JPS63172942A - Measuring instrument for gas permeability - Google Patents

Measuring instrument for gas permeability

Info

Publication number
JPS63172942A
JPS63172942A JP549887A JP549887A JPS63172942A JP S63172942 A JPS63172942 A JP S63172942A JP 549887 A JP549887 A JP 549887A JP 549887 A JP549887 A JP 549887A JP S63172942 A JPS63172942 A JP S63172942A
Authority
JP
Japan
Prior art keywords
gas
chamber
concentration
port
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP549887A
Other languages
Japanese (ja)
Other versions
JPH0463335B2 (en
Inventor
Tomio Kano
加納 冨美夫
Muneki Yamada
山田 宗機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP549887A priority Critical patent/JPS63172942A/en
Publication of JPS63172942A publication Critical patent/JPS63172942A/en
Publication of JPH0463335B2 publication Critical patent/JPH0463335B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To measure the gas permeability of a film to be inspectedm in the presence of steam of <=100 deg.C by measuring the concentration of which contains steam in the 1st the 2nd chamber of a permeable film cell heated at specific temperature. CONSTITUTION:The permeable film cell 1 which is partitioned into a high- concentration chamber 3 and low-concentration chamber 3 by the film 2 to be inspected is heated by a heater provided along the external surface at the specific temperature higher than, 100 deg.C. Then gaseous helium is supplied from a gaseous helium cylinder 5 into said chambers 3 and 4. Then mixed gas of steam, oxygen, and nitrogen is supplied into the high-concentration chamber 3 inside is substituted with the gaseous helium and after a stable is entered, the concentration of the mixed, gas in this chamber 3 is analyzed quantitatively by a gas chromatograph 40. Then the concentration of mixed gas which permeates the film 2 to be inspected and enters the low-concentration chamber 3 is analyzed quantitatively by the chromatograph 40. the gas permeability of the film 2 to be inspected is measured from the analytic results.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レトルト加熱殺菌処理条件下における熱可塑
性プラスチックフィルムもしくはシート、7はプラスチ
、Jり会浴鼾蕊の徐仕隨の一酸表竺のガス透過率を測定
するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermoplastic film or sheet under retort heat sterilization treatment conditions, 7 is plasti, The present invention relates to a device for measuring gas permeability.

(従来の技術) 食品等の長期保存のための容器の材料として最近、ガス
(特に酸素、水蒸気の)バリヤー性の優れた熱可塑性プ
ラスチックフィルム又はシート(例、tijポリプロピ
レンとエチレンビニルアルコール共重体の積層体等の積
層体を含む)等が広く用いられている。このような容器
は食品を充填密封後レトルト加熱殺菌処理されることが
多いが、上記加熱処理洗よシ密封容器内の酸素濃度が増
加して内容食品の劣化が早まシ易いという傾向が一般に
見られる。
(Prior Art) Thermoplastic films or sheets (e.g., made of Tij polypropylene and ethylene vinyl alcohol copolymer) with excellent gas (particularly oxygen and water vapor) barrier properties have recently been used as materials for containers for long-term storage of foods, etc. (including laminates such as laminates) etc. are widely used. Such containers are often subjected to retort heat sterilization after being filled with food and sealed, but generally speaking, after the heat treatment and washing, the oxygen concentration inside the sealed container increases and the food inside tends to deteriorate prematurely. Can be seen.

これは容器材料である熱可塑性プラスチック等のガスバ
リヤ−性が、水蒸気の存在下において低下するためであ
るといわれるが、現在のところ水蒸気の存在下において
100℃以上の高温における熱可塑性プラスチック等の
ガス透過率測定装置がなく、従ってこのような条件の下
におけるガス透過率の測定データがないので、このよう
な条件下ニオケるガス透過の定量的評価ができないとい
う問題があった。
This is said to be because the gas barrier properties of thermoplastic plastics, etc., which are container materials, deteriorate in the presence of water vapor. Since there is no transmittance measuring device and therefore no measurement data of gas permeability under such conditions, there has been a problem in that quantitative evaluation of odor gas permeation under such conditions is not possible.

(発明が解決しようとする問題点) 本発明は、100℃以上の温度において水蒸気の存在下
に、熱可塑性プラスチ、りフィルムもしくはシート、又
はプラスチック含浸紙等の検体膜のガス透過率を満足に
測定することが可能なガス透過率測定装置を提供するこ
とを目的とする。
(Problems to be Solved by the Invention) The present invention satisfies the gas permeability of a sample membrane such as thermoplastic plastic, plastic film or sheet, or plastic impregnated paper in the presence of water vapor at a temperature of 100°C or higher. An object of the present invention is to provide a gas permeability measuring device that can measure gas permeability.

(問題点を解決するための手段) 本発明のガス透過率測定装置は、検体膜で隔離される第
1のチャンバーと第2のチャンバーを備える透過膜セル
、該透過膜セルを100℃以上の所定温度に加熱する装
置、第1のチャンバーに水蒸気を含む該所定温度のガス
を供給する装置、第1のチャンバー内の該ガスの濃度を
測定する装置、第1のチャンバーよシ該検体膜を透過し
て第2のチャンバーに入った該ガスの濃度を測定する装
置、および第1のチャンバーおよび第2のチャンバー内
の圧力を平衡に調節保持する装置を備えることを特徴と
する。
(Means for Solving the Problems) The gas permeability measuring device of the present invention includes a permeable membrane cell comprising a first chamber and a second chamber separated by a sample membrane, and a permeable membrane cell that is heated to a temperature of 100° C. or higher. A device for heating the sample film to a predetermined temperature, a device for supplying a gas containing water vapor at the predetermined temperature to a first chamber, a device for measuring the concentration of the gas in the first chamber, and a device for heating the sample film to a predetermined temperature in the first chamber. It is characterized by comprising a device for measuring the concentration of the gas that has permeated and entered the second chamber, and a device for adjusting and maintaining the pressure in the first chamber and the second chamber in equilibrium.

ここに検体膜とは、ガス透過率を測定すべき熱可塑性プ
ラスチックフィルム又はシート、もしくはプラスチック
含浸紙等の膜状体を指称する。
The sample membrane herein refers to a membrane-like body such as a thermoplastic film or sheet or plastic-impregnated paper whose gas permeability is to be measured.

(作用) 透過膜セルを100℃以上の所定温度に加熱し、透過膜
セルの第1のチャンバーに水蒸気を含む該所定温度のガ
スを供給し、第1のチャンバー内のガス濃度および検体
膜を透過して第2のチャンバー内に入ったガスの濃度を
測定する装置を備えているので、100℃以上の温度に
おける水蒸気の存在下に、検体膜のガス透過率を測定す
ることができる。
(Function) The permeable membrane cell is heated to a predetermined temperature of 100°C or higher, and a gas containing water vapor at the predetermined temperature is supplied to the first chamber of the permeable membrane cell, and the gas concentration in the first chamber and the sample membrane are adjusted. Since it is equipped with a device for measuring the concentration of gas that has permeated into the second chamber, it is possible to measure the gas permeability of the sample membrane in the presence of water vapor at a temperature of 100° C. or higher.

100℃以上の高温では熱可塑性プラスチック等の検体
膜は通常軟化するが、第1のチャンバーと第2のチャン
バー内の圧力は平衡に保たれるので、水蒸気圧によって
検体膜が膨んで薄くなったシ(この場合は正確な透過率
が得られない)、もしくは破裂したシするおそれがない
At high temperatures of 100°C or higher, sample membranes made of thermoplastic plastic or the like usually soften, but since the pressures in the first and second chambers were kept in equilibrium, the sample membrane swelled and became thinner due to water vapor pressure. There is no risk of leakage (in this case, accurate transmittance cannot be obtained) or rupture.

(実施例) 図面において1は透過膜セルであシ、透過膜セル1は検
体膜である熱可塑性グラスチック膜2によって、高濃度
チャンバー3と低濃度チャンバー4に隔離されている。
(Example) In the drawings, reference numeral 1 denotes a permeable membrane cell, and the permeable membrane cell 1 is separated into a high concentration chamber 3 and a low concentration chamber 4 by a thermoplastic glass membrane 2, which is a sample membrane.

透過膜セル1は例えば不銹鋼よシなり、プラスチック膜
2の周縁部2aを挾んで、各チャンバー3,4の7ラン
グ部(図示されない)が、バッキングを介してボルト(
図示されない)締めされることにより密封される。
The permeable membrane cell 1 is made of stainless steel, for example, and the peripheral edge 2a of the plastic membrane 2 is sandwiched between seven rungs (not shown) of each chamber 3 and 4, which are connected to bolts (not shown) through a backing.
(not shown) is sealed by tightening.

透過膜セル1はその外面に沿って設けられたヒータ(図
示されない)によ9100℃以上、好ましくは150℃
以下の所定温度(例えば120℃)に保持される。プラ
スチック膜2の厚さは通常0.05〜3.0 mmであ
る。
The permeable membrane cell 1 is heated to 9100°C or higher, preferably 150°C by a heater (not shown) provided along its outer surface.
The temperature is maintained at the following predetermined temperature (for example, 120° C.). The thickness of the plastic film 2 is usually 0.05 to 3.0 mm.

5は透過膜セル1をA’−ジするためのヘリウムガスの
がンベであシ、6は調圧器、7は圧力計、8.9.10
は流量計、11は流量調節弁、12は微少ガス流量調節
のだめの熱式質量流量制御弁、13は熱式質量流量計、
14はストップバルブ、15は抵抗管、16および17
は圧力計である。
5 is a helium gas tank for A'-discharging the permeable membrane cell 1, 6 is a pressure regulator, 7 is a pressure gauge, 8.9.10
1 is a flow meter, 11 is a flow rate control valve, 12 is a thermal mass flow control valve for regulating minute gas flow rate, 13 is a thermal mass flow meter,
14 is a stop valve, 15 is a resistance tube, 16 and 17
is a pressure gauge.

18は水蒸気源となるべき水19のタンク、20は水1
9に溶存するガスを除去する脱ガス装置、21は脱ガス
のための真空ポンプ、22は脱ガスされた水19を蒸発
器23に送るだめの定流量ポンプである。24はプラス
チック膜2を透過する酸素ガスを供給するための酸素ボ
ンベであシ、25は調圧器、26は圧力計、27は熱的
質量流量制御弁である。制御弁27によシ流量を微少調
整された酸素ガスは、窒素ボンベ28、調圧器スと合流
した後、抵抗管33において窒素ガスと十分に混和して
蒸発器23に流入する。31および34は圧力計である
18 is a tank of water 19 which is to be a water vapor source, 20 is water 1
9 is a degassing device for removing dissolved gas, 21 is a vacuum pump for degassing, and 22 is a constant flow pump for sending degassed water 19 to an evaporator 23. 24 is an oxygen cylinder for supplying oxygen gas that passes through the plastic membrane 2, 25 is a pressure regulator, 26 is a pressure gauge, and 27 is a thermal mass flow rate control valve. The oxygen gas whose flow rate is finely adjusted by the control valve 27 joins the nitrogen cylinder 28 and the pressure regulator, and then flows into the evaporator 23 after being sufficiently mixed with nitrogen gas in the resistance tube 33 . 31 and 34 are pressure gauges.

35は4方コツクであシ、ポート35aは蒸発器23に
接続し、ボー)35bは透過膜セル1の高濃度チャンバ
ー3のガス入口部3aに/4’イブ55を介して接続し
、ポート35cはヘリウムガス用流量調節弁11に接続
する。なおヘリウムガス用熱的質量流量制御弁13およ
び抵抗管15は透過膜セル1の低濃度チャンバー4のガ
ス入口部4aに接続する。
The port 35a is connected to the evaporator 23, and the port 35b is connected to the gas inlet part 3a of the high concentration chamber 3 of the permeable membrane cell 1 via the /4' eve 55. 35c is connected to the flow control valve 11 for helium gas. Note that the helium gas thermal mass flow rate control valve 13 and the resistance tube 15 are connected to the gas inlet portion 4a of the low concentration chamber 4 of the permeable membrane cell 1.

36は入口側ガス圧力を一定圧に制御する機能を有する
背圧弁(入口側圧力が設定圧より高くなるに従って流量
が増加する特性を有する;例えば■小島製作所、 Mo
del 6800)であり、その入口側は透過膜セル1
の高濃度チャンバー3の出口部3bにパイプ57を介し
て接続し、また4方コツク35のポー)35dに接続す
る。背圧弁36の出口側は6方コツク37のポート37
aに接続する。56は圧力センサである。6方コツク3
7のポート37bと37eはサンプル管38を介して互
に接続する。39はヘリウムガスベであって、ポート3
7dに接続する。ポート37cはガスクロマトグラフ4
0のガス入口部40aに接続し、ポー)37fは大気中
に開放されている。
36 is a back pressure valve that has the function of controlling the inlet side gas pressure to a constant pressure (has a characteristic that the flow rate increases as the inlet side pressure becomes higher than the set pressure; for example, Kojima Seisakusho, Mo
del 6800), and its inlet side is permeable membrane cell 1
It is connected to the outlet part 3b of the high concentration chamber 3 via a pipe 57, and also connected to the port 35d of the four-way pot 35. The outlet side of the back pressure valve 36 is the port 37 of the six-way cock 37.
Connect to a. 56 is a pressure sensor. 6 way kotuku 3
7 ports 37b and 37e are connected to each other via a sample tube 38. 39 is a helium gas tank, and port 3
Connect to 7d. Port 37c is gas chromatograph 4
The port 37f is connected to the gas inlet portion 40a of the port 0, and the port 37f is open to the atmosphere.

41も6方コツクであって、ポート41fは透過膜セル
1の低濃度チャンバー4の出口部4bに接続する。ポー
ト41bと41eはサンプル管42を介して互に接続し
、ポート41dはヘリウムガスポンベ43に接続する。
41 is also a six-way port, and the port 41f is connected to the outlet portion 4b of the low concentration chamber 4 of the permeable membrane cell 1. Ports 41b and 41e are connected to each other via sample tube 42, and port 41d is connected to helium gas pump 43.

ポート41cはガスクロマトグラフ40のガス入口部4
0bに接続する。さらにポート41mはシリカゲルが充
填された水分除去トラップ44を介して6方コツク45
のポート45fに接続する。
The port 41c is the gas inlet section 4 of the gas chromatograph 40.
Connect to 0b. Furthermore, the port 41m is connected to a six-way socket 45 via a water removal trap 44 filled with silica gel.
Connect to port 45f of

6方コツク45のポー)45aは、背圧弁36と同一特
性を有する背圧弁46を介して大気中に開放される。な
お47は圧力センサである。ポート45bと45eは液
体窒素49で冷却され、かつ図示されないヒータコイル
を巻かれた酸素凝縮管48を介して互に接続される。ポ
ート45cおよび45dは夫れ夫れ、4方コツクのポー
ト5oaおよび50dに接続する。ポート50bはヘリ
ウムガスペ51に接続し、ポー)50cはガスクロマト
グラフ40のガス入口部40bに接続する。
The port 45a of the six-way socket 45 is opened to the atmosphere via a back pressure valve 46 having the same characteristics as the back pressure valve 36. Note that 47 is a pressure sensor. Ports 45b and 45e are cooled with liquid nitrogen 49 and connected to each other via an oxygen condensing pipe 48 wrapped around a heater coil (not shown). Ports 45c and 45d are respectively connected to four-way ports 5oa and 50d. The port 50b is connected to the helium gas pipe 51, and the port 50c is connected to the gas inlet portion 40b of the gas chromatograph 40.

52は蒸発器23で発生する水蒸気の温度とほぼ等しい
温度に保持されるオーブンであって、内部に各コック3
5,37,41.45および5゜およびそれら周辺の配
管が収納されていて、各コックおよび配管内の水分凝結
を防止するように構成されている。なおパイプ55およ
び57のオーブン52外の部分も水分凝結防止のため保
温される。各コック35,37,41,45および50
において、図面における間隔部が黒色のポート間は「閉
」の状態にあシ、間隔部が白色のポート間は「開」の状
態にあることを示す。例えば4方コツク35において、
図示の場合ポート35aと35b間は開いておシ、一方
ポート35bおよび35a間は閉じている。
Reference numeral 52 denotes an oven that is maintained at approximately the same temperature as the water vapor generated in the evaporator 23, and each cock 3 is installed inside the oven.
5, 37, 41, 45, and 5 degrees, and the piping around them are housed, and are configured to prevent moisture condensation within each cock and the piping. Note that the portions of the pipes 55 and 57 outside the oven 52 are also kept warm to prevent moisture condensation. Each cock 35, 37, 41, 45 and 50
In the drawings, the ports with black spaces are in the "closed" state, and the ports with white spaces are in the "open" state. For example, in the 4-way Kotoku 35,
In the illustrated case, ports 35a and 35b are open, while ports 35b and 35a are closed.

以上の装置によシブラスチック膜2のガス透過率の測定
は次のようKして行なわれる。以下蒸発器23で発生す
る水蒸気の温度が120℃(飽和水蒸気圧1.96気圧
)の場合について説明する。
The measurement of the gas permeability of the sieve plastic membrane 2 using the above-mentioned apparatus is carried out as follows. The case where the temperature of the steam generated in the evaporator 23 is 120° C. (saturated steam pressure 1.96 atm) will be described below.

先づ準備操作として背圧弁36および46の設定圧を1
.96気圧に調節し、オープン52および透過膜セル1
を120℃に加熱保持する。次いでコック35を図の状
態よシ切替えて、ポー)35b。
First, as a preparatory operation, the set pressure of the back pressure valves 36 and 46 is set to 1.
.. Adjust to 96 atmospheres, open 52 and permeable membrane cell 1
is heated and maintained at 120°C. Next, switch the cock 35 to the state shown in the figure, and turn the cock 35b.

35a間を開き、まだストップバルブ14を開く。35a and still open the stop valve 14.

するトヘリウムガスボンペ5より流量調節弁11.4方
コツク35のポート35 c * 35 bを通ってヘ
リウムガスが透過膜セル1の高濃度チャンバー3に流入
した後、背圧弁36.6方コツク37のポート37a、
37b、サンプル管38、ポート37eおよび37fを
通って大気中に流出し、高濃度チャンバー3内の空気は
1.96気圧のヘリウムガスによって置換される。
After the helium gas flows into the high concentration chamber 3 of the permeable membrane cell 1 from the helium gas cylinder 5 through the ports 35c * 35b of the flow control valve 11. 37 port 37a,
37b, sample tube 38, and ports 37e and 37f to the atmosphere, the air in the high concentration chamber 3 is replaced by helium gas at 1.96 atmospheres.

同時にヘリウムガスがストップバルブ14、抵抗管15
を通って低圧チャンバー4に流入した後、6方コツク4
1のポー)41f 、41e、サンプル管42、ポート
41b、41a、および水分除去トラップ44、さらに
6方コツク45のポート45f、45e、酸素濃縮管4
8、ポー1−45b 。
At the same time, helium gas flows through the stop valve 14 and the resistance tube 15.
After flowing into the low pressure chamber 4 through
1 port) 41f, 41e, sample tube 42, ports 41b, 41a, and moisture removal trap 44, and ports 45f, 45e of 6-way socket 45, oxygen concentrator tube 4
8, Poe 1-45b.

45a、ならびに背圧弁46を通って大気中に流出し、
低濃度チャンバー4内の空気は1.96気圧のヘリウム
ガスによって置換される。その間蒸発器23で発生する
一定流量の飽和水蒸気は一定濃度の酸素ガスおよび窒素
ガスを含んで、4方コツク35のポー)35a、35d
、背圧弁36.6方コツク37のポート37a 、37
b 、37e 。
45a and into the atmosphere through the back pressure valve 46;
The air in the low concentration chamber 4 is replaced with helium gas at 1.96 atmospheres. During that time, a constant flow rate of saturated steam generated in the evaporator 23 contains a constant concentration of oxygen gas and nitrogen gas,
, back pressure valve 36. Port 37a of 6-way cock 37, 37
b, 37e.

37fを通って大気中に放出される。37f and is released into the atmosphere.

上記置換終了後、4方コツク35を図の状態に切替えて
戻し、ストップバルブ14を閉じる。直ちに水蒸気、酸
素、窒素の混合ガス(以下混合ガスとよぶ)は4方コ、
り35のポート35a35bを通って透過セル1の高濃
度チャンバー3に流入し、背圧弁36、ポー)37a、
37b。
After the above replacement is completed, the four-way cock 35 is switched back to the state shown in the figure and the stop valve 14 is closed. Immediately, the mixed gas of water vapor, oxygen, and nitrogen (hereinafter referred to as mixed gas) is
It flows into the high concentration chamber 3 of the permeation cell 1 through the port 35a35b of the back pressure valve 36, port 37a,
37b.

サンプル管38、ポート37e、37fを通って大気中
に流出し、高濃度チャンバー3内を1.96気圧、一定
流量の混合ガスが流れる。
The mixed gas flows out into the atmosphere through the sample tube 38 and ports 37e and 37f, and flows inside the high concentration chamber 3 at a constant flow rate of 1.96 atmospheres.

また低濃度チャンバー4には、熱式質量流量制御弁12
および熱式質量流量計13を通って流量を微少調節され
たヘリウムガス(流量は例えば0、5〜l闘t/分)が
流入し、6方コツク41のポー)41f、41e、サン
プル管42、ポート41b、41a、水分除去トラップ
44.6方コツク45のポート45f、45e、酸素凝
縮管48、ポー)45b、45aおよび背圧弁46を通
って大気中に排出され、低濃度チャンバー4内を1.9
6気圧のヘリウムガスが一定の微少流量で流れる。経時
につれて高濃度チャンバー3よりプラスチック膜2を透
過して水蒸気が低濃度チャンバー4に移行するが、この
水蒸気は水分除去トラップ44で除去されるので、その
下流にある酸素凝縮管48には入らない。
The low concentration chamber 4 also includes a thermal mass flow control valve 12.
Helium gas whose flow rate is finely adjusted (flow rate is, for example, 0.5 to 1 t/min) flows through the thermal mass flowmeter 13, and flows into the six-way tank 41 (ports) 41f, 41e, and the sample tube 42. , ports 41b, 41a, water removal trap 44, ports 45f, 45e of six-way tank 45, oxygen condensing pipe 48, port) 45b, 45a, and back pressure valve 46 to be exhausted to the atmosphere. 1.9
Helium gas at 6 atmospheres flows at a constant minute flow rate. Over time, water vapor passes through the plastic membrane 2 from the high concentration chamber 3 and moves to the low concentration chamber 4, but since this water vapor is removed by the moisture removal trap 44, it does not enter the oxygen condensing pipe 48 located downstream. .

高濃度チャンバー3内のガス組成が安定状態に達した後
(通常は前記コック切替えを行なってから約10〜60
分後)、6方コツク37を切替える。するとそれまで6
方コツク37°のポート37d。
After the gas composition in the high concentration chamber 3 reaches a stable state (usually about 10 to 60 minutes after the above-mentioned cock switching)
minutes), switch the 6-way kettle 37. Then 6 until then
Port 37d with angle 37°.

37cを通過してガスクロマトグラフ4oに流入してい
たデンペ39のヘリウムガスは、ポート37d、37e
、サンプル管38、ポート37b。
The helium gas from Dempe 39 that had passed through port 37c and flowed into the gas chromatograph 4o is transferred to ports 37d and 37e.
, sample tube 38, port 37b.

37cを通って、それらの内部にある混合ガスと共にガ
スクロマトグラフ40に入って、サンプル管38のルー
プ、すなわちサンプル管38およびその前後のポー)3
7e 、37b間のノ母イブ58゜59内の水蒸気、酸
素ガス、窒素ガスが定量分析される。分析終了後、コッ
ク37を図の状態に切替えて戻す。この分析値(mc、
c、)は高濃度チャンバー3内のガス組成に対応する。
37c, enter the gas chromatograph 40 with the mixed gas inside them and pass through the loop of the sample tube 38, i.e. the sample tube 38 and the ports before and after it.
Water vapor, oxygen gas, and nitrogen gas within the main tubes 58 and 59 between 7e and 37b are quantitatively analyzed. After the analysis is completed, the cock 37 is switched back to the state shown in the figure. This analysis value (mc,
c,) corresponds to the gas composition within the high concentration chamber 3.

次に6方コツク41を切替えると、?ンペ43のヘリウ
ムガスに導かられて、サンプル管42のループ、すなわ
ちサングル管42およびその前後の!−)41e、41
b間のバイア’60.61内のガスはガスクロマトグラ
フ40に入って定量分析される。この分析値はプラスチ
ック膜2を透過して低濃度チャンバー4に入った水蒸気
、酸素ガス、窒素ガスの分析値(nc、c、)に対応す
る。上記分析終了後コック41を図の状態洗切替えて戻
す。
Next, if you switch the 6-way Kotoku 41, what happens? Helium gas from the pump 43 guides the loop of the sample tube 42, that is, the sample tube 42 and its front and back! -) 41e, 41
The gas in the via '60.61 between b enters the gas chromatograph 40 and is quantitatively analyzed. These analytical values correspond to the analytical values (nc, c,) of water vapor, oxygen gas, and nitrogen gas that have passed through the plastic membrane 2 and entered the low concentration chamber 4. After the above analysis is completed, the cock 41 is changed back to the state shown in the figure.

なおこの時点でサンプル管42内の酸素ガスがガスクロ
マトグラフで検出できない程度に微量の場合は、6方コ
ツク45および4方コツク50を図の状態から切替えて
、かつ酸素凝縮管49の液体窒素による冷却を中止し、
図示されないヒータコイルにより酸素凝縮管49を加熱
して、デンベ51のヘリウムガスを4方コツクのポー)
50b。
If the amount of oxygen gas in the sample tube 42 is so small that it cannot be detected by a gas chromatograph at this point, switch the six-way condenser 45 and four-way condenser 50 from the state shown in the figure, and replace the oxygen condensing tube 49 with liquid nitrogen. stop cooling,
The oxygen condensing tube 49 is heated by a heater coil (not shown), and the helium gas in the container 51 is heated in a four-way direction.
50b.

50a、6方コツクのポート45c、45b、酸素凝縮
管49、ポート45e、45d、および4方コツクのポ
ー)50d、50cを通って、酸素凝縮管49内の濃縮
された酸素ガスと共にガスクロマトグラフ40に送って
、酸素ガスを定量分析し、その後コック45.50を図
の状態に切替えて厚+。
50a, six-way ports 45c, 45b, oxygen condensing tube 49, ports 45e, 45d, and four-way connecting ports) 50d, 50c to the gas chromatograph 40 together with the concentrated oxygen gas in the oxygen condensing tube 49. Quantitatively analyze the oxygen gas, and then switch the cock 45.50 to the state shown in the figure to increase the thickness.

その後所定時間t(10〜30分)経過後毎に、前記と
同様のコック切替操作をして、低濃度チャンノ々−4内
のガス定量分析を繰返す。
Thereafter, every time a predetermined time t (10 to 30 minutes) has elapsed, the same cock switching operation as described above is performed to repeat the quantitative analysis of the gas in the low concentration channels 4.

以上の分析値に基いてグラスチック膜2の飽和水蒸気存
在下の120℃における、ガス(例えば酸素)透過率Q
 (cc/rr? −day−atm )および透過係
数P (CC・cm/dt a cInHg−sec)
は、夫れ夫れ次の(1)および(2)式により求められ
る。
Based on the above analytical values, the gas (e.g. oxygen) permeability Q of the glasstic membrane 2 at 120°C in the presence of saturated water vapor is
(cc/rr?-day-atm) and permeability coefficient P (CC cm/dta cInHg-sec)
are determined by the following equations (1) and (2), respectively.

ここにL:検体膜の厚さくcrIり ここにq=noX−Xt ■ V :低濃度チャンバーの容積(CC)T:検体膜の絶
対温度(0K) S:検体膜の透過面積(d) Xm Xf d:高濃度チャンバー内の圧力(atm)なお酸素ガス
ポンベ24の代シに他のガスのがンペ、例えば炭素ガス
ボンベを用いることにより、同様にしてプラスチック膜
2の炭酸ガス透過率を測定することができる。
Here L: Thickness of the sample membrane crI Here q=noX-Xt ■ V: Volume of low concentration chamber (CC) T: Absolute temperature of the sample membrane (0K) S: Transmission area of the sample membrane (d) Xm Xf d: Pressure in the high concentration chamber (atm) By using another gas cylinder, for example, a carbon gas cylinder, in place of the oxygen gas cylinder 24, the carbon dioxide gas permeability of the plastic membrane 2 is measured in the same manner. be able to.

(発明の効果) 本発明の装置は、100℃以上の温度において水蒸気の
存在下に熱可輩性グラスチック膜等の検体膜のガス透過
率を、該膜が膨んで薄くなったり、もしくは破裂するこ
となく測定することができるという効果を奏する。
(Effects of the Invention) The device of the present invention can reduce the gas permeability of a sample membrane such as a heat-permeable plastic membrane in the presence of water vapor at a temperature of 100°C or higher, such that the membrane swells and becomes thinner, or ruptures. This has the effect that measurements can be made without having to

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例である装置の回路図である。 1・・・透過膜セル、2・・・熱可塑性プラスチック膜
(検体膜)、3・・・高濃度(第1の)チャンバー、4
・・・低濃度(第2の)チャンバー、23・・・蒸発器
、24・・・酸素ガスボンベ、28・・・窒素ガスボン
ベ、40・・・ガスクロマトグラフ(ガス濃度測定装置
)、36.46・・・背圧弁(チャンバー内圧力を平衡
に調節保持する装置)、52・・・オーブン。
The drawing is a circuit diagram of a device that is an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Permeable membrane cell, 2... Thermoplastic plastic membrane (sample membrane), 3... High concentration (first) chamber, 4
...Low concentration (second) chamber, 23... Evaporator, 24... Oxygen gas cylinder, 28... Nitrogen gas cylinder, 40... Gas chromatograph (gas concentration measuring device), 36.46. ...Back pressure valve (device that adjusts and maintains the pressure inside the chamber at equilibrium), 52...Oven.

Claims (1)

【特許請求の範囲】[Claims] (1)検体膜で隔離される第1のチャンバーと第2のチ
ャンバーを備える透過膜セル、該透過膜セルを100℃
以上の所定温度に加熱する装置、第1のチャンバーに水
蒸気を含む該所定温度のガスを供給する装置、第1のチ
ャンバー内の該ガスの濃度を測定する装置、第1のチャ
ンバーより該検体膜を透過して第2のチャンバーに入っ
た該ガスの濃度を測定する装置、および第1のチャンバ
ーおよび第2のチャンバー内の圧力を平衡に調節保持す
る装置を備えることを特徴とするガス透過率測定装置。
(1) A permeable membrane cell comprising a first chamber and a second chamber separated by a sample membrane, the permeable membrane cell being heated to 100°C
A device for heating the above predetermined temperature, a device for supplying a gas containing water vapor at the predetermined temperature to the first chamber, a device for measuring the concentration of the gas in the first chamber, and a device for heating the sample film to the predetermined temperature from the first chamber. Gas permeability characterized by comprising a device for measuring the concentration of the gas that has passed through the gas and entered the second chamber, and a device for adjusting and maintaining the pressure in the first chamber and the second chamber in equilibrium. measuring device.
JP549887A 1987-01-13 1987-01-13 Measuring instrument for gas permeability Granted JPS63172942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP549887A JPS63172942A (en) 1987-01-13 1987-01-13 Measuring instrument for gas permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP549887A JPS63172942A (en) 1987-01-13 1987-01-13 Measuring instrument for gas permeability

Publications (2)

Publication Number Publication Date
JPS63172942A true JPS63172942A (en) 1988-07-16
JPH0463335B2 JPH0463335B2 (en) 1992-10-09

Family

ID=11612886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP549887A Granted JPS63172942A (en) 1987-01-13 1987-01-13 Measuring instrument for gas permeability

Country Status (1)

Country Link
JP (1) JPS63172942A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064416A (en) * 2004-08-24 2006-03-09 Takeshi Kage Method and apparatus for measuring gas barrier property of plastic molded body
JP2007218916A (en) * 2006-02-15 2007-08-30 Commissariat A L'energie Atomique Method and device for measuring permeation
CN101832982A (en) * 2010-04-26 2010-09-15 华南理工大学 Method and device for testing oxygen permeation of cornea repair material
EP2682736B1 (en) * 2006-02-15 2019-07-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and device for measuring permeation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117012A1 (en) * 2009-04-07 2010-10-14 Shimada Toshihiro Permeability evaluation device and evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142438A (en) * 1983-02-04 1984-08-15 Denshi Kagaku Kk Structure of permeable membrane supporting vessel
JPS612043A (en) * 1984-06-14 1986-01-08 Agency Of Ind Science & Technol Device for measuring selective transmission factor of high pressure mixed gas in film sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142438A (en) * 1983-02-04 1984-08-15 Denshi Kagaku Kk Structure of permeable membrane supporting vessel
JPS612043A (en) * 1984-06-14 1986-01-08 Agency Of Ind Science & Technol Device for measuring selective transmission factor of high pressure mixed gas in film sample

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064416A (en) * 2004-08-24 2006-03-09 Takeshi Kage Method and apparatus for measuring gas barrier property of plastic molded body
JP2007218916A (en) * 2006-02-15 2007-08-30 Commissariat A L'energie Atomique Method and device for measuring permeation
EP1821093B1 (en) * 2006-02-15 2018-04-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method and device for measuring permeation
EP2682736B1 (en) * 2006-02-15 2019-07-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and device for measuring permeation
CN101832982A (en) * 2010-04-26 2010-09-15 华南理工大学 Method and device for testing oxygen permeation of cornea repair material

Also Published As

Publication number Publication date
JPH0463335B2 (en) 1992-10-09

Similar Documents

Publication Publication Date Title
JP3095223B2 (en) Dialysis machine
WO2006015224A2 (en) Water transport method and assembly including a thin film membrane for the addition or removal of water from gases or liquids
US20090320564A1 (en) Method and Device for Measuring the Gas Permeability Through Films and Walls of Containers
KR100267507B1 (en) Apparatus and method for measuring permeation characteristics
US4936877A (en) Dopant delivery system for semiconductor manufacture
IE49608B1 (en) Reducing the alcohol content in fermented drinks by dialysis
Schult et al. Techniques for measurement of water vapor sorption and permeation in polymer films
KR20040058057A (en) Gas permeability measurement method and gas permeability measurement device
JP2010190751A (en) Gas permeability measuring device and gas permeability measuring method for film material
JPH0774778B2 (en) Gas permeability measuring device
JPS63172942A (en) Measuring instrument for gas permeability
JP2010249609A (en) Instrument and method for measuring permeation amount of steam
US4891968A (en) Process for the determination of the concentration of substances dissolved in a solvent by means of osmotic cells
JP6590964B2 (en) Hydrogen peroxide concentration measuring system and measuring method
JP2004219407A (en) Method of measuring gas permeability and apparatus for measuring gas permeability
KOBAYASHI et al. Permeability and diffusivity of d‐limonene vapor in polymeric sealant films
CN114624319B (en) Method for quantitatively obtaining ppm-level hydrogen isotope content in material based on thermal analysis-quadrupole mass spectrometry measurement principle
JP2019144143A (en) System and method for measuring concentration of hydrogen peroxide
CA2523139A1 (en) Quick bet method and apparatus for determining surface area and pore distribution of a sample
JP2757322B2 (en) How to measure gas permeability of film
EP3111230B1 (en) Instrument and method for target-analyte permeation testing with sensor feed line conditioning system
JP2000094523A (en) Method for determining condition for heat-sealing plastic
JPH06273309A (en) Gas permeability measuring equipment for resin film
JP5275473B2 (en) Water vapor permeation measuring device and water vapor permeation measuring method
JPS6116928B2 (en)