JP2005233943A - Device and method for measuring gas permeability of film material - Google Patents

Device and method for measuring gas permeability of film material Download PDF

Info

Publication number
JP2005233943A
JP2005233943A JP2005011673A JP2005011673A JP2005233943A JP 2005233943 A JP2005233943 A JP 2005233943A JP 2005011673 A JP2005011673 A JP 2005011673A JP 2005011673 A JP2005011673 A JP 2005011673A JP 2005233943 A JP2005233943 A JP 2005233943A
Authority
JP
Japan
Prior art keywords
gas
permeability
film material
oxygen
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005011673A
Other languages
Japanese (ja)
Other versions
JP4596928B2 (en
Inventor
Takayoshi Adachi
貴義 足立
Hideaki Takashima
英彰 高島
Eiji Kurita
英次 栗田
Tetsuya Seki
哲也 関
Yasuaki Akai
康昭 赤井
Minoru Komada
実 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Dai Nippon Printing Co Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Taiyo Nippon Sanso Corp filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005011673A priority Critical patent/JP4596928B2/en
Publication of JP2005233943A publication Critical patent/JP2005233943A/en
Application granted granted Critical
Publication of JP4596928B2 publication Critical patent/JP4596928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas permeability measuring device capable of accurately measuring gas permeability of a specific gas constituent (water and/or oxygen) for a film material. <P>SOLUTION: Gas flow chambers 10 and 12 opening to the opposite end faces 9 and 11 are formed in device main bodies 1 and 2. The film material 22 to be subjected to measurement of specific gas constituent permeability is clamped and pressed between the opposite end faces 9 and 11 having central parts exposed to the gas flow chambers 10 and 12. Between the opposite end faces 9 and 11, a seal chamber 23 surrounding the outer circumference of the film material 22 is formed. Seal gas 36 is fed to the seal chamber 23, while exposure gas 24 containing the specific gas constituent is fed to the flow chamber 10, and carrier gas 30 including no specific gas constituent is fed to the flow chamber 12. For measuring the specific gas constituent permeability of the film material 22, an amount of the specific gas constituent included in the carrier gas 30a flowing out from the gas flow chamber 12 is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

食品,薬品,精密電子部品の包装等に使用されるフィルム材料(プラスチック等からなるフィルム,シート,膜)にあっては水分や酸素等の特定ガス成分の透過性(ガスバリア性)の優劣を判定することが重要であり、そのためにはフィルム材料を透過する特定ガス成分の量を正確に測定することが必要であるが、本発明は、かかるフィルム材料における特定ガス成分(特に、微量の水分及び/又は酸素)の透過度を高精度に測定するためのフィルム材料のガス透過度測定装置及びガス透過度測定方法に関するものである。   For film materials (films, sheets, membranes made of plastics, etc.) used for packaging foods, medicines, precision electronic components, etc., determine the superiority or inferiority of permeability (gas barrier properties) of specific gas components such as moisture and oxygen In order to achieve this, it is necessary to accurately measure the amount of a specific gas component that permeates the film material. The present invention relates to a gas permeability measuring device and a gas permeability measuring method for a film material for measuring the permeability of (or oxygen) with high accuracy.

従来のフィルム材料のガス透過度測定装置としては、真空排気室を有する上部容器とガス流入室を有する下部容器との間に、Oリングを介してフィルム材料を挟圧保持させた上、ガス流入室からフィルム材料を透過して真空排気室へと排出させるガス量を測定することにより、当該フィルム材料における特定ガス成分(水分,酸素等)の透過度を測定するように構成したものが公知である(例えば、特許文献1の図7を参照)。
特開2004−157035(図7)
As a conventional gas permeability measuring device for a film material, a film material is sandwiched between an upper container having a vacuum exhaust chamber and a lower container having a gas inflow chamber through an O-ring, and then the gas inflow Known to measure the permeability of specific gas components (water, oxygen, etc.) in the film material by measuring the amount of gas that permeates the film material from the chamber and exhausts it to the vacuum exhaust chamber. (For example, refer to FIG. 7 of Patent Document 1).
JP 2004-157035 (FIG. 7)

このようなフィルム材料のガス透過度測定装置(以下「従来装置」という)にあっては、真空排気室及びガス流入室とフィルム材料との間をOリングによりシールしているにすぎないため、これら間のシールが不十分且つ不安定であり、ガス透過度を正確に測定し難いといった問題があった。すなわち、従来装置にあっては、フィルム材料を透過した特定ガス成分が装置外に漏出したり、逆にフィルム材料を透過した特定ガス成分に装置外の大気成分が混入したりする虞れがあり、フィルム材料を透過した特定ガス成分量と真空排気室から排出される特定ガス成分量とを等価させることが困難であり、フィルム材料における特定ガス成分透過度を正確に測定することが困難であった。かかる問題は、ガスバリア性が高いフィルム材料において特定ガス成分の透過度が微量である場合には、特に著しい。   In such a gas permeability measuring device for film material (hereinafter referred to as “conventional device”), only the vacuum exhaust chamber and the gas inflow chamber and the film material are sealed by an O-ring. There was a problem that the seal between them was insufficient and unstable, and it was difficult to accurately measure the gas permeability. That is, in the conventional apparatus, there is a possibility that the specific gas component that has passed through the film material leaks out of the apparatus, or conversely, the atmospheric component outside the apparatus may be mixed into the specific gas component that has passed through the film material. Therefore, it is difficult to equalize the specific gas component amount permeated through the film material and the specific gas component amount discharged from the vacuum exhaust chamber, and it is difficult to accurately measure the specific gas component permeability in the film material. It was. Such a problem is particularly remarkable when the permeability of a specific gas component is very small in a film material having a high gas barrier property.

ところで、フィルム材料の水分透過度を測定する方法としては、一般に、JIS K7129に規定される水蒸気透過度試験法が周知であり、そこには乾湿センサー法(A法)と赤外センサー法(B法)とが提示されている。また、JIS Z0208には、防湿包装材料の透湿度試験方法が規定されている。また、フィルム材料の酸素透過度を測定する方法としては、JIS K7126に規定される酸素透過度試験法が周知であり、そこには差圧法(A法)と等圧法(B法)とが提示されている。   By the way, as a method for measuring the moisture permeability of a film material, generally, a water vapor permeability test method defined in JIS K7129 is well known, which includes a wet / dry sensor method (A method) and an infrared sensor method (B Law). JIS Z0208 defines a moisture permeability test method for moisture-proof packaging materials. As a method for measuring the oxygen permeability of a film material, an oxygen permeability test method defined in JIS K7126 is well known, and a differential pressure method (A method) and an isobaric method (B method) are presented. Has been.

しかし、これらの方法では、水蒸気あるいは酸素透過度の測定下限値が高いため、ガスバリア性の高い(ガス透過度の小さい)フィルム材料についてはガス透過度を正確に測定することができない。すなわち、JIS K7129の乾湿センサー法は、水分感度が0.05%RHであり、水分透過度が微量である場合には適さない。また、JIS K7129の赤外センサー法は、水分感度が1ppm(容積比で100万分の1)程度の測定方法であり、原理的にppb(容積比で10億分の1)レベルでの水分透過度測定は困難である。また、JIS Z0208の透湿度試験方法は、検出限界が0.5g/m2・day程度であり、水分透過度が微量であるフィルム材料には対応し難い。また、JIS K7126に規定される酸素透過度試験法は、ガスバリア性の低い(酸素透過度の大きい)フィルム材料(酸素透過度が0.5 cc/m2・day・atm以上であるフィルム材料)を対象とするものであり、ガスバリア性の高いフィルム材料の酸素透過度を測定することはできないものであった。例えば、等圧法に使用されるガルバニ電池式酸素計では、測定限界値(酸素量の測定下限値)が0.1〜1ppm(容積比で100万分の1)程度であり、ゼロレベルの変動があるため、微量の酸素透過度を測定することは困難である。さらに、これらの方法では、一度に複数ガス成分(例えば、水分及び酸素)のガス透過度を測定することはできないため、複数ガス成分のガス透過度を測定する際には、成分毎に装置を用意して、それぞれ測定する必要があった。   However, in these methods, since the measurement lower limit value of water vapor or oxygen permeability is high, the gas permeability cannot be accurately measured for a film material having a high gas barrier property (low gas permeability). That is, the dry / wet sensor method of JIS K7129 is not suitable when the moisture sensitivity is 0.05% RH and the moisture permeability is very small. In addition, the infrared sensor method of JIS K7129 is a measurement method with a moisture sensitivity of about 1 ppm (parts per million by volume), and in principle, moisture permeation at the level of ppb (parts per billion by volume). Degree measurement is difficult. Further, the moisture permeability test method of JIS Z0208 has a detection limit of about 0.5 g / m 2 · day, and is difficult to deal with a film material having a very small moisture permeability. In addition, the oxygen permeability test method defined in JIS K7126 uses a film material having a low gas barrier property (high oxygen permeability) (a film material having an oxygen permeability of 0.5 cc / m 2 · day · atm or more). This was intended, and the oxygen permeability of a film material having a high gas barrier property could not be measured. For example, in a galvanic cell type oximeter used for the isobaric method, the measurement limit value (the measurement lower limit value of the oxygen amount) is about 0.1 to 1 ppm (parts per million by volume ratio), and the fluctuation of the zero level is Therefore, it is difficult to measure a small amount of oxygen permeability. Furthermore, these methods cannot measure the gas permeability of a plurality of gas components (for example, moisture and oxygen) at the same time. Therefore, when measuring the gas permeability of a plurality of gas components, an apparatus is required for each component. It was necessary to prepare and measure each.

本発明は、このような問題を生じることなく、フィルム材料のガスバリア性に拘わらず、フィルム材料における特定ガス成分(例えば、水分及び/又は酸素)の透過度を適正且つ高精度に測定することができるフィルム材料のガス透過度測定装置及びガス透過度測定方法を提供することを目的とするものである。   The present invention can appropriately and accurately measure the permeability of a specific gas component (for example, moisture and / or oxygen) in the film material regardless of the gas barrier property of the film material without causing such a problem. An object of the present invention is to provide a gas permeability measuring device and a gas permeability measuring method for a film material.

本発明は、上記の目的を達成すべく、対向端面に対向状に開口するガス流動室を形成した第一及び第二装置本体と、特定ガス成分の透過度を測定すべきフィルム材料を、その中央部分を両ガス流動室に暴露させた状態で且つその外周部分を前記対向端面間に挟圧シールさせた状態で、両装置本体間に挿脱自在に装填させるシール機構と、前記対向端面間に形成された環状の密閉空間であって、フィルム材料の外周部分を囲繞するシール室と、特定ガス成分を含有する暴露ガスを第一装置本体のガス流動室に供給する暴露ガス供給機構と、特定ガス成分を含有しないキャリアガスを第二装置本体のガス流動室に供給するキャリアガス供給機構と、シールガスをシール室に供給するシールガス供給機構と、第二装置本体のガス流動室から流出するキャリアガスにおける特定ガス成分濃度を測定するガス濃度測定機構と、を具備することを特徴とするフィルム材料のガス透過度測定装置を提案する。好ましい実施の形態にあっては、シール機構が、両装置本体の対向端面の一方に同心状をなして保持された第一環状シール部材及びこれより大径の第二環状シール部材と、第一環状シール部材をフィルム材料の外周部分に当接させた状態で両環状シール部材を前記対向端面間に挟圧させるべく、両装置本体を締結するクランプとを具備して、両環状シール部材によりシール室を密閉シールするように構成される。   In order to achieve the above object, the present invention provides a first and second apparatus main bodies formed with gas flow chambers that open oppositely on opposite end faces, and a film material whose permeability of a specific gas component is to be measured. Between the opposing end surfaces, a seal mechanism that is removably loaded between the two device bodies with the central portion exposed to both gas flow chambers and the outer peripheral portion sandwiched and sealed between the opposing end surfaces. A sealed chamber surrounding the outer peripheral portion of the film material, an exposure gas supply mechanism for supplying an exposure gas containing a specific gas component to the gas flow chamber of the first apparatus body, The carrier gas supply mechanism that supplies a carrier gas that does not contain a specific gas component to the gas flow chamber of the second apparatus main body, the seal gas supply mechanism that supplies the seal gas to the seal chamber, and the gas flow chamber of the second apparatus main body. Do Suggest gas permeability measuring device of the film material characterized by comprising: a gas concentration measuring mechanism for measuring the specific gas component concentration in Yariagasu. In the preferred embodiment, the sealing mechanism includes a first annular seal member concentrically held on one of the opposing end faces of the two apparatus main bodies, a second annular seal member having a larger diameter than the first annular seal member, A clamp that fastens both device bodies to clamp both annular seal members between the opposing end faces in a state where the annular seal member is in contact with the outer peripheral portion of the film material, and is sealed by both annular seal members. Configured to hermetically seal the chamber.

而して、かかるガス透過度測定装置にあって、ガスバリア性を判定すべき特定ガス成分が水分である場合においては、ガス濃度測定機構が、第二装置本体のガス流動室から流出するキャリアガスにおける水分濃度を、水晶発振式水分計により測定するものであることが好ましい。好ましい実施の形態にあっては、水晶発振式水分計として、水分測定限界値を1ppb〜0.1ppmとするものが使用される。また、一般に、暴露ガスとしては水分を含有する窒素が使用され、キャリアガス及びシールガスとして水分を含有しない窒素が使用される。   Thus, in such a gas permeability measuring device, when the specific gas component whose gas barrier property is to be determined is moisture, the gas concentration measuring mechanism has a carrier gas that flows out from the gas flow chamber of the second device body. It is preferable that the moisture concentration in the is measured by a quartz oscillation type moisture meter. In a preferred embodiment, a quartz oscillation type moisture meter having a moisture measurement limit value of 1 ppb to 0.1 ppm is used. Generally, nitrogen containing moisture is used as the exposure gas, and nitrogen containing no moisture is used as the carrier gas and the seal gas.

また、特定ガス成分が酸素である場合においては、ガス濃度測定機構が、第二装置本体のガス流動室から流出するキャリアガスにおける酸素濃度を、当該キャリアガスに含まれるアルゴン成分と分離した上で、放電イオン化型ガスクロマトグラフにより測定するものであることが好ましい。好ましい実施の形態にあっては、放電イオン化型ガスクロマトグラフとして、酸素測定限界値を1ppb〜0.1ppmとするパルス放電イオン化型ガスクロマトグラフが使用される。また、一般に、暴露ガスとしては酸素が使用され、キャリアガス及びシールガスとしては酸素を含有しない窒素が使用される。   When the specific gas component is oxygen, the gas concentration measuring mechanism separates the oxygen concentration in the carrier gas flowing out from the gas flow chamber of the second device body from the argon component contained in the carrier gas. It is preferable to measure by a discharge ionization gas chromatograph. In a preferred embodiment, a pulse discharge ionization gas chromatograph having an oxygen measurement limit value of 1 ppb to 0.1 ppm is used as the discharge ionization gas chromatograph. In general, oxygen is used as the exposure gas, and nitrogen containing no oxygen is used as the carrier gas and the seal gas.

また、特定ガス成分が水分及び酸素である場合にあっては、ガス濃度測定機構が、第二装置本体のガス流動室から流出するキャリアガスに含まれる水分濃度及び酸素濃度を大気圧イオン化質量分析計(APIMS)により測定するものであることが好ましい。好ましい実施の形態にあっては、大気圧イオン化質量分析計としては、水分濃度及び酸素濃度の測定限界値を1ppt〜0.1ppbとするものが使用される。また、一般に、暴露ガスとしては水分を含有する酸素又は空気が使用され、キャリアガス及びシールガスとしては水分及び酸素を含有しない窒素が使用される。なお、水分及び酸素以外にも、大気圧イオン化質量分析計により濃度測定が可能な特定ガス成分(例えば、二酸化炭素,メタン等から選択される1種以上のガス成分)については、ガス濃度測定機構として大気圧イオン化質量分析計を使用することによって、当該ガス透過度測定装置(及びこれを使用する後述のガス透過度測定方法)によりフィルム材料における当該特定成分の透過度を測定することが可能である。   In addition, when the specific gas components are moisture and oxygen, the gas concentration measurement mechanism analyzes the moisture concentration and oxygen concentration contained in the carrier gas flowing out from the gas flow chamber of the second device body by atmospheric pressure ionization mass spectrometry. It is preferable to measure by a meter (APIMS). In a preferred embodiment, an atmospheric pressure ionization mass spectrometer having a measurement limit value of water concentration and oxygen concentration of 1 ppt to 0.1 ppb is used. In general, oxygen or air containing moisture is used as the exposure gas, and nitrogen that does not contain moisture and oxygen is used as the carrier gas and the seal gas. In addition to moisture and oxygen, for specific gas components (for example, one or more gas components selected from carbon dioxide, methane, etc.) whose concentration can be measured by an atmospheric pressure ionization mass spectrometer, a gas concentration measurement mechanism It is possible to measure the permeability of the specific component in the film material with the gas permeability measuring device (and the gas permeability measuring method described later using the same) using an atmospheric pressure ionization mass spectrometer as is there.

また、本発明は、上記したガス透過度測定装置を使用して、第二装置本体のガス流動室から流出するキャリアガスに含まれる特定ガス成分の濃度を測定することにより、フィルム材料における当該特定ガス成分の透過度を測定するようにしたことを特徴とするフィルム材料のガス透過度測定方法を提案する。   Further, the present invention uses the gas permeability measuring device described above to measure the concentration of the specific gas component contained in the carrier gas flowing out from the gas flow chamber of the second device body, thereby identifying the specific material in the film material. A method for measuring the gas permeability of a film material, characterized in that the permeability of a gas component is measured.

請求項1に記載するガス透過度測定装置及びこれを使用するガス透過度測定方法によれば、第一及び第二装置本体のガス流動室とフィルム材料との間におけるシールが高度且つ安定して行われ、ガス透過度の測定を正確に行うことができる。特に、シール機構を請求項11に記載する如く構成しておくことにより、より高度且つ安定したシール機能を発揮させることができる。   According to the gas permeability measuring apparatus and the gas permeability measuring method using the same according to claim 1, the seal between the gas flow chambers of the first and second apparatus bodies and the film material is highly and stable. It is possible to accurately measure the gas permeability. In particular, by configuring the seal mechanism as described in claim 11, a more sophisticated and stable seal function can be exhibited.

また、請求項2〜4に記載するガス透過度測定装置及びこれを使用するガス透過度測定方法によれば、上記した如きシール機能に優れることとも相俟って、極微量なフィルム材料の水分透過度をも正確に測定することができ、フィルム材料の水分に対するガスバリア性を、その高低に拘わらず、的確に判定することができる。   In addition, according to the gas permeability measuring device and the gas permeability measuring method using the gas permeability measuring device according to claims 2 to 4, in combination with the excellent sealing function as described above, a trace amount of moisture in the film material is used. The permeability can also be accurately measured, and the gas barrier property against moisture of the film material can be accurately determined regardless of its level.

また、請求項5〜7に記載するガス透過度測定装置及びこれを使用するガス透過度測定方法によれば、上記した如きシール機能に優れることとも相俟って、極微量なフィルム材料の酸素透過度をも正確に測定することができ、フィルム材料の酸素に対するガスバリア性を、その高低に拘わらず、的確に判定することができる。   In addition, according to the gas permeability measuring apparatus and the gas permeability measuring method using the same according to claims 5 to 7, in combination with the excellent sealing function as described above, oxygen in a very small amount of film material is used. The permeability can also be accurately measured, and the gas barrier property against oxygen of the film material can be accurately determined regardless of its level.

また、請求項8〜10に記載するガス透過度測定装置及びこれを使用するガス透過度測定方法によれば、上記した如きシール機能に優れることとも相俟って、極微量なフィルム材料の水分透過度及び酸素透過度を正確に測定することができ、フィルム材料の水分及び酸素に対するガスバリア性を、その高低に拘わらず、的確に判定することができる。さらに、請求項8〜10に記載するガス透過度測定装置及びこれを使用するガス透過度測定方法によれば、一度に複数ガス成分(例えば、水分及び酸素)のガス透過度を測定することができるため、成分毎に装置を用意して、それぞれ測定する必要がなく、簡便かつ効率的にフィルム材料の水分及び酸素に対するガスバリア性を判定することができる。   In addition, according to the gas permeability measuring apparatus and the gas permeability measuring method using the same according to claims 8 to 10, in combination with the excellent sealing function as described above, a very small amount of moisture in the film material is used. The permeability and oxygen permeability can be accurately measured, and the gas barrier property against moisture and oxygen of the film material can be accurately determined regardless of its level. Furthermore, according to the gas permeability measuring apparatus and the gas permeability measuring method using the same according to claims 8 to 10, the gas permeability of a plurality of gas components (for example, moisture and oxygen) can be measured at a time. Therefore, it is not necessary to prepare an apparatus for each component and measure each of them, and the gas barrier property against moisture and oxygen of the film material can be determined easily and efficiently.

図1は特定ガス成分を水分とする場合における本発明に係るガス透過度測定装置の一例(以下「第一ガス透過度測定装置M1」という)を示す縦断正面図であり、図2は特定ガス成分を酸素とする場合における本発明に係るガス透過度測定装置の一例(以下「第二ガス透過度測定装置M2」という)を示す縦断正面図であり、図3は特定ガス成分を水分及び酸素とする場合における本発明に係るガス透過度測定装置の一例(以下「第三ガス透過度測定装置M3」という)を示す縦断正面図であり、図4は各ガス透過度測定装置M1,M2,M3の横断底面図(断面は図1、図2又は図3のIV−IV線に沿う)であり、図5は各ガス透過度測定装置M1,M2,M3の横断平面図(断面は図1、図2又は図3のV−V線に沿う)である。   FIG. 1 is a longitudinal front view showing an example of a gas permeability measuring device according to the present invention (hereinafter referred to as “first gas permeability measuring device M1”) when the specific gas component is moisture, and FIG. 2 is a specific gas. FIG. 3 is a longitudinal front view showing an example of a gas permeability measuring apparatus according to the present invention when the component is oxygen (hereinafter referred to as “second gas permeability measuring apparatus M2”), and FIG. 3 shows the specific gas component as moisture and oxygen. Is a longitudinal front view showing an example of a gas permeability measuring device according to the present invention (hereinafter referred to as “third gas permeability measuring device M3”), and FIG. 4 shows each gas permeability measuring device M1, M2, FIG. 5 is a cross-sectional bottom view of M3 (the cross section is taken along line IV-IV in FIG. 1, FIG. 2 or FIG. 3), and FIG. 5 is a cross-sectional plan view of each gas permeability measuring device M1, M2, M3. , Along the line VV in FIG. 2 or FIG.

各ガス透過度測定装置M1,M2,M3は、図1、図2又は図3に示す如く、第一及び第二装置本体1,2と、装置本体1,2間に設けられたシール機構3と、暴露ガス供給機構4と、キャリアガス供給機構5と、シールガス供給機構6と、ガス濃度測定機構7とを具備する。   As shown in FIG. 1, FIG. 2 or FIG. 3, each gas permeability measuring device M 1, M 2, M 3 includes a first and second device main bodies 1, 2 and a seal mechanism 3 provided between the device main bodies 1, 2. And an exposure gas supply mechanism 4, a carrier gas supply mechanism 5, a seal gas supply mechanism 6, and a gas concentration measurement mechanism 7.

各ガス透過度測定装置M1,M2,M3における両装置本体1,2は、図1、図2又は図3並びに図4及び図5に示す如く、上下に対向する同一径の金属円盤である。上位の第一装置本体1には、その下端面9に開口する第一ガス流動室10が形成されている。下位の第二装置本体2には、その上端面11に開口する第二ガス流動室12が形成されている。各ガス流動室10,12は、装置本体1,2と同心状をなす横断面円形のものであり、両ガス流動室10,12の開口部は直対向している。   As shown in FIG. 1, FIG. 2 or FIG. 3, and FIG. 4 and FIG. 5, the device main bodies 1 and 2 in each gas permeability measuring device M1, M2 and M3 are metal disks having the same diameter and facing each other. The upper first apparatus main body 1 is formed with a first gas flow chamber 10 that opens to the lower end surface 9 thereof. The lower second apparatus main body 2 is formed with a second gas flow chamber 12 that opens to the upper end surface 11 thereof. Each of the gas flow chambers 10 and 12 has a circular cross section that is concentric with the apparatus main bodies 1 and 2, and the openings of the gas flow chambers 10 and 12 face each other directly.

各ガス透過度測定装置M1,M2,M3におけるシール機構3は、図1、図2又は図3並びに図4及び図5に示す如く、第二装置本体2の上端面に保持された第一及び第二環状シール部材13,14と、両装置本体1,2をその対向端面9,11間に環状シール部材13,14を挟圧する状態で締結するクランプ15とを具備する。この例では、各環状シール部材13,14として、天然ゴム,フッ素ゴム,カルレッツ,フッ素樹脂,各種金属等からなるOリングが使用されているが、各種金属からなるCリングや各種材料,形状のガスケットも使用することができる。第一Oリング13は第二ガス流動室12の開口径より若干大径のものであり、第二装置本体2の上端面11に形成された第一Oリング溝16に第二ガス流動室12の開口部と同心状をなして係合保持されている。第二Oリング14は、第一Oリング13より所定量大径のものであり、当該上端面11に形成された第二Oリング溝17に、第一Oリング13と同心状をなして係合保持されている。クランプ15は、各装置本体1,2の外周部に周方向に等間隔を隔てて穿設された複数のボルト挿通穴18…,19…と、各ボルト挿通穴18,19に貫通状に挿通させた複数の締結ボルト20…と、各締結ボルト20に螺合させた複数のナット21…とからなり、各ナット21を締め付けることにより、両装置本体1,2を対向端面9,11間に両Oリング13,14を挟圧させる状態で締結しうるようになっている。   The sealing mechanism 3 in each of the gas permeability measuring devices M1, M2, and M3 includes the first and second members held on the upper end surface of the second device body 2 as shown in FIG. 1, FIG. 2 or FIG. 3, and FIG. The second annular seal members 13 and 14 and the clamp 15 that fastens both the apparatus main bodies 1 and 2 in a state in which the annular seal members 13 and 14 are clamped between the opposed end surfaces 9 and 11 are provided. In this example, O-rings made of natural rubber, fluororubber, Kalrez, fluororesin, various metals, etc. are used as the annular seal members 13, 14, but C-rings made of various metals, various materials, and shapes are used. Gaskets can also be used. The first O-ring 13 has a diameter slightly larger than the opening diameter of the second gas flow chamber 12, and the second O-ring groove 16 formed in the upper end surface 11 of the second device body 2 has a second gas flow chamber 12. It is engaged and held concentrically with the opening. The second O-ring 14 has a larger diameter than the first O-ring 13 by a predetermined amount, and is engaged with the second O-ring groove 17 formed in the upper end surface 11 concentrically with the first O-ring 13. Are held together. The clamp 15 is inserted through the plurality of bolt insertion holes 18, 19, which are formed at equal intervals in the circumferential direction in the outer peripheral portions of the apparatus main bodies 1, 2, and through the bolt insertion holes 18, 19. And a plurality of nuts 21 screwed into the respective fastening bolts 20. By tightening each nut 21, both the apparatus main bodies 1 and 2 are placed between the opposed end surfaces 9 and 11. The two O-rings 13 and 14 can be fastened while being clamped.

而して、各ガス透過度測定装置M1,M2,M3に装着されるフィルム材料、つまり特定ガス成分(水分及び/又は酸素)の透過度を測定すべきフィルム材料22は、図1、図2又は図3並びに図4及び図5に示す如く、第一Oリング13の外径と略同一の外径寸法をなす円形のものであり、中心部を両ガス流動室10,12に暴露させた状態で且つ外周部分を両装置本体1,2の対向端面9,11間に第一Oリング13を介して挟圧シールさせた状態で、両装置本体1,2間に装填されるものであり、その装填は次のような手順で行なわれる。すなわち、まず、各ナット21を外して第一装置本体1を第二装置本体2上から取り外した上、フィルム材料22を、その外周部分が第一Oリング13上に載置される状態で、第二装置本体2上にセットする。次に、第一装置本体1を、その各ボルト挿通穴18にボルト20を挿通させた状態で、第二装置本体2上にセットした上で、各ボルト20にナット21を螺合させて、全ナット21…を均等に締め付ける。ナット21…を締め付けることにより、フィルム材料22の外周部分及び第一Oリング13は、両装置本体1,2の対向端面9,11間に挟圧される。同時に、第二Oリング14も、当該対向端面9,11間に挟圧される。したがって、両Oリング13,14が適当に圧縮される状態となるまで、ナット21…を締め付けることにより、図1に示す如く、フィルム材料22を、その外周部分と当該対向端面9,11との間が第一Oリング13によりシールされた状態で且つ当該フィルム材料22の中央部分の表裏面が夫々ガス流動室10,12に暴露された状態で、両装置本体1,2間に装填することができる。また、このようなフィルム材料22の装填状態においては、図1に示す如く、装置本体1,2の対向端面9,11間に、両Oリング13,14によりシールされたシール室23が形成される。すなわち、このシール室23は、フィルム材料22の外周部分を囲繞する環状の密閉空間であり、第一Oリング13によりガス流動室10,12と遮断シールされると共に第二Oリング14により外界(大気)と遮断シールされたものである。   Thus, the film material to be attached to each gas permeability measuring device M1, M2, M3, that is, the film material 22 for which the permeability of a specific gas component (water and / or oxygen) is to be measured is shown in FIGS. Alternatively, as shown in FIGS. 3, 4, and 5, the first O-ring 13 has a circular shape having the same outer diameter as that of the first O-ring 13, and the central portion is exposed to both gas flow chambers 10 and 12. In this state, the outer peripheral portion is loaded between the two apparatus main bodies 1 and 2 with the first O-ring 13 being sandwiched and sealed between the opposed end faces 9 and 11 of the both apparatus main bodies 1 and 11. The loading is performed according to the following procedure. That is, first, after removing each nut 21 and removing the first apparatus main body 1 from the second apparatus main body 2, the film material 22 is placed on the first O-ring 13 in the outer peripheral portion thereof. Set on the second device body 2. Next, the first device main body 1 is set on the second device main body 2 in a state where the bolts 20 are inserted into the respective bolt insertion holes 18, and nuts 21 are screwed into the respective bolts 20. Tighten all nuts 21 evenly. By tightening the nuts 21, the outer peripheral portion of the film material 22 and the first O-ring 13 are sandwiched between the opposed end surfaces 9 and 11 of both the apparatus main bodies 1 and 2. At the same time, the second O-ring 14 is also sandwiched between the opposed end surfaces 9 and 11. Therefore, by tightening the nuts 21 until the both O-rings 13 and 14 are properly compressed, the film material 22 is moved between its outer peripheral portion and the opposed end surfaces 9 and 11 as shown in FIG. It is loaded between both apparatus main bodies 1 and 2 in a state where the space is sealed by the first O-ring 13 and the front and back surfaces of the central portion of the film material 22 are exposed to the gas flow chambers 10 and 12, respectively. Can do. Further, in such a loaded state of the film material 22, as shown in FIG. 1, a seal chamber 23 sealed by both O-rings 13 and 14 is formed between the opposed end surfaces 9 and 11 of the apparatus main bodies 1 and 2. The That is, the seal chamber 23 is an annular sealed space that surrounds the outer peripheral portion of the film material 22, is sealed off from the gas flow chambers 10 and 12 by the first O-ring 13, and is externally enclosed by the second O-ring 14 ( It is shielded from the atmosphere.

各ガス透過度測定装置M1,M2,M3における暴露ガス供給機構4は、図1、図2又は図3並びに図4及び図5に示す如く、特定ガス成分を含有する暴露ガス24を第一ガス流動室10に定量供給することにより、暴露ガス24をフィルム材料22の表面(上面)に暴露(接触)させるものであり、第一装置本体1に形成されて第一ガス流動室10に連通する暴露ガス給排口25,26と、暴露ガス供給口25に接続された暴露ガス供給路27と、暴露ガス排出口26に接続された暴露ガス排出路28と、所定圧の暴露ガス24を暴露ガス供給路27から第一ガス流動室10に定量供給する暴露ガス供給装置29とを具備してなる。   The exposure gas supply mechanism 4 in each of the gas permeability measuring devices M1, M2, and M3 uses the exposure gas 24 containing the specific gas component as the first gas, as shown in FIG. 1, FIG. 2, or FIG. 3, and FIG. The exposure gas 24 is exposed (contacted) to the surface (upper surface) of the film material 22 by supplying a fixed amount to the flow chamber 10, and is formed in the first apparatus main body 1 and communicates with the first gas flow chamber 10. Exposure gas supply / exhaust ports 25, 26, an exposure gas supply channel 27 connected to the exposure gas supply port 25, an exposure gas discharge channel 28 connected to the exposure gas discharge port 26, and an exposure gas 24 of a predetermined pressure are exposed. An exposure gas supply device 29 for supplying a fixed amount from the gas supply path 27 to the first gas flow chamber 10 is provided.

而して、第一ガス透過度測定装置M1においては、暴露ガス24として水分を含有しない窒素を使用しており、暴露ガス供給装置29は、高圧窒素ボンベ内の高圧窒素を減圧弁により所定圧(例えば0.01MPa・G)に減圧した上で、純水を貯留し且つ40℃に恒温した加湿ポットを通過させることにより、ほぼ40℃における飽和水分量まで加湿したものを、暴露ガス24として、暴露ガス供給路27に定量供給(例えば、1〜1000mL/min)するように構成されている。   Thus, in the first gas permeability measuring device M1, nitrogen that does not contain moisture is used as the exposure gas 24, and the exposure gas supply device 29 supplies high-pressure nitrogen in the high-pressure nitrogen cylinder to a predetermined pressure by a pressure reducing valve. (Exposure gas, for example, 0.01 MPa · G), which is humidified to a saturated water content at about 40 ° C. by storing pure water and passing through a humidification pot kept at a constant temperature of 40 ° C. as exposure gas 24 The exposure gas supply path 27 is configured to supply a fixed amount (for example, 1 to 1000 mL / min).

また、第二ガス透過度測定装置M2においては、暴露ガス24として水分を含有しない酸素を使用しており、暴露ガス供給装置29は、高圧酸素ボンベ内の高圧酸素を減圧弁により所定圧(例えば0.01MPa・G)に減圧した上で、暴露ガス24として、暴露ガス供給路27に定量供給(例えば、1〜1000mL/min)するように構成されている。   Further, in the second gas permeability measuring device M2, oxygen that does not contain moisture is used as the exposure gas 24, and the exposure gas supply device 29 supplies high-pressure oxygen in the high-pressure oxygen cylinder to a predetermined pressure (for example, by a pressure reducing valve). The pressure is reduced to 0.01 MPa · G), and the exposure gas 24 is supplied in a fixed amount (for example, 1 to 1000 mL / min) as the exposure gas supply path 27.

また、第三ガス透過度測定装置M3においては、暴露ガス24として水分を含有する酸素を使用しており、暴露ガス供給装置29は、高圧酸素ボンベ内の高圧酸素を減圧弁により所定圧(例えば0.01MPa・G)に減圧した上で、純水を貯留し且つ40℃に恒温した加湿ポットを通過させることにより、ほぼ40℃における飽和水分量まで加湿したものを、暴露ガス24として、暴露ガス供給路27に定量供給(例えば、1〜1000mL/min)するように構成されている。   Further, in the third gas permeability measuring device M3, oxygen containing moisture is used as the exposure gas 24, and the exposure gas supply device 29 supplies high-pressure oxygen in the high-pressure oxygen cylinder to a predetermined pressure (for example, by a pressure reducing valve). The pressure is reduced to 0.01 MPa · G), and the water that has been humidified to the saturated water content at about 40 ° C. by storing pure water and passing through a humidification pot kept at a constant temperature of 40 ° C. is used as the exposure gas 24. The gas supply path 27 is configured to supply a fixed amount (for example, 1 to 1000 mL / min).

各ガス透過度測定装置M1,M2,M3におけるキャリアガス供給機構5は、特定ガス成分を含有しないキャリアガス30を第二ガス流動室12に定量供給することにより、フィルム材料22を透過した特定ガス成分をキャリアガス30に同伴させて第二ガス流動室12外の透過ガス測定領域へと移送させるものであり、第二装置本体2に形成されて第二ガス流動室12に連通するキャリアガス流入出口31,32と、キャリアガス流入口31に接続されたキャリアガス流入路33と、キャリアガス流出口32に接続されたキャリアガス流出路34と、所定圧のキャリアガス30をキャリアガス流入路33から第二ガス流動室12に定量供給するキャリアガス供給装置35とを具備してなる。   The carrier gas supply mechanism 5 in each of the gas permeability measuring devices M1, M2, and M3 supplies a specific gas that has passed through the film material 22 by quantitatively supplying a carrier gas 30 that does not contain a specific gas component to the second gas flow chamber 12. The component gas is entrained with the carrier gas 30 and transferred to the permeate gas measurement region outside the second gas flow chamber 12, and the carrier gas inflow formed in the second device body 2 and communicated with the second gas flow chamber 12 The carrier gas inflow passage 33 connected to the outlets 31 and 32, the carrier gas inflow port 31, the carrier gas outflow passage 34 connected to the carrier gas outflow port 32, and the carrier gas 30 having a predetermined pressure are supplied to the carrier gas inflow passage 33. And a carrier gas supply device 35 for supplying a fixed amount to the second gas flow chamber 12.

而して、第一ガス透過度測定装置M1にあっては、キャリアガス30として水分を含有しない窒素を使用しており、キャリアガス供給装置35は、高圧窒素ボンベ内の高圧窒素を、減圧弁により第一ガス流動室10に供給させる暴露ガス(窒素)24と同圧に減圧すると共に合成ゼオライトによる除湿処理を施した上で、キャリアガス30としてキャリアガス流入路33に定量供給(例えば、1〜1000mL/min)するように構成されている。   Thus, in the first gas permeability measuring device M1, nitrogen that does not contain moisture is used as the carrier gas 30, and the carrier gas supply device 35 supplies the high-pressure nitrogen in the high-pressure nitrogen cylinder to the pressure reducing valve. Then, the pressure is reduced to the same pressure as the exposure gas (nitrogen) 24 to be supplied to the first gas flow chamber 10, and after dehumidification treatment with synthetic zeolite, a fixed amount is supplied to the carrier gas inflow passage 33 as the carrier gas 30 (for example, 1 ˜1000 mL / min).

また、第二ガス透過度測定装置M2にあっては、キャリアガス30として酸素を含有しない窒素を使用しており、キャリアガス供給装置35は、高圧窒素ボンベ内の高圧窒素を、減圧弁により、第一ガス流動室10に供給させる暴露ガス(酸素)24と同圧に減圧すると共に酸素除去塔で酸素除去処理した上で、キャリアガス30として、キャリアガス流入路33に定量供給(例えば、1〜1000mL/min)するように構成されている。   Further, in the second gas permeability measuring device M2, nitrogen not containing oxygen is used as the carrier gas 30, and the carrier gas supply device 35 is configured to supply high-pressure nitrogen in the high-pressure nitrogen cylinder with a pressure reducing valve. The pressure is reduced to the same pressure as the exposure gas (oxygen) 24 to be supplied to the first gas flow chamber 10 and the oxygen removal treatment is performed in the oxygen removal tower, and then the carrier gas 30 is quantitatively supplied to the carrier gas inflow passage 33 (for example, 1 ˜1000 mL / min).

また、第三ガス透過度測定装置M3にあっては、キャリアガス30として水分及び酸素を含有しない窒素を使用しており、キャリアガス供給装置35は、高圧窒素ボンベ内の高圧窒素を、減圧弁により、第一ガス流動室10に供給させる暴露ガス(酸素)24と同圧に減圧すると共に、精製器による水分及び酸素除去処理を施した上で、キャリアガス30として、キャリアガス流入路33に定量供給(例えば、1〜1000mL/min)するように構成されている。   Further, in the third gas permeability measuring device M3, nitrogen that does not contain moisture and oxygen is used as the carrier gas 30, and the carrier gas supply device 35 supplies the high-pressure nitrogen in the high-pressure nitrogen cylinder to the pressure reducing valve. Thus, the pressure is reduced to the same pressure as the exposure gas (oxygen) 24 to be supplied to the first gas flow chamber 10, and the moisture and oxygen removal treatment by the purifier is performed, and then the carrier gas 30 is supplied to the carrier gas inflow path 33. It is comprised so that fixed supply (for example, 1-1000 mL / min) may be carried out.

各ガス透過度測定装置M1,M2,M3におけるシールガス供給機構6は、図1、図2又は図3に示す如く、特定ガス成分を含有しないシールガス36をシール室23に定量供給することにより、第一Oリング13によるガス流動室10,11のシール性をより確実ならしめるものであり、両Oリング13,14間の環状空間(シール室23)に開口した状態で第一装置本体1の下端面9に形成された環状溝37と、第一装置本体1に形成され、環状溝37内に開口してシール室12に連通するシールガス給排口38,39と、シールガス供給口38に接続されたシールガス供給路40と、シールガス排出口39に接続されたシールガス排出路41と、所定圧のシールガス36をシールガス供給路40からシール室23に定量供給するシールガス供給装置42とを具備してなる。   The seal gas supply mechanism 6 in each of the gas permeability measuring devices M1, M2, and M3 supplies a seal gas 36 that does not contain a specific gas component to the seal chamber 23 as shown in FIG. 1, FIG. 2, or FIG. The gas flow chambers 10 and 11 are more reliably sealed by the first O-ring 13, and the first apparatus main body 1 is opened in an annular space (seal chamber 23) between the O-rings 13 and 14. An annular groove 37 formed in the lower end surface 9, seal gas supply / exhaust ports 38 and 39 formed in the first apparatus body 1, opened in the annular groove 37 and communicating with the seal chamber 12, and a seal gas supply port A seal gas supply path 40 connected to 38, a seal gas discharge path 41 connected to a seal gas discharge port 39, and a seal that supplies a predetermined amount of seal gas 36 of a predetermined pressure from the seal gas supply path 40 to the seal chamber 23. Formed by and a scan feeder 42.

而して、第一ガス透過度測定装置M1にあっては、シールガス36として水分を含有しない窒素を使用しており、シールガス供給装置42は、高圧窒素ボンベ内の高圧窒素を、減圧弁により、第二ガス流動室12に供給させるキャリアガス(窒素)30と同圧に減圧すると共に、合成ゼオライトによる除湿処理を施した上で、シールガス36として、シールガス供給路40に定量供給(例えば、1〜1000mL/min)するように構成されている。なお、ガス24,30,36の供給源(高圧窒素ボンベ)は、個々に設けても共通させても、何れでもよい。   Thus, in the first gas permeability measuring device M1, nitrogen that does not contain moisture is used as the sealing gas 36, and the sealing gas supply device 42 converts the high-pressure nitrogen in the high-pressure nitrogen cylinder into a pressure reducing valve. Thus, the pressure is reduced to the same pressure as the carrier gas (nitrogen) 30 to be supplied to the second gas flow chamber 12, and after dehumidification treatment with synthetic zeolite, a fixed amount is supplied as the seal gas 36 to the seal gas supply path 40 ( For example, it is configured to be 1 to 1000 mL / min). The supply sources (high-pressure nitrogen cylinders) for the gases 24, 30, and 36 may be provided individually or in common.

また、第二ガス透過度測定装置M2にあっては、シールガスガス36として酸素を含有しない窒素を使用しており、シールガス供給装置42は、高圧窒素ボンベ内の高圧窒素を、減圧弁により、第二ガス流動室12に供給させるキャリアガス(窒素)30と同圧に減圧すると共に酸素除去筒で酸素除去処理した上で、シールガス36として、シールガス供給路40に定量供給(例えば、1〜1000mL/min)するように構成されている。なお、キャリアガス30及びシールガス36の供給源(高圧窒素ボンベ)は、個々に設けても共通させても、何れでもよい。   Further, in the second gas permeability measuring device M2, nitrogen not containing oxygen is used as the sealing gas gas 36, and the sealing gas supply device 42 is configured to supply high-pressure nitrogen in the high-pressure nitrogen cylinder by a pressure reducing valve. The pressure is reduced to the same pressure as the carrier gas (nitrogen) 30 to be supplied to the second gas flow chamber 12 and the oxygen removal treatment is performed in the oxygen removal cylinder, and then a fixed amount is supplied as the seal gas 36 to the seal gas supply path 40 (for example, 1 ˜1000 mL / min). The supply sources (high-pressure nitrogen cylinders) for the carrier gas 30 and the seal gas 36 may be provided individually or in common.

また、第三ガス透過度測定装置M3にあっては、シールガスガス36として水分及び酸素を含有しない窒素を使用しており、シールガス供給装置42は、高圧窒素ボンベ内の高圧窒素を、減圧弁により、第二ガス流動室12に供給させるキャリアガス(窒素)30と同圧に減圧すると共に、精製器による水分及び酸素除去処理を施した上で、シールガス36として、シールガス供給路40に定量供給(例えば、1〜1000mL/min)するように構成されている。なお、ガス30,36の供給源(高圧窒素ボンベ)は、個々に設けても共通させても、何れでもよい。   Further, in the third gas permeability measuring device M3, nitrogen that does not contain moisture and oxygen is used as the sealing gas gas 36, and the sealing gas supply device 42 converts the high-pressure nitrogen in the high-pressure nitrogen cylinder into a pressure reducing valve. Thus, the pressure is reduced to the same pressure as that of the carrier gas (nitrogen) 30 to be supplied to the second gas flow chamber 12, and after the moisture and oxygen removal treatment by the purifier, the seal gas 36 is supplied to the seal gas supply path 40. It is comprised so that fixed supply (for example, 1-1000 mL / min) may be carried out. The supply sources (high-pressure nitrogen cylinders) of the gases 30 and 36 may be provided individually or in common.

以上のように構成された各ガス透過度測定装置M1,M2,M3及びこれを使用するガス透過度測定方法によれば、キャリアガス30(及び暴露ガス24)と同圧のシールガス36をシールガス供給機構6によりシール室23に定量供給しておくことにより、第二ガス流動室12(及び第一ガス流動室10)の第一Oリング13によるシール部分がシールガス層(シールガス36が充填されたシール室23)で囲繞されることから、第二ガス流動室12(及び第一ガス流動室10)と外界との遮断効果(シール効果)が確実に行なわれる。したがって、第二ガス流動室12からのキャリアガス漏れ及び外界からの第二ガス流動室12への大気侵入が確実に防止されて、フィルム材料22を透過した特定ガス成分(第一ガス透過度測定装置M1にあっては水分であり、第二ガス透過度測定装置M2にあっては酸素であり、第三ガス透過度測定装置M3にあっては水分及び酸素である)の一部がキャリアガス30に同伴されなかったり或いはフィルム材料22を透過した特定ガス成分に侵入したり或いは大気中の特定ガス成分相当成分(第一ガス透過度測定装置M1にあっては水分であり、第二ガス透過度測定装置M2にあっては酸素であり、第三ガス透過度測定装置M3にあっては水分及び酸素である)が混入したりするようなことがなく、第二ガス流動室12から流出するキャリアガス30に含まれる特定ガス成分量とフィルム材料22を透過した特定ガス成分量とを等価させることができ、フィルム材料22の特定ガス成分透過度を後述するガス濃度測定機構7により正確に検出,測定することができる。   According to each gas permeability measuring device M1, M2, M3 configured as described above and the gas permeability measuring method using the same, the sealing gas 36 having the same pressure as the carrier gas 30 (and the exposure gas 24) is sealed. By supplying the fixed amount to the seal chamber 23 by the gas supply mechanism 6, the seal portion by the first O-ring 13 of the second gas flow chamber 12 (and the first gas flow chamber 10) becomes a seal gas layer (the seal gas 36 is Since it is surrounded by the filled seal chamber 23), the second gas flow chamber 12 (and the first gas flow chamber 10) and the outside are reliably shut off (seal effect). Therefore, leakage of the carrier gas from the second gas flow chamber 12 and entry of air into the second gas flow chamber 12 from the outside are surely prevented, and the specific gas component that has permeated the film material 22 (first gas permeability measurement). The device M1 is water, the second gas permeability measuring device M2 is oxygen, and the third gas permeability measuring device M3 is moisture and oxygen). 30 or a specific gas component corresponding to a specific gas component in the atmosphere (in the first gas permeability measuring device M1, it is moisture and second gas permeation) In the degree measuring device M2, it is oxygen, and in the third gas permeability measuring device M3, it is not mixed with water and oxygen) and flows out from the second gas flow chamber 12. Carry The specific gas component amount contained in the gas 30 and the specific gas component amount permeated through the film material 22 can be equivalent, and the specific gas component permeability of the film material 22 can be accurately detected by the gas concentration measuring mechanism 7 described later. Can be measured.

而して、第一ガス透過度測定装置M1におけるガス濃度測定機構7は、図1に示す如く、キャリアガス流出路34に配設した水晶発振式水分計43により、第二ガス流動室12から透過ガス(フィルム材料22を透過した特定ガス成分たる水分)を同伴して流出するキャリアガス(以下「ガス透過度測定用ガス30a」という)における特定ガス成分濃度たる水分濃度(水分量)を測定するものである。水分濃度は、あらかじめ、水分濃度既知の標準ガスあるいは、既知濃度の水分を動的に発生する水分発生器を使用して調製したガスを測定して作成した検量線に基づいて、求められる。ところで、水晶発振式水分計43に使用されている水晶振動子は、その質量増加に反比例して発振周波数が減少する現象を生じる。水晶発振式水分計43は、かかる現象を利用したもので、水晶振動子上に水分に感応する機能性薄膜(強吸湿性を有するコーティング膜)を設けて、この膜に吸着した水分による水晶振動子の周波数変化を計測して水分濃度(水分量)を求めるように構成されたものである。水晶発振式水分計43としては、水分測定限界値を1ppb〜0.1ppmとするものを使用することが好ましい。なお、ガス透過度測定用ガス30aに含まれる水分量(g/m・day)は、ガス透過度測定用ガス30aの水分濃度(ppm)とキャリアガス30の流量(mL/min)とフィルム材料22の水分透過面積(m)とから演算,測定される。 Thus, the gas concentration measuring mechanism 7 in the first gas permeability measuring device M1 is separated from the second gas flow chamber 12 by the crystal oscillation moisture meter 43 disposed in the carrier gas outflow passage 34 as shown in FIG. Measures the moisture concentration (moisture amount) as the specific gas component concentration in the carrier gas (hereinafter referred to as “gas permeability measuring gas 30a”) flowing out along with the permeating gas (moisture as the specific gas component that has passed through the film material 22). To do. The moisture concentration is obtained in advance based on a calibration curve created by measuring a standard gas with a known moisture concentration or a gas prepared using a moisture generator that dynamically generates moisture with a known concentration. By the way, the crystal oscillator used in the crystal oscillation moisture meter 43 causes a phenomenon that the oscillation frequency decreases in inverse proportion to the increase in mass. The quartz oscillation type moisture meter 43 utilizes such a phenomenon, and a functional thin film (a coating film having strong hygroscopicity) sensitive to moisture is provided on the quartz vibrator, and the quartz vibration due to moisture adsorbed on the film is provided. It is configured to measure the frequency change of the child to obtain the water concentration (water content). As the quartz oscillation type moisture meter 43, it is preferable to use a moisture measurement limit value of 1 ppb to 0.1 ppm. The moisture content (g / m 2 · day) contained in the gas permeability measurement gas 30a is determined by the moisture concentration (ppm) of the gas permeability measurement gas 30a, the flow rate (mL / min) of the carrier gas 30 and the film. Calculated and measured from the moisture permeation area (m 2 ) of the material 22.

また、第二ガス透過度測定装置M2におけるガス濃度測定機構7は、図2に示す如く、キャリアガス流出路34にアルゴン分離装置44とその下流側に位置する放電イオン化型ガスクロマトグラフ45とを配設してなる。   Further, as shown in FIG. 2, the gas concentration measuring mechanism 7 in the second gas permeability measuring device M2 includes an argon separation device 44 and a discharge ionization gas chromatograph 45 located downstream thereof in the carrier gas outflow passage 34. Set up.

アルゴン分離装置44は、第二ガス流動室12から透過ガス(フィルム材料22を透過した特定ガス成分たる酸素)を同伴して流出するキャリアガス(以下「酸素同伴ガス」という)30bに含まれるアルゴン成分を分離除去するものである。このアルゴン分離装置44としては、一般に、酸素とアルゴンとを低温カラムにより分離する公知のものを使用することができるが、この例では、酸素同伴ガス30bを−200℃〜20℃に冷却して、これに含まれるアルゴン成分を1〜20mのモレキュラーシーブスカラムによって分離するように構成されたものが使用されている。   The argon separation device 44 includes argon contained in a carrier gas (hereinafter referred to as “oxygen-entrained gas”) 30 b that flows out from the second gas flow chamber 12 with a permeating gas (oxygen that is a specific gas component that has permeated the film material 22). It separates and removes components. As the argon separation device 44, a known device that generally separates oxygen and argon by a low temperature column can be used. In this example, the oxygen-entrained gas 30 b is cooled to −200 ° C. to 20 ° C. The argon component contained therein is separated by a 1-20 m molecular sieve column.

放電イオン化型ガスクロマトグラフ45は、アルゴン分離装置44によりアルゴン成分を分離したキャリアガス(以下「ガス透過度測定用ガス」という)30cにおける特定ガス成分濃度たる酸素濃度(フィルム材料22を透過した酸素量)を測定するものである。酸素濃度は、あらかじめ、酸素濃度既知の標準ガスを測定して作成した検量線に基づいて、求められる。この放電イオン化型ガスクロマトグラフ45としては、具体的には、パルス放電によって生成された励起状態のヘリウム分子が基底状態のヘリウム原子に戻るときに発生する光エネルギー(13.5〜17.7eV)により、測定対象の分子(酸素分子)がイオン化されて検出されるように構成されたパルス放電イオン化型ガスクロマトグラフを使用しており、酸素測定限界値を1ppb〜0.1ppmとするものが使用されている。なお、ガス透過度測定用ガス30cに含まれる酸素量(cc/m・day・atm)は、ガス透過度測定用ガス30cの酸素濃度(ppm)とキャリアガス30の流量(mL/min)とフィルム材料22の酸素透過面積(m)とから演算,測定される。 The discharge ionization gas chromatograph 45 is configured such that an oxygen concentration (amount of oxygen permeating the film material 22) in a carrier gas (hereinafter referred to as “gas permeability measuring gas”) 30c obtained by separating an argon component by an argon separation device 44. ). The oxygen concentration is obtained in advance based on a calibration curve created by measuring a standard gas with a known oxygen concentration. Specifically, the discharge ionization gas chromatograph 45 uses light energy (13.5 to 17.7 eV) generated when excited helium molecules generated by pulse discharge return to the ground helium atom. A pulse discharge ionization gas chromatograph configured to ionize and detect molecules to be measured (oxygen molecules) is used, and an oxygen measurement limit value of 1 ppb to 0.1 ppm is used. Yes. Note that the oxygen amount (cc / m 2 · day · atm) contained in the gas permeability measurement gas 30c is the oxygen concentration (ppm) of the gas permeability measurement gas 30c and the flow rate (mL / min) of the carrier gas 30. And the oxygen transmission area (m 2 ) of the film material 22 are calculated and measured.

また、第三ガス透過度測定装置M3におけるガス濃度測定機構7は、図3に示す如く、キャリアガス流出路34に配設した大気圧イオン化質量分析計(APIMS)46により、第二ガス流動室12から透過ガス(フィルム材料22を透過した特定ガス成分たる水分及び酸素)を同伴して流出するキャリアガス(以下「ガス透過度測定用ガス30d」という)の特定ガス成分濃度(フィルム材料22を透過した水分量及び酸素量)を測定するものである。水分濃度は、あらかじめ、水分濃度既知の標準ガスあるいは、既知濃度の水分を動的に発生する水分発生器を使用して調製したガスを測定して作成した検量線に基づいて求められ、酸素濃度は、あらかじめ、酸素濃度既知の標準ガスを測定して作成した検量線に基づいて求められる。この大気圧イオン化質量分析計46は、大気圧下でイオン化を行うことにより、不純物の高効率なイオン化が可能な、高感度分析を特徴とするガス分析計であり、一般に、水分及び酸素測定限界値を1ppt〜0.1ppbとするものを使用することが好ましい。なお、水分及び酸素透過度(g/m2・day)は、ガス透過度測定用ガス30dの水分濃度(ppb)及び酸素濃度(ppb)とキャリアガス30の流量(mL/min)とフィルム材料22の水分及び酸素透過面積(m2)とから演算,測定される。なお、大気圧イオン化質量分析計46は、水分及び酸素以外にも様々な成分(例えば、二酸化炭素、メタン等)の測定が可能な分析計であり、大気圧イオン化質量分析計46にて測定が可能な成分であれば、第三ガス透過度測定装置M3を用いて、水分及び酸素以外の成分の透過度を測定することもできる。すなわち、第三ガス透過度測定装置M3において、暴露ガス24として、例えば、二酸化炭素若しくはメタン又は二酸化炭素及びメタンの混合ガスを使用し、キャリアガス30およびシールガス36として二酸化炭素及び/又はメタンを含有しない窒素を使用し、大気圧イオン化質量分析計46により、第二ガス流動室12から透過ガス(フィルム材料22を透過した二酸化炭素及び/又はメタン)を同伴して流出するキャリアガスの二酸化炭素及び/又はメタン濃度を測定することにより、これらの成分(特定ガス成分)の透過度を測定することができる。   Further, as shown in FIG. 3, the gas concentration measuring mechanism 7 in the third gas permeability measuring device M3 includes a second gas flow chamber by an atmospheric pressure ionization mass spectrometer (APIMS) 46 disposed in the carrier gas outflow passage 34. The specific gas component concentration of the carrier gas (hereinafter referred to as “gas permeability measuring gas 30d”) flowing out from the gas 12 along with the permeating gas (moisture and oxygen as the specific gas components that have passed through the film material 22) Permeated water and oxygen). The moisture concentration is determined in advance based on a calibration curve created by measuring a standard gas with a known moisture concentration or a gas prepared using a moisture generator that dynamically generates moisture with a known concentration. Is obtained in advance based on a calibration curve prepared by measuring a standard gas with a known oxygen concentration. This atmospheric pressure ionization mass spectrometer 46 is a gas analyzer characterized by high-sensitivity analysis capable of highly efficient ionization of impurities by performing ionization under atmospheric pressure. It is preferable to use one having a value of 1 ppt to 0.1 ppb. Note that the moisture and oxygen permeability (g / m 2 · day) are the moisture concentration (ppb) and oxygen concentration (ppb) of the gas permeability measurement gas 30d, the flow rate (mL / min) of the carrier gas 30, and the film material 22. Is calculated and measured from the moisture and oxygen permeation area (m2). The atmospheric pressure ionization mass spectrometer 46 is an analyzer capable of measuring various components (for example, carbon dioxide, methane, etc.) in addition to moisture and oxygen, and can be measured by the atmospheric pressure ionization mass spectrometer 46. If possible, the permeability of components other than moisture and oxygen can be measured using the third gas permeability measuring device M3. That is, in the third gas permeability measuring apparatus M3, for example, carbon dioxide or methane or a mixed gas of carbon dioxide and methane is used as the exposure gas 24, and carbon dioxide and / or methane is used as the carrier gas 30 and the seal gas 36. Carbon that is a carrier gas that flows out from the second gas flow chamber 12 with the permeating gas (carbon dioxide and / or methane that has permeated the film material 22) from the second gas flow chamber 12 using nitrogen that is not contained. And by measuring the methane concentration, the permeability of these components (specific gas components) can be measured.

各ガス透過度測定装置M1,M2,M3において暴露ガス24、キャリアガス30、シールガス36のガス流路(配管、ガス流動室等)は、ガス置換が速やかに行われる様、極力デッドボリュームのない構造とすることが好ましく、また、特にキャリアガス30の接ガス表面は、微量の特定ガス成分が吸脱着し、測定値に影響を及ぼさない様、機械研磨、電解研磨等の表面処理を施すことが好ましい。微量の特定ガス成分の吸脱着特性を向上させ、短時間で平衡状態に到達させるため、接ガス表面の表面粗さRyは5μm以下とすることが好ましく、表面粗さRy1μm以下とすることがさらに好ましい。   In each gas permeability measuring device M1, M2, M3, the gas flow paths (piping, gas flow chambers, etc.) of the exposure gas 24, the carrier gas 30, and the seal gas 36 have a dead volume as much as possible so that gas replacement can be performed quickly. In particular, the gas contact surface of the carrier gas 30 is subjected to a surface treatment such as mechanical polishing or electrolytic polishing so that a minute amount of a specific gas component is adsorbed and desorbed and does not affect the measured value. It is preferable. In order to improve the adsorption / desorption characteristics of a small amount of a specific gas component and reach an equilibrium state in a short time, the surface roughness Ry of the gas contact surface is preferably 5 μm or less, and more preferably the surface roughness Ry is 1 μm or less. preferable.

なお、本発明のガス透過度測定装置の構成は上記した各実施の形態に限定されるものでなく、本発明の基本原理を逸脱しない範囲で適宜に改良,変更することができる。   The configuration of the gas permeability measuring apparatus according to the present invention is not limited to the above-described embodiments, and can be appropriately improved and changed without departing from the basic principle of the present invention.

実施例1として、ポリエチレンテレフタレート膜にシリコン酸化膜を蒸着してなるフィルム材料22であって水分透過性(ガスバリア性)の異なる3種類のフィルムA,B,Cを使用して、各フィルムA,B,Cの水分透過度を、上記した第一ガス透過度測定装置M1を使用して測定した。すなわち、第一ガス流動室10に100mL/minの暴露ガスたる水分含有窒素24を、第二ガス流動室12に400mL/minのキャリアガスたる乾燥窒素30を、またシール室23に20mL/minのシールガスたる乾燥窒素36を、夫々連続供給し、各フィルムA,B,Cの水分透過度つまりガス透過度測定用ガス30aに含まれる水分量を、ガス供給開始後、水分濃度が安定するまで待って、水晶発振式水分計43により測定した。その結果は、表1に示す通りであった。   As Example 1, three types of films A, B, and C, which are film materials 22 formed by depositing a silicon oxide film on a polyethylene terephthalate film and having different moisture permeability (gas barrier properties), are used. The water permeability of B and C was measured using the first gas permeability measuring device M1 described above. That is, moisture-containing nitrogen 24 that is an exposure gas of 100 mL / min is input to the first gas flow chamber 10, dry nitrogen 30 that is a carrier gas of 400 mL / min is transferred to the second gas flow chamber 12, and 20 mL / min is transferred to the seal chamber 23. Dry nitrogen 36, which is a sealing gas, is continuously supplied, and the moisture permeability of each film A, B, C, that is, the moisture content contained in the gas permeability measurement gas 30a is measured until the moisture concentration is stabilized after the gas supply is started. It waited and measured with the quartz oscillation type moisture meter 43. The results were as shown in Table 1.

すなわち、フィルムAについては、水分濃度(22.5ppm)は約10時間で安定し、水分透過度は1.440g/m・dayであった。また、フィルムBについては、水分濃度(3.63ppm)は約10時間で安定し、水分透過度は0.232g/m・dayであった。さらに、フィルムCについては、水分濃度(0.134ppm)は約10時間で安定し、水分透過度は0.0086g/m・dayであった。 That is, for film A, the water concentration (22.5 ppm) was stable in about 10 hours, and the water permeability was 1.440 g / m 2 · day. As for film B, the water concentration (3.63 ppm) was stable in about 10 hours, and the water permeability was 0.232 g / m 2 · day. Furthermore, as for film C, the water concentration (0.134 ppm) was stable in about 10 hours, and the water permeability was 0.0086 g / m 2 · day.

なお、実施例1においては、各装置本体1,2を外径185mmのSUS304製の円盤で構成し、各ガス流動室10,12を内径96mm,深さ(上下方向高さ)3mmの凹部とした。また、第一装置本体1に形成された環状溝37の内外径は112mm,118mmとし、各Oリング溝16,17の内径は夫々110mm,120mmとした。また、水晶発振式水分計43としては、島津製作所社製MAH−2を使用した。また、装置本体1,2はヒータにより40℃に加熱,維持した。また、各ガス24,30,36の各室10,12,23への供給圧力は、全て0.01MPa・Gとした。   In the first embodiment, each of the apparatus main bodies 1 and 2 is formed of a disk made of SUS304 having an outer diameter of 185 mm, each gas flow chamber 10 and 12 is formed with a recess having an inner diameter of 96 mm and a depth (vertical height) of 3 mm. did. The inner and outer diameters of the annular groove 37 formed in the first apparatus main body 1 were 112 mm and 118 mm, and the inner diameters of the O-ring grooves 16 and 17 were 110 mm and 120 mm, respectively. Further, as the quartz oscillation type moisture meter 43, MAH-2 manufactured by Shimadzu Corporation was used. The apparatus main bodies 1 and 2 were heated and maintained at 40 ° C. by a heater. The supply pressure of each gas 24, 30, 36 to each chamber 10, 12, 23 was set to 0.01 MPa · G.

また、第一ガス透過度測定装置M1による水分透過度の測定精度を確認するために、比較例1として、赤外吸光方式のMOCON社製のガス透過度測定装置(PERMATRAN−W 3/31)を使用して、上記と同一条件でフィルムA,B,Cの水分透過度を測定した。その結果は、表1に示す通りであった。   Moreover, in order to confirm the measurement accuracy of the water permeability by the first gas permeability measuring device M1, as a comparative example 1, an infrared absorption type gas permeability measuring device (PERMATRAN-W 3/31) manufactured by MOCON. Was used to measure the moisture permeability of films A, B, and C under the same conditions as above. The results were as shown in Table 1.

Figure 2005233943
Figure 2005233943

表1から理解されるように、実施例1と比較例1とでは、ガスバリア性の低い(水分透過性の高い)フィルムA,Bについてほぼ同等の水分透過度測定値が得られたが、ガスバリア性の高い(水分透過性の低い)フィルムCについては水分透過度測定に大きな差がある。すなわち、比較例1ではフィルムCについての水分透過度測定値がマイナスとなっているが、これは比較例1で使用したガス透過度測定装置の測定限界を超えていることを示す。一方、実施例ではフィルムCについての水分透過度測定値が適正となっている。これらの点から、第一ガス透過度測定装置M1によれば、水分透過性の高低に拘わらず、フィルム材料の水分透過度を高精度に測定することができ、特に極微量な水分透過度をも適正且つ高精度に測定することができることが確認された。なお、測定結果より比較例装置による水分透過度の測定下限値は0.14g/m・day程度であると考えられる。これに対し、第一ガス透過度測定装置M1による水分透過度の測定限界値は0.0086g/m・day以下であり、更には水晶発振式水分計43の感度を考慮すると測定限界値は0.0010g/m・dayであると推定され、両装置には顕著な差がある。 As understood from Table 1, in Example 1 and Comparative Example 1, almost the same measured values of moisture permeability were obtained for films A and B having low gas barrier properties (high moisture permeability). There is a great difference in the measurement of moisture permeability for the film C having high properties (low moisture permeability). That is, in Comparative Example 1, the measured value of moisture permeability for film C is negative, which indicates that the measurement limit of the gas permeability measuring device used in Comparative Example 1 is exceeded. On the other hand, in the examples, the measured value of moisture permeability for film C is appropriate. From these points, according to the first gas permeability measuring device M1, it is possible to measure the moisture permeability of the film material with high accuracy regardless of the moisture permeability. It was also confirmed that it can be measured appropriately and with high accuracy. From the measurement results, it is considered that the lower limit value of the water permeability measured by the comparative apparatus is about 0.14 g / m 2 · day. On the other hand, the measurement limit value of the moisture permeability by the first gas permeability measuring device M1 is 0.0086 g / m 2 · day or less, and further considering the sensitivity of the crystal oscillation moisture meter 43, the measurement limit value is Estimated to be 0.0010 g / m 2 · day, there is a significant difference between the two devices.

実施例2として、ポリエチレンテレフタレート膜にシリコン酸化膜を蒸着してなるフィルム材料22であって酸素透過性(酸素バリヤ性)の異なる4種類のフィルムA,B,C,Dを使用して、各フィルムA,B,C,Dの酸素透過度を、上記した第二ガス透過度測定装置M2を使用して測定した。すなわち、第一ガス流動室10に10mL/minの暴露ガスたる酸素24を、第二ガス流動室12に5mL/minのキャリアガスたる窒素(酸素を含有しない窒素)30を、またシール室23に20mL/minのシールガスたる窒素(酸素を含有しない窒素)36を、夫々連続供給し、各フィルムA,B,C,Dの酸素透過度つまりガス透過度測定用ガス30cに含まれる酸素量を、ガス供給開始後、酸素濃度が安定するまで待って、パルス放電イオン化型ガスクロマトグラフ45により測定した。その結果は、表2に示す通りであった。   As Example 2, a film material 22 formed by depositing a silicon oxide film on a polyethylene terephthalate film and using four types of films A, B, C, and D having different oxygen permeability (oxygen barrier properties), The oxygen permeability of the films A, B, C, and D was measured using the second gas permeability measuring device M2 described above. That is, oxygen 24 as an exposure gas of 10 mL / min is supplied to the first gas flow chamber 10, nitrogen (nitrogen not containing oxygen) 30 as a carrier gas of 5 mL / min is supplied to the second gas flow chamber 12, and Nitrogen (nitrogen not containing oxygen) 36 as a seal gas of 20 mL / min is continuously supplied, and the oxygen permeability of each film A, B, C, D, that is, the amount of oxygen contained in the gas permeability measuring gas 30c is determined. After the start of gas supply, the oxygen concentration was stabilized and measured by a pulse discharge ionization gas chromatograph 45. The results were as shown in Table 2.

すなわち、フィルムAについては、酸素濃度(24.1ppm)は約6時間で安定し、酸素透過度は24.0cc/m・day・atmであった。また、フィルムBについては、酸素濃度(2.37ppm)は約10時間で安定し、酸素透過度は2.36cc/m・day・atmであった。また、フィルムCについては、酸素濃度(0.37ppm)は約10時間で安定し、酸素透過度は0.37cc/m・day・atmであった。さらに、フィルムDについては、酸素濃度(0.23ppm)は約10時間で安定し、酸素透過度は0.23cc/m・day・atmであった。 That is, for film A, the oxygen concentration (24.1 ppm) was stable in about 6 hours, and the oxygen permeability was 24.0 cc / m 2 · day · atm. For film B, the oxygen concentration (2.37 ppm) was stable in about 10 hours, and the oxygen permeability was 2.36 cc / m 2 · day · atm. As for film C, the oxygen concentration (0.37 ppm) was stable in about 10 hours, and the oxygen permeability was 0.37 cc / m 2 · day · atm. Furthermore, as for film D, the oxygen concentration (0.23 ppm) was stable in about 10 hours, and the oxygen permeability was 0.23 cc / m 2 · day · atm.

なお、実施例2においては、各装置本体1,2を外径185mmのSUS304製の円盤で構成し、各ガス流動室10,12を内径96mm,深さ(上下方向高さ)3mmの凹部とした。また、第一装置本体1に形成された環状溝37の内外径は112mm,118mmとし、各Oリング溝16,17の内径は夫々110mm,120mmとした。また、パルス放電イオン化型ガスクロマトグラフ45として、島津製作所社製GC−14B(検出器:Valco Instrument社製D−4−I−SH14−R)を使用した。また、装置本体1,2はヒータにより40℃に加熱,維持した。また、各ガス24,30,36の各室10,12,23への供給圧力は、全てほぼ大気圧(0.01MPa・G)とした。   In Example 2, each of the apparatus main bodies 1 and 2 is formed of a disk made of SUS304 having an outer diameter of 185 mm, each of the gas flow chambers 10 and 12 is formed with a recess having an inner diameter of 96 mm and a depth (vertical height) of 3 mm. did. The inner and outer diameters of the annular groove 37 formed in the first apparatus main body 1 were 112 mm and 118 mm, and the inner diameters of the O-ring grooves 16 and 17 were 110 mm and 120 mm, respectively. Further, as the pulse discharge ionization gas chromatograph 45, GC-14B manufactured by Shimadzu Corporation (detector: D-4-I-SH14-R manufactured by Valco Instrument) was used. The apparatus main bodies 1 and 2 were heated and maintained at 40 ° C. by a heater. The supply pressure of each gas 24, 30, 36 to each chamber 10, 12, 23 was almost atmospheric pressure (0.01 MPa · G).

また、第二ガス透過度測定装置M2による酸素透過度の測定精度を確認するために、比較例2として、MOCON社製のハーシュ形ガルバニ電池式酸素透過度測定装置(OXTRAN 2/20)を使用して、上記と同一条件でフィルムA,B,C,Dの酸素透過度を測定した。その結果は、表2に示す通りであった。   Moreover, in order to confirm the measurement accuracy of the oxygen permeability by the second gas permeability measuring device M2, as a comparative example 2, a Hersh type galvanic cell type oxygen permeability measuring device (OXTRAN 2/20) manufactured by MOCON is used. Then, the oxygen permeability of the films A, B, C, and D was measured under the same conditions as described above. The results were as shown in Table 2.

Figure 2005233943
Figure 2005233943

ところで、MOCON社製装置を使用した比較例2における評価温度は室温(23℃)で行ったものであるため、第二ガス透過度測定装置M2を使用した実施例2における評価結果(評価温度40℃)と直接比較することはできないが、表2から実施例2では比較例2と同様に酸素透過度の多い膜は酸素透過度測定値も高く、少ない膜は低いデータが採取され、相関性のある結果であった。このように、第二ガス透過度測定装置M2によれば、24.0〜0.23cc/m・day・atmの酸素透過度が測定可能であり、更にガスクロマトグラフ45の感度から推測して、第二ガス透過度測定装置M2による酸素透過度の測定限界値は0.01cc/m・day・atmである。 By the way, since the evaluation temperature in Comparative Example 2 using the apparatus manufactured by MOCON was performed at room temperature (23 ° C.), the evaluation result in Example 2 using the second gas permeability measuring apparatus M2 (evaluation temperature 40 However, from Table 2, in Example 2, as in Comparative Example 2, a film having a high oxygen permeability has a high measured value of oxygen permeability, and a film having a low oxygen permeability has a low data. It was a certain result. As described above, according to the second gas permeability measuring device M2, the oxygen permeability of 24.0 to 0.23 cc / m 2 · day · atm can be measured, and further estimated from the sensitivity of the gas chromatograph 45. The measurement limit value of oxygen permeability by the second gas permeability measuring device M2 is 0.01 cc / m 2 · day · atm.

実施例3として、フィルム材料22であって高分子膜にシリコン酸化膜を蒸着してなるフィルムの水分透過度及び酸素透過度を、上記した第三ガス透過度測定装置M3を使用して測定した。すなわち、第一ガス流動室10に100mL/minの暴露ガス(水分含有空気)24を、第二ガス流動室12に400mL/minのキャリアガス(水分及び酸素を含有しない窒素)30を、またシール室23に100mL/minのシールガス(水分及び酸素を含有しない窒素)36を、夫々連続供給し、フィルムにおける水分及び酸素の透過度つまりガス透過度測定用ガス30dに含まれる水分及び酸素の濃度を、ガス供給開始後、濃度が安定するまで待って、大気圧イオン化質量分析計(APIMS)46により測定した。その結果、水分濃度(33ppb)は約48時間で安定し、水分透過度は0.0027g/m2・dayであった。また、酸素濃度(0.62ppb)は約24時間で安定し、酸素透過度は0.063cc/m2・day・atmであった。   As Example 3, the moisture permeability and oxygen permeability of the film material 22 formed by depositing a silicon oxide film on the polymer film were measured using the third gas permeability measuring device M3 described above. . That is, the first gas flow chamber 10 is sealed with an exposure gas (moisture-containing air) 24 of 100 mL / min, the second gas flow chamber 12 is sealed with a carrier gas (nitrogen containing no moisture and oxygen) 30 of 400 mL / min. 100 mL / min of sealing gas (nitrogen containing no moisture and oxygen) 36 is continuously supplied to the chamber 23, and the moisture and oxygen permeability in the film, that is, the concentration of moisture and oxygen contained in the gas permeability measurement gas 30d. Was measured by an atmospheric pressure ionization mass spectrometer (APIMS) 46 after the gas supply was started until the concentration became stable. As a result, the water concentration (33 ppb) was stable in about 48 hours, and the water permeability was 0.0027 g / m 2 · day. The oxygen concentration (0.62 ppb) was stable in about 24 hours, and the oxygen permeability was 0.063 cc / m 2 · day · atm.

なお、実施例3においては、各装置本体1,2を外径185mmのSUS304製の円盤で構成し、各ガス流動室10,12を内径96mm,深さ(上下方向高さ)3mmの凹部とした。また、第一装置本体1に形成された環状溝37の内外径は112mm,118mmとし、各Oリング溝16,17の内径は夫々100mm,120mmとした。また、大気圧イオン化質量分析計46としては、日立東京エレクトロニクス製UG240−APNSを使用した。また、装置本体1,2はヒータにより40℃に加熱,維持した。また、各ガス24,30,36の各室10,12,23への供給圧力は、全て0.01MPa・Gとした。   In Example 3, the apparatus main bodies 1 and 2 are configured by SUS304 disks having an outer diameter of 185 mm, the gas flow chambers 10 and 12 are recessed with an inner diameter of 96 mm and a depth (vertical height) of 3 mm. did. Further, the inner and outer diameters of the annular groove 37 formed in the first apparatus main body 1 were 112 mm and 118 mm, and the inner diameters of the O-ring grooves 16 and 17 were 100 mm and 120 mm, respectively. As the atmospheric pressure ionization mass spectrometer 46, UG240-APNS manufactured by Hitachi Tokyo Electronics was used. The apparatus main bodies 1 and 2 were heated and maintained at 40 ° C. by a heater. The supply pressure of each gas 24, 30, 36 to each chamber 10, 12, 23 was set to 0.01 MPa · G.

これらの点から、第三ガス透過度測定装置M3は、水分及び酸素の透過性の高低に拘わらず、フィルム材料の水分及び酸素透過度を高精度に測定することができ、特に極微量な水分及び酸素透過度をも適正且つ高精度に測定することができるものであることが確認された。さらに、第三ガス透過度測定装置M3は、水分及び酸素透過度を同時に測定することができるため、成分毎に装置を用意して、それぞれ測定する必要がなく、簡便かつ効率的にフィルム材料の水分及び酸素に対するガスバリア性を判定することができることが確認された。なお、測定時における大気圧イオン化質量分析計46の測定感度(0.1 ppb)よりから推測して、第三ガス透過度測定装置M3による水分透過度の測定下限値は0.000006g/m2・day、酸素透過度の測定限界値は0.007cc/m2・day・atmである。   From these points, the third gas permeability measuring device M3 can measure the moisture and oxygen permeability of the film material with high accuracy regardless of the moisture and oxygen permeability, and in particular, a very small amount of moisture. It was also confirmed that the oxygen permeability can be measured appropriately and with high accuracy. Furthermore, since the third gas permeability measuring device M3 can measure moisture and oxygen permeability at the same time, it is not necessary to prepare devices for each component and measure each of them, easily and efficiently. It was confirmed that the gas barrier properties against moisture and oxygen can be determined. In addition, the lower limit of measurement of moisture permeability by the third gas permeability measuring device M3 is estimated from the measurement sensitivity (0.1 ppb) of the atmospheric pressure ionization mass spectrometer 46 at the time of measurement is 0.000006 g / m 2 · The measurement limit value of the day and oxygen permeability is 0.007 cc / m 2 · day · atm.

第一ガス透過度測定装置を示す縦断正面図である。It is a vertical front view which shows a 1st gas permeability measuring apparatus. 第二ガス透過度測定装置を示す縦断正面図である。It is a vertical front view which shows a 2nd gas permeability measuring apparatus. 第三ガス透過度測定装置を示す縦断正面図である。It is a vertical front view which shows a 3rd gas permeability measuring apparatus. 図1、図2又は図3のIV−IV線に沿う横断底面図である。FIG. 4 is a transverse bottom view taken along line IV-IV in FIG. 1, FIG. 2 or FIG. 3. 図1、図2又は図3のV−V線に沿う横断平面図である。FIG. 5 is a transverse plan view taken along line VV in FIG. 1, FIG. 2 or FIG. 3.

符号の説明Explanation of symbols

M1 第一ガス透過度測定装置
M2 第二ガス透過度測定装置
M3 第三ガス透過度測定装置
1 第一装置本体
2 第二装置本体
3 シール機構
4 暴露ガス供給機構
5 キャリアガス供給機構
6 シールガス供給機構
7 ガス濃度測定機構
9 第一装置本体の下端面(両装置本体の対向端面)
10 第一ガス流動室
11 第二装置本体の上端面(両装置本体の対向端面)
12 第二ガス流動室
13 第一Oリング(第一環状シール部材)
14 第二Oリング(第二環状シール部材)
15 クランプ
22 フィルム材料
23 シール室
24 暴露ガス
25 暴露ガス供給口
26 暴露ガス排出口
27 暴露ガス供給路
28 暴露ガス排出路
29 暴露ガス供給装置
30 キャリアガス
30a ガス透過度測定用ガス
30c ガス透過度測定用ガス
30d ガス透過度測定用ガス
31 キャリアガス流入口
32 キャリアガス流出口
33 キャリアガス流入路
34 キャリアガス流出路
35 キャリアガス供給装置
36 シールガス
38 シールガス供給口
39 シールガス排出口
40 シールガス供給路
41 シールガス排出路
42 シールガス供給装置
43 水晶発振式水分計
44 アルゴン分離装置
45 放電イオン化型ガスクロマトグラフ
46 大気圧イオン化質量分析計
M1 first gas permeability measuring device M2 second gas permeability measuring device M3 third gas permeability measuring device 1 first device body 2 second device body 3 seal mechanism 4 exposure gas supply mechanism 5 carrier gas supply mechanism 6 seal gas Supply mechanism 7 Gas concentration measurement mechanism 9 Lower end surface of the first device body (opposite end surfaces of both device bodies)
10 First gas flow chamber 11 Upper end surface of second device main body (opposing end surfaces of both device main bodies)
12 Second gas flow chamber 13 First O-ring (first annular seal member)
14 Second O-ring (second annular seal member)
DESCRIPTION OF SYMBOLS 15 Clamp 22 Film material 23 Seal chamber 24 Exposure gas 25 Exposure gas supply port 26 Exposure gas discharge port 27 Exposure gas supply channel 28 Exposure gas discharge channel 29 Exposure gas supply device 30 Carrier gas 30a Gas permeability measurement gas 30c Gas permeability Measurement gas 30d Gas permeability measurement gas 31 Carrier gas inlet 32 Carrier gas outlet 33 Carrier gas inflow path 34 Carrier gas outflow path 35 Carrier gas supply device 36 Seal gas 38 Seal gas supply port 39 Seal gas discharge port 40 Seal Gas supply passage 41 Seal gas discharge passage 42 Seal gas supply device 43 Crystal oscillation type moisture meter 44 Argon separation device 45 Discharge ionization gas chromatograph 46 Atmospheric pressure ionization mass spectrometer

Claims (12)

対向端面に対向状に開口するガス流動室を形成した第一及び第二装置本体と、
特定ガス成分の透過度を測定すべきフィルム材料を、その中央部分を両ガス流動室に暴露させた状態で且つその外周部分を前記対向端面間に挟圧シールさせた状態で、両装置本体間に挿脱自在に装填させるシール機構と、
前記対向端面間に形成された環状の密閉空間であって、フィルム材料の外周部分を囲繞するシール室と、
特定ガス成分を含有する暴露ガスを第一装置本体のガス流動室に供給する暴露ガス供給機構と、
特定ガス成分を含有しないキャリアガスを第二装置本体のガス流動室に供給するキャリアガス供給機構と、
シールガスをシール室に供給するシールガス供給機構と、
第二装置本体のガス流動室から流出するキャリアガスにおける特定ガス成分濃度を測定するガス濃度測定機構と、
を具備することを特徴とするフィルム材料のガス透過度測定装置。
A first and a second apparatus main body formed with gas flow chambers that open oppositely on the opposite end faces;
The film material whose permeability of a specific gas component is to be measured is in a state in which the central part is exposed to both gas flow chambers and the outer peripheral part is sandwiched and sealed between the opposed end surfaces. A seal mechanism that can be removably loaded into the
An annular sealed space formed between the opposing end faces, and a seal chamber surrounding an outer peripheral portion of the film material;
An exposure gas supply mechanism for supplying an exposure gas containing a specific gas component to the gas flow chamber of the first apparatus body;
A carrier gas supply mechanism that supplies a carrier gas that does not contain a specific gas component to the gas flow chamber of the second device body;
A seal gas supply mechanism for supplying seal gas to the seal chamber;
A gas concentration measurement mechanism for measuring a specific gas component concentration in the carrier gas flowing out of the gas flow chamber of the second device body;
An apparatus for measuring a gas permeability of a film material, comprising:
特定ガス成分が水分である場合において、ガス濃度測定機構が、第二装置本体のガス流動室から流出するキャリアガスにおける水分濃度を、水晶発振式水分計により測定するものであることを特徴とする、請求項1に記載するフィルム材料のガス透過度測定装置。 When the specific gas component is moisture, the gas concentration measuring mechanism measures the moisture concentration in the carrier gas flowing out from the gas flow chamber of the second apparatus main body with a crystal oscillation moisture meter. A gas permeability measuring device for a film material according to claim 1. 水晶発振式水分計が、水分測定限界値を1ppb〜0.1ppmとするものであることを特徴とする、請求項2に記載するフィルム材料のガス透過度測定装置。 The apparatus for measuring gas permeability of a film material according to claim 2, wherein the quartz oscillation type moisture meter has a moisture measurement limit value of 1 ppb to 0.1 ppm. 暴露ガスが水分を含有する窒素であり、キャリアガス及びシールガスが水分を含有しない窒素であることを特徴とする、請求項2又は請求項3に記載するフィルム材料のガス透過度測定装置。 The apparatus for measuring gas permeability of a film material according to claim 2 or 3, wherein the exposure gas is nitrogen containing moisture, and the carrier gas and the seal gas are nitrogen not containing moisture. 特定ガス成分が酸素である場合において、ガス濃度測定機構が、第二装置本体のガス流動室から流出するキャリアガスにおける酸素濃度を、当該キャリアガスに含まれるアルゴン成分と分離した上で、放電イオン化型ガスクロマトグラフにより測定するものであることを特徴とする、請求項1に記載するフィルム材料のガス透過度測定装置。 When the specific gas component is oxygen, the gas concentration measuring mechanism separates the oxygen concentration in the carrier gas flowing out from the gas flow chamber of the second device body from the argon component contained in the carrier gas, and then discharge ionization The apparatus for measuring a gas permeability of a film material according to claim 1, wherein the apparatus is measured by a type gas chromatograph. 放電イオン化型ガスクロマトグラフが、酸素測定限界値を1ppb〜0.1ppmとするパルス放電イオン化型ガスクロマトグラフであることを特徴とする、請求項5に記載するフィルム材料のガス透過度測定装置。 6. The apparatus for measuring gas permeability of a film material according to claim 5, wherein the discharge ionization gas chromatograph is a pulse discharge ionization gas chromatograph having an oxygen measurement limit value of 1 ppb to 0.1 ppm. 暴露ガスが酸素であり、キャリアガス及びシールガスが酸素を含有しない窒素であることを特徴とする、請求項5又は請求項6に記載するフィルム材料の酸素透過度測定装置。 The apparatus for measuring oxygen permeability of a film material according to claim 5 or 6, wherein the exposure gas is oxygen, and the carrier gas and the seal gas are nitrogen not containing oxygen. 特定ガス成分が水分及び酸素である場合において、ガス濃度測定機構が、第二装置本体のガス流動室から流出するキャリアガスに含まれる水分濃度及び酸素濃度を大気圧イオン化質量分析計により測定するものであることを特徴とする、請求項1に記載するフィルム材料のガス透過度測定装置。 When the specific gas components are moisture and oxygen, the gas concentration measurement mechanism measures the moisture concentration and oxygen concentration contained in the carrier gas flowing out from the gas flow chamber of the second device body with an atmospheric pressure ionization mass spectrometer. The apparatus for measuring a gas permeability of a film material according to claim 1, wherein: 大気圧イオン化質量分析計が、水分濃度及び酸素濃度の測定限界値を1ppt〜0.1ppbとするものであることを特徴とする、請求項8に記載するフィルム材料のガス透過度測定装置。 The apparatus for measuring gas permeability of a film material according to claim 8, wherein the atmospheric pressure ionization mass spectrometer has a measurement limit value of water concentration and oxygen concentration of 1 ppt to 0.1 ppb. 暴露ガスが水分を含有する酸素又は空気であり、キャリアガス及びシールガスが水分及び酸素を含有しない窒素であることを特徴とする、請求項8又は請求項9に記載するフィルム材料のガス透過度測定装置 The gas permeability of the film material according to claim 8 or 9, wherein the exposure gas is oxygen or air containing moisture, and the carrier gas and the sealing gas are nitrogen containing no moisture and oxygen. measuring device シール機構が、両装置本体の対向端面の一方に同心状をなして保持された第一環状シール部材及びこれより大径の第二環状シール部材と、第一環状シール部材をフィルム材料の外周部分に当接させた状態で両環状シール部材を前記対向端面間に挟圧させるべく、両装置本体を締結するクランプとを具備して、両環状シール部材によりシール室を密閉シールするように構成されていることを特徴とする、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9又は請求項10に記載するフィルム材料のガス透過度測定装置。 A first annular seal member concentrically held on one of the opposing end faces of the two apparatus main bodies, a second annular seal member having a larger diameter than the first annular seal member, and an outer peripheral portion of the film material. In order to clamp both annular seal members between the opposed end surfaces in a state of being in contact with each other, a clamp for fastening both apparatus main bodies is provided, and the seal chamber is hermetically sealed by both annular seal members. The present invention is described in claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9 or claim 10. A device for measuring the gas permeability of film materials. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10又は請求項11に記載するガス透過度測定装置を使用して、第二装置本体のガス流動室から流出するキャリアガスに含まれる特定ガス成分の濃度を測定することにより、フィルム材料における当該特定ガス成分の透過度を測定するようにしたことを特徴とするフィルム材料のガス透過度測定方法。 Gas permeability measurement according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, claim 10, or claim 11. Using the device, the permeability of the specific gas component in the film material was measured by measuring the concentration of the specific gas component contained in the carrier gas flowing out from the gas flow chamber of the second device body. A method for measuring the gas permeability of a film material.
JP2005011673A 2004-01-21 2005-01-19 Gas permeability measuring device and gas permeability measuring method for film material Expired - Fee Related JP4596928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011673A JP4596928B2 (en) 2004-01-21 2005-01-19 Gas permeability measuring device and gas permeability measuring method for film material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004013726 2004-01-21
JP2004013727 2004-01-21
JP2005011673A JP4596928B2 (en) 2004-01-21 2005-01-19 Gas permeability measuring device and gas permeability measuring method for film material

Publications (2)

Publication Number Publication Date
JP2005233943A true JP2005233943A (en) 2005-09-02
JP4596928B2 JP4596928B2 (en) 2010-12-15

Family

ID=35017022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011673A Expired - Fee Related JP4596928B2 (en) 2004-01-21 2005-01-19 Gas permeability measuring device and gas permeability measuring method for film material

Country Status (1)

Country Link
JP (1) JP4596928B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178139A (en) * 2005-12-27 2007-07-12 Susumu Yoshida Air permeability tester
WO2009041632A1 (en) * 2007-09-28 2009-04-02 Ulvac, Inc. Device for measuring steam permeability, and method for the device
JP2009193809A (en) * 2008-02-14 2009-08-27 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Solid oxide fuel cell positive electrode material breathability measuring device
JP2010503848A (en) * 2006-09-12 2010-02-04 エクストラソリューション エス.アール.エル. Method for measuring gas permeability of container and sealing member
JP2010210323A (en) * 2009-03-09 2010-09-24 Toppan Printing Co Ltd Gas permeability measuring device
WO2010117012A1 (en) * 2009-04-07 2010-10-14 Shimada Toshihiro Permeability evaluation device and evaluation method
JP2011002303A (en) * 2009-06-17 2011-01-06 Ulvac Japan Ltd Instrument for measuring transmission amount of water vapor
WO2011132391A1 (en) * 2010-04-23 2011-10-27 株式会社アルバック Measurement device for water vapor transmission rate and measurement method for water vapor transmission rate
JP2013003029A (en) * 2011-06-20 2013-01-07 Sumika Chemical Analysis Service Ltd Gas permeating cell, gas permeability measuring device, and gas permeability measuring method
JP2013003028A (en) * 2011-06-20 2013-01-07 Sumika Chemical Analysis Service Ltd Measuring device and measuring method
JP2013134144A (en) * 2011-12-26 2013-07-08 Sumika Chemical Analysis Service Ltd Method and sample for measuring gas permeability
CN104006935A (en) * 2014-06-09 2014-08-27 南通大学 Fuel cell bipolar plate air permeability testing device
KR20160023906A (en) * 2014-05-29 2016-03-03 지세다이 가가쿠자이료효카 기쥬츠겡큐구미아이 Standard film for correction of water vapor permeability measurement device, method for manufacturing same, standard film set for correction, and correction method using same
JP2016105086A (en) * 2014-11-24 2016-06-09 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Method and device for measuring permeability by mass spectrometry
KR20160089895A (en) * 2013-11-26 2016-07-28 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Sample holder and associated permeation device
JP2016153801A (en) * 2016-04-07 2016-08-25 株式会社住化分析センター Measuring method and measuring sample for gas permeability
WO2017135292A1 (en) * 2016-02-03 2017-08-10 国立研究開発法人産業技術総合研究所 Standard gas barrier film
CN107991219A (en) * 2017-12-29 2018-05-04 广州标际包装设备有限公司 A kind of water vapor transmittance analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954918B (en) * 2012-11-05 2014-10-08 华北电力大学 Measurement apparatus capable of concurrently measuring elastic modulus and airtightness of ceramic material, and method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190640A (en) * 1983-04-13 1984-10-29 Daicel Chem Ind Ltd Flat film tester
JPH0250668U (en) * 1988-10-01 1990-04-09
JPH0316555U (en) * 1989-06-30 1991-02-19
JPH0587726A (en) * 1991-03-08 1993-04-06 Osaka Gas Co Ltd Device and method for evaluating permeability on paved surface
JPH0634616A (en) * 1992-07-13 1994-02-10 Japan Pionics Co Ltd Analysis of a trace of impurities
JPH0646355U (en) * 1992-11-30 1994-06-24 日本酸素株式会社 Crystal oscillation type trace moisture meter
JPH06241978A (en) * 1993-02-17 1994-09-02 Mitsui Toatsu Chem Inc Gas transmittance measuring device for film
JPH1078385A (en) * 1996-09-03 1998-03-24 Kumagai Gumi Co Ltd Measuring method of permeable preformance of steam and device to be used for measuring method
JPH11295269A (en) * 1998-04-09 1999-10-29 Nippon Sanso Kk Device for analyzing trace amount of impurity in gas
JP2004157069A (en) * 2002-11-08 2004-06-03 Toyo Seiki Seisakusho:Kk Gas permeability measuring device
JP2004157035A (en) * 2002-11-07 2004-06-03 Mitsubishi Heavy Ind Ltd Gas permeation speed measuring device of barrier film-coated plastic container, gas permeation speed measuring method of barrier film-coated plastic container, gas permeation speed measuring device of barrier film-coated plastic sheet, and gas pearmeation speed measuring method of barrier film-coated plastic sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190640A (en) * 1983-04-13 1984-10-29 Daicel Chem Ind Ltd Flat film tester
JPH0250668U (en) * 1988-10-01 1990-04-09
JPH0316555U (en) * 1989-06-30 1991-02-19
JPH0587726A (en) * 1991-03-08 1993-04-06 Osaka Gas Co Ltd Device and method for evaluating permeability on paved surface
JPH0634616A (en) * 1992-07-13 1994-02-10 Japan Pionics Co Ltd Analysis of a trace of impurities
JPH0646355U (en) * 1992-11-30 1994-06-24 日本酸素株式会社 Crystal oscillation type trace moisture meter
JPH06241978A (en) * 1993-02-17 1994-09-02 Mitsui Toatsu Chem Inc Gas transmittance measuring device for film
JPH1078385A (en) * 1996-09-03 1998-03-24 Kumagai Gumi Co Ltd Measuring method of permeable preformance of steam and device to be used for measuring method
JPH11295269A (en) * 1998-04-09 1999-10-29 Nippon Sanso Kk Device for analyzing trace amount of impurity in gas
JP2004157035A (en) * 2002-11-07 2004-06-03 Mitsubishi Heavy Ind Ltd Gas permeation speed measuring device of barrier film-coated plastic container, gas permeation speed measuring method of barrier film-coated plastic container, gas permeation speed measuring device of barrier film-coated plastic sheet, and gas pearmeation speed measuring method of barrier film-coated plastic sheet
JP2004157069A (en) * 2002-11-08 2004-06-03 Toyo Seiki Seisakusho:Kk Gas permeability measuring device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178139A (en) * 2005-12-27 2007-07-12 Susumu Yoshida Air permeability tester
JP2010503848A (en) * 2006-09-12 2010-02-04 エクストラソリューション エス.アール.エル. Method for measuring gas permeability of container and sealing member
KR101158992B1 (en) 2007-09-28 2012-06-21 가부시키가이샤 알박 Device for measuring steam permeability, and method for the device
WO2009041632A1 (en) * 2007-09-28 2009-04-02 Ulvac, Inc. Device for measuring steam permeability, and method for the device
JPWO2009041632A1 (en) * 2007-09-28 2011-01-27 株式会社アルバック Apparatus and method for measuring water vapor permeability
US8448497B2 (en) 2007-09-28 2013-05-28 Ulvac, Inc. Apparatus and method for measurement of water vapor permeability
JP2009193809A (en) * 2008-02-14 2009-08-27 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Solid oxide fuel cell positive electrode material breathability measuring device
JP2010210323A (en) * 2009-03-09 2010-09-24 Toppan Printing Co Ltd Gas permeability measuring device
WO2010117012A1 (en) * 2009-04-07 2010-10-14 Shimada Toshihiro Permeability evaluation device and evaluation method
JP4759096B2 (en) * 2009-04-07 2011-08-31 敏宏 島田 Permeability evaluation apparatus and evaluation method
JP2011002303A (en) * 2009-06-17 2011-01-06 Ulvac Japan Ltd Instrument for measuring transmission amount of water vapor
WO2011132391A1 (en) * 2010-04-23 2011-10-27 株式会社アルバック Measurement device for water vapor transmission rate and measurement method for water vapor transmission rate
JPWO2011132391A1 (en) * 2010-04-23 2013-07-18 株式会社アルバック Moisture permeability measuring device and moisture permeability measuring method
JP2013003029A (en) * 2011-06-20 2013-01-07 Sumika Chemical Analysis Service Ltd Gas permeating cell, gas permeability measuring device, and gas permeability measuring method
JP2013003028A (en) * 2011-06-20 2013-01-07 Sumika Chemical Analysis Service Ltd Measuring device and measuring method
JP2013134144A (en) * 2011-12-26 2013-07-08 Sumika Chemical Analysis Service Ltd Method and sample for measuring gas permeability
JP2017502255A (en) * 2013-11-26 2017-01-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Sample holder and associated infiltration device
KR20160089895A (en) * 2013-11-26 2016-07-28 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Sample holder and associated permeation device
KR102214258B1 (en) 2013-11-26 2021-02-08 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Sample holder and associated permeation device
KR20160023906A (en) * 2014-05-29 2016-03-03 지세다이 가가쿠자이료효카 기쥬츠겡큐구미아이 Standard film for correction of water vapor permeability measurement device, method for manufacturing same, standard film set for correction, and correction method using same
KR101667907B1 (en) * 2014-05-29 2016-10-28 지세다이 가가쿠자이료효카 기쥬츠겡큐구미아이 Standard film for correction of water vapor permeability measurement device, method for manufacturing same, standard film set for correction, and correction method using same
CN104006935A (en) * 2014-06-09 2014-08-27 南通大学 Fuel cell bipolar plate air permeability testing device
JP2016105086A (en) * 2014-11-24 2016-06-09 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Method and device for measuring permeability by mass spectrometry
WO2017135292A1 (en) * 2016-02-03 2017-08-10 国立研究開発法人産業技術総合研究所 Standard gas barrier film
KR20180108680A (en) * 2016-02-03 2018-10-04 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Standard gas barrier film
JPWO2017135292A1 (en) * 2016-02-03 2018-12-06 国立研究開発法人産業技術総合研究所 Standard gas barrier film
KR102219619B1 (en) 2016-02-03 2021-02-23 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Standard gas barrier film
JP2016153801A (en) * 2016-04-07 2016-08-25 株式会社住化分析センター Measuring method and measuring sample for gas permeability
CN107991219A (en) * 2017-12-29 2018-05-04 广州标际包装设备有限公司 A kind of water vapor transmittance analyzer

Also Published As

Publication number Publication date
JP4596928B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4596928B2 (en) Gas permeability measuring device and gas permeability measuring method for film material
EP0528386B1 (en) Calibration system for ultra high purity gas analysis
US6598463B2 (en) Method for determining gas accumulation rates
JP3699474B2 (en) Gas barrier property measurement method for plastic moldings
US20040123646A1 (en) Gas permeability measurement method and gas permeability measurement device
TNSN07269A1 (en) Method for oxygenating gases, systems suited therefor and use thereof
GB2437136A (en) Measuring rate of permeation
JP2010190751A (en) Gas permeability measuring device and gas permeability measuring method for film material
US20220074890A1 (en) System having a pre-separation unit
US20160003726A1 (en) Apparatus and method for evaluating gas barrier properties
US20070261559A1 (en) Analysis of a reactive gas such as silane for particle generating impurities
JP7041665B2 (en) Gas barrier property evaluation device and gas barrier property evaluation method
JP2022168131A (en) Enhanced stability filter integrity test
JP2004219407A (en) Method of measuring gas permeability and apparatus for measuring gas permeability
JP6227537B2 (en) System and method for performing leak inspection
US3533272A (en) Preparation of gas mixtures
JP6209519B2 (en) Membrane exchange unit and system having membrane exchange unit
JP2017509877A (en) Rugged analyte analyte permeation tester using integrated block manifold
JPS59142438A (en) Structure of permeable membrane supporting vessel
JPH0251043A (en) Gas permeation test for diaphragm
Jena et al. Characterization of water vapor permeable membranes
JP2004264282A (en) Method for concentrating gaseous substance, and apparatus for concentrating and analyzing carrier gas
JP5275473B2 (en) Water vapor permeation measuring device and water vapor permeation measuring method
US8875559B2 (en) System and method for measuring the concentration of impurities mixed with hydrogen gas
CN110940739A (en) Test device for determining efficiency of adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees