JP4759096B2 - Permeability evaluation apparatus and evaluation method - Google Patents

Permeability evaluation apparatus and evaluation method Download PDF

Info

Publication number
JP4759096B2
JP4759096B2 JP2010545304A JP2010545304A JP4759096B2 JP 4759096 B2 JP4759096 B2 JP 4759096B2 JP 2010545304 A JP2010545304 A JP 2010545304A JP 2010545304 A JP2010545304 A JP 2010545304A JP 4759096 B2 JP4759096 B2 JP 4759096B2
Authority
JP
Japan
Prior art keywords
tank
component
evaluated
adsorption
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010545304A
Other languages
Japanese (ja)
Other versions
JPWO2010117012A1 (en
Inventor
敏宏 島田
敏之 管野
基▲みん▼ 南
Original Assignee
敏宏 島田
敏之 管野
基▲みん▼ 南
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏宏 島田, 敏之 管野, 基▲みん▼ 南 filed Critical 敏宏 島田
Priority to JP2010545304A priority Critical patent/JP4759096B2/en
Application granted granted Critical
Publication of JP4759096B2 publication Critical patent/JP4759096B2/en
Publication of JPWO2010117012A1 publication Critical patent/JPWO2010117012A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules

Description

本発明は、フィルムや薄膜などにおける気体や液体などの透過に関する評価を行う透過性評価装置および評価方法に関する。   The present invention relates to a permeability evaluation apparatus and an evaluation method for evaluating the permeation of gas or liquid in a film or a thin film.

プラスチックフィルムは、ガラス基板と比べて軽量で耐衝撃性に優れ、柔軟性が高く、さらに低コスト化が可能であるという利点がある。このため、ペットボトルや食品包装などに多用されているほか、近年では、従来ガラス基板が用いられてきた画像用表示デバイスなどの分野でも、プラスチック基板を用いた成膜技術の研究、開発が進められている。   The plastic film is advantageous in that it is lighter in weight, superior in impact resistance, higher in flexibility, and lower in cost than a glass substrate. For this reason, in addition to being widely used for PET bottles and food packaging, in recent years, research and development of film-forming technology using plastic substrates has been promoted in the field of image display devices where glass substrates have been used. It has been.

ガラス基板からプラスチック基板への移行の要求が高い技術分野としては、次世代の表示用デバイスを担うと目されている、電子ペーパー、太陽電池用デバイス、有機ELが挙げられる。そして、有機ELデバイスなどの表示用デバイスに用いられるプラスチックフィルムに対しては、製品中の光材料の特性を保ち、製品の信頼性を高めるため、これまでにない極めて低い酸素透過性や水蒸気透過性が求められている。   As a technical field where there is a high demand for a shift from a glass substrate to a plastic substrate, there are electronic paper, a solar cell device, and an organic EL, which are expected to be responsible for next-generation display devices. And for plastic films used in display devices such as organic EL devices, extremely low oxygen permeability and water vapor transmission that have never been achieved so as to maintain the characteristics of optical materials in the product and improve the reliability of the product. Sex is required.

しかし、例えば、現在の測定手段(非特許文献1、2)によるプラスチックフィルムの水蒸気透過性に対する測定感度は1ppm程度であり、上記表示用デバイス等の性能維持のために求められている水蒸気透過性の値を大きく超えている。このため、実用上の要請から、プラスチックフィルムの酸素透過性や水蒸気透過性に対する測定感度の向上が急務となっている。
そこで、これらの透過性に対する測定感度を向上させるため、特許文献1、特許文献2に開示されているような質量分析器による評価方法が提案されている。これらの文献に記載の発明では、被測定膜を成分導入槽と真空槽との境に設けられたサンプル台に設置し、成分導入槽に水蒸気などの評価対象成分を導入して、真空槽側で質量分析を行う。具体的には、評価対象成分は、成分導入槽から被測定膜を介して真空槽に透過し、真空槽側における質量分析によって検知され、その透過量の測定が行われる。
However, for example, the measurement sensitivity with respect to the water vapor permeability of plastic films by the current measuring means (Non-Patent Documents 1 and 2) is about 1 ppm, and the water vapor permeability required for maintaining the performance of the display device and the like. The value is greatly exceeded. For this reason, due to practical requirements, there is an urgent need to improve measurement sensitivity for oxygen permeability and water vapor permeability of plastic films.
Therefore, in order to improve the measurement sensitivity for these permeability, an evaluation method using a mass analyzer as disclosed in Patent Document 1 and Patent Document 2 has been proposed. In the inventions described in these documents, the film to be measured is installed on the sample stage provided at the boundary between the component introduction tank and the vacuum tank, and the component to be evaluated such as water vapor is introduced into the component introduction tank. Perform mass spectrometry at Specifically, the evaluation target component is transmitted from the component introduction tank to the vacuum tank through the film to be measured, detected by mass spectrometry on the vacuum tank side, and the permeation amount is measured.

特開2002−357533号公報JP 2002-357533 A 特開2005−233943号公報Japanese Patent Application Laid-Open No. 2005-233943

日本工業規格 JIS K 7129Japanese Industrial Standard JIS K 7129 日本工業規格 JIS Z 0208Japanese Industrial Standards JIS Z 0208

しかしながら、本発明者らの検討によれば、これらの従来技術では、装置内壁に吸着されている水蒸気成分の放出に対する配慮がないため、バックグラウンドの上昇に起因して測定感度が低いという問題がある。また、被測定膜の両面にかかる圧力差によって、測定中に被測定膜が歪んだり、破損することもあり、測定の再現性が悪いという問題もある。上記した問題から、これら従来の手法では、下記に示すように、10-4g/m2/day程度のオーダーの水蒸気透過量しか測定することができず、要望されている測定精度を満足できるものではなかった。すなわち、
試料面積:100cm2=1×10-22
透過水蒸気量(目標精度):1×10-6g/m2/day=1.16×10-11g/m2/s=6.43×10-13mol/m2/s=3.87×1011molecules/m2/s
ここで、試料面積100cm2のフィルムに、1×10-6g/m2/dayの水蒸気透過があるとすると、1×10-2×3.87×1011molecules/s=3.87×109molecules/s=1.46×10-11Pa・m3/sとなる。
これに対し、図8に示すような従来の測定手段において、装置内壁(真空槽)からの水蒸気放出量を1×10-7Pa・m3/m2sとし、装置内壁の真表面積を1m2とすると、その水蒸気放出量は1×10-7Pa・m3/sとなる。したがって、フィルムの水蒸気透過量のリアルタイム測定では、装置内壁からの放出ガスが透過水量の104倍となり、透過水量と装置内壁からの放出水量の区別が困難である。
However, according to the study by the present inventors, in these conventional techniques, since there is no consideration for the release of the water vapor component adsorbed on the inner wall of the apparatus, there is a problem that the measurement sensitivity is low due to an increase in the background. is there. In addition, there is a problem in that the reproducibility of the measurement is poor because the film to be measured may be distorted or damaged during measurement due to a pressure difference applied to both surfaces of the film to be measured. Due to the above-mentioned problems, these conventional methods can measure only the amount of water vapor transmission on the order of 10 −4 g / m 2 / day as shown below, and can satisfy the required measurement accuracy. It was not a thing. That is,
Sample area: 100 cm 2 = 1 × 10 −2 m 2
Permeated water vapor amount (target accuracy): 1 × 10 −6 g / m 2 /day=1.16×10 −11 g / m 2 /s=6.43×10 −13 mol / m 2 / s = 3. 87 × 10 11 molecules / m 2 / s
Here, if the film having a sample area of 100 cm 2 has water vapor transmission of 1 × 10 −6 g / m 2 / day, 1 × 10 −2 × 3.87 × 10 11 molecules / s = 3.87 × 10 9 molecules / s = 1.46 × 10 −11 Pa · m 3 / s.
On the other hand, in the conventional measuring means as shown in FIG. 8, the amount of water vapor discharged from the inner wall (vacuum chamber) of the apparatus is 1 × 10 −7 Pa · m 3 / m 2 s, and the true surface area of the inner wall of the apparatus is 1 m. Assuming 2 , the amount of water vapor released is 1 × 10 −7 Pa · m 3 / s. Therefore, the real-time measurement of the water vapor permeability of the film, release gas from the inner wall of the apparatus becomes 10 4 times the amount of permeated water, it is difficult to distinguish water release amount from the water permeate flow device inner wall.

有機ELディスプレイなどのフィルムデバイス用のバリア膜は、水蒸気透過度として10-6g/m2/day程度が要求されている。これに対し、上述のとおり、従来技術における測定感度は、10-4g/m2/dayのオーダーであり、測定感度が絶対的に不足している。このため、表示用デバイスに用いられるプラスチックフィルムの製造工程においては、酸素透過性や水蒸気透過性の面からの正確な品質管理が行えないという、実用上の重大な課題がある。また、測定感度の不足の問題に加え、従来法においては、測定時間が長いことも問題である。A barrier film for a film device such as an organic EL display is required to have a water vapor permeability of about 10 −6 g / m 2 / day. On the other hand, as described above, the measurement sensitivity in the prior art is on the order of 10 −4 g / m 2 / day, and the measurement sensitivity is absolutely insufficient. For this reason, in the manufacturing process of the plastic film used for the display device, there is a serious practical problem that accurate quality control cannot be performed in terms of oxygen permeability and water vapor permeability. In addition to the problem of insufficient measurement sensitivity, the conventional method also has a problem of long measurement time.

したがって、本発明は、上記の問題点を解決し、従来技術による測定限界以下であるフィルムからの極微量の透過成分を感度よく検出でき、正確に精度よく分析することを可能にできる透過性評価装置および透過性処理方法を提供することを目的とする。   Therefore, the present invention solves the above-mentioned problems, can detect a very small amount of transmission component from a film below the measurement limit according to the prior art with high sensitivity, and can perform analysis accurately and accurately. An object is to provide an apparatus and a permeability treatment method.

上記目的は以下の本発明によって達成される。すなわち、本発明は、被測定膜(10)の透過成分に関する評価を行う透過性評価装置であって、
該装置は、少なくとも、透過成分導入槽(11)と透過成分通過槽(12)とを有するチャンバ(15)と、透過成分捕捉槽(51)内に設けられた、冷却によって評価対象成分を吸着し、冷却の中止或いは加熱によって評価対象成分を脱離する吸着脱離基材(30)と、上記槽(51)内を排気するための高真空排気装置(73)と、評価対象成分を分析するための分析手段(72)と、不活性ガスを少なくとも透過成分通過槽(12)に供給するための機構(80)とを備え、上記チャンバ(15)内の上記槽(11)と上記槽(12)には、互いに向かい合う側の当接面に上記膜(10)の支持治具(14)が配置され、該支持治具(14)で上記膜(10)を支持した場合に、該膜(10)の一方の面と上記槽(11)の内壁との間および膜(10)の他方の面と上記槽(12)の内壁との間にそれぞれ密封空間が形成される構造を有しており、上記槽(11)には、評価対象成分の導入口(60)と排気口(62)とが設けられており、上記槽(12)は、バルブを有する配管を介して、被測定膜(10)を透過した評価対象成分を上記吸着脱離基材(30)へと移動できる構造をしており、上記槽(12)と上記吸着脱離基材(30)との間に、必要に応じて透過成分貯槽(13)が設けられ、該槽(13)を有する場合、該槽(12)と槽(13)とは、バルブを有する配管を介して、或いは必要に応じてバルブおよび強制循環扇を備えた配管を介して連結され、上記槽(13)と基材(30)とはバルブを有する配管を介して連結され、
上記吸着脱離基材(30)は、冷却されることで評価対象成分を吸着し、冷却した状態で透過成分捕捉槽(51)内を上記高真空排気装置(73)で排気した後に、冷却が中止されるか或いは加熱がされることで該評価対象成分を脱離するものであり、上記分析手段(72)は、上記基材(30)から脱離された評価対象成分を検出する機能を有するものであることを特徴とする透過性評価装置を提供する。
The above object is achieved by the present invention described below. That is, the present invention is a permeability evaluation apparatus for performing an evaluation on the permeation component of the measured membrane (10),
The apparatus adsorbs a component to be evaluated by cooling provided at least in a chamber (15) having a permeation component introduction tank (11) and a permeation component passage tank (12) and a permeation component capture tank (51). Then, the adsorption / desorption base material (30) that desorbs the evaluation target component by stopping cooling or heating, the high vacuum exhaust device (73) for exhausting the inside of the tank (51), and the evaluation target component are analyzed. Analysis means (72) and a mechanism (80) for supplying an inert gas to at least the permeation component passage tank (12), the tank (11) and the tank in the chamber (15) (12), when the support jig (14) of the film (10) is disposed on the contact surfaces facing each other, and when the film (10) is supported by the support jig (14), Between one side of the membrane (10) and the inner wall of the tank (11) And the other surface of the membrane (10) and the inner wall of the tank (12), respectively, have a structure in which a sealed space is formed. 60) and an exhaust port (62) are provided, and the tank (12) allows the component to be evaluated to pass through the membrane (10) to be measured through the pipe having a valve. has a structure that can be moved to the 30), between the tank (12) the suction leaving group member (30), the transmitted component storage tank (13) is provided as needed, cistern (13 ), The tank (12) and the tank (13) are connected via a pipe having a valve or, if necessary, a pipe having a valve and a forced circulation fan, and the tank (13). ) And the substrate (30) are connected via a pipe having a valve,
The adsorbing / desorbing substrate (30) adsorbs the component to be evaluated by being cooled, and in the cooled state, the permeation component capturing tank (51) is evacuated by the high vacuum evacuation device (73), and then cooled. The component to be evaluated is desorbed by stopping or heating, and the analysis means (72) has a function of detecting the component to be evaluated desorbed from the substrate (30). There is provided a permeability evaluation apparatus characterized by comprising:

上記本発明の装置においては、前記分析手段(72)が、質量分析計、ガスクロマトグラフィまたは真空計のいずれかであること;前記チャンバ(15)が、不活性ガスが導入でき、さらに温度湿度調整手段(70)を備えており、チャンバ(15)内に配置されている透過成分導入槽(11)の密閉空間の温度および湿度の調整を可能とすること;前記支持治具(14)が、金属ガスケットまたはエラストマーガスケットからなること;前記不活性ガス中の水分を除去するための水分除去器(91)が備えられていること;前記吸着脱離基材(30)が、表面積の大きい素材のもの又は熱伝導率の大きい素材のものであることが好ましい。 In the apparatus of the present invention, the analysis means (72) is any one of a mass spectrometer, a gas chromatography and a vacuum gauge; the chamber (15) can introduce an inert gas, and further adjusts the temperature and humidity. comprising means (70), it enables the adjustment of the temperature and humidity of the enclosed space of the transmission component introduction reservoir disposed within the chamber (15) (11); pre-Symbol support jig (14) A metal gasket or an elastomer gasket; provided with a moisture remover (91) for removing moisture in the inert gas; and the adsorption / desorption substrate (30) is a material having a large surface area Or a material having a high thermal conductivity is preferable.

また、本発明は、被測定膜の透過成分に関する評価を行う透過性評価方法であって、該方法は、被測定膜を透過した評価対象成分を採取するための採取工程と、採取した評価対象成分を吸着脱離基材に吸着固定する吸着固定工程と、評価対象成分を分析する分析工程とを有し、上記採取工程において、チャンバ内にて被測定膜を挟んで互いに向かい合う位置に2つの密封空間を形成し、両方の密封空間が等圧となるように、片方の密封空間に評価対象成分を、もう一方の密封空間に不活性ガスを供給し、両方の密封空間内の評価対象成分の分圧の差によって上記被測定膜を透過した評価対象成分を該不活性ガスが供給されている一方の密封空間に集め、上記吸着固定工程において、冷却されることで評価対象成分を吸着し、冷却中止されるか或いは加熱がされることで該評価対象成分を脱離する吸着脱離基材を用い、冷却した該吸着脱離基材に上記採取した評価対象成分を拡散或いは気体の循環により移動させて該吸着脱離基材に評価対象成分を吸着固定し、該吸着脱離基材を冷却した状態で真空排気した後、上記分析工程において、上記吸着脱離基材の冷却を中止するか或いは加熱することにより評価対象成分を脱離させて分析を行うことを特徴とする透過性評価方法を提供する。 The present invention also relates to a permeability evaluation method for evaluating a permeation component of a membrane to be measured , the method comprising a sampling step for sampling an evaluation target component that has permeated through the membrane to be measured , and a sample to be evaluated An adsorption and fixing step for adsorbing and fixing the components to the adsorption / desorption substrate; and an analysis step for analyzing the component to be evaluated. In the sampling step, two components are placed at positions facing each other across the film to be measured in the chamber. A component to be evaluated is supplied to one sealed space, an inert gas is supplied to the other sealed space, and a component to be evaluated in both sealed spaces. collected evaluated components by the partial pressure difference transmitted through the measuring film on one of the sealing space inert gas is supplied, in the vacuum fixing step, adsorbs evaluated components Rukoto cooled , Ru cooling is stopped Or heating is that the use of a suction leaving material capable of leaving the evaluated component in Rukoto and the evaluation target component taken above the absorbent detachable group material was cooled moved by circulation of the diffusion or gas After the component to be evaluated is adsorbed and fixed on the adsorption / desorption substrate and the adsorption / desorption substrate is cooled and evacuated , the cooling of the adsorption / desorption substrate is stopped or heated in the analysis step. The permeability evaluation method is characterized in that the analysis is performed by desorbing the component to be evaluated.

前記方法においては、前記評価対象成分が、水、酸素、二酸化炭素、窒素、エチレンガスまたは揮発性有機化合物であり、前記吸着脱離基材に、表面積の大きい素材のもの又は熱伝導率の大きい素材のものを用いること;分析工程で、質量分析計、ガスクロマトグラフィまたは真空計のいずれかを使用すること;前記採取工程の前に、あらかじめ前記2つの密封空間を、水分を除去した不活性ガスで置換しておくことが好ましい。 In the method, the evaluation component, water, oxygen, carbon dioxide, nitrogen, Ri ethylene gas or volatile organic compounds der, the adsorbed leaving material, the larger ones, or the thermal conductivity of the material of the surface area in analysis step, it uses one of the mass spectrometer, gas chromatography or gauge; Rukoto used as a large material prior to said collecting step, advance the two sealed space to remove water non It is preferable to substitute with active gas.

本発明によれば、各種膜の極微量の水蒸気透過性や酸素透過性を、正確に高精度かつ効率よく迅速に測定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the trace amount water vapor permeability and oxygen permeability of various membranes can be measured accurately, accurately, and quickly.

本発明の装置および方法を説明する図。The figure explaining the apparatus and method of this invention. 質量分析計の質量18amu(H2Oに対応する)のイオン電流を時間に対してプロットした図。And plots ion current against time of the mass spectrometer the mass 18Amu (corresponding to H 2 O). 試験に用いた試験片1および試験片2の構成を示す図。The figure which shows the structure of the test piece 1 and the test piece 2 which were used for the test. 圧力変化と水蒸気透過量との関係を説明する図。The figure explaining the relationship between a pressure change and the amount of water vapor transmission. 図4に示した圧力変化から水蒸気透過量を計算した図。The figure which calculated the water vapor transmission rate from the pressure change shown in FIG. 圧力変化と水蒸気透過量との関係を説明する図。The figure explaining the relationship between a pressure change and the amount of water vapor transmission. 図6に示した圧力変化から水蒸気透過量を計算した図。The figure which calculated water vapor | steam transmission | permeation amount from the pressure change shown in FIG. 公知の水蒸気透過率測定装置を示す図。The figure which shows a well-known water vapor permeability measuring apparatus.

次に好ましい実施の形態を挙げて、本発明をさらに詳しく説明する。最初に、図1を参照して、本発明の装置の基本的な構成について説明する。   Next, the present invention will be described in more detail with reference to preferred embodiments. First, the basic configuration of the apparatus of the present invention will be described with reference to FIG.

<透過性評価装置>
本発明の装置は、プラスチックフィルムなどの被測定膜10について、極微量の水蒸気や酸素などの透過性に関する評価を行う透過性評価装置である。
本発明の装置は、少なくとも、透過成分導入槽11と透過成分通過槽12とを有するチャンバ15と、冷却によって評価対象成分を吸着し、冷却の中止或いは加熱によって評価対象成分を脱離する吸着脱離基材30と、評価対象成分を分析するための分析手段72と、不活性ガスを少なくとも透過成分通過槽12に供給するための機構80とを備える。上記における冷却は、評価対象成分にもよって異なるが、例えば、液体窒素(77K)や液体ヘリウム(4K)などを冷媒として用い、極低温で行うことが好ましい。
<Permeability evaluation device>
The apparatus of the present invention is a permeability evaluation apparatus that performs an evaluation on the permeability of a very small amount of water vapor, oxygen, or the like on a film to be measured 10 such as a plastic film.
The apparatus of the present invention has at least a chamber 15 having a permeation component introduction tank 11 and a permeation component passage tank 12, and an adsorption desorption that adsorbs the evaluation target component by cooling and desorbs the evaluation target component by stopping cooling or heating. The separation substrate 30, an analysis means 72 for analyzing the evaluation target component, and a mechanism 80 for supplying at least the inert gas to the permeation component passage tank 12 are provided. Although the cooling in the above varies depending on the component to be evaluated, for example, liquid nitrogen (77K), liquid helium (4K), or the like is preferably used as a refrigerant and is performed at an extremely low temperature.

上記チャンバ15内の上記槽11と上記槽12には、互いに向かい合う側の当接面に被測定膜10の支持治具14が配置されている。そして、該支持治具14で被測定膜10を支持した場合に、該膜10の一方の面と上記槽11の内壁との間および膜10の他方の面と上記槽12の内壁との間に、それぞれ密封空間が形成される構造を有する。このような構造を有することにより、透過成分導入槽11の内壁と被測定膜10の一方の面との間に形成された密封空間内に評価対象成分を導入した場合、これを損失することなく評価に供することができる。   In the tank 11 and the tank 12 in the chamber 15, a support jig 14 for the film to be measured 10 is disposed on the contact surfaces facing each other. When the film to be measured 10 is supported by the support jig 14, between one surface of the film 10 and the inner wall of the tank 11 and between the other surface of the film 10 and the inner wall of the tank 12. Each has a structure in which a sealed space is formed. By having such a structure, when an evaluation target component is introduced into a sealed space formed between the inner wall of the permeation component introduction tank 11 and one surface of the film to be measured 10, this is not lost. Can be used for evaluation.

上記成分導入槽11は、少なくとも評価対象成分の導入口60と排気口62とを備える。導入口60と排気口62とは、それぞれバルブを有する配管(41、42)に接続されていることが好ましい。一方、上記透過成分通過槽12は、バルブを有する配管を介して、被測定膜10を透過した評価対象成分を上記吸着脱離基材30へと供給できる構造を有する。
該吸着脱離基材30には、冷却されることで評価対象成分を吸着し、冷却が中止されるか或いは加熱がされることで該評価対象成分を脱離するものを使用する。被測定膜10を透過した評価対象成分は、吸着脱離基材30を冷却することにより吸着、収集される。透過した評価対象成分の全量が吸着された段階で、上記バルブを閉じ、次いで吸着脱離基材30の冷却を中止するか或いは加熱することで、透過した評価対象成分を脱離させ全量を分析手段72に供することができる。
The component introduction tank 11 includes at least an introduction port 60 and an exhaust port 62 for a component to be evaluated. The introduction port 60 and the exhaust port 62 are preferably connected to pipes (41, 42) each having a valve. On the other hand, the permeation component passage tank 12 has a structure capable of supplying the component to be evaluated that has permeated through the film to be measured 10 to the adsorption / desorption substrate 30 through a pipe having a valve.
As the adsorption / desorption base material 30, a substrate that adsorbs the evaluation target component by being cooled and desorbs the evaluation target component by being cooled or heated. The evaluation target component that has passed through the measurement target film 10 is adsorbed and collected by cooling the adsorption / desorption substrate 30. When the permeated evaluation target component is adsorbed, the valve is closed, and then the adsorption / desorption substrate 30 is stopped or heated to desorb the permeated evaluation target component and analyze the total amount. Means 72 can be provided.

上記分析手段72は、上記基材30から脱離された評価対象成分を検出する機能を有するものを使用する。このような分析手段の例としては、質量分析計、ガスクロマトグラフィまたは真空計を挙げることができる。
質量分析計のように真空排気が必要な分析手段72を用いる場合、適宜超高真空排気装置73を設置する。
As the analysis means 72, one having a function of detecting the evaluation target component detached from the base material 30 is used. Examples of such analysis means include a mass spectrometer, gas chromatography, or vacuum gauge.
When using analysis means 72 that requires evacuation, such as a mass spectrometer, an ultra-high evacuation device 73 is installed as appropriate.

上記不活性ガス供給機構80は、不活性ガスを少なくとも透過成分通過槽12に供給するものである。槽12を、評価対象成分を含まない不活性ガスで置換することにより、槽11と槽12が同圧の状態で、評価対象成分の分圧の差によって評価対象成分が膜10を透過する。槽12の真空排気が不要となるため、装置や膜10に与えるダメージを減らし、測定結果の再現性を向上できる。
上記不活性ガス供給機構80のさらなる構成としては、不活性ガスを充填した不活性ガスタンク87ならびに該タンク87とチャンバ15およびタンク87と槽13を連結する不活性ガス供給管82、84を挙げることができる。これらの管はバルブを備えることが好ましい。該機構80に水分除去器91を設け、不活性ガス中の水分を除去してから本発明の装置に供給することにより、測定の再現性をより向上させることができる。
上記不活性ガスとしては、窒素ガスの他、ヘリウム、ネオン、アルゴンなどの希ガスを用いることが好ましい。
測定開始前に本発明の装置全体を不活性ガスで置換することにより、装置内壁に付着または装置内に残留している酸素や水分などを除去することができ、測定の阻害要因を除去することができる。また、チャンバ15に不活性ガスを導入し、該チャンバとその内側の槽11、12内との気圧を等しく保つことにより、支持治具14などに応力が集中することを避け、測定結果の再現性を向上でき、装置に与えるダメージを減らすことができる。測定時の槽11、12の圧力は、等圧であれば特に制限はないが、外圧と同じ大気圧とすることで装置にかかる応力を最小にでき、排気のための労力を省くことができるので好ましい。
The inert gas supply mechanism 80 supplies an inert gas to at least the permeation component passage tank 12. By replacing the tank 12 with an inert gas that does not contain the evaluation target component, the evaluation target component permeates the membrane 10 due to the difference in partial pressure of the evaluation target component while the tank 11 and the tank 12 are at the same pressure. Since evacuation of the tank 12 is not required, damage to the apparatus and the film 10 can be reduced and the reproducibility of the measurement result can be improved.
As a further configuration of the inert gas supply mechanism 80, an inert gas tank 87 filled with an inert gas, and inert gas supply pipes 82 and 84 connecting the tank 87 and the chamber 15, and the tank 87 and the tank 13 are given. Can do. These tubes preferably comprise valves. By providing the mechanism 80 with a moisture remover 91 to remove moisture in the inert gas and then supplying it to the apparatus of the present invention, the reproducibility of the measurement can be further improved.
As the inert gas, it is preferable to use a rare gas such as helium, neon, or argon in addition to the nitrogen gas.
By replacing the entire apparatus of the present invention with an inert gas before the start of measurement, it is possible to remove oxygen, moisture, etc. adhering to or remaining in the inner wall of the apparatus, and to remove measurement obstruction factors Can do. In addition, by introducing an inert gas into the chamber 15 and keeping the pressure in the chamber and the tanks 11 and 12 inside thereof equal, stress concentration on the support jig 14 and the like is avoided, and the measurement results are reproduced. Can be improved, and damage to the device can be reduced. The pressure of the tanks 11 and 12 at the time of measurement is not particularly limited as long as it is equal, but by setting the atmospheric pressure to be the same as the external pressure, the stress applied to the apparatus can be minimized and labor for exhaust can be saved. Therefore, it is preferable.

また、本発明の装置は、チャンバ15が、さらに温度湿度調整手段70を備えることが好ましい。チャンバ15内の温度および湿度を調整することにより、間接的に槽11、12内の温度を調整することで、所望の温湿度条件下における被測定膜からの極微量の透過成分の感度のよい検出が可能になる。また、槽11、12内とその外側のチャンバ15内との温度および湿度を等しくすることにより、温度、湿度の勾配をなくし、測定が安定した条件で行えるので、測定結果の再現性を高めることができる。   In the apparatus of the present invention, the chamber 15 preferably further includes a temperature / humidity adjusting means 70. By adjusting the temperature and humidity in the chamber 15 and adjusting the temperature in the tanks 11 and 12 indirectly, the sensitivity of a very small amount of transmitted components from the film to be measured under a desired temperature and humidity condition is good. Detection is possible. In addition, by making the temperature and humidity in the tanks 11 and 12 and the chamber 15 outside thereof equal, the temperature and humidity gradients are eliminated and the measurement can be performed under stable conditions, so that the reproducibility of the measurement results is improved. Can do.

さらに、図1に示したように、上記透過成分通過槽12と吸着脱離基材30との間に透過成分貯槽13を設けることも、本発明の装置の好ましい態様の一つである。上記槽12と槽13とはバルブを有する配管を介して連結する。さらに、必要に応じて上記槽12と槽13とをバルブおよび強制循環扇21を備えた配管で接続してもよい。該強制循環扇21は、膜10を透過した評価対象成分を槽12から槽13に送り込むために有用である。また、評価対象成分の透過を行う間、該配管のバルブを開き上記循環扇21で槽12と槽13の気体を強制循環することにより、槽12と槽13中の透過成分濃度を一定に保つことができる。
また、基材30を冷却すると気体が収縮し、装置内が減圧するので、槽12と基材30とが連結していると、繰返し測定を行うことで膜10が変形したり、破損したり、また、該膜のバリヤ性コーティング膜などの処理部分にダメージを与えることがある。本発明の装置が槽13を備えることで、該槽13と冷却した基材30とを接続する前または基材30を冷却する前に、槽12と13との間のバルブを閉じることにより、膜10の両側を等圧(例えば大気圧)に保つことができ、膜10をダメージから保護できるため好ましい。
上記強制循環扇21の例としては、加熱ベーキング可能なファンまたはダイヤフラムポンプを挙げることができる。
Furthermore, as shown in FIG. 1, it is also one of the preferable embodiments of the apparatus of the present invention to provide a permeated component storage tank 13 between the permeated component passage tank 12 and the adsorption / desorption substrate 30. The tank 12 and the tank 13 are connected via a pipe having a valve. Furthermore, you may connect the said tank 12 and the tank 13 by piping provided with the valve | bulb and the forced circulation fan 21 as needed. The forced circulation fan 21 is useful for sending the component to be evaluated that has passed through the membrane 10 from the tank 12 to the tank 13. During the permeation of the evaluation target component, the permeate concentration in the tank 12 and the tank 13 is kept constant by opening the valve of the pipe and forcibly circulating the gas in the tank 12 and the tank 13 with the circulation fan 21. be able to.
Further, when the base material 30 is cooled, the gas contracts and the inside of the apparatus is depressurized. Therefore, if the tank 12 and the base material 30 are connected, the film 10 may be deformed or damaged by repeated measurement. In addition, the processed portion such as a barrier coating film of the film may be damaged. By connecting the tank 13 and the cooled base material 30 before the apparatus of the present invention is provided with the tank 13 or before cooling the base material 30, by closing the valve between the tanks 12 and 13, It is preferable because both sides of the film 10 can be maintained at an equal pressure (for example, atmospheric pressure) and the film 10 can be protected from damage.
Examples of the forced circulation fan 21 include a heat-bakable fan or a diaphragm pump.

上記支持治具14は、長期間の繰返し使用によっても密封性が損なわれないものを用いることが好ましい。本発明の装置に好適に使用できる支持治具14としては金属ガスケットおよびエラストマーガスケットを挙げることができる。金属ガスケット基材としては、例えば、銅、ステンレス鋼、アルミ合金、チタン合金、銀合金またはインジウム合金などが使用できる。   It is preferable to use the support jig 14 that does not impair the sealing performance even after repeated use over a long period of time. Examples of the support jig 14 that can be suitably used in the apparatus of the present invention include a metal gasket and an elastomer gasket. As the metal gasket base material, for example, copper, stainless steel, aluminum alloy, titanium alloy, silver alloy, or indium alloy can be used.

また、本発明の装置においては、上記吸着脱離基材30を透過成分捕捉槽51内に設けることが好ましい。このような構成とすることにより、基材30への評価対象成分の吸着や脱離を均一化でき、測定の再現性を高めることができる。基材30の冷却手段としては、例えば、液体窒素等の冷媒容器52を設置し、基材30を収容した槽51を冷媒容器52中に浸漬する構造とすることが挙げられる。この場合、槽51の形成材料には、その熱伝導性が高く、かつ、低温にも耐えうるものを用いる。本発明は、上記構成に限定されず、基材30自体を液体窒素等の冷媒によって十分に冷却でき、冷却することで評価対象成分が基材30に吸着され、冷却が中止等されることで評価対象成分が脱離される構造となっていればいずれの方法でもよい。
また、透過した評価対象成分の、槽12又は槽13からの基材30への移動は、バルブを開けることによる拡散であってもよいが、槽51に循環扇を有する配管32を設置して、該配管を用いて大気圧にて気体を循環させてもよい。このようにすれば、より効率よく槽12又は槽13からの評価対象成分を基材30に吸着させることができる。
In the apparatus of the present invention, it is preferable to provide the adsorption / desorption base material 30 in the permeation component capturing tank 51. By setting it as such a structure, adsorption | suction and desorption | desorption of the evaluation object component to the base material 30 can be equalize | homogenized, and the reproducibility of a measurement can be improved. Examples of the cooling means for the base material 30 include a structure in which a refrigerant container 52 of liquid nitrogen or the like is installed and a tank 51 containing the base material 30 is immersed in the refrigerant container 52. In this case, a material that has high thermal conductivity and can withstand low temperatures is used as the material for forming the tank 51. The present invention is not limited to the above configuration, and the base material 30 itself can be sufficiently cooled by a refrigerant such as liquid nitrogen. By cooling, the evaluation target component is adsorbed on the base material 30, and the cooling is stopped. Any method may be used as long as the structure to be evaluated is desorbed.
Further, the movement of the permeated evaluation target component from the tank 12 or the tank 13 to the base material 30 may be diffusion by opening a valve, but a pipe 32 having a circulation fan is installed in the tank 51. The gas may be circulated at atmospheric pressure using the pipe. In this way, the component to be evaluated from the tank 12 or the tank 13 can be adsorbed to the base material 30 more efficiently.

上記吸着脱離基材30としては、表面積の大きいものや熱伝導率が大きいものを用いることが好ましい。本発明の装置において好適に使用される吸着脱離基材30の素材は、評価対象成分に応じて決まり一概には言えないが、例えば、ゼオライト、活性炭、アルミニウム製のハニカム構造体、銅製のハニカム構造体および多孔質ステンレススチールなどの発泡金属を挙げることができる。   As the adsorption / desorption base material 30, it is preferable to use a material having a large surface area or a material having a high thermal conductivity. The material of the adsorption / desorption base material 30 that is preferably used in the apparatus of the present invention is determined according to the component to be evaluated and cannot be generally specified. For example, zeolite, activated carbon, an aluminum honeycomb structure, a copper honeycomb Mention may be made of foam metals such as structures and porous stainless steel.

上記吸着脱離基材30の冷却温度も、吸着対象の評価対象成分に依存し一概には言えないが、例えば、液体窒素温度(−196℃)以下とする。液体窒素は安価であるので、測定を経済的に行うことができる。本発明者らの研究によれば、評価対象成分が水蒸気である場合、吸着脱離基材を液体窒素温度に冷却して水分を吸着させ、次いで、冷却した状態で透過成分捕捉槽51内を真空排気して槽内の気体を除去しても、基材に吸着した水分はほとんど昇華せず、損失しないことが明らかとなった。さらに、基材の冷却を中止するか或いは加熱することで基材に吸着した水分は速やかに昇華する。この結果、液体窒素冷却により基材30に吸着した水分量を正確に定量でき、正確な評価が可能となる。   The cooling temperature of the adsorption / desorption substrate 30 also depends on the evaluation target component to be adsorbed and cannot be generally stated, but is set to, for example, a liquid nitrogen temperature (−196 ° C.) or lower. Since liquid nitrogen is inexpensive, the measurement can be performed economically. According to the study by the present inventors, when the component to be evaluated is water vapor, the adsorption / desorption substrate is cooled to the liquid nitrogen temperature to adsorb moisture, and then the inside of the permeation component capturing tank 51 is cooled. It was found that even if the gas in the tank was removed by evacuation, the water adsorbed on the substrate hardly sublimated and was not lost. Furthermore, the water | moisture content adsorb | sucked to the base material is sublimated rapidly by stopping cooling or heating a base material. As a result, the amount of water adsorbed on the base material 30 by liquid nitrogen cooling can be accurately quantified, and accurate evaluation becomes possible.

本発明の装置においては、前記槽11、12、13、51、チャンバ15、支持治具14およびバルブを有する配管などを構成する素材は、基材30の昇温時に気体放出速度が1×10-9Pa・m3/m2s以下であるものを用いることが好ましい。このような素材の例として銅、ステンレス鋼、アルミ合金、チタン合金および銀合金を挙げることができる。In the apparatus of the present invention, the materials constituting the tanks 11, 12, 13, 51, the chamber 15, the support jig 14, and the pipe having the valve have a gas release rate of 1 × 10 when the temperature of the base material 30 is raised. It is preferable to use a material having a pressure of −9 Pa · m 3 / m 2 s or less. Examples of such materials include copper, stainless steel, aluminum alloy, titanium alloy and silver alloy.

<透過性評価方法>
次に、本発明の透過性評価方法について図1を参照して説明する。本発明の透過性評価方法は、図1に記載の構成を有する本発明の透過性評価装置を用いて実施することができる。
該方法は、少なくとも被測定膜10を透過した評価対象成分を採取するための採取工程と、採取した評価対象成分を吸着脱離基材30に吸着固定する吸着固定工程と、該吸着固定された評価対象成分を基材30から脱離させ分析する分析工程を有する。
上記採取工程では、まず、透過成分導入槽11と透過成分通過槽12との間に被測定膜10を挟み込み、該膜10を挟む2つの密閉空間を形成する。次いで、透過成分導入槽11側の密閉空間に評価対象成分を、透過成分通過槽12側の密閉空間には不活性ガスを、両方の密閉空間が等圧となるようにそれぞれ導入する。次いで、上記槽11、12につながる管のバルブを全て閉じてから一定時間保持することにより、槽11と12内の評価対象成分の分圧の差によって評価対象成分が膜10を透過し、該透過した評価対象成分が槽12内に蓄積する。この透過のための保持時間は、膜10の透過性や評価対象成分により異なり一概には言えないが、例えば1〜20時間である。真空状態で行う従来の方法では、透過のための保持時間が40時間程度となることもあり、しかも、その測定感度は所望するレベルに遠く達していなかったことを考慮すると、本発明は、この保持時間のみでも画期的であり、その実用価値は極めて高い。評価対象成分を膜透過させる間、上記槽11、12につながる配管のバルブは全て閉じて保持してもよく、配管20、22のバルブを開いて槽13との間で気体を循環させてもよい。
上記槽11、12内の圧力は等圧であれば特に制限はないが、排気の労力を省くことができ、また、外部と差圧が生じることによる膜10への応力の発生を防止できるため大気圧とすることが好ましい。
<Permeability evaluation method>
Next, the permeability evaluation method of the present invention will be described with reference to FIG. The permeability evaluation method of the present invention can be carried out using the permeability evaluation apparatus of the present invention having the configuration shown in FIG.
The method includes a sampling step for sampling at least the evaluation target component that has permeated through the measured film 10, an adsorption fixing step for adsorbing and fixing the collected evaluation target component to the adsorption / desorption base material 30, and the adsorption fixation An analysis step of desorbing the component to be evaluated from the substrate 30 and analyzing it;
In the sampling step, first, the film to be measured 10 is sandwiched between the permeation component introduction tank 11 and the permeation component passage tank 12 to form two sealed spaces that sandwich the film 10. Next, the component to be evaluated is introduced into the sealed space on the permeable component introduction tank 11 side, the inert gas is introduced into the sealed space on the permeable component passage tank 12 side, and both sealed spaces are brought to the same pressure. Next, by closing all the valves of the pipes connected to the tanks 11 and 12 for a certain period of time, the evaluation target component permeates the membrane 10 due to the difference in partial pressure between the evaluation target components in the tanks 11 and 12, The transmitted evaluation target component accumulates in the tank 12. The holding time for the permeation varies depending on the permeability of the membrane 10 and the component to be evaluated, and cannot be generally specified, but is, for example, 1 to 20 hours. In the conventional method performed in a vacuum state, the holding time for transmission may be about 40 hours, and considering that the measurement sensitivity has not reached the desired level, the present invention is Even holding time alone is epoch-making and its practical value is extremely high. While the component to be evaluated is permeated through the membrane, all the valves of the pipes connected to the tanks 11 and 12 may be closed and held, or the valves of the pipes 20 and 22 may be opened to circulate the gas between the tanks 13 and 13. Good.
The pressure in the tanks 11 and 12 is not particularly limited as long as the pressure is the same, but the labor of exhaust can be saved and the generation of stress on the film 10 due to the occurrence of differential pressure with the outside can be prevented. It is preferable to use atmospheric pressure.

上記吸着固定工程では、吸着脱離基材30を冷却して該基材に評価対象成分を吸着させる。この吸着は拡散によるものでもよいが、前記したように評価対象成分を含有する気体を循環して基材30に接触させることにより、より効率的に吸着を行うことができる。吸着固定工程では、膜10から放出される微量の可塑剤、油分などもあわせて吸着固定されるが、後述の通り、分離して検出できる。
評価対象成分を基材30に吸着させる時間は、膜10を透過した評価対象成分の量や基材30の性質により異なるが、通常10〜30分程度でよい。
In the adsorption fixing step, the adsorption / desorption substrate 30 is cooled to adsorb the evaluation target component on the substrate. This adsorption may be by diffusion. However, as described above, the gas containing the component to be evaluated is circulated and brought into contact with the base material 30, whereby the adsorption can be performed more efficiently. In the adsorption and fixing step, a small amount of plasticizer and oil released from the membrane 10 are also adsorbed and fixed, but can be detected separately as described later.
The time during which the evaluation target component is adsorbed on the base material 30 varies depending on the amount of the evaluation target component that has passed through the film 10 and the nature of the base material 30, but may normally be about 10-30 minutes.

次いで、上記分析工程では、基材30の冷却を中止するか或いは加熱することで該基材の温度を上昇させて、該基材に吸着した評価対象成分を脱離させる。基材30の昇温は、気体放出速度が1×10-9Pa・m3/m2s以下となるように行うことが好ましい。また、昇温は基材30に吸着した評価対象成分の全量が5〜60分で脱離するように行うことが好ましく、5〜30分で脱離するように行うことがより好ましい。
分析手段が質量分析計のように真空排気を必要とする場合、分析工程は基材30または槽51の真空排気後に行う必要があるが、真空排気を必要としない分析手段を用いる場合には、脱離した評価対象成分を不活性ガスとともに分析手段に移動させてもよい。
Next, in the analysis step, the cooling of the base material 30 is stopped or heated to raise the temperature of the base material, and the evaluation target component adsorbed on the base material is desorbed. The temperature of the substrate 30 is preferably increased so that the gas release rate is 1 × 10 −9 Pa · m 3 / m 2 s or less. Further, the temperature rise is preferably performed so that the total amount of the evaluation target component adsorbed on the substrate 30 is desorbed in 5 to 60 minutes, and more preferably desorbed in 5 to 30 minutes.
When the analysis means needs to be evacuated like a mass spectrometer, the analysis step needs to be performed after the substrate 30 or the tank 51 is evacuated, but when using an analysis means that does not require evacuation, The desorbed evaluation target component may be moved to the analysis means together with the inert gas.

基材30から脱離した評価対象成分の分析は、基材30の昇温と同時に行ことが好ましい。評価対象成分を膜10と接触させて該膜を透過させる採取工程の時間をX、基材30に吸着した評価対象成分の全量を脱離させるために昇温する時間をYとすると、本発明の評価方法では、真空排気しながら評価対象成分を分析する従来法に比べてX/Y倍の濃度の評価対象成分が検出に供されることとなる。例えば、採取工程Xが10時間、昇温時間Yを15分とすると、従来法の40倍の濃度の評価対象成分が分析工程に供される。さらに、基材30の昇温過程では評価対象成分が一様に脱離するのではなく、クロマトグラフィ分析と同様に特定のピーク(保持時間)をもって脱離する(図2参照)。このため、S/N比の大きい高感度な測定ができる。また、保持時間の違いに基づいて膜10から放出された微量の可塑剤や油分などと評価対象成分とを区別して検出できる。このため、上記評価対象成分の濃縮およびS/N比向上の相乗効果により、本発明の測定方法では従来法と比較して格段に優れた感度で透過性評価を行うことができる。評価対象成分が水蒸気である場合、水蒸気透過量の測定感度を、10-6g/m2/day程度まで上げることができる。The analysis of the component to be evaluated desorbed from the base material 30 is preferably performed simultaneously with the temperature rise of the base material 30. Assuming that the time of the sampling step for bringing the component to be evaluated into contact with the membrane 10 and permeating the membrane is X, and the time for raising the temperature to desorb the total amount of the component to be evaluated adsorbed on the substrate 30 is Y. In this evaluation method, the evaluation target component having a concentration X / Y times that of the conventional method of analyzing the evaluation target component while evacuating is used for detection. For example, when the sampling process X is 10 hours and the temperature rising time Y is 15 minutes, the evaluation target component having a concentration 40 times that of the conventional method is provided for the analysis process. Further, the evaluation target component is not uniformly desorbed in the temperature rising process of the substrate 30, but desorbs with a specific peak (holding time) as in the chromatographic analysis (see FIG. 2). For this reason, a highly sensitive measurement with a large S / N ratio can be performed. Further, it is possible to distinguish and detect a trace amount of plasticizer or oil released from the film 10 based on the difference in holding time and the component to be evaluated. For this reason, due to the synergistic effect of the concentration of the evaluation target component and the improvement of the S / N ratio, the measurement method of the present invention can perform the permeability evaluation with remarkably superior sensitivity as compared with the conventional method. When the evaluation target component is water vapor, the measurement sensitivity of the water vapor transmission amount can be increased to about 10 −6 g / m 2 / day.

該分析は、質量分析計、ガスクロマトグラフィまたは真空計のいずれかを用いて行うことが好ましい。
上記評価対象成分としては、水、酸素、二酸化炭素、窒素、エチレンガスまたは揮発性有機化合物を挙げることができる。
また、本発明の評価方法においては、上記採取工程の前に、あらかじめ前記2つの密閉空間を水分を除去して乾燥させた不活性ガスで置換しておくことが好ましい。これにより、装置内壁に付着または装置内に残留している酸素や水分などを除去することができ、測定の阻害要因を除去することができる。
The analysis is preferably performed using any one of a mass spectrometer, a gas chromatography, and a vacuum gauge.
As said evaluation object component, water, oxygen, a carbon dioxide, nitrogen, ethylene gas, or a volatile organic compound can be mentioned.
In the evaluation method of the present invention, it is preferable that the two sealed spaces are replaced with an inert gas that has been dried and removed in advance before the sampling step. As a result, oxygen, moisture, or the like attached to or remaining in the inner wall of the apparatus can be removed, and a factor that hinders measurement can be removed.

また、本発明の透過性評価方法においては、チャンバ15内を気密状態とし、チャンバ15内を常に排気するかまたはチャンバ15内に評価対象成分を含まないガスを流して循環させることにより、上記膜10と槽11との間または膜10と槽12との間に気密漏れがあった場合でも、測定結果に及ぼす影響を軽微に抑えることができる。
上記吸着固定工程では、バルブを閉じて基材30と膜10との気体の連絡を絶つことにより、気体の冷却に伴い膜10の両側で差圧が生じることを避け、膜10にダメージを与えることを防止できる。具体的には、膜10に近い槽12と13との間で連絡を絶つことが好ましい。
In the permeability evaluation method of the present invention, the inside of the chamber 15 is hermetically sealed and the inside of the chamber 15 is always evacuated or a gas not containing the evaluation target component is allowed to flow and circulate in the chamber 15. Even when there is an airtight leak between 10 and the tank 11 or between the film 10 and the tank 12, the influence on the measurement result can be suppressed to a minimum.
In the adsorption fixing step, by closing the valve and disconnecting the gas between the base material 30 and the membrane 10, it avoids the occurrence of a differential pressure on both sides of the membrane 10 due to the cooling of the gas, and damages the membrane 10. Can be prevented. Specifically, it is preferable to disconnect communication between the tanks 12 and 13 close to the membrane 10.

<透過性評価対象>
本発明で透過性の評価対象とする被測定膜10の例としては、食品、医薬品、精密機器などのパッケージ用プラスチックフィルム、各種デバイス素子のバリア膜を挙げることができる。上記プラスチックフィルムの素材の一例として、PET(ポリエチレンテレフタル酸)、PC(ポリカーボネート)、PES(ポリエーテルスルホン)、COP(シクロオレフィンポリマー)が挙げられる。評価対象成分が透過する被測定膜10の面積の例として10cm2を挙げることができる。本発明の測定装置では、支持治具14で被測定膜10を挟み込むため種々の厚さの被測定膜10に対応でき、膜厚に特に制限はないが、例えば、150μmの膜を評価対象とできる。
<Permeability evaluation target>
Examples of the film to be measured 10 to be evaluated for permeability in the present invention include plastic films for packaging such as foods, pharmaceuticals, and precision instruments, and barrier films for various device elements. Examples of the material for the plastic film include PET (polyethylene terephthalic acid), PC (polycarbonate), PES (polyether sulfone), and COP (cycloolefin polymer). An example of the area of the film to be measured 10 through which the evaluation target component permeates can be 10 cm 2 . In the measuring apparatus of the present invention, since the film to be measured 10 is sandwiched by the support jig 14, the film to be measured 10 having various thicknesses can be accommodated, and the film thickness is not particularly limited. it can.

<使用例>
次に、評価対象成分が水蒸気である場合を例として、図1を参照しながら、本発明の装置および方法を説明する。本発明の装置では、評価対象成分である水蒸気を槽11に供給する。水蒸気は、評価対象成分貯槽40からバルブを有する配管41を経由して導入口60から槽11に供給され、排気口62を経て循環され、槽11内は飽和または所定分圧の水蒸気によって満たされる。槽11の開口部には槽12の開口部が当接されており、これらの当接部には、膜10の支持治具14が設けられており、これらの支持治具14によって膜10が気密状態に支持される。
<Usage example>
Next, the apparatus and method of the present invention will be described with reference to FIG. 1, taking as an example the case where the component to be evaluated is water vapor. In the apparatus of the present invention, water vapor that is a component to be evaluated is supplied to the tank 11. The water vapor is supplied from the evaluation target component storage tank 40 to the tank 11 through the pipe 41 having a valve and is circulated through the exhaust port 62, and the inside of the tank 11 is filled with water vapor saturated or at a predetermined partial pressure. . The opening of the tank 12 is in contact with the opening of the tank 11, and a support jig 14 for the film 10 is provided at these contact parts, and the film 10 is formed by the support jig 14. Supported in an airtight state.

膜10を介して槽11に対向して槽12が設けられており、該槽12内は不活性ガスのタンク87から供給される高純度不活性ガスによって置換され、槽11と同じ圧力(例えば、1気圧)に維持されている。また、高純度不活性ガスは、槽11、12を収納しているチャンバ15内にも供給され、槽11内の水蒸気が膜10以外の部分から槽11、12などに周り込まないようにされている。   A tank 12 is provided opposite to the tank 11 through the membrane 10, and the inside of the tank 12 is replaced with a high-purity inert gas supplied from an inert gas tank 87, and the same pressure as the tank 11 (for example, 1 atm). Further, the high purity inert gas is also supplied into the chamber 15 in which the tanks 11 and 12 are housed, so that the water vapor in the tank 11 does not enter the tanks 11 and 12 and the like from portions other than the film 10. ing.

配管20、22のバルブを閉じ、上記の状態で所定時間(例えば、1〜12時間)放置することで、槽11と槽12内の水蒸気分圧の差によって水蒸気が膜10を透過して槽12内に蓄積する。所定時間(例えば、1〜12時間)経過後に配管20、22のバルブを開け、強制循環扇21を作動させて、槽12内に蓄積した水蒸気を槽13内に誘導する。若しくは、管20、22のバルブを開け、加熱ベーキング可能なファン若しくはダイヤフラムポンプを用いて槽12と槽13の気体を強制循環させながら、所定時間(例えば、1〜12時間)放置して透過した水蒸気を槽12と槽13に蓄積してもよい。   By closing the valves of the pipes 20 and 22 and leaving them in the above state for a predetermined time (for example, 1 to 12 hours), the water vapor permeates the membrane 10 due to the difference in the water vapor partial pressure in the tank 11 and the tank 12. 12 accumulates. After a predetermined time (for example, 1 to 12 hours), the valves 20 and 22 are opened, the forced circulation fan 21 is operated, and the water vapor accumulated in the tank 12 is guided into the tank 13. Alternatively, the valves of the tubes 20 and 22 are opened, and the gas in the tank 12 and the tank 13 is forcedly circulated using a heat-bakable fan or a diaphragm pump, and the gas is allowed to pass for a predetermined time (for example, 1 to 12 hours). Water vapor may be accumulated in the tank 12 and the tank 13.

次いで配管20、22のバルブを閉じ、被測定膜10を大気圧下に保ったまま、槽12と槽13との間の気体交換を絶つ。槽13内の水蒸気は、冷却手段52(例えば、液体窒素容器)を備えた水蒸気捕捉槽51に拡散により送られ、所定時間(例えば、10〜30分間)待つことにより、槽51内に設けられている水蒸気吸着脱離基材30により水蒸気が吸着固定される。このとき、膜10から放出される微量の可塑剤、油分などの有機成分も吸着固定される。この状態で、バルブを有する配管71を経由して超高真空排気装置73により槽51内を排気する(例えば、10-5Pa)ことで、槽51内に存在する不活性ガスが除去される。Next, the valves of the pipes 20 and 22 are closed, and the gas exchange between the tank 12 and the tank 13 is cut off while keeping the film to be measured 10 at atmospheric pressure. The water vapor in the tank 13 is sent by diffusion to a water vapor capturing tank 51 having a cooling means 52 (for example, a liquid nitrogen container), and is provided in the tank 51 by waiting for a predetermined time (for example, 10 to 30 minutes). Water vapor is adsorbed and fixed by the water vapor adsorption / desorption substrate 30. At this time, organic components such as a small amount of plasticizer and oil released from the film 10 are also adsorbed and fixed. In this state, the inside of the tank 51 is evacuated (for example, 10 −5 Pa) by the ultra-high vacuum exhaust device 73 via the pipe 71 having a valve, thereby removing the inert gas existing in the tank 51. .

超高真空排気後には、液体窒素による冷却を中止するか、或いは不図示のヒータにより槽51を一定昇温で加熱することで、吸着脱離基材30に吸着された水分を気化させる。気化した水蒸気の水蒸気分圧を質量分析計72によって検出し、検出結果がコンピュータ90で解析される。そして、その解析結果に基づいて膜10の水蒸気透過度の算出および評価が行われる。   After the ultra-high vacuum exhaust, the water adsorbed on the adsorption / desorption substrate 30 is vaporized by stopping the cooling with liquid nitrogen or heating the tank 51 at a constant temperature with a heater (not shown). The water vapor partial pressure of the vaporized water vapor is detected by the mass spectrometer 72, and the detection result is analyzed by the computer 90. Based on the analysis result, the water vapor permeability of the membrane 10 is calculated and evaluated.

次に実施例を挙げて本発明をさらに具体的に説明する。
<実施例1>
本発明の透過性評価方法を、本発明の装置を示す図1を参照して具体的に説明する。本実施例では、被測定膜10として、既存の装置では、水蒸気透過度が5.3×10-3g/m2/dayであると測定されているものを試験片(尾池工業提供)として用いた。
Next, the present invention will be described more specifically with reference to examples.
<Example 1>
The permeability evaluation method of the present invention will be specifically described with reference to FIG. 1 showing the apparatus of the present invention. In this embodiment, as the film to be measured 10, a test piece (provided by Oike Kogyo Co., Ltd.) whose water vapor permeability is measured to be 5.3 × 10 −3 g / m 2 / day in an existing apparatus is used. Used as.

本発明の透過性評価装置の槽11と槽12の当接部の間に被測定膜10である試験片を挟み、固定した。当該試験片が槽11中の気体と接触する面の面積は約10cm2である。なお、上記槽11と槽12の当接部には、エラストマーであるバイトン(登録商標)製支持治具14が設けられ、これが試験片と密着し、支持している。
次いで、槽12、槽13およびチャンバ15内を不活性ガスで置換した。その後、槽11内に飽和水蒸気(1気圧)を満たし、槽12内を1気圧に維持し、槽13との循環を行いながら15時間放置した。15時間経過後バルブ20、22を閉じ槽12との気体の移動が起こらないようにしてから、槽13内の水蒸気を槽51内の吸着脱離基材30に30分間吸着させた。この際、槽51は、冷却手段52である液体窒素容器内に設置され液体窒素温度に冷却されている。なお、基材30としては、スウェージロック社製のエアフィルター用多孔質ステンレス材を使用した。30分間の吸着終了後、配管50のバルブを閉じ、配管71のバルブを開け、超高真空排気装置73によって不活性ガスを20分間排気した。
A test piece as the film to be measured 10 was sandwiched and fixed between the contact portions of the tank 11 and the tank 12 of the permeability evaluation apparatus of the present invention. The area of the surface where the test piece comes into contact with the gas in the tank 11 is about 10 cm 2 . In addition, a supporting jig 14 made of Viton (registered trademark), which is an elastomer, is provided at a contact portion between the tank 11 and the tank 12, and this is in close contact with and supports the test piece.
Subsequently, the inside of the tank 12, the tank 13, and the chamber 15 was replaced with an inert gas. After that, the tank 11 was filled with saturated water vapor (1 atm), the inside of the tank 12 was maintained at 1 atm, and left for 15 hours while circulating with the tank 13. After 15 hours, the valves 20 and 22 were closed to prevent gas movement with the tank 12, and then the water vapor in the tank 13 was adsorbed to the adsorption / desorption substrate 30 in the tank 51 for 30 minutes. At this time, the tank 51 is installed in a liquid nitrogen container as the cooling means 52 and is cooled to the liquid nitrogen temperature. In addition, as the base material 30, the porous stainless steel material for air filters made from Swagelok was used. After completion of the adsorption for 30 minutes, the valve of the pipe 50 was closed, the valve of the pipe 71 was opened, and the inert gas was exhausted by the ultra-high vacuum exhaust device 73 for 20 minutes.

液体窒素容器52から液体窒素を取り除くことで、基材30を昇温しながら水蒸気分圧を分析手段72である質量分析計によって検出し、検出結果をコンピュータ90で解析した。槽51の温度は、−169℃から−100℃までの間は一定昇温速度(12℃/分)で上昇したことが、槽51に取り付けた熱電対温度計の測定により確かめられた。   By removing liquid nitrogen from the liquid nitrogen container 52, the water vapor partial pressure was detected by the mass spectrometer as the analyzing means 72 while raising the temperature of the substrate 30, and the detection result was analyzed by the computer 90. It was confirmed by the measurement of the thermocouple thermometer attached to the tank 51 that the temperature of the tank 51 rose at a constant heating rate (12 ° C./min) from −169 ° C. to −100 ° C.

質量分析計(アネルバQIG−066)の質量18amu(H2Oに対応する)の出力(イオン電流、単位:pA)を時間に対してプロットした結果を図2に示した。図2から、明確な水のピークを示す信号が得られていることがわかる。ピーク形状が理論形状と異なっている理由は、ステンレス外壁を持つ槽51に加熱の際の温度むらがあるためだと考えられるが、熱伝導に優れた銅などを利用することにより改善可能である。FIG. 2 shows the result of plotting the output (ion current, unit: pA) of the mass 18 amu (corresponding to H 2 O) of the mass spectrometer (Anelva QIG-066) against time. FIG. 2 shows that a signal indicating a clear water peak is obtained. The reason why the peak shape is different from the theoretical shape is considered to be due to uneven temperature during heating in the tank 51 having a stainless outer wall, but it can be improved by using copper having excellent heat conduction. .

ピーク強度は、バックグラウンドに対して十分な大きさを持っており、本実施例で用いた15時間という透過時間は、本実施例で用いた被測定膜には十分過ぎるものであったと考えられる。バックグラウンドのばらつきは8×10-13A未満であり、バックグラウンドを引いたピークの強度は2×10-11A以上であるから、本実施例の約1/250の信号、すなわち、2×10-5g/m2/dayの感度の測定がこの装置により15時間で行えることがわかる。The peak intensity is sufficiently large with respect to the background, and the transmission time of 15 hours used in this example is considered to be too much for the film to be measured used in this example. . The background variation is less than 8 × 10 −13 A, and the intensity of the peak minus the background is 2 × 10 −11 A or more. Therefore, the signal of about 1/250 of this example, that is, 2 × It can be seen that the sensitivity of 10 −5 g / m 2 / day can be measured with this apparatus in 15 hours.

バックグラウンドの信号が時間の経過とともに減少しているのは、容器に吸着した水蒸気がポンプによって排気されている効果によるものである。本実施例で用いた真空配管は、ステンレススチール製である。ステンレススチールに比べて水蒸気吸着の少ない素材を用いることにより、バックグラウンドを1/100に下げることは容易である。   The background signal decreases with time because of the effect that the water vapor adsorbed on the container is exhausted by the pump. The vacuum piping used in this example is made of stainless steel. By using a material with less water vapor adsorption than stainless steel, it is easy to lower the background to 1/100.

以上から、本発明の方法により1×10-6g/m2/dayの水蒸気透過量(本実施例の1/20)を3時間程度(実施例の1/5)で測定することが可能であることが示された。さらに、繰り返し測定しても精度よく測定できた。From the above, it is possible to measure the water vapor transmission rate of 1 × 10 −6 g / m 2 / day (1/20 of this example) in about 3 hours (1/5 of the example) by the method of the present invention. It was shown that. Furthermore, it was possible to measure with high accuracy even by repeated measurement.

<実施例2>
本実施例では、被測定膜10として、特開2007−134099号公報に記載された構成のバリア膜をポリエステルフィルム上に形成したものを試験片として用いた。図3に、試験に用いた試験片の構成を示した。試験片1は、ポリ尿素とアルミナを交互に7層形成したもので、試験片2は、ポリ尿素とアルミナを交互に11層形成したものである。
<Example 2>
In this example, as the film to be measured 10, a barrier film having a configuration described in JP 2007-134099 A was formed on a polyester film as a test piece. FIG. 3 shows the configuration of the test piece used in the test. The test piece 1 is formed by alternately forming seven layers of polyurea and alumina, and the test piece 2 is formed by forming eleven layers of polyurea and alumina alternately.

被測定膜10として上記試験片1を用い、被測定膜10を槽51内の水蒸気に暴露し、透過させる時間を15時間から3時間に短縮したこと以外は実施例1と同様にして水蒸気を槽51に吸着させた。
その後、液体窒素容器52から液体窒素を取り除き、さらに、槽51を一定の速度で昇温(10℃/分)しながら水蒸気分圧を質量分析計72によって検出し、検出結果をコンピュータ90で解析した。その結果、試験片1の水蒸気透過度は、5.6×10-3g/m2/dayであった。
The test piece 1 was used as the film 10 to be measured, and the water 10 was exposed to the water vapor in the tank 51 and the time for permeation was reduced from 15 hours to 3 hours. Adsorbed to the tank 51.
Thereafter, the liquid nitrogen is removed from the liquid nitrogen container 52, and the water vapor partial pressure is detected by the mass spectrometer 72 while the temperature of the tank 51 is increased at a constant rate (10 ° C./min), and the detection result is analyzed by the computer 90. did. As a result, the water vapor permeability of the test piece 1 was 5.6 × 10 −3 g / m 2 / day.

<実施例3>
被測定膜10として試験片2を用いたこと以外は実施例2と同様にして測定を行ったところ、水蒸気透過度は、5×10-6g/m2/dayであった。
実施例2および3の測定は、感度が高く、また再現性もよかった。測定時間は、約3時間以内で行うことができた。これに対して従来の測定では、数日測定に要していた。
<Example 3>
When the measurement was performed in the same manner as in Example 2 except that the test piece 2 was used as the film to be measured 10, the water vapor permeability was 5 × 10 −6 g / m 2 / day.
The measurements of Examples 2 and 3 were highly sensitive and reproducible. The measurement time could be performed within about 3 hours. On the other hand, the conventional measurement required several days of measurement.

<比較例1>
図8に記載の構成を有する公知の透過性評価装置を用いて、試験片1の水蒸気透過率測定を実施した。図8に記載の装置では、透過成分導入槽11を高温高湿槽とし、被測定膜10を真空槽92との境に設置する。
まず、槽92を真空排気し、該槽内の水蒸気分圧を測定したところ3.39×10-6Paであった。次いで、乾燥窒素を加湿手段93で加湿し、これを槽11に導入することにより、槽11に水蒸気を導入した。水蒸気導入から80分後の真空槽92内の水蒸気分圧は3.51×10-6Paとなった。図4に示した圧力変化から水蒸気透過量を計算すると、図5に示すように5.7×10-3g/m2/dayとなる。分圧計の表示は、小数点以下2桁であり、分圧変化から測定限界を求めると5×10-4g/m2/dayとなり、市販の水蒸気透過率測定器の測定限界と一致する。この例では測定精度が悪く誤差が大きかった。
<Comparative Example 1>
The water vapor permeability of the test piece 1 was measured using a known permeability evaluation apparatus having the configuration shown in FIG. In the apparatus shown in FIG. 8, the permeated component introduction tank 11 is a high-temperature and high-humidity tank, and the film to be measured 10 is installed at the boundary with the vacuum tank 92.
First, the tank 92 was evacuated and the water vapor partial pressure in the tank was measured to be 3.39 × 10 −6 Pa. Next, dry nitrogen was humidified by the humidifying means 93 and introduced into the tank 11, thereby introducing water vapor into the tank 11. The water vapor partial pressure in the vacuum chamber 92 after 80 minutes from the introduction of water vapor was 3.51 × 10 −6 Pa. When the water vapor transmission rate is calculated from the pressure change shown in FIG. 4, it is 5.7 × 10 −3 g / m 2 / day as shown in FIG. The display of the partial pressure gauge has two digits after the decimal point. When the measurement limit is obtained from the change in partial pressure, it becomes 5 × 10 −4 g / m 2 / day, which is consistent with the measurement limit of a commercially available water vapor permeability meter. In this example, the measurement accuracy was poor and the error was large.

<比較例2>
被測定膜10として、試験片1に代えて試験片2を使用したこと以外は比較例1と同様にして、水蒸気透過率測定を実施した。水蒸気導入前の真空槽内水蒸気分圧は3.42×10-6Paであり、水蒸気導入後80分で真空槽内水蒸気分圧は3.42×10-6Paとなり圧力変化は見られなかった。これは、試験片2の水蒸気透過量が5×10-4g/m2/day以下であることを示している。
<Comparative example 2>
Water vapor permeability was measured in the same manner as Comparative Example 1 except that the test piece 2 was used in place of the test piece 1 as the film to be measured 10. Vacuum chamber partial pressure of steam before the steam introduced is 3.42 × 10 -6 Pa, the vacuum chamber the water vapor partial pressure at 80 minutes after the steam introduction 3.42 × 10 -6 Pa next pressure changes observed It was. This indicates that the water vapor transmission rate of the test piece 2 is 5 × 10 −4 g / m 2 / day or less.

<比較例3>
被測定膜10として、試験片1に代えて試験片1、2に用いた基板フィルムを使用したこと以外は比較例1と同様にして、水蒸気透過率を測定した。水蒸気導入前の真空槽内の水蒸気分圧は3.22×10-6Paであり、水蒸気導入から80分後の真空槽内の水蒸気分圧は1.47×10-4Paであった。図6に示した圧力変化から試験片1、2の水蒸気透過量を計算すると、図7に示すように7g/m2/dayとなる。
<Comparative Example 3>
The water vapor transmission rate was measured in the same manner as in Comparative Example 1 except that the substrate film used for the test pieces 1 and 2 was used in place of the test piece 1 as the film 10 to be measured. The water vapor partial pressure in the vacuum chamber before the introduction of water vapor was 3.22 × 10 −6 Pa, and the water vapor partial pressure in the vacuum chamber after 80 minutes from the introduction of water vapor was 1.47 × 10 −4 Pa. When the water vapor permeation amount of the test pieces 1 and 2 is calculated from the pressure change shown in FIG. 6, it is 7 g / m 2 / day as shown in FIG.

本発明によれば、各種膜の水蒸気透過性や酸素透過性を、高精度かつ効率的に測定することができる。   According to the present invention, water vapor permeability and oxygen permeability of various membranes can be measured with high accuracy and efficiency.

10:被測定膜
11:透過成分導入槽
12:透過成分通過槽
13:透過成分貯槽
14:支持治具
15:チャンバ
20、22:バルブを有する配管
21:強制循環扇
30:吸着脱離基材
32:循環扇を有する配管
40:評価対象成分貯槽
41、42、50:バルブを有する配管
51:透過成分捕捉槽
52:冷却手段
60、64、66、68:導入口
62、69:排気口
70:温度調節手段
71、81〜86:バルブを有する配管
72:分析手段
73:超高真空排気装置
80:不活性ガス供給機構
87:不活性ガスタンク
90:コンピュータ
91:水分除去器
92:真空槽
93:加湿手段
94:湿度センサ
95:排気手段
96:サンプル台
10: film to be measured 11: permeation component introduction tank 12: permeation component passage tank 13: permeation component storage tank 14: support jig 15: chamber 20, 22: pipe having valve 21: forced circulation fan 30: adsorption / desorption substrate 32: Pipe having a circulation fan 40: Evaluation target component storage tanks 41, 42, 50: Pipe having a valve 51: Permeated component trapping tank 52: Cooling means 60, 64, 66, 68: Inlet 62, 69: Exhaust 70 : Temperature adjusting means 71, 81 to 86: Pipe 72 having a valve 72: Analyzing means 73: Ultra-high vacuum exhaust device 80: Inert gas supply mechanism 87: Inert gas tank 90: Computer 91: Moisture remover 92: Vacuum tank 93 : Humidifying means 94: Humidity sensor 95: Exhaust means 96: Sample stand

Claims (8)

被測定膜(10)の透過成分に関する評価を行う透過性評価装置であって、
該装置は、少なくとも、透過成分導入槽(11)と透過成分通過槽(12)とを有するチャンバ(15)と、透過成分捕捉槽(51)内に設けられた、冷却によって評価対象成分を吸着し、冷却の中止或いは加熱によって評価対象成分を脱離する吸着脱離基材(30)と、上記槽(51)内を排気するための高真空排気装置(73)と、評価対象成分を分析するための分析手段(72)と、不活性ガスを少なくとも透過成分通過槽(12)に供給するための機構(80)とを備え、
上記チャンバ(15)内の上記槽(11)と上記槽(12)には、互いに向かい合う側の当接面に上記膜(10)の支持治具(14)が配置され、該支持治具(14)で上記膜(10)を支持した場合に、該膜(10)の一方の面と上記槽(11)の内壁との間および膜(10)の他方の面と上記槽(12)の内壁との間にそれぞれ密封空間が形成される構造を有しており、
上記槽(11)には、評価対象成分の導入口(60)と排気口(62)とが設けられており、
上記槽(12)は、バルブを有する配管を介して、被測定膜(10)を透過した評価対象成分を上記吸着脱離基材(30)へと移動できる構造をしており、
上記槽(12)と上記吸着脱離基材(30)との間に、必要に応じて透過成分貯槽(13)が設けられ、該槽(13)を有する場合、該槽(12)と槽(13)とは、バルブを有する配管を介して、或いは必要に応じてバルブおよび強制循環扇を備えた配管を介して連結され、上記槽(13)と基材(30)とはバルブを有する配管を介して連結され、
上記吸着脱離基材(30)は、冷却されることで評価対象成分を吸着し、冷却した状態で透過成分捕捉槽(51)内を上記高真空排気装置(73)で排気した後に、冷却が中止されるか或いは加熱がされることで該評価対象成分を脱離するものであり、
上記分析手段(72)は、上記基材(30)から脱離された評価対象成分を検出する機能を有するものであることを特徴とする透過性評価装置。
A permeability evaluation apparatus for evaluating a permeation component of a film to be measured (10),
The apparatus adsorbs a component to be evaluated by cooling provided at least in a chamber (15) having a permeation component introduction tank (11) and a permeation component passage tank (12) and a permeation component capture tank (51). Then, the adsorption / desorption base material (30) that desorbs the evaluation target component by stopping cooling or heating, the high vacuum exhaust device (73) for exhausting the inside of the tank (51), and the evaluation target component are analyzed. Analyzing means (72) for carrying out, and a mechanism (80) for supplying an inert gas to at least the permeation component passage tank (12),
In the tank (11) and the tank (12) in the chamber (15), a support jig (14) of the film (10) is disposed on the contact surfaces facing each other, and the support jig ( 14), when the membrane (10) is supported, between the one surface of the membrane (10) and the inner wall of the tank (11) and the other surface of the film (10) and the tank (12). Each has a structure in which a sealed space is formed between the inner wall and
The tank (11) is provided with an introduction port (60) and an exhaust port (62) for components to be evaluated,
The tank (12) has a structure capable of moving the evaluation target component that has passed through the measurement target membrane (10) to the adsorption / desorption substrate (30) through a pipe having a valve.
When the permeation component storage tank (13) is provided between the tank (12) and the adsorption / desorption substrate (30) as necessary, and the tank (13) is provided, the tank (12) and the tank (13) is connected through a pipe having a valve or, if necessary, through a pipe having a valve and a forced circulation fan, and the tank (13) and the substrate (30) have a valve. Connected through piping,
The adsorbing / desorbing substrate (30) adsorbs the component to be evaluated by being cooled, and in the cooled state, the permeation component capturing tank (51) is evacuated by the high vacuum evacuation device (73), and then cooled. Is eliminated or the component to be evaluated is desorbed by heating,
The permeability evaluation apparatus, wherein the analysis means (72) has a function of detecting an evaluation target component detached from the base material (30).
前記分析手段(72)が、質量分析計、ガスクロマトグラフィまたは真空計のいずれかである請求項1に記載の透過性評価装置。  The permeability evaluation apparatus according to claim 1, wherein the analysis means (72) is one of a mass spectrometer, a gas chromatography, and a vacuum gauge. 前記チャンバ(15)が、不活性ガスが導入でき、さらに温度湿度調整手段(70)を備えており、チャンバ(15)内に配置されている透過成分導入槽(11)の密閉空間の温度および湿度の調整を可能とした請求項1又は2に記載の透過性評価装置。  The chamber (15) can introduce an inert gas, and further includes a temperature and humidity adjusting means (70). The temperature of the sealed space of the permeation component introduction tank (11) disposed in the chamber (15) and The permeability evaluation apparatus according to claim 1 or 2, wherein the humidity can be adjusted. 前記支持治具(14)が、金属ガスケットまたはエラストマーガスケットからなる請求項1〜3のいずれか1項に記載の透過性評価装置。  The permeability evaluation apparatus according to any one of claims 1 to 3, wherein the support jig (14) is made of a metal gasket or an elastomer gasket. 前記不活性ガス中の水分を除去するための水分除去器(91)が備えられている請求項1〜4のいずれか1項に記載の透過性評価装置。  The permeability evaluation apparatus according to any one of claims 1 to 4, further comprising a moisture remover (91) for removing moisture in the inert gas. 被測定膜の透過成分に関する評価を行う透過性評価方法であって、
該方法は、被測定膜を透過した評価対象成分を採取するための採取工程と、採取した評価対象成分を吸着脱離基材に吸着固定する吸着固定工程と、評価対象成分を分析する分析工程とを有し、
上記採取工程において、チャンバ内にて被測定膜を挟んで互いに向かい合う位置に2つの密封空間を形成し、両方の密封空間が等圧となるように、片方の密封空間に評価対象成分を、もう一方の密封空間に不活性ガスを供給し、両方の密封空間内の評価対象成分の分圧の差によって上記被測定膜を透過した評価対象成分を該不活性ガスが供給されている一方の密封空間に集め、
上記吸着固定工程において、冷却されることで評価対象成分を吸着し、冷却が中止されるか或いは加熱がされることで該評価対象成分を脱離する吸着脱離基材を用い、冷却した該吸着脱離基材に上記で採取した評価対象成分を拡散或いは気体の循環により移動させて該吸着脱離基材に評価対象成分を吸着固定し、該吸着脱離基材を冷却した状態で真空排気した後、
上記分析工程において、上記吸着脱離基材の冷却を中止するか或いは加熱することにより評価対象成分を脱離させて分析を行うことを特徴とする透過性評価方法。
A permeability evaluation method for evaluating a permeation component of a membrane to be measured,
The method includes a collecting step for collecting the evaluation target component that has passed through the measurement target film, an adsorption fixing step for adsorbing and fixing the collected evaluation target component to the adsorption / desorption base material, and an analysis step for analyzing the evaluation target component And
In the sampling step, two sealed spaces are formed at positions facing each other across the film to be measured in the chamber, and the component to be evaluated is added to one sealed space so that both sealed spaces have equal pressure. An inert gas is supplied to one sealed space, and the sealed target to which the inert gas is supplied is the evaluation target component that has passed through the measured film due to the difference in partial pressure of the evaluated target component in both sealed spaces. Gather in space,
In the adsorption / fixing step, the component to be evaluated is adsorbed by being cooled, and the cooled / desorbed substrate is used to desorb the component to be evaluated by being cooled or heated. The component to be evaluated collected above is moved to the adsorption / desorption substrate by diffusion or gas circulation, and the component to be evaluated is adsorbed and fixed on the adsorption / desorption substrate, and the adsorption / desorption substrate is cooled and vacuumed. After exhausting
In the analyzing step, the permeability evaluation method is characterized in that the analysis is performed by desorbing the component to be evaluated by stopping cooling or heating the adsorption / desorption substrate.
分析工程で、質量分析計、ガスクロマトグラフィまたは真空計のいずれかを使用する請求項に記載の透過性評価方法。The permeability evaluation method according to claim 6 , wherein any one of a mass spectrometer, a gas chromatography, and a vacuum gauge is used in the analysis step. 前記採取工程の前に、あらかじめ前記2つの密封空間を、水分を除去した不活性ガスで置換しておく請求項6又は7に記載の透過性評価方法。The permeability evaluation method according to claim 6 or 7 , wherein the two sealed spaces are replaced with an inert gas from which moisture has been removed in advance before the sampling step.
JP2010545304A 2009-04-07 2010-04-07 Permeability evaluation apparatus and evaluation method Expired - Fee Related JP4759096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010545304A JP4759096B2 (en) 2009-04-07 2010-04-07 Permeability evaluation apparatus and evaluation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009093023 2009-04-07
JP2009093023 2009-04-07
PCT/JP2010/056295 WO2010117012A1 (en) 2009-04-07 2010-04-07 Permeability evaluation device and evaluation method
JP2010545304A JP4759096B2 (en) 2009-04-07 2010-04-07 Permeability evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP4759096B2 true JP4759096B2 (en) 2011-08-31
JPWO2010117012A1 JPWO2010117012A1 (en) 2012-10-18

Family

ID=42936293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010545304A Expired - Fee Related JP4759096B2 (en) 2009-04-07 2010-04-07 Permeability evaluation apparatus and evaluation method

Country Status (2)

Country Link
JP (1) JP4759096B2 (en)
WO (1) WO2010117012A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764878B1 (en) * 2016-03-31 2017-08-03 성균관대학교산학협력단 Apparatus and method for measuring water vapor transmission rate using saturated electrolyte solution
WO2021196298A1 (en) * 2020-04-03 2021-10-07 氢源科技(赣州)有限公司 Performance testing device and method for gas diffusion layer of fuel cell

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553287B2 (en) * 2011-01-27 2014-07-16 株式会社 テクノ・アイ Water vapor permeability measuring device and measuring method
JP5734109B2 (en) * 2011-06-20 2015-06-10 株式会社住化分析センター Measuring apparatus and measuring method
KR20140142541A (en) * 2013-06-04 2014-12-12 삼성전기주식회사 Moisture transmission testing instrument
JP2015190884A (en) * 2014-03-28 2015-11-02 三菱電機株式会社 gas permeability measuring device
CN105510142B (en) * 2016-01-15 2018-02-16 太原理工大学 A kind of axle crushing test device of coal petrography multiphase different fluid three and test method
CN108344674B (en) * 2017-01-25 2023-12-26 济南思克测试技术有限公司 Automatic gas permeability testing system and method based on artificial intelligence
KR102497995B1 (en) * 2017-02-27 2023-02-10 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Gas barrier property evaluation device and gas barrier property evaluation method
CN107490539A (en) * 2017-08-23 2017-12-19 成都本华清博科技有限公司 A kind of measurement apparatus and its measuring method of flaky material penetrability
CN108007843B (en) * 2017-12-19 2024-01-30 中国石油天然气集团公司 Device and method for evaluating permeability of dissolved oxygen in anti-corrosion coating at high temperature and high pressure
DE102021202413A1 (en) * 2021-03-12 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Measuring device for determining gas permeability through a sample and method for operating a measuring device for determining gas permeability through a sample
CN117368071B (en) * 2023-12-06 2024-02-09 德州中瑞土工材料工程有限公司 Geomembrane permeability test equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123697A (en) * 1973-03-23 1974-11-26
JPS612043A (en) * 1984-06-14 1986-01-08 Agency Of Ind Science & Technol Device for measuring selective transmission factor of high pressure mixed gas in film sample
JPH08327615A (en) * 1995-03-24 1996-12-13 Shimadzu Corp Sampler
JPH09126985A (en) * 1995-10-12 1997-05-16 Modern Controls Inc Method and device that measure transmission coefficient and so forth of material for passing gas
JP2002357533A (en) * 2001-05-31 2002-12-13 Sony Corp Method and apparatus for evaluating permeability
JP2005233943A (en) * 2004-01-21 2005-09-02 Taiyo Nippon Sanso Corp Device and method for measuring gas permeability of film material
JP2008304455A (en) * 2007-05-07 2008-12-18 Mitsui Chemical Analysis & Consulting Service Inc Measuring method of permeability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172942A (en) * 1987-01-13 1988-07-16 Ueno Hiroshi Measuring instrument for gas permeability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123697A (en) * 1973-03-23 1974-11-26
JPS612043A (en) * 1984-06-14 1986-01-08 Agency Of Ind Science & Technol Device for measuring selective transmission factor of high pressure mixed gas in film sample
JPH08327615A (en) * 1995-03-24 1996-12-13 Shimadzu Corp Sampler
JPH09126985A (en) * 1995-10-12 1997-05-16 Modern Controls Inc Method and device that measure transmission coefficient and so forth of material for passing gas
JP2002357533A (en) * 2001-05-31 2002-12-13 Sony Corp Method and apparatus for evaluating permeability
JP2005233943A (en) * 2004-01-21 2005-09-02 Taiyo Nippon Sanso Corp Device and method for measuring gas permeability of film material
JP2008304455A (en) * 2007-05-07 2008-12-18 Mitsui Chemical Analysis & Consulting Service Inc Measuring method of permeability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764878B1 (en) * 2016-03-31 2017-08-03 성균관대학교산학협력단 Apparatus and method for measuring water vapor transmission rate using saturated electrolyte solution
WO2021196298A1 (en) * 2020-04-03 2021-10-07 氢源科技(赣州)有限公司 Performance testing device and method for gas diffusion layer of fuel cell
CN113495047A (en) * 2020-04-03 2021-10-12 氢源科技(赣州)有限公司 Performance testing device and method for gas diffusion layer of fuel cell
CN113495047B (en) * 2020-04-03 2022-06-24 氢源科技(赣州)有限公司 Performance testing device and method for gas diffusion layer of fuel cell

Also Published As

Publication number Publication date
WO2010117012A1 (en) 2010-10-14
JPWO2010117012A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4759096B2 (en) Permeability evaluation apparatus and evaluation method
JP5268265B2 (en) Method and apparatus for transmission measurement
JPWO2009041632A1 (en) Apparatus and method for measuring water vapor permeability
TW201124710A (en) Preconcentrating a sample
JP6345421B2 (en) Gas barrier property evaluation apparatus and evaluation method
JP6337293B2 (en) Gas permeability measuring device
JP7041665B2 (en) Gas barrier property evaluation device and gas barrier property evaluation method
KR101018789B1 (en) A batch type gas chromatography device by quantitative injection of a negative pressure gas sample equipped with a high vacuum multiple gas introduction
WO2014119688A1 (en) Gas-barrier-performance evaluation device and evaluation method
JP5405218B2 (en) Sample analysis method, sample carrying member, sample carrying method, and temperature programmed desorption analyzer
CN111879659A (en) Hydrogen absorption agent evaluation device for low-temperature container
JP2011043386A (en) Transmission quantity measuring instrument having freezing trap
JPH06241978A (en) Gas transmittance measuring device for film
Roman et al. Gas permeation measurement under defined humidity via constant volume/variable pressure method
US20210356348A1 (en) System and Method for Leak Detection
JP6324861B2 (en) Cryostat and outgas evaluation apparatus for superconducting magnet constituent material and outgas evaluation method thereof
JP3951972B2 (en) Film sample fixing method, gas cell, and gas permeability measuring apparatus
JP2019045395A (en) Sampling container for radioactive iodine, sampling device and sampling method
TW201215872A (en) Permeability evaluation device and evaluation method
Glatzmaier et al. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks
Sebők et al. Novel instrument and method for the investigation of small permeation fluxes of gases through different membranes
CN212410360U (en) Hydrogen absorption agent evaluation device for low-temperature container
JP2004264282A (en) Method for concentrating gaseous substance, and apparatus for concentrating and analyzing carrier gas
Hara et al. 76‐4: Development of Gas‐Barrier‐Property Evaluation System for High Sensitivity and Short Evaluation Time
US8875559B2 (en) System and method for measuring the concentration of impurities mixed with hydrogen gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4759096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees