeability, and it is assumed that the state of the measuring apparatus during that time is constant. However, in any measurement device, especially when measuring at high sensitivity, the background immediately before the start of measurement is the same even after a long period of time due to background fluctuations and drifts. It is extremely difficult to secure. For these reasons, the maximum level of continuous measurement of the gas permeability of the film material is about 10 −4 g / m 2 / day.

特開 2005-345342 号公報JP 2005-345342 A 特開 2002-357533 号公報JP 2002-357533 A 特開 平6-241978 号公報Japanese Unexamined Patent Publication No. 6-241978 特開 2005-233943 号公報JP 2005-233943

上記課題に鑑み、本発明は、実時間測定に伴うバックグラウンドの変動、ドリフトなどによる検出限界の制限を回避して、大幅にフィルム材料のガス透過率の測定の感度が向上
できる、ガス透過度測定装置及びガス透過度測定方法を提供することを目的とするものである。
In view of the above problems, the present invention avoids limitations on detection limits due to background fluctuations, drift, etc. associated with real-time measurement, and can greatly improve the sensitivity of measurement of the gas permeability of film materials. An object of the present invention is to provide a measuring apparatus and a gas permeability measuring method.

本発明者らは、上記課題を解決すべく鋭意検討した結果、測定対象となるフィルム材料により隔てられた試験環境室と透過室を構成する2つの容器に、フィルム材料を二重のオーリングで挟み込み、この二重のオーリングの間に外部からの侵入を防ぐために高純度シールガスとして不活性ガスを流したガス透過セルに、ガス精製機を通した不活性ガスを透過室側に流し、試験環境室には被測定ガスとして調湿した空気を流しておき、そのガス透過セルに、不活性ガスを透過室に流すための流路と透過室を閉じて、その間不活性ガスをバイパスすることが可能な三方バルブを組み込み、予め充分な時間透過室側に不活性ガスを流した後に、三方バルブを切り替えて不活性ガスをバイパスさせて透過室に透過成分を蓄積させ、一定時間透過室に透過成分を蓄積させたのち、三方バルブを透過室側に切り替えて透過室に蓄積した成分を一気に押し出して検出器で測定を行うことで、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention applied the film material to the two containers constituting the test environment chamber and the transmission chamber separated by the film material to be measured in a double O-ring. In order to prevent intrusion from the outside during this double O-ring, the inert gas passed through the gas purifier to the permeation chamber side to the gas permeation cell where the inert gas was passed as a high purity seal gas, The test environment chamber is supplied with conditioned air as a gas to be measured, and the gas permeation cell is closed with a flow path and a permeation chamber for allowing the inert gas to flow into the permeation chamber, while the inert gas is bypassed. A three-way valve that can be installed, and after allowing an inert gas to flow through the permeation chamber for a sufficient amount of time in advance, switch the three-way valve to bypass the inert gas and accumulate permeation components in the permeation chamber. To see through After accumulating the components, the three-way valve is switched to the permeation chamber side, and the components accumulated in the permeation chamber are pushed out at a stretch and the measurement is performed with the detector, and the present invention is completed. It was.

即ち、本発明の要旨は下記[1]〜[9]に存する。
[1] フィルム材料のガス透過率を測定するガス透過率測定装置であって、該フィルム材料の装着時に該フィルム材料によって隔てられる第一の容器及び第二の容器が形成され、前記第一の容器が、被測定ガスを該フィルム材料の片方の面に供給するための被測定ガス供給機構を有し、前記第二の容器が、該フィルム材料の前記被測定ガスが供給される面とは逆側の面に対して不活性ガスを供給するための不活性ガス供給機構を有し、前記不活性ガス中の被測定ガスを検出する検出器が第二の容器に接続され、第二の容器中に不活性ガス供給機構から供給された不活性ガスを密封した状態と、第二の容器中に密封された不活性ガスを前記検出器に導入する状態とを選択的に可能としたことを特徴とするガス透過率測定装置。
[2] 前記フィルム材料の外縁部分を狭圧密封し前記第一の容器及び第二の容器を形成するシール機構を有する[1]に記載のガス透過率測定装置。
[3] 前記シール機構を密閉しうるシール室を有する[2]に記載のガス透過率測定装置。
[4] 前記シール室に不活性ガスを供給する手段を有する[3]に記載のガス透過率測定装置。
[5] 前記シール機構及び前記密封容器が前記フィルム材料の測定前に、予めベーキングされたものであることを特徴とする[1]〜[4]のいずれかに記載のガス透過率測定装置。
[6] 前記検出器が、応答時間が60秒以下であって、湿度計、質量分析装置、及びパルス放電検出器からなる群より選ばれるものであることを特徴とする[1]〜[5]のいずれかに記載のガス透過率測定装置。
[7] 前記被測定ガスが、水分を含有する空気であり、不活性ガスがヘリウム又はアルゴンであることを特徴とする[1]〜[6]のいずれかに記載のガス透過率測定装置。
[8] [1]〜[7]のいずれかに記載のガス透過率測定装置を用いて、フィルム材料のガス透過率を測定するガス透過率測定方法。
That is, the gist of the present invention resides in the following [1] to [9].
[1] A gas permeability measuring device for measuring a gas permeability of a film material, wherein a first container and a second container separated by the film material when the film material is mounted are formed, The container has a measured gas supply mechanism for supplying the measured gas to one surface of the film material, and the second container is the surface of the film material to which the measured gas is supplied An inert gas supply mechanism for supplying an inert gas to the opposite surface, a detector for detecting a gas to be measured in the inert gas connected to the second container, The state in which the inert gas supplied from the inert gas supply mechanism in the container is sealed and the state in which the inert gas sealed in the second container is introduced into the detector can be selectively made possible. An apparatus for measuring gas permeability.
[2] The gas permeability measuring device according to [1], further including a sealing mechanism that tightly seals an outer edge portion of the film material to form the first container and the second container.
[3] The gas permeability measuring apparatus according to [2], further including a seal chamber that can seal the seal mechanism.
[4] The gas permeability measuring apparatus according to [3], further comprising means for supplying an inert gas to the seal chamber.
[5] The gas permeability measuring device according to any one of [1] to [4], wherein the sealing mechanism and the sealed container are previously baked before measuring the film material.
[6] The detector has a response time of 60 seconds or less, and is selected from the group consisting of a hygrometer, a mass spectrometer, and a pulse discharge detector. [1] to [5] ] The gas-permeation rate measuring apparatus according to any one of the above.
[7] The gas permeability measuring device according to any one of [1] to [6], wherein the gas to be measured is air containing moisture, and the inert gas is helium or argon.
[8] A gas permeability measuring method for measuring a gas permeability of a film material using the gas permeability measuring device according to any one of [1] to [7].

[9] 前記第二の容器内を不活性ガスで置換したのち密封し、前記第一の容器内に被測定ガスを一定時間供給した後、第二の容器に密封された前記不活性ガスを前記検出器に導入することを特徴とする[8]に記載のガス透過率測定方法。 [9] After replacing the inside of the second container with an inert gas and sealing it, supplying the gas to be measured into the first container for a certain period of time, and then supplying the inert gas sealed in the second container The gas permeability measuring method according to [8], which is introduced into the detector.

本発明のように、本発明の装置を使って、フィルム材料を透過した被測定ガス成分を一定時間蓄積して、その後に一気に押し出す測定方法によれば、ガス透過度測定の大幅な感
度向上が図る事が出来る。また、フィルム材料のガス透過率を高感度に測定する場合には、装置感度やバックグラウンドの変動が問題になるが、本発明の方法では、5分程度の装置安定が必要なだけなので正確な測定が可能である。
As in the present invention, by using the apparatus of the present invention, the measurement gas component that has permeated through the film material is accumulated for a certain period of time and then pushed out at a stroke. You can plan. In addition, when measuring the gas permeability of the film material with high sensitivity, fluctuations in apparatus sensitivity and background become a problem, but the method of the present invention only requires apparatus stability for about 5 minutes, so it is accurate. Measurement is possible.

更に、被測定ガスを蓄積する時間を調整することで、用いる検出器の適用範囲が広がり、安価で感度の低い検出器を用いてもガス透過度の低いフィルム材料が測定可能になり、当然ながら高感度な検出器を用いれば10-6g/m2/dayまでのガス透過測定が可能になる。
これにより、太陽電池や有機ELディスプレイ、液晶ディスプレイなどの材能素子にしようされる、高ガスバリア性フィルム材料の評価が正確に行える。
Furthermore, by adjusting the time for accumulating the gas to be measured, the application range of the detector to be used is expanded, and it is possible to measure a film material having a low gas permeability even if an inexpensive and low sensitivity detector is used. If a highly sensitive detector is used, gas permeation measurement up to 10 -6 g / m 2 / day becomes possible.
This makes it possible to accurately evaluate a high gas barrier film material used for a material element such as a solar cell, an organic EL display, or a liquid crystal display.

ガス透過率測定装置の一例を示す図である。It is a figure which shows an example of a gas permeability measuring apparatus. ガス透過率測定時の不活性ガスを容器内にトラップする際のガス透過率測定装置の状態を示す図である。It is a figure which shows the state of the gas permeability measuring apparatus at the time of trapping the inert gas at the time of gas permeability measurement in a container. ガス透過率測定時の不活性ガスを検出器に導入する際のガス透過率測定装置の状態を示す図である。It is a figure which shows the state of the gas permeability measuring apparatus at the time of introducing the inert gas at the time of gas permeability measurement to a detector. ガス透過率測定時の不活性ガスを検出器に導入する際のガス透過率測定装置の状態を示す図である。It is a figure which shows the state of the gas permeability measuring apparatus at the time of introducing the inert gas at the time of gas permeability measurement to a detector. 実施例1の質量分析計によるガス透過率測定の結果を示すグラフである。3 is a graph showing the results of gas permeability measurement with the mass spectrometer of Example 1. FIG. 参考例1の質量分析計によるガス透過率測定の結果を示すグラフである。4 is a graph showing the results of gas permeability measurement with a mass spectrometer of Reference Example 1. ガス透過率測定装置の装置全体図Overall view of the gas permeability measuring device

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されない。以下、その詳細について説明する。
本発明において、ガス透過率を測定するフィルム材料は、特に限定されないが、通常は、ポリエチレンテレフタレート、ナイロン、ポリエチレン、ポリプロピレン、ポリイミドなどをフィルム基材とし、金属酸化物や金属窒化物或いは金属の薄膜をバリアー層としてもったフィルム材料などである。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to these contents. The details will be described below.
In the present invention, the film material for measuring the gas permeability is not particularly limited. Usually, the film base is polyethylene terephthalate, nylon, polyethylene, polypropylene, polyimide, etc., and a metal oxide, metal nitride, or metal thin film is used. Film material having a barrier layer.

本発明におけるガス透過率測定装置では、2つの密封容器を用いるが、容器内に供給されるガスを密封できるものであれば、特に限定されない。通常は、ステンレスなどであり、中でも好ましくは、SUS304、SUS304L、SUS316などである。
2つの密封容器のうち、第一の容器には、被測定ガス供給機構を有するが、被測定ガス供給機構は、被測定ガスをフィルム材料の片面に曝すことができる機構であれば、特に限定されない。例えば、マスフローコントローラーで一定流量の空気を流して純水の入った容器にバブリングさせて水蒸気を飽和した空気をつくり、これに一定流量の乾燥空気を混合することで任意の相対湿度の空気を供給することが出来る。
In the gas permeability measuring apparatus according to the present invention, two sealed containers are used, but are not particularly limited as long as the gas supplied into the container can be sealed. Usually, it is stainless steel, etc. Among them, SUS304, SUS304L, SUS316, etc. are preferable.
Of the two sealed containers, the first container has a measured gas supply mechanism, but the measured gas supply mechanism is particularly limited as long as the measured gas supply mechanism can expose the measured gas to one side of the film material. Not. For example, a constant flow of air is flowed by a mass flow controller and bubbled into a container containing pure water to produce water saturated with water vapor, and then air of any relative humidity is supplied by mixing it with a constant flow of dry air. I can do it.

また、第二の容器には、不活性ガス供給機構を有するが、不活性ガス供給機構とは、被測定ガスが曝された該フィルム材料の逆側の面に対して、不活性ガスを曝すことができる機構であれば、特に限定されない。例えば、高純度不活性ガスをガス精製装置に通して更に高純度化した後に、マスフローコントローラーを用いて供給することができる。
更に、第二の容器には、不活性ガスを容器中に密封させた状態と、第二の容器中に密封された不活性ガスを検出器に導入する手段が具備されている。また、これらの手段は切り替え可能であり、切り替えによって、少なくとも上記いずれかの状態を所望により選択できる。具体的には、例えば、図1に示すように、不活性ガスを第二の容器に供給するラインに三方バルブを設置し、一方の口を不活性ガス供給機構から第二容器へ供給するラインの上流側と接続し、もう一方の口をラインの下流側と接続する。更に、第二容器のガス出口から検出器へのラインに、もう一つ三方バルブを設置して、その一方の口を第二容器の
ガス出口から検出器へのラインの上流側と接続し、もう一方の口をラインの下流側と接続する。そして両方の三方バルブの残った口同士を接続する。このように三方バルブを設置することで、図3のフィルム材料のガス透過率測定時のように両方の三方バルブを操作して、不活性ガスの流れ方向を第二の容器から検出器へと接続する状態と、図2のように不活性ガスの流れを、バイパスラインを通るようにして第二の容器内に不活性ガスを密閉する状態とを切り替えることが可能となる。また、図4のように、二方バルブを用いて不活性ガスを第二の容器から検出器へと流す状態と第二の容器内に不活性ガスを蓄積する状態を作ることも可能であるが、この方法だと、二方バルブからのブランク量が三方バルブを用いる場合に比べ2倍に増えてしまう。即ち、二方バルブの閉じた両側からは常にブランクが発生するため、結果として、バルブの両側で発生するブランクは蓄積後の再測定時に全量が持ち込まれてしまい、結果的に第二容器のブランクを増加させてしまう。三方バルブを用いてバイパスラインにも常に不活性ガスを流すことで不活性ガス供給側および排気側から発生するブランクを完全除去することが可能となるので、好ましい。
Further, the second container has an inert gas supply mechanism. The inert gas supply mechanism exposes the inert gas to the opposite surface of the film material to which the gas to be measured is exposed. There is no particular limitation as long as the mechanism can be used. For example, a high-purity inert gas can be supplied using a mass flow controller after further purifying it through a gas purification apparatus.
Further, the second container is provided with a state in which an inert gas is sealed in the container, and means for introducing the inert gas sealed in the second container into the detector. These means can be switched, and at least one of the above states can be selected as desired by switching. Specifically, for example, as shown in FIG. 1, a three-way valve is installed in a line for supplying an inert gas to the second container, and one port is supplied from the inert gas supply mechanism to the second container. The other port is connected to the downstream side of the line. Furthermore, another one-way valve is installed in the line from the gas outlet of the second container to the detector, and one of its ports is connected to the upstream side of the line from the gas outlet of the second container to the detector, Connect the other port to the downstream side of the line. Then connect the remaining ports of both three-way valves. By installing the three-way valve in this way, the flow direction of the inert gas is changed from the second container to the detector by operating both the three-way valves as in the gas permeability measurement of the film material in FIG. It is possible to switch between the state of connection and the state of sealing the inert gas in the second container by passing the flow of the inert gas through the bypass line as shown in FIG. Further, as shown in FIG. 4, it is possible to create a state in which an inert gas flows from the second container to the detector and a state in which the inert gas is accumulated in the second container using a two-way valve. However, with this method, the blank amount from the two-way valve increases twice as compared with the case where the three-way valve is used. In other words, since blanks are always generated from both closed sides of the two-way valve, as a result, all the blanks generated on both sides of the valve are brought in at the time of re-measurement after accumulation, and as a result, the blank of the second container Will increase. A blank generated from the inert gas supply side and the exhaust side can be completely removed by always flowing an inert gas through the bypass line using a three-way valve, which is preferable.

また、フィルム材料のガス透過率測定時の容器内の温度は特に限定されないが、通常は室温から40℃までの範囲で行われる。さらに、測定時の第一の容器、及び第二の容器内の圧力は等しくても、異なっていてもよいが、測定の精度向上という観点から、第一の容器、及び第二の容器内の圧力は等しくするのが好ましい。
本発明におけるガス透過率測定装置では、被測定ガスを検出する検出器が用いられる。この検出器は、不活性ガス中の被測定ガスの濃度を測定できるものであれば、特に限定されない。通常はppmレベルの感度を有するものであれば市販の検出器でよく、例えば、質
量分析装置、パルス放電検出器、湿度計、露点計、水分計などであり、好ましくは、湿度計、質量分析装置、及びパルス放電検出器からなる群より選ばれるものであり、更に好ましくは、より高感度であり、且つ被測定ガスを分別できる機能のある質量分析計である。また、これらの検出器の応答時間は特に限定されないが、60秒以下のものが好ましい。
Moreover, the temperature in the container at the time of measuring the gas permeability of the film material is not particularly limited, but is usually in the range from room temperature to 40 ° C. Furthermore, the pressure in the first container and the second container at the time of measurement may be the same or different, but from the viewpoint of improving the accuracy of measurement, the pressure in the first container and the second container The pressures are preferably equal.
In the gas permeability measuring apparatus according to the present invention, a detector for detecting a gas to be measured is used. The detector is not particularly limited as long as it can measure the concentration of the gas to be measured in the inert gas. Usually, a commercially available detector may be used as long as it has a sensitivity of ppm level, for example, a mass spectrometer, a pulse discharge detector, a hygrometer, a dew point meter, a moisture meter, etc., preferably a hygrometer and a mass spectrometer. The mass spectrometer is selected from the group consisting of a device and a pulse discharge detector, and more preferably a mass spectrometer having a higher sensitivity and a function capable of separating a gas to be measured. Further, the response time of these detectors is not particularly limited, but is preferably 60 seconds or less.

検出器は第二の容器に接続されており、第二の容器中のガスを測定するために使用される。
本発明のガス透過率測定装置は、フィルム材料の外周部分を狭圧密封するシール機構を有していても良い。具体的には、フィルム材料を狭圧してもダメージを与えないことからオーリングが好ましく用いられる。
The detector is connected to the second container and is used to measure the gas in the second container.
The gas permeability measuring device of the present invention may have a seal mechanism that tightly seals the outer peripheral portion of the film material. Specifically, O-ring is preferably used because it does not damage even if the film material is narrowed.

また、シール室を更に有していてもよく、このシール室は上記シール機構を囲繞する密閉空間であることが好ましい。その理由としては、オーリングはガス透過性や漏れ込みがきわめて大きいため、ガス透過率が極めて低いレベルの測定では、一重のシール機構では大気からのガス透過や漏れ込みが無視できない大きさになってしまう。そのためシール室により二重のシール機構にして、シール室に不活性ガスを流すことによって大気からのガス透過を完全に遮断する事ができるからである。   Further, a seal chamber may be further provided, and the seal chamber is preferably a sealed space surrounding the seal mechanism. The reason for this is that O-rings are extremely gas permeable and leaky, so in measurements with extremely low gas permeability, gas permeation and leakage from the atmosphere cannot be ignored with a single seal mechanism. End up. For this reason, it is possible to completely block gas permeation from the atmosphere by using a double sealing mechanism with the seal chamber and flowing an inert gas into the seal chamber.

また、本発明の密封容器やシール機構は予めベーキングしたものを用いることが好ましい。その理由としては、WVTR(透湿度)がフィルム材料のガス透過率の測定レベルが10-6g/m2/dayレベルになると容器やバルブ、オーリング等の用いる部材からのブランク量(バックグラウンド)が測定値に対して大きな影響を与えるからである。つまり、WVTR(透湿度)が10-1 g/m2/dayレベル程度までであれば実験温度(例えば40℃や85℃)で予備パージなどを行うことでブランクを下げることが出来るが、10-6g/m2/dayレベルまでを測定しようとすると、このブランク量が測定値に比べ圧倒的に大きくなるため、測定ができなくなる。 Moreover, it is preferable to use what was baked beforehand for the airtight container and sealing mechanism of this invention. The reason is that, WVTR (water vapor permeability) gas permeability measurement level 10- 6 g / m 2 / day when a level container and valve of the film material, the blank amount from the member used with such an O-ring (background ) Greatly affects the measured value. In other words, if the WVTR (moisture permeability) is about 10 -1 g / m 2 / day level, the blank can be lowered by performing a preliminary purge at the experimental temperature (eg 40 ° C. or 85 ° C.). When trying to measure up to -6 g / m 2 / day level, this blank amount becomes overwhelmingly larger than the measured value, making it impossible to measure.

例えばSUS容器の場合には、200℃程度の温度でベーキングすることが望ましいが、その温度ではオーリングの耐熱温度を超えてしまい変質してしまう。オーリングは材質によっ
て耐熱温度が異なるが、同時にガスの発生挙動も異なっている。オーリングのような樹脂材料は発生水分量が非常に多いため完全に脱ガスさせることが非常に重要である。
これらの理由により、測定に用いる部材には、それぞれに適した温度・時間ベーキングすることが好ましい。具体的には、1)個々の部材毎のガス発生パターンを測定し、2)部材毎に最適温度・時間ベーキングし、3)最後に各部材を組み合わせて測定容器とする手順が望ましい。例えば、SUS容器とバルブ、配管を200℃で1週間、不活性ガス流通
下でベーキングする。これら部材のベーキングとは別に、オーリングは120℃で3日間不活性ガス流通下ベーキングする。ベーキングが終わったら、これら一式をアルゴングローブボックスに持ち込み、この中でオーリングを組み込んで測定容器とし、この状態の容器に被測定用のフィルム材料をセットする。その後、実験温度条件(例えば40℃)で1〜2日間第一および第二容器に不活性ガスを流してパージを行った後に測定を行う。
For example, in the case of a SUS container, it is desirable to perform baking at a temperature of about 200 ° C., but at that temperature, the heat resistance temperature of the O-ring is exceeded and the quality deteriorates. O-rings have different heat resistance temperatures depending on the material, but at the same time, the gas generation behavior is also different. A resin material such as O-ring has a very large amount of generated water, so it is very important to completely degas it.
For these reasons, it is preferable to perform temperature and time baking suitable for each member used for measurement. Specifically, it is desirable to 1) measure the gas generation pattern for each individual member, 2) perform optimum temperature / time baking for each member, and 3) finally combine the respective members into a measurement container. For example, the SUS container, the valve and the pipe are baked at 200 ° C. for one week under inert gas flow. Apart from baking these members, O-rings are baked at 120 ° C. for 3 days under inert gas flow. When baking is completed, the set is brought into an argon glove box, and an O-ring is incorporated therein to form a measurement container, and a film material to be measured is set in the container in this state. Thereafter, the measurement is performed after purging by flowing an inert gas through the first and second containers for 1 to 2 days under an experimental temperature condition (for example, 40 ° C.).

本発明の被測定ガスは、特に限定されないが、通常は、水、水を含有する空気、酸素、水素、二酸化炭素などであり、好ましくは、水、水を含有する空気、酸素であり、更に好ましくは水を含有する空気である。
本発明の不活性ガスは、特に限定されないが、通常は、ヘリウム、アルゴン、窒素、などであり、好ましくは、ヘリウム又はアルゴンである。
The gas to be measured of the present invention is not particularly limited, but is usually water, air containing water, oxygen, hydrogen, carbon dioxide, etc., preferably water, air containing water, oxygen, Air containing water is preferable.
Although the inert gas of this invention is not specifically limited, Usually, helium, argon, nitrogen, etc. are preferable, Preferably they are helium or argon.

本発明のガス透過率測定装置の代表的なものを図1に示す。
図1において、容器10は被測定フィルム13を二重のオーリング14で挟み、上下2つの容器をボルトナットで締め付けて構成される。二重のオーリングの間(シール室)には大気からの漏れ込みや被測定ガスの透過を防ぐためにシール用ガスである不活性ガスをシール用ガス入口15から流通させシール用ガス出口16より排気する。
A typical gas permeability measuring apparatus according to the present invention is shown in FIG.
In FIG. 1, a container 10 is configured by sandwiching a film to be measured 13 with double O-rings 14 and tightening two containers on the upper and lower sides with bolts and nuts. Between the double O-rings (sealing chamber), an inert gas, which is a sealing gas, is circulated from the sealing gas inlet 15 to prevent leakage from the atmosphere and permeation of the gas to be measured, from the sealing gas outlet 16. Exhaust.

被測定ガス入り口17からは被測定ガスを流通させ、第一の容器である試験環境室11に流して被測定ガス出口18から排気する。不活性ガスは予備パージ時や第二の容器である透過室12へ蓄積後の検出器への導入時には三方バルブ21から不活性ガス入り口19を通して第二の容器である透過室12に流れ、不活性ガス出口20から三方バルブ22を通って検出器23に導入される。被測定ガスの蓄積時には、不活性ガスは三方バルブ21を通って直接三方バルブ22に流れて検出器23側に流れる。   A gas to be measured is circulated from the gas to be measured inlet 17, flows into the test environment chamber 11 that is the first container, and is exhausted from the gas to be measured outlet 18. The inert gas flows from the three-way valve 21 through the inert gas inlet 19 to the permeation chamber 12 as the second container during pre-purging or when introduced into the detector after being accumulated in the permeation chamber 12 as the second container. The active gas outlet 20 is introduced into the detector 23 through the three-way valve 22. During accumulation of the gas to be measured, the inert gas flows through the three-way valve 21 directly to the three-way valve 22 and flows to the detector 23 side.

また、図7は、本発明のガス透過率測定装置の装置全体図を表したものである。図7において、ガス透過容器全体は、試験恒温槽30に入れて実験条件に合わせて温度を調節できる。不活性ガスがヘリウムの場合は、高純度ヘリウムボンベ26のガスを装置直前に置かれたガス精製機25で精製された後マスフローコントローラー24を介して一定流量がそれぞれシール用ガス、又は不活性ガスとして供給される。試験環境室11には空気ボンベからの空気を、マスフローコントローラー24を介して調湿装置28に供給して一定湿度の空気をつくり試験環境室11に供給する。   FIG. 7 shows an overall view of the gas permeability measuring device of the present invention. In FIG. 7, the entire gas permeable container can be placed in a test thermostat 30 and the temperature can be adjusted according to the experimental conditions. When the inert gas is helium, the gas in the high-purity helium cylinder 26 is purified by the gas purifier 25 placed immediately before the apparatus, and then a constant flow rate is supplied to the sealing gas or the inert gas via the mass flow controller 24, respectively. Supplied as In the test environment chamber 11, the air from the air cylinder is supplied to the humidity control device 28 via the mass flow controller 24, and air with a constant humidity is produced and supplied to the test environment chamber 11.

本発明のガス透過率測定方法について、以下に説明する。
まず、予め、二重のオーリングの間に不活性ガスをシール用ガス入り口15から流通させシール用ガス出口16より排気しながら、被測定ガス入口17から不活性ガスを流通させ、試験環境室11に流して被測定ガス出口18から排気する。図3のように不活性ガスを三方バルブ21から不活性ガス入口19を通して透過室12に流し不活性ガス出口20から三方バルブ22を通って排気する。この状態で実験温度で必要時間パージを行って被測定フィルム13の表面に吸着していた、あるいはフィルム材料に含まれている被測定ガス成分を充分に追い出す。充分にブランクが下がったのを検出器23で確認後に、フィルム材料の透過率測定前に、ブランク試験を行う。
The gas permeability measuring method of the present invention will be described below.
First, the inert gas is circulated from the gas inlet 17 to be measured while the inert gas is circulated from the sealing gas inlet 15 and exhausted from the sealing gas outlet 16 between the double O-rings. 11 and exhausted from the gas outlet 18 to be measured. As shown in FIG. 3, the inert gas flows from the three-way valve 21 to the permeation chamber 12 through the inert gas inlet 19 and is exhausted from the inert gas outlet 20 through the three-way valve 22. In this state, purge is performed for the required time at the experimental temperature to sufficiently expel the gas component to be measured adsorbed on the surface of the film to be measured 13 or contained in the film material. After confirming that the blank is sufficiently lowered by the detector 23, a blank test is performed before measuring the transmittance of the film material.

ブランク試験は一定時間蓄積している間の容器からの全ブランクを求める試験である。
例えば、次のように行う。被測定ガス入口17から不活性ガスを試験環境室11に流通させた状態で、図2のように三方バルブ21および22をバイパス側に切り替えて不活性ガスが三方バルブ21、22と流れるようにし、透過室12側には流れないようにする。この状態で一定時間、透過室12に全てのブランクが蓄積するようにし、一定時間経過後に図3のように三方バルブ21、22を切り替えて不活性ガスが不活性ガス入口19を通って、透過室12内に蓄積したガスを一気に追い出して、不活性ガス出口20、三方バルブ22を通って検出器23に導入する。検出器23は予め充分バックグラウンドが安定している状態に保持し、追い出す直前から測定を開始し、被測定ガス成分の値が追い出す直前の値に戻るまで測定を続ける。
The blank test is a test for obtaining all blanks from a container while accumulating for a certain time.
For example, this is performed as follows. With the inert gas flowing from the measured gas inlet 17 to the test environment chamber 11, the three-way valves 21 and 22 are switched to the bypass side as shown in FIG. 2 so that the inert gas flows through the three-way valves 21 and 22. , Do not flow to the permeation chamber 12 side. In this state, all blanks are accumulated in the permeation chamber 12 for a certain period of time, and after a certain period of time, the three-way valves 21 and 22 are switched as shown in FIG. The gas accumulated in the chamber 12 is expelled at a stroke and introduced into the detector 23 through the inert gas outlet 20 and the three-way valve 22. The detector 23 keeps the background sufficiently stable in advance, starts measurement immediately before the discharge, and continues the measurement until the value of the gas component to be measured returns to the value immediately before the discharge.

この結果が容器から発生する全ブランク値で、この後の透過試験値からこのブランク値を差し引いたものが真のガス透過量となる。
被測定ガスの透過度測定は、被測定ガスを含んだガスを被測定ガス入口17から試験環境室11に流し、同時に図2のように三方バルブ21、22をバイパス側に切り替えて透過室12に透過ガスが蓄積する状態にする。上記ブランク試験と同様に、一定時間経過後に図3のように三方バルブ21、22を切り替えて、透過室(第一室)12に蓄積した被測定ガスを追い出して検出器23に導入して被測定ガスを検出する。
This result is the total blank value generated from the container, and the value obtained by subtracting this blank value from the subsequent permeation test value is the true gas permeation amount.
The measurement gas permeability is measured by flowing a gas containing the measurement gas from the measurement gas inlet 17 to the test environment chamber 11 and simultaneously switching the three-way valves 21 and 22 to the bypass side as shown in FIG. So that the permeate gas accumulates. Similar to the blank test, after a certain time has elapsed, the three-way valves 21 and 22 are switched as shown in FIG. 3 to expel the gas to be measured accumulated in the permeation chamber (first chamber) 12 and introduce it into the detector 23 to be measured. Detect the measurement gas.

その後、被測定ガスの一定量を高純度ガスに注入して検出器でその強度を検出する。
この面積と測定した面積を比較することで透過ガス量を求める。
このように、予め容器内が不活性ガスで置換された前記第二の容器に不活性ガスを密封し、前記第一の容器内に被測定ガスを一定時間供給した後、第二の容器に密封された前記不活性ガスを検出器に導入することで次のようなメリットがある。つまり、上記のように測定した場合、例えば、検出器に質量分析装置を用いた場合、測定データは図4に示したようにピーク状になる。従来法のような連続測定では濃度を測ることになる。そうすると一定濃度の被測定ガスを含んだガスを検出器に導入しなければならないが、10-6g/m2/dayレベルではこの濃度は1ppbレベルになりこのような濃度のガスを作ることは殆ど不可能であり、また用いる配管への吸着など様々な問題があり事実上実測は不可能で、やむを得ず高濃度の標準ガスの測定値を大きく外捜して検量するしか方法がない。
Thereafter, a certain amount of the gas to be measured is injected into the high purity gas, and its intensity is detected by the detector.
The amount of permeated gas is obtained by comparing this area with the measured area.
As described above, the inert gas is sealed in the second container whose interior is previously replaced with the inert gas, and the gas to be measured is supplied into the first container for a certain period of time. By introducing the sealed inert gas into the detector, there are the following advantages. That is, when measured as described above, for example, when a mass spectrometer is used as a detector, the measurement data has a peak shape as shown in FIG. In continuous measurement like the conventional method, the concentration is measured. Then, a gas containing a certain concentration of gas to be measured must be introduced into the detector, but at the 10 -6 g / m 2 / day level, this concentration becomes 1 ppb level, and it is not possible to create a gas with such a concentration. It is almost impossible, and there are various problems such as adsorption to the piping to be used. In fact, actual measurement is impossible, and there is no other way but to calibrate by scouring the measured value of high concentration standard gas.

これに対し、本発明の方法では得られるデータはピーク状になるため、この面積即ち量を求めれば良いことになる。量であるので一定量の被測定ガスを含んだ検量ガスを導入すれば良いだけで、この点によって正しく簡便に定量出来る。
不活性ガスの流通量は応答時間に影響し、応答が遅い検出器を用いるときには流通量を少なくすることが可能で、反対に応答時間が充分早い検出器の場合は流通量を多くすることが可能である。質量分析装置やパルス放電検出器を用いる場合は50〜500ml/分程度の流通量とする。シール用ガスは外気からの透過を防ぐためのものなので少量でよく10〜50ml/分程度でよい。試験ガス流通量も被測定ガスの透過量に比べ充分多量なので流れているだけで充分である。
On the other hand, since the data obtained by the method of the present invention has a peak shape, this area, that is, the amount can be obtained. Therefore, it is only necessary to introduce a calibration gas containing a certain amount of gas to be measured.
The flow rate of the inert gas affects the response time. When using a detector with a slow response, the flow rate can be reduced. On the other hand, for a detector with a sufficiently fast response time, the flow rate can be increased. Is possible. When a mass spectrometer or a pulse discharge detector is used, the flow rate is about 50 to 500 ml / min. Since the sealing gas is used to prevent permeation from the outside air, it may be a small amount and may be about 10 to 50 ml / min. Since the test gas flow rate is also sufficiently large compared to the permeation amount of the gas to be measured, it is sufficient to flow.

以下に本発明の実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。
<実施例1>
図1の装置を用いて、ポリエチレンテレフタレート膜にシリコン酸化膜を蒸着してなるフイルム材料の水蒸気透過度を測定した。なお、本発明では、検出器23として、キヤノンアネルバ社製の質量分析計(型番:AGS-7000)を用いた。なお、水分透過度は、この質量分析計での水の検出電流値から検量線により水分透過度を算出した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.
<Example 1>
Using the apparatus of FIG. 1, the water vapor permeability of a film material obtained by depositing a silicon oxide film on a polyethylene terephthalate film was measured. In the present invention, a mass spectrometer (model number: AGS-7000) manufactured by Canon Anelva is used as the detector 23. The moisture permeability was calculated from a detected current value of water in this mass spectrometer using a calibration curve.

最初、試験環境室に高純度ヘリウムを50ml/min、透過室側に高純度ヘリウムを100ml/mi
n、二重のオーリングの間に20ml/minの高純度ヘリウムを供給し、フィルムおよび容器・
オーリングを充分パージした後、三方バルブを切り替えて40℃で2時間蓄積させ、その後
三方バルブを切り替えて高純度ヘリウムで一気に押し出して質量分析計でブランクを測定し図5の1)のデータを得た。透過度のブランク値は0.1×10-4g/m2/dayであった。
First, high-purity helium in the test environment chamber is 50 ml / min, and high-purity helium in the permeation chamber is 100 ml / mi.
n, Supply high-purity helium at 20ml / min during double O-ring, film and container
After fully purging the O-ring, switch the three-way valve to accumulate at 40 ° C for 2 hours, then switch the three-way valve and push it out with high-purity helium at a stretch and measure the blank with a mass spectrometer. Obtained. The transmittance blank value was 0.1 × 10 −4 g / m 2 / day.

その後、試験環境室に90%相対湿度の空気を50ml/min、透過室側に高純度ヘリウムを100ml/min、試験環境室と透過室を等圧の状態にして、二重のオーリングの間に20ml/minの高純度ヘリウムを供給し、充分にパージした後、三方バルブを切り替えて40℃で2時間蓄積させ、その後三方バルブを切り替えて高純度ヘリウムで一気に押し出して質量分析計で透過度を測定し図5の2)のデータを得た。得られた値は2.6×10-4g/m2/dayであった。よってブランク値を差し引いた水分透過度は2.5×10-4g/m2/dayであった。 After that, air with 90% relative humidity in the test environment chamber is 50 ml / min, high-purity helium in the permeation chamber side is 100 ml / min, and the test environment chamber and the permeation chamber are in the same pressure state. After supplying 20 ml / min of high-purity helium and thoroughly purging, switch the three-way valve to accumulate at 40 ° C for 2 hours, then switch the three-way valve and push it out with high-purity helium at once, and transmit the permeability with a mass spectrometer Was measured to obtain data 2) in FIG. The value obtained was 2.6 × 10 −4 g / m 2 / day. Therefore, the water permeability after subtracting the blank value was 2.5 × 10 −4 g / m 2 / day.

<参考例1>
本発明の装置による測定限界を見積もるため、フィルム材料は取り外し、試験環境室にはガスを流さず、そのガス出入り口にはブランク栓をして完全に閉じたガス透過セルを構成し、透過室側に高純度ヘリウムを100ml/min、二重のオーリングの間に20ml/minの高純
度ヘリウムを供給し、予め透過室を充分パージした後、三方バルブを切り替えて40℃で24時間蓄積させ、その後三方バルブを切り替えて高純度ヘリウムで一気に押し出したガスを質量分析計で検出した。質量分析計で得られた測定データを図6に示す。そのピーク面積から求めた測定のブランクは1×10-6g/m2/day相当であった。この測定より、10-6g/m2/day程度の水蒸気透過フィルムの測定が可能であることを確認できた。
<Reference Example 1>
In order to estimate the measurement limit by the apparatus of the present invention, the film material is removed, no gas is allowed to flow into the test environment chamber, and a completely closed gas permeation cell is constructed with a blank stopper at its gas inlet and outlet. High purity helium is supplied at 100 ml / min, and 20 ml / min high purity helium is supplied between the double O-rings, and the permeation chamber is sufficiently purged in advance, then the three-way valve is switched and accumulated at 40 ° C. for 24 hours. Thereafter, the three-way valve was switched, and the gas pushed out at once with high purity helium was detected with a mass spectrometer. The measurement data obtained by the mass spectrometer is shown in FIG. The measurement blank obtained from the peak area was equivalent to 1 × 10 −6 g / m 2 / day. From this measurement, it was confirmed that a water vapor permeable film of about 10 −6 g / m 2 / day can be measured.

10 容器
11 試験環境室
12 透過室
13 フィルム
14 オーリング
15 シール用ガス入口
16 シール用ガス出口
17 被測定ガス入口
18 被測定ガス出口
19 不活性ガス入口
20 不活性ガス出口
21〜22 三方バルブ
23 検出器
24 マスフローコントローラ
25 ガス精製機
26 ヘリウムボンベ
27 空気ボンベ
28 調湿装置
30 試験恒温槽
31 配管恒温槽
32 ガス注入口
33〜34 二方バルブ
10 containers
11 Test environment room
12 Permeation chamber
13 films
14 O-ring
15 Gas inlet for sealing
16 Gas outlet for sealing
17 Measured gas inlet
18 Gas outlet to be measured
19 Inert gas inlet
20 Inert gas outlet
21-22 Three-way valve
23 Detector
24 Mass flow controller
25 Gas refiner
26 Helium cylinder
27 Air cylinder
28 Humidity control device
30 test chamber
31 Piping thermostat
32 Gas inlet
33-34 two-way valve

Claims (9)

フィルム材料のガス透過率を測定するガス透過率測定装置であって、該フィルム材料の装着時に該フィルム材料によって隔てられる第一の容器及び第二の容器が形成され、前記第一の容器が、被測定ガスを該フィルム材料の片方の面に供給するための被測定ガス供給機構を有し、前記第二の容器が、該フィルム材料の前記被測定ガスが供給される面とは逆側の面に対して不活性ガスを供給するための不活性ガス供給機構を有し、前記不活性ガス中の被測定ガスを検出する検出器が第二の容器に接続され、第二の容器中に不活性ガス供給機構から供給された不活性ガスを密封した状態と、第二の容器中に密封された不活性ガスを前記検出器に導入する状態とを選択的に可能としたことを特徴とするガス透過率測定装置。   A gas permeability measuring device for measuring a gas permeability of a film material, wherein a first container and a second container separated by the film material when the film material is mounted are formed, and the first container is A measurement gas supply mechanism for supplying a measurement gas to one surface of the film material, wherein the second container is opposite to the surface of the film material to which the measurement gas is supplied; An inert gas supply mechanism for supplying an inert gas to the surface, and a detector for detecting a gas to be measured in the inert gas is connected to the second container; It is possible to selectively enable a state in which the inert gas supplied from the inert gas supply mechanism is sealed and a state in which the inert gas sealed in the second container is introduced into the detector. Gas permeability measuring device. 前記フィルム材料の外縁部分を狭圧密封し前記第一の容器及び第二の容器を形成するシール機構を有する請求項1に記載のガス透過率測定装置。   The gas permeability measuring apparatus according to claim 1, further comprising a sealing mechanism that tightly seals an outer edge portion of the film material to form the first container and the second container. 前記シール機構を密閉しうるシール室を有する請求項2に記載のガス透過率測定装置。   The gas permeability measuring apparatus according to claim 2, further comprising a seal chamber capable of sealing the seal mechanism. 前記シール室に不活性ガスを供給する手段を有する請求項3に記載のガス透過率測定装置。   The gas permeability measuring apparatus according to claim 3, further comprising means for supplying an inert gas to the seal chamber. 前記シール機構及び前記密封容器が前記フィルム材料の測定前に、予めベーキングされたものであることを特徴とする請求項1〜4のいずれかに記載のガス透過率測定装置。   The gas permeability measuring device according to any one of claims 1 to 4, wherein the sealing mechanism and the sealed container are baked in advance before measuring the film material. 前記検出器が、応答時間が60秒以下であって、湿度計、質量分析装置、及びパルス放電検出器からなる群より選ばれるものであることを特徴とする請求項1〜5のいずれかに記載のガス透過率測定装置。   6. The detector according to claim 1, wherein the detector has a response time of 60 seconds or less and is selected from the group consisting of a hygrometer, a mass spectrometer, and a pulse discharge detector. The gas permeability measuring apparatus as described. 前記被測定ガスが、水分を含有する空気であり、不活性ガスがヘリウム又はアルゴンであることを特徴とする請求項1〜6のいずれかに記載のガス透過率測定装置。   The gas permeability measuring apparatus according to claim 1, wherein the gas to be measured is air containing moisture, and the inert gas is helium or argon. 請求項1〜7のいずれかに記載のガス透過率測定装置を用いて、フィルム材料のガス透過率を測定するガス透過率測定方法。   A gas permeability measuring method for measuring a gas permeability of a film material using the gas permeability measuring device according to claim 1. 前記第二の容器内を不活性ガスで置換したのち密封し、前記第一の容器内に被測定ガスを一定時間供給した後、第二の容器に密封された前記不活性ガスを前記検出器に導入することを特徴とする請求項8に記載のガス透過率測定方法。   After the inside of the second container is replaced with an inert gas and sealed, the gas to be measured is supplied into the first container for a certain time, and then the inert gas sealed in the second container is removed from the detector. The gas permeability measuring method according to claim 8, wherein the gas permeability measuring method is introduced into the gas.
JP2009035898A 2009-02-18 2009-02-18 Gas permeability measuring device and gas permeability measuring method for film material Pending JP2010190751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035898A JP2010190751A (en) 2009-02-18 2009-02-18 Gas permeability measuring device and gas permeability measuring method for film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035898A JP2010190751A (en) 2009-02-18 2009-02-18 Gas permeability measuring device and gas permeability measuring method for film material

Publications (1)

Publication Number Publication Date
JP2010190751A true JP2010190751A (en) 2010-09-02

Family

ID=42816943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035898A Pending JP2010190751A (en) 2009-02-18 2009-02-18 Gas permeability measuring device and gas permeability measuring method for film material

Country Status (1)

Country Link
JP (1) JP2010190751A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033649A2 (en) * 2010-09-10 2012-03-15 Saint-Gobain Performance Plastics Corporation Systems and methods for permeation rate testing of barrier films using vapor accumulation
CN102445312A (en) * 2011-10-09 2012-05-09 北京化工大学 Testing apparatus for plastic airtightness and method thereof
CN103234886A (en) * 2013-04-09 2013-08-07 海宁长宇镀铝材料有限公司 Aluminized PVDC thin film air-permeability detection device
WO2014119688A1 (en) 2013-01-31 2014-08-07 独立行政法人産業技術総合研究所 Gas-barrier-performance evaluation device and evaluation method
WO2014119689A1 (en) 2013-01-31 2014-08-07 独立行政法人産業技術総合研究所 Gas-barrier-performance evaluation device and evaluation method
CN104006935A (en) * 2014-06-09 2014-08-27 南通大学 Fuel cell bipolar plate air permeability testing device
JP2014160069A (en) * 2013-02-12 2014-09-04 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Method and apparatus for measuring permeation rate of barrier material
CN104132879A (en) * 2014-07-22 2014-11-05 嘉兴市梦迪织造有限公司 Ultraviolet resistant hemp knitted fabric permeability detection machine
WO2015036745A3 (en) * 2013-09-12 2015-05-28 Vg Scienta Limited Barrier testing
JP2016105086A (en) * 2014-11-24 2016-06-09 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Method and device for measuring permeability by mass spectrometry
KR20160089895A (en) * 2013-11-26 2016-07-28 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Sample holder and associated permeation device
KR101764878B1 (en) 2016-03-31 2017-08-03 성균관대학교산학협력단 Apparatus and method for measuring water vapor transmission rate using saturated electrolyte solution
CN107490539A (en) * 2017-08-23 2017-12-19 成都本华清博科技有限公司 A kind of measurement apparatus and its measuring method of flaky material penetrability
WO2018155678A1 (en) 2017-02-27 2018-08-30 国立研究開発法人産業技術総合研究所 Device for evaluating gas barrier properties and method for evaluating gas barrier properties
KR102632280B1 (en) * 2023-04-28 2024-02-02 한국표준과학연구원 Sample Holder with Double Sealing and Exhaust Structure

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033649A2 (en) * 2010-09-10 2012-03-15 Saint-Gobain Performance Plastics Corporation Systems and methods for permeation rate testing of barrier films using vapor accumulation
WO2012033649A3 (en) * 2010-09-10 2012-06-14 Saint-Gobain Performance Plastics Corporation Systems and methods for permeation rate testing of barrier films using vapor accumulation
CN102445312A (en) * 2011-10-09 2012-05-09 北京化工大学 Testing apparatus for plastic airtightness and method thereof
KR20150110779A (en) 2013-01-31 2015-10-02 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Gas-barrier-performance evaluation device and evaluation method
WO2014119688A1 (en) 2013-01-31 2014-08-07 独立行政法人産業技術総合研究所 Gas-barrier-performance evaluation device and evaluation method
WO2014119689A1 (en) 2013-01-31 2014-08-07 独立行政法人産業技術総合研究所 Gas-barrier-performance evaluation device and evaluation method
US9746411B2 (en) 2013-01-31 2017-08-29 National Institute Of Advanced Industrial Science And Technology Apparatus and method for evaluating gas barrier properties
US9696251B2 (en) 2013-01-31 2017-07-04 National Institute Of Advanced Industrial Science And Technology Apparatus and method for evaluating gas barrier properties
JP2014160069A (en) * 2013-02-12 2014-09-04 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev Method and apparatus for measuring permeation rate of barrier material
CN103234886A (en) * 2013-04-09 2013-08-07 海宁长宇镀铝材料有限公司 Aluminized PVDC thin film air-permeability detection device
WO2015036745A3 (en) * 2013-09-12 2015-05-28 Vg Scienta Limited Barrier testing
KR20160089895A (en) * 2013-11-26 2016-07-28 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Sample holder and associated permeation device
JP2017502255A (en) * 2013-11-26 2017-01-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Sample holder and associated infiltration device
KR102214258B1 (en) 2013-11-26 2021-02-08 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Sample holder and associated permeation device
CN104006935A (en) * 2014-06-09 2014-08-27 南通大学 Fuel cell bipolar plate air permeability testing device
CN104132879A (en) * 2014-07-22 2014-11-05 嘉兴市梦迪织造有限公司 Ultraviolet resistant hemp knitted fabric permeability detection machine
JP2016105086A (en) * 2014-11-24 2016-06-09 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Method and device for measuring permeability by mass spectrometry
KR101764878B1 (en) 2016-03-31 2017-08-03 성균관대학교산학협력단 Apparatus and method for measuring water vapor transmission rate using saturated electrolyte solution
WO2018155678A1 (en) 2017-02-27 2018-08-30 国立研究開発法人産業技術総合研究所 Device for evaluating gas barrier properties and method for evaluating gas barrier properties
KR20190123722A (en) 2017-02-27 2019-11-01 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Gas barrier property evaluation apparatus and gas barrier property evaluation method
US11119023B2 (en) 2017-02-27 2021-09-14 National Institute Of Advanced Industrial Science And Technology Apparatus for evaluating gas barrier properties and method of evaluating gas barrier properties
CN107490539A (en) * 2017-08-23 2017-12-19 成都本华清博科技有限公司 A kind of measurement apparatus and its measuring method of flaky material penetrability
KR102632280B1 (en) * 2023-04-28 2024-02-02 한국표준과학연구원 Sample Holder with Double Sealing and Exhaust Structure

Similar Documents

Publication Publication Date Title
JP2010190751A (en) Gas permeability measuring device and gas permeability measuring method for film material
JP4759096B2 (en) Permeability evaluation apparatus and evaluation method
EP2113764B1 (en) Humidity control system for the sensing cell of an analyte permeation testing instrument
US20090320564A1 (en) Method and Device for Measuring the Gas Permeability Through Films and Walls of Containers
US20030074954A1 (en) Precise measurement system for barrier materials
KR20040058057A (en) Gas permeability measurement method and gas permeability measurement device
JP5553287B2 (en) Water vapor permeability measuring device and measuring method
JP2004528563A (en) How to measure gas accumulation rate
KR20100066537A (en) Device for measuring steam permeability, and method for the device
JP6281915B2 (en) Gas permeability measuring device
WO2014119688A1 (en) Gas-barrier-performance evaluation device and evaluation method
JP2010249609A (en) Instrument and method for measuring permeation amount of steam
JP7041665B2 (en) Gas barrier property evaluation device and gas barrier property evaluation method
JP5734109B2 (en) Measuring apparatus and measuring method
JP6002404B2 (en) Mass spectrometer, method of using the same, and method of measuring gas permeation characteristics
JP2004219407A (en) Method of measuring gas permeability and apparatus for measuring gas permeability
EP0877246A2 (en) In situ monitoring of contaminants in semiconductor processing chambers
Wanyan et al. A predictive instrument for sensitive and expedited measurement of ultra-barrier permeation
US9261451B2 (en) Device and method for determining the permeation rate of barrier elements and ultra-barrier elements
JP2004157035A (en) Gas permeation speed measuring device of barrier film-coated plastic container, gas permeation speed measuring method of barrier film-coated plastic container, gas permeation speed measuring device of barrier film-coated plastic sheet, and gas pearmeation speed measuring method of barrier film-coated plastic sheet
US20060120920A1 (en) Hydrogen or helium sensor
Hale et al. Gas analysis using a thermal conductivity method
JP4954240B2 (en) Coulometric sample detection apparatus having a sensor for consuming a sample in a closed cell
TW201215872A (en) Permeability evaluation device and evaluation method
CA1288030C (en) Reactor analysis system