JP6337293B2 - Gas permeability measuring device - Google Patents

Gas permeability measuring device Download PDF

Info

Publication number
JP6337293B2
JP6337293B2 JP2016569241A JP2016569241A JP6337293B2 JP 6337293 B2 JP6337293 B2 JP 6337293B2 JP 2016569241 A JP2016569241 A JP 2016569241A JP 2016569241 A JP2016569241 A JP 2016569241A JP 6337293 B2 JP6337293 B2 JP 6337293B2
Authority
JP
Japan
Prior art keywords
sample
gas
ring
downstream
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016569241A
Other languages
Japanese (ja)
Other versions
JPWO2016114003A1 (en
Inventor
吉田 肇
肇 吉田
高橋 善和
善和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
TI KK
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
TI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, TI KK filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016114003A1 publication Critical patent/JPWO2016114003A1/en
Application granted granted Critical
Publication of JP6337293B2 publication Critical patent/JP6337293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、差圧法によるフィルム試料のガス透過度測定に用いられるガス透過度測定装置に関する。   The present invention relates to a gas permeability measuring device used for measuring gas permeability of a film sample by a differential pressure method.

フィルム部材のガス透過度を測定する方法として差圧法が知られている。前記差圧法としては、フィルム試料を、ガス透過セルの二つのチャンバ間に密封シールするような状態で装着した後、低圧チャンバを真空排気し、試験ガスを高圧チャンバに導入すると、ガスが試験片を通過し、低圧チャンバ内に透過することを利用し、ガス透過度を低圧側の圧力上昇又はガス量の増加として測定する方法(JIS K 7126−1)や、低圧側の圧力上昇又はガス量の増加として測定することに代え、前記低圧チャンバを真空排気しつつ、前記低圧チャンバ壁面への気体の吸脱着反応が平衡で、かつ、前記低圧チャンバ内でのガス透過量と真空ポンプの排気量とが平衡となった時点における圧力等を計測してガス透過度を測定する方法により実施される。
前記差圧法による前記フィルム部材の前記ガス透過度測定装置としては、例えば、フィルムを保持するためのフランジと、前記フィルムにガスを暴露するための容器と、前記フィルムのガス暴露面と逆側のガス透過面に対して所定の圧力まで排気することが可能な真空部とが接続され、前記真空部に取付けられる質量分析計により、前記ガス透過面から前記真空部内に透過するガスのガス透過度を測定する装置が提案されている(特許文献1参照)。
A differential pressure method is known as a method for measuring the gas permeability of a film member. In the differential pressure method, after a film sample is mounted in a state of hermetically sealing between two chambers of a gas permeable cell, the low pressure chamber is evacuated and the test gas is introduced into the high pressure chamber. The gas permeability is measured as a pressure increase on the low-pressure side or an increase in gas amount (JIS K 7126-1), or a pressure increase or gas amount on the low-pressure side. Instead of measuring as an increase in the pressure, the gas adsorption / desorption reaction to the wall of the low-pressure chamber is balanced while the low-pressure chamber is evacuated, and the gas permeation amount in the low-pressure chamber and the exhaust amount of the vacuum pump This is carried out by a method of measuring the gas permeability by measuring the pressure and the like at the time when and become balanced.
Examples of the gas permeability measuring device for the film member by the differential pressure method include a flange for holding a film, a container for exposing gas to the film, and a side opposite to the gas exposure surface of the film. The gas permeability of the gas permeated from the gas permeable surface into the vacuum portion by a mass spectrometer connected to the vacuum portion capable of exhausting to a predetermined pressure with respect to the gas permeable surface. Has been proposed (see Patent Document 1).

しかしながら、有機EL、薄膜太陽電池等の半導体分野では、前記フィルム部材に対し、素子内部等への空気等の侵入を抑制するための封止材として10−6g/m/day程度のガスバリア性が求められており、従来の前記ガス透過度測定装置では、こうした極微小なガスバリア性を短時間、高効率かつ高精度に測定することができない問題がある。
今、一般的に用いられるサイズである縦横90mmのフィルム試料を考えたとき、10−6g/m/dayの水蒸気透過度(WVTR;Water Vapour Transmission Rate)は、1.3×10−11Pa・m/sの水蒸気流量に対応する。排気速度0.01m/sの真空ポンプで真空排気された真空容器に、1.3×10−11Pa・m/sの前記水蒸気流量を導入すると、前記真空容器内の水蒸気分圧は、1.3×10−9Paとなる。即ち、前記差圧法で、10−6g/m/day台の前記水蒸気透過度を測定するためには、10−9Pa台の前記水蒸気分圧を測定する必要が生じる。そして、10−9Pa台といった極微小の前記水蒸気分圧を測定するためには、バックグラウンドの前記水蒸気分圧を、少なくとも10−8Pa台、望ましくは10−9Pa台以下まで下げることが求められる。
However, in the field of semiconductors such as organic EL and thin film solar cells, a gas barrier of about 10 −6 g / m 2 / day is used as a sealing material for suppressing the intrusion of air or the like into the element inside the film member. Therefore, the conventional gas permeability measuring apparatus has a problem that such a very small gas barrier property cannot be measured with high efficiency and high accuracy in a short time.
Considering a film sample having a length and width of 90 mm, which is a commonly used size, a water vapor transmission rate (WVTR) of 10 −6 g / m 2 / day is 1.3 × 10 −11. This corresponds to a water vapor flow rate of Pa · m 3 / s. A vacuum vessel which is evacuated by a vacuum pump of pumping speed 0.01 m 3 / s, the introduction of the water vapor flow rate of 1.3 × 10 -11 Pa · m 3 / s, the water vapor partial pressure within the vacuum vessel 1.3 × 10 −9 Pa. That is, in order to measure the water vapor permeability on the order of 10 −6 g / m 2 / day by the differential pressure method, it is necessary to measure the water vapor partial pressure on the order of 10 −9 Pa. In order to measure the extremely small water vapor partial pressure such as 10 −9 Pa, the background water vapor partial pressure should be lowered to at least 10 −8 Pa, preferably 10 −9 Pa or less. Desired.

一方で、水蒸気は、吸着性・凝集性があることから、不活性ガスに比べて、真空排気しにくいことが知られており、前記真空容器の内璧に吸着した水蒸気は、室温条件下で10−2Pa程度以下の真空環境下では、おおよそ時間tの逆数t−1に従って圧力降下する(例えば、非特許文献1参照)。下記表1に、時間t=0秒における初期水蒸気分圧と、逆数t−1に従って圧力降下することを仮定して計算した、10−9Pa台の前記水蒸気分圧を得るまでに要する時間を示す。即ち、10−9Pa台の前記水蒸気分圧を短時間で得るためには、前記初期水蒸気分圧を下げることが重要であり、そのための機構を開発する必要がある。On the other hand, it is known that water vapor is difficult to evacuate compared to inert gas because it has adsorptive and cohesive properties, and water vapor adsorbed on the inner wall of the vacuum vessel In a vacuum environment of about 10 −2 Pa or less, the pressure drops approximately according to the inverse t −1 of time t (see, for example, Non-Patent Document 1). Table 1 below shows the time required to obtain the water vapor partial pressure on the order of 10 −9 Pa calculated on the assumption that the initial water vapor partial pressure at time t = 0 seconds and the pressure drop according to the reciprocal t −1. Show. That is, in order to obtain the water vapor partial pressure on the order of 10 −9 Pa in a short time, it is important to lower the initial water vapor partial pressure, and it is necessary to develop a mechanism for that purpose.

なお、一般に、10−9Pa台の前記水蒸気分圧を短時間で得るためには、200℃以上で真空容器を加熱脱ガス(ベーキング)することが有効である。しかし、測定対象となるフィルム部材の耐熱温度は、典型的には80℃であるため、前記フィルム部材を前記真空容器に入れた状態で、200℃以上という高温でのベーキングを行うことができない。In general, in order to obtain the water vapor partial pressure on the order of 10 −9 Pa in a short time, it is effective to heat and degas (bake) the vacuum vessel at 200 ° C. or higher. However, since the heat resistant temperature of the film member to be measured is typically 80 ° C., baking at a high temperature of 200 ° C. or higher cannot be performed in a state where the film member is placed in the vacuum vessel.

ところで、独立した排気系を有する複数の処理室がゲートバルブを介して連設された真空容器に半導体ウエハを搬出入させることで、処理室ごとに異なる真空条件で前記半導体ウエハに対する加熱処理や蒸着処理等を行うロードロック装置が知られている(例えば、特許文献2参照)。こうしたロードロック装置によれば、半導体ウエハを真空容器に搬出入する度、容器全体を大気に開放することがなく、予め高真空に排気された処理室で所望の処理を実施することができる。
しかしながら、こうしたロードロック装置の機構に基づく前記フィルム部材のガス透過度を測定する方法としては、これまで何ら検討されておらず、10−6g/m/dayといったハイガスバリア性のものを含め、前記フィルム試料のガス透過度を短時間、高効率かつ高精度に測定するためには、新たな機構の開発が求められる。
By the way, a plurality of processing chambers having independent exhaust systems are brought into and out of a vacuum vessel connected via a gate valve, whereby heat treatment and vapor deposition on the semiconductor wafer are performed under different vacuum conditions for each processing chamber. A load lock device that performs processing or the like is known (see, for example, Patent Document 2). According to such a load lock device, every time a semiconductor wafer is carried into and out of the vacuum container, the entire container is not opened to the atmosphere, and desired processing can be performed in a processing chamber that has been evacuated to high vacuum in advance.
However, as a method for measuring the gas permeability of the film member based on the mechanism of such a load lock device, nothing has been studied so far, including a high gas barrier property such as 10 −6 g / m 2 / day. In order to measure the gas permeability of the film sample in a short time with high efficiency and high accuracy, development of a new mechanism is required.

特開平 6−241978号公報JP-A-6-241978 特開昭63−157870号公報JP-A 63-157870

杉本敏樹,武安光太郎,福谷克之,Journal of the Vacuum Society of Japan, Vol.56 (2013) No.8Toshiki Sugimoto, Kotaro Takeyasu, Katsuyuki Fukuya, Journal of the Vacuum Society of Japan, Vol.56 (2013) No.8

本発明は、従来技術における前記諸問題を解決し、短時間、高効率かつ高精度にフィルム試料のガス透過度を測定可能なガス透過度測定装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a gas permeability measuring device capable of measuring the gas permeability of a film sample in a short time, with high efficiency and with high accuracy.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 開口部が形成され、前記開口部からフィルム試料のガス暴露面及びガス透過面の両面が露出する状態で前記フィルム試料が挿脱自在に内挿される金属製の試料ホルダと、一端側が前記試料ホルダと脱着自在に取着可能とされるトランスファーロッドと、前記トランスファーロッドを内部空間に気密状態で進退動自在として挿通させる挿通部が形成されるとともに前記試料ホルダが前記内部空間に滞留可能とされる試料準備部と、前記トランスファーロッドの進退動により内部空間で前記試料ホルダが搬出入可能とされる試料分析部と、開状態で前記試料準備部内−前記試料分析部内間で前記試料ホルダが搬出入可能とされ、閉状態で前記試料準備部内−前記試料分析部内間を気密状態で密閉可能とされるゲート弁とを有する真空容器部と、下流側Oリングが前記試料ホルダから露出する前記フィルム試料の前記ガス透過面と当接するよう一部が突出した状態で埋設される下流側Oリング保持部を有し、前記試料分析部の内壁に固定される下流側シール部材と、上流側Oリングが前記試料ホルダから露出する前記フィルム試料の前記ガス暴露面と当接するよう一部が突出した状態で埋設され、前記上流側Oリングと前記下流側Oリングとで前記試料ホルダから露出する前記フィルム試料を狭持可能に前記下流側Oリング保持部と対向配置される上流側Oリング保持部及びガス供給源と接続されるガス導入部が形成され、前記下流側Oリング保持部に接近させて前記上流側Oリングと前記下流側Oリングとで前記フィルム試料を狭持させ、前記下流側Oリング保持部から離間させて前記上流側Oリングと前記下流側Oリングとの間に前記試料ホルダを挿通させるように少なくとも前記上流側Oリング保持部を移動可能として前記試料分析部に支持される上流側シール部材とで構成され、前記上流側Oリングと前記下流側Oリングとで前記フィルム試料を狭持した状態で、前記フィルム試料の前記ガス暴露面と前記上流側Oリングの内側と前記上流側シール部材の内側とで画成されるガス暴露室及び前記フィルム試料の前記ガス透過面と前記下流側Oリングの内側と前記下流側シール部材の内側と前記試料分析部の内壁で画成されるガス透過量測定室を形成するシール機構と、前記試料準備部と接続され、前記真空容器内を排気する第1の真空ポンプと、前記試料分析部の前記下流側Oリングからみて前記下流側シール部材の外側の位置に接続され、前記真空容器内を排気する第2の真空ポンプと、前記試料分析部の前記ガス透過量測定室を画成する部分と接続され、前記フィルム試料から前記ガス透過量測定室内に透過した測定用ガスの透過量を測定するガス透過量計測器と、を備えることを特徴とするガス透過度測定装置。
<2> 更に、試料分析部のガス透過量測定室を画成する部分と接続され、前記ガス透過量測定室内を排気する第3の真空ポンプを備える前記<1>に記載のガス透過度測定装置。
<3> 下流側シール部材から一部が突出する下流側Oリングの内側に一部が開口された金属板が嵌着される前記<1>から<2>のいずれかに記載のガス透過度測定装置。
<4> 上流側シール部材が、一の面の外周側に厚肉の部として形成される上流側Oリング保持部と、前記一の面側を他の面側に押し出すように前記他の面上に立設され、胴部が前記上流側シール部材の下流側シール部材に対する離間移動及び接近移動の移動操作部をなすとともに試料分析部内の気密を取りつつ立設端側から測定用ガスを管内に導入可能な中空管状のガス導入部とを有する全体略円盤状部材として形成される前記<1>から<3>のいずれかに記載のガス透過度測定装置。
<5> 試料準備部の内部空間を加熱するヒータが配設される前記<1>から<4>のいずれかに記載のガス透過度測定装置。
<6> 試料準備部内に配され、試料ホルダをストックするストック部を有する前記<1>から<5>のいずれかに記載のガス透過度測定装置。
Means for solving the problems are as follows. That is,
<1> A metal sample holder into which the film sample is removably inserted in a state where an opening is formed and both the gas exposure surface and the gas transmission surface of the film sample are exposed from the opening, and one end side is A transfer rod that can be detachably attached to the sample holder, and an insertion portion that allows the transfer rod to be inserted into and retracted from the internal space in an airtight state are formed, and the sample holder can stay in the internal space A sample preparation unit, a sample analysis unit in which the sample holder can be carried in and out in the internal space by the forward and backward movement of the transfer rod, and the sample holder between the sample preparation unit and the sample analysis unit in an open state A vacuum vessel having a gate valve which can be carried in and out and can be hermetically sealed between the sample preparation unit and the sample analysis unit in a closed state A downstream O-ring holding portion embedded in a state in which a part of the downstream O-ring is in contact with the gas permeable surface of the film sample exposed from the sample holder. A downstream seal member fixed to the inner wall, and an upstream O-ring embedded in a partially protruding state so as to contact the gas exposure surface of the film sample exposed from the sample holder; An upstream O-ring holding portion disposed opposite to the downstream O-ring holding portion so as to be able to sandwich the film sample exposed from the sample holder with the downstream O-ring, and a gas introduction portion connected to a gas supply source The film sample is sandwiched between the upstream O-ring holding portion and the downstream O-ring holding portion, and is separated from the downstream O-ring holding portion. An upstream seal member that is supported by the sample analyzer so that at least the upstream O-ring holding portion can be moved so that the sample holder is inserted between the upstream O-ring and the downstream O-ring. In the state where the film sample is held between the upstream O-ring and the downstream O-ring, the gas exposure surface of the film sample, the inside of the upstream O-ring, and the inside of the upstream sealing member And a gas permeation measurement chamber defined by the gas permeation surface of the film sample, the inner side of the downstream O-ring, the inner side of the downstream seal member, and the inner wall of the sample analyzer. A first vacuum pump that is connected to the sample preparation unit and evacuates the vacuum vessel, and the downstream seal unit as viewed from the downstream O-ring of the sample analysis unit Is connected to a second vacuum pump that exhausts the inside of the vacuum vessel and a portion that defines the gas permeation amount measurement chamber of the sample analysis unit, and the gas permeation amount from the film sample. A gas permeability measuring apparatus comprising: a gas permeation amount measuring device that measures a permeation amount of a measurement gas that has permeated into a measurement chamber.
<2> The gas permeability measurement according to <1>, further including a third vacuum pump connected to a portion defining a gas permeation amount measurement chamber of the sample analysis unit and exhausting the gas permeation amount measurement chamber. apparatus.
<3> The gas permeability according to any one of <1> to <2>, wherein a metal plate partially opened is fitted inside a downstream O-ring partly protruding from the downstream seal member. measuring device.
<4> An upstream O-ring holding portion formed as a thick portion on the outer peripheral side of one surface, and the other surface so that the one surface side is pushed out to the other surface side. Standing on the body, the barrel part moves and moves the upstream side seal member away from the downstream side seal member, and moves the measurement gas from the standing end side while keeping the airtightness inside the sample analysis part. The gas permeability measuring device according to any one of <1> to <3>, wherein the gas permeability measuring device is formed as an overall substantially disk-like member having a hollow tubular gas introduction portion that can be introduced into the gas.
<5> The gas permeability measuring apparatus according to any one of <1> to <4>, wherein a heater for heating the internal space of the sample preparation unit is provided.
<6> The gas permeability measuring device according to any one of <1> to <5>, wherein the gas permeability measuring device is provided in a sample preparation unit and includes a stock unit for stocking a sample holder.

本発明によれば、従来技術における前記諸問題を解決することができ、短時間、高効率かつ高精度にフィルム試料のガス透過度を測定可能なガス透過度測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the said various problems in a prior art can be solved, and the gas permeability measuring apparatus which can measure the gas permeability of a film sample with high efficiency and high precision for a short time can be provided.

本発明の一実施形態に係るガス透過度測定装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the gas permeability measuring apparatus which concerns on one Embodiment of this invention. シール機構を拡大して示す説明図である。It is explanatory drawing which expands and shows a sealing mechanism. 試料ホルダ部を説明する説明図である。It is explanatory drawing explaining a sample holder part. 図3(a)のA−A線断面を示す断面図である。It is sectional drawing which shows the AA line cross section of Fig.3 (a). Oリングを説明する説明図である。It is explanatory drawing explaining an O-ring. 参考例1に係るガス透過度測定装置のシール機構を拡大して示す説明図である。It is explanatory drawing which expands and shows the sealing mechanism of the gas permeability measuring apparatus which concerns on the reference example 1. FIG. 参考例1に係るガス透過度測定装置の変形例に係るガス透過度測定装置のシール機構を拡大して示す説明図である。It is explanatory drawing which expands and shows the seal mechanism of the gas permeability measuring apparatus which concerns on the modification of the gas permeability measuring apparatus which concerns on the reference example 1. FIG. 参考例2に係るガス透過度測定装置シール機構を拡大して示す説明図である。It is explanatory drawing which expands and shows the gas permeability measuring apparatus sealing mechanism which concerns on the reference example 2. FIG.

本発明の一実施形態に係るガス透過度測定装置を図面を参照しつつ説明する。
図1は、本発明の一実施形態に係るガス透過度測定装置の概要を示す説明図である。
該図1に示すように、ガス透過度測定装置100は、主として、シール機構1と、試料分析部10と、試料準備部20と、ゲート弁30と、トランスファーロッド31と、試料ホルダ32とを有して構成される。
A gas permeability measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing an outline of a gas permeability measuring apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the gas permeability measuring apparatus 100 mainly includes a seal mechanism 1, a sample analysis unit 10, a sample preparation unit 20, a gate valve 30, a transfer rod 31, and a sample holder 32. It is configured.

試料準備部20は、真空容器21と、ヒータ22と、試料ホルダストック機構25と、挿通部26とを有する。
真空容器21は、ステンレス鋼材等の公知の真空容器形成材料から形成される筒状部材であり、内部空間が試料準備室27とされる。
The sample preparation unit 20 includes a vacuum vessel 21, a heater 22, a sample holder stock mechanism 25, and an insertion unit 26.
The vacuum vessel 21 is a cylindrical member formed from a known vacuum vessel forming material such as a stainless steel material, and the internal space is a sample preparation chamber 27.

真空容器21の一端側には、試料ホルダ32が取着された状態のトランスファーロッド31を試料準備室27内に気密状態で進退動自在として挿通させる挿通部26が形成されるとともに、真空容器21は、試料準備室27内において、試料ホルダ32が後述の試料ホルダストック機構25に保持された状態、或いは、トランスファーロッド31に取着された状態で滞留可能とされる。
また、真空容器21は、側面に図示しない密閉扉が形成され、前記密閉扉を通じてトランスファーロッド31に対する試料ホルダ32の脱着操作や、必要に応じて、試料ホルダストック機構25に対する試料ホルダ32のストック操作を行うことが可能とされる。
また、真空容器21の他端側は、ゲート弁30を介して試料分析部10の真空容器11と連結され、ゲート弁30を閉じた状態で、真空容器21に接続される第1の真空ポンプ28により試料準備室27内が試料分析部10と独立して排気可能とされる。
なお、第1の真空ポンプ28としては、公知の真空ポンプから適宜選択して用いることができるが、ハイガスバリア性のフィルムを測定対象とする場合、試料準備室27内を、 10−3Pa以下に排気可能なものが好ましく、例えば、ターボ分子ポンプ等を用いることができる。
On one end side of the vacuum vessel 21, an insertion portion 26 is formed for inserting the transfer rod 31 with the sample holder 32 attached thereto into the sample preparation chamber 27 in an airtight state so as to be movable forward and backward. In the sample preparation chamber 27, the sample holder 32 can stay in a state where the sample holder 32 is held by a sample holder stock mechanism 25 described later or attached to the transfer rod 31.
Further, the vacuum vessel 21 is formed with a sealing door (not shown) on the side surface, and the sample holder 32 is attached to and detached from the transfer rod 31 through the sealing door, and the sample holder 32 is stocked to the sample holder stock mechanism 25 as necessary. It is possible to perform.
The other end side of the vacuum vessel 21 is connected to the vacuum vessel 11 of the sample analyzer 10 via the gate valve 30 and is connected to the vacuum vessel 21 with the gate valve 30 closed. 28 enables the inside of the sample preparation chamber 27 to be evacuated independently of the sample analyzer 10.
The first vacuum pump 28 can be appropriately selected from known vacuum pumps, but when a high gas barrier film is to be measured, the inside of the sample preparation chamber 27 is 10 −3 Pa or less. For example, a turbo molecular pump or the like can be used.

また、真空容器21の外周には、試料準備室27に導入される試料ホルダ32に吸着された水蒸気等を脱離させ、第1の真空ポンプ28でより効率的に排気可能とする等の観点から、公知の加熱装置で構成されるヒータ22が周設される。
なお、本例では、ヒータ22が真空容器21の外周に周設されるが、ヒータ22としては、別の態様で配してもよく真空容器21内に配されていてもよい。
In addition, water vapor or the like adsorbed by the sample holder 32 introduced into the sample preparation chamber 27 is desorbed on the outer periphery of the vacuum vessel 21 so that the first vacuum pump 28 can exhaust more efficiently. Therefore, a heater 22 composed of a known heating device is provided.
In this example, the heater 22 is provided around the outer periphery of the vacuum vessel 21, but the heater 22 may be arranged in another manner or may be arranged in the vacuum vessel 21.

試料ホルダストック機構25は、試料準備室27内に配され、複数の試料ホルダ32をストック可能なストック部23と、一端がストック部23と連結され、他端側が真空容器21の外方に突出して試料準備室27外に気密を取りつつ延在する棒状部材で形成されるストック部支持部24とで構成される。なお、試料ホルダストック機構25としては、ステンレス鋼等の公知の金属材料で形成することができる。
ただし、この試料ホルダストック機構25の構成は、一例を示すものであり、試料準備室27内に試料ホルダ32をストック可能なストック部を有する構成であれば、こうした構成に限定されない。
The sample holder stock mechanism 25 is arranged in the sample preparation chamber 27, has a stock portion 23 capable of stocking a plurality of sample holders 32, one end connected to the stock portion 23, and the other end side protruding outward of the vacuum vessel 21. And a stock portion support portion 24 formed of a rod-like member that extends while keeping airtightness outside the sample preparation chamber 27. The sample holder stock mechanism 25 can be formed of a known metal material such as stainless steel.
However, the configuration of the sample holder stock mechanism 25 is only an example, and the configuration is not limited to this configuration as long as the sample holder stock mechanism 27 has a stock portion in which the sample holder 32 can be stocked.

試料分析部10は、真空容器11で構成される。
真空容器11は、ステンレス鋼材等の公知の真空容器形成材料から形成される筒状部材であり、内部空間が試料分析室12とされる。
真空容器11の一端側は、ゲート弁30を介して試料準備部20の真空容器21と連結され、ゲート弁30を閉じた状態で、真空容器11に接続される第2の真空ポンプ13により試料分析室12内が試料準備部20と独立して排気可能とされる。
なお、第2の真空ポンプ13としては、公知の真空ポンプから適宜選択して用いることができるが、ハイガスバリア性のフィルムを測定対象とする場合、試料分析室12内を10−3Pa以下に排気可能なものが好ましく、例えば、ターボ分子ポンプ等を用いることができる。
The sample analyzer 10 includes a vacuum vessel 11.
The vacuum vessel 11 is a cylindrical member formed from a known vacuum vessel forming material such as a stainless steel material, and the internal space serves as the sample analysis chamber 12.
One end side of the vacuum vessel 11 is connected to the vacuum vessel 21 of the sample preparation unit 20 via the gate valve 30, and the sample is taken by the second vacuum pump 13 connected to the vacuum vessel 11 with the gate valve 30 closed. The inside of the analysis chamber 12 can be exhausted independently of the sample preparation unit 20.
The second vacuum pump 13 can be appropriately selected from known vacuum pumps. However, when a high gas barrier film is a measurement target, the inside of the sample analysis chamber 12 is set to 10 −3 Pa or less. What can exhaust is preferable, for example, a turbo molecular pump can be used.

また、真空容器11は、ゲート弁30を開いた状態で、トランスファーロッド31の進退動により試料分析室12内での試料ホルダ32の搬出入が可能とされる。
真空容器11の側面では、後述するガス透過量測定室41の一部を構成するよう、下流側シール部材3の内側の一部壁面が外方に突出するよう形成されるが、真空容器11としては、このような形状で形成されなくともよい。
また、試料分析室12内に搬入された試料ホルダ32を安定的に支持するため、真空容器11の底部には、一例として試料分析室12内に搬入された試料ホルダ32を保持する試料ホルダ支持部14が形成される。
なお、真空容器11と真空容器21とは、例えば、ゲート弁30を連結部材として別々の真空容器を連結させて形成することができる。
In addition, the vacuum container 11 can carry the sample holder 32 in and out of the sample analysis chamber 12 by the forward and backward movement of the transfer rod 31 with the gate valve 30 opened.
On the side surface of the vacuum vessel 11, a part of the inner wall surface of the downstream side seal member 3 is formed so as to form a part of a gas permeation amount measurement chamber 41 to be described later. May not be formed in such a shape.
In addition, in order to stably support the sample holder 32 carried into the sample analysis chamber 12, a sample holder support for holding the sample holder 32 carried into the sample analysis chamber 12 as an example is provided at the bottom of the vacuum vessel 11. Part 14 is formed.
The vacuum vessel 11 and the vacuum vessel 21 can be formed by connecting separate vacuum vessels using the gate valve 30 as a connecting member, for example.

ゲート弁30は、ステンレス鋼等の公知の金属材料で形成され、試料準備部20(真空容器21)と試料分析部10(真空容器11)とを連結するように、これらの部間に配され、開状態で試料準備部20内−試料分析部10内間(試料準備室27−試料分析室12間)で試料ホルダ32が搬出入可能とされ、閉状態で試料準備部20内−試料分析部10内間(試料準備室27−試料分析室12間)を気密状態で密封可能とされる。
また、トランスファーロッド31は、一端側が試料ホルダ32と脱着自在に取着可能とされる棒状部材であり、公知のロードロック装置で用いられるものを好適に使用することができる。
The gate valve 30 is formed of a known metal material such as stainless steel, and is arranged between these parts so as to connect the sample preparation unit 20 (vacuum vessel 21) and the sample analysis unit 10 (vacuum vessel 11). The sample holder 32 can be loaded and unloaded between the sample preparation unit 20 and the sample analysis unit 10 (between the sample preparation chamber 27 and the sample analysis chamber 12) in the open state, and in the sample preparation unit 20 and the sample analysis in the closed state. The inside of the unit 10 (between the sample preparation chamber 27 and the sample analysis chamber 12) can be sealed in an airtight state.
Further, the transfer rod 31 is a rod-like member whose one end can be detachably attached to the sample holder 32, and those used in a known load lock device can be suitably used.

シール機構1を図2を参照しつつ説明をする。図2は、シール機構を拡大して示す説明図である。
該図2に示すように、シール機構1は、上流側シール部材2と下流側シール部材3とで構成される。なお、本明細書において、「上流」とは、測定用ガスの流通経路において、供給元のガス供給源6(図1参照)に近いことを指し、「下流」とは、測定用ガスの流通経路において、供給元のガス供給源6(図1参照)から遠いことを指す。
The sealing mechanism 1 will be described with reference to FIG. FIG. 2 is an explanatory view showing an enlarged seal mechanism.
As shown in FIG. 2, the seal mechanism 1 includes an upstream seal member 2 and a downstream seal member 3. In this specification, “upstream” means close to the supply source gas supply source 6 (see FIG. 1) in the measurement gas flow path, and “downstream” means flow of the measurement gas. In the path, it means being far from the source gas supply source 6 (see FIG. 1).

上流側シール部材2には、上流側Oリング保持部2aと、ガス導入部2bとが形成される。
上流側Oリング保持部2aは、上流側Oリング4aが試料ホルダ32から露出するフィルム試料Fのガス暴露面と当接するよう一部が突出した状態で埋設され、上流側Oリング4aと下流側Oリング4bとで試料ホルダ32から露出するフィルム試料Fを狭持可能に下流側Oリング保持部3’と対向配置される。
また、ガス導入部2bは、ガス供給源6と接続され、ガス供給源6から供給される測定用ガスを上流側シール部材2内側に形成されるガス暴露室40に導入可能とされる。
また、上流側シール部材2は、下流側Oリング保持部3’に接近させて上流側Oリング4aと下流側Oリング4bとでフィルム試料Fを狭持させ、下流側Oリング保持部3’から離間させて上流側Oリング4aと下流側Oリング4bとの間に試料ホルダFを挿通させるように少なくとも上流側Oリング保持部4aを移動可能として試料分析部10に支持される。なお、ここでは、上流側シール部材2全体が移動可能とされる。また、上流側シール部材2(上流側Oリング保持部4a)を下流側シール部材3に対して安定状態で移動させ、支持することを目的として、試料分析部10の真空容器11内壁に上流側シール部材2を搬送し支持するレール部材(不図示)が形成されていてもよい。
The upstream seal member 2 is formed with an upstream O-ring holding portion 2a and a gas introduction portion 2b.
The upstream O-ring holding part 2a is embedded in a state in which the upstream O-ring 4a protrudes so that the upstream O-ring 4a comes into contact with the gas exposure surface of the film sample F exposed from the sample holder 32. The film sample F exposed from the sample holder 32 with the O-ring 4b is disposed so as to face the downstream O-ring holding portion 3 ′ so that it can be pinched.
Further, the gas introduction part 2 b is connected to the gas supply source 6 and can introduce the measurement gas supplied from the gas supply source 6 into the gas exposure chamber 40 formed inside the upstream seal member 2.
Further, the upstream seal member 2 approaches the downstream O-ring holding portion 3 ′ so that the film sample F is sandwiched between the upstream O-ring 4a and the downstream O-ring 4b, and the downstream O-ring holding portion 3 ′. At least the upstream O-ring holding part 4a is supported by the sample analyzer 10 so as to be movable so that the sample holder F is inserted between the upstream O-ring 4a and the downstream O-ring 4b. Here, the entire upstream seal member 2 is movable. Further, the upstream side seal member 2 (upstream side O-ring holding part 4a) is moved upstream from the inner wall of the vacuum vessel 11 of the sample analysis part 10 for the purpose of moving and supporting the upstream side seal member 2 with respect to the downstream side seal member 3 in a stable state. A rail member (not shown) that conveys and supports the seal member 2 may be formed.

上流側シール部材2は、一の面の外周側に厚肉の部として形成される上流側Oリング保持部2aと、前記一の面側を他の面側に押し出すように前記他の面上に立設され、胴部が上流側シール部材2の下流側シール部材3に対する離間移動及び接近移動の移動操作部をなすとともに試料分析部10(試料分析室12)内の気密を取りつつ立設端側から測定用ガスを管内に導入可能な中空管状のガス導入部2bとを有する全体略円盤状部材として形成される。
これにより、ガス導入部2bの真空容器11外に突出して延在する部分又は当該部分と接続される配管をスライド操作させて、試料分析室12内と気密を取りつつ上流側シール部材2を下流側シール部材3側に容易に移動させることができる。ただし、上流側シール部材2としては、このような構成でなくともよい。例えば、本例では、ガス導入部2bを前記一の面側を他の面側に押し出すように前記他の面上に立設された中空管状の部材とし、上流側Oリング4aと下流側Oリング4bとでフィルム試料Fを狭持した状態で一部が試料分析部10(試料分析室12)内と気密を取りつつ試料分析部10(試料分析室12)外に突出して延在させ、該一部を直接操作して試料分析部10(試料分析室12)外部からの前記移動操作を行うこととしているが、これに代えて、試料分析部10の真空容器11の開口部分に、ガス導入部2bと接続され気密を取りつつ上流側シール部材2をガス導入部2bを介して前記移動操作させることが可能なベローズ配管等の管継手部を配し、これによりガス導入部2bを間接的に操作させることとしてもよい。
なお、上流側シール部材2としては、上流側Oリング4aを除き、ステンレス鋼等の公知の金属材料で形成することができる。
The upstream seal member 2 includes an upstream O-ring holding portion 2a formed as a thick portion on the outer peripheral side of one surface, and the other surface so as to push the one surface side to the other surface side. The body portion is a moving operation unit for separating and approaching the upstream side seal member 2 with respect to the downstream side seal member 3 and standing up while maintaining airtightness in the sample analysis unit 10 (sample analysis chamber 12). It is formed as an overall substantially disk-shaped member having a hollow tubular gas introduction part 2b capable of introducing a measurement gas into the pipe from the end side.
As a result, a portion of the gas introduction portion 2b that protrudes outside the vacuum vessel 11 or a pipe connected to the portion is slid to keep the upstream seal member 2 downstream while keeping airtight with the sample analysis chamber 12. It can be easily moved to the side seal member 3 side. However, the upstream seal member 2 may not have such a configuration. For example, in this example, the gas introduction part 2b is a hollow tubular member erected on the other surface so that the one surface side is pushed out to the other surface side, and the upstream O-ring 4a and the downstream O In a state where the film sample F is sandwiched between the ring 4b and a part of the film sample F while projecting from the sample analysis unit 10 (sample analysis chamber 12) while being hermetically sealed with the sample analysis unit 10 (sample analysis chamber 12), The part is directly operated to perform the moving operation from the outside of the sample analysis unit 10 (sample analysis chamber 12). Instead, a gas is introduced into the opening of the vacuum vessel 11 of the sample analysis unit 10. A pipe joint portion such as a bellows pipe that can move the upstream side seal member 2 through the gas introduction portion 2b while being connected to the introduction portion 2b and being airtight is arranged, thereby indirectly connecting the gas introduction portion 2b. It is good also as making it operate automatically.
The upstream seal member 2 can be formed of a known metal material such as stainless steel except for the upstream O-ring 4a.

下流側シール部材3は、下流側Oリング4bが試料ホルダ32から露出するフィルム試料Fのガス透過面と当接するよう一部が突出した状態で埋設される下流側Oリング保持部3’を有し、試料分析部10の真空容器11内壁に固定される。また、下流側シール部材3は、トランスファーロッド31の進動により試料分析室12内に搬入される試料ホルダ32と下流側Oリング4bとが当接する位置に配される。したがって、下流側Oリング4bの位置調整を行うことなく、トランスファーロッド31の進動操作を行うだけで、試料ホルダ32に挿入されたフィルム試料Fと下流側Oリング4bとを当接させ、当接後、下流側シール部材3に対する上流側シール部材2の離間・接近操作を行うだけで、試料ホルダ32を上流側Oリング4aと下流側Oリング4bとで狭持させることができる。また、測定後、トランスファーロッド31の進動先に試料ホルダ32が存在するため、トランスファーロッド31の進動操作を行うだけで、トランスファーロッド31の一端側に試料ホルダ32とを取着させることができ、トランスファーロッド31による試料ホルダ32の回収を容易に行うことができる。
また、本例では、下流側シール部材3は、一の面の外周側に厚肉の部として下流側Oリング保持部3’が形成され、中央が開口された略円盤状の部材として形成される。
なお、下流側シール部材3としては、下流側Oリング4bを除き、ステンレス鋼等の公知の金属材料で形成することができる。
The downstream-side seal member 3 has a downstream-side O-ring holding portion 3 ′ that is embedded in a state in which the downstream-side O-ring 4 b protrudes so that the downstream-side O-ring 4 b comes into contact with the gas transmission surface of the film sample F exposed from the sample holder 32. And fixed to the inner wall of the vacuum vessel 11 of the sample analyzer 10. Further, the downstream seal member 3 is disposed at a position where the sample holder 32 carried into the sample analysis chamber 12 by the movement of the transfer rod 31 and the downstream O-ring 4b abut. Therefore, the film sample F inserted into the sample holder 32 and the downstream O-ring 4b are brought into contact with each other only by moving the transfer rod 31 without adjusting the position of the downstream O-ring 4b. After the contact, the sample holder 32 can be held between the upstream O-ring 4a and the downstream O-ring 4b only by performing an operation of separating and approaching the upstream sealing member 2 with respect to the downstream sealing member 3. Further, after the measurement, since the sample holder 32 exists at the destination of the transfer rod 31, the sample holder 32 can be attached to one end side of the transfer rod 31 simply by performing the forward operation of the transfer rod 31. The sample holder 32 can be easily collected by the transfer rod 31.
Further, in this example, the downstream seal member 3 is formed as a substantially disk-shaped member having a downstream O-ring holding portion 3 ′ formed as a thick portion on the outer peripheral side of one surface and having an open center. The
The downstream seal member 3 can be formed of a known metal material such as stainless steel, except for the downstream O-ring 4b.

ここで、試料ホルダ32及び上流側及び下流側Oリング4a,bの詳細及びこれら部材の関係について、図3(a),(b),図4を参照しつつ説明する。なお、図3(a)は、試料ホルダ部を説明する説明図であり、図3(b)は、図3(a)のA−A線断面を示す断面図であり、図4は、Oリングを説明する説明図である。   Here, the details of the sample holder 32 and the upstream and downstream O-rings 4a, 4b and the relationship between these members will be described with reference to FIGS. 3 (a), 3 (b), and 4. FIG. 3A is an explanatory diagram for explaining the sample holder portion, FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A, and FIG. It is explanatory drawing explaining a ring.

図3(a),(b)に示すように、試料ホルダ32は、中央に直径Φの円形開口部が形成され、ステンレス鋼等の公知の金属材料で形成される2枚の金属板33a,33bとの間にフィルムFを内挿した状態でビス34a〜dにより金属板33a,33bを密着させて固定可能とされ、前記開口部からフィルム試料Fの一面(ガス暴露面)と、反対側の他の面(ガス透過面)とが露出される。
また、試料ホルダ32は、取付部35が形成され、トランスファーロッド31の一端側と取付部35とのスイッチ式の嵌合やこれらの磁着等により、トランスファーロッド31と脱着自在に取着可能とされる。なお、磁着等させる場合には、必ずしも、取付部35を設ける必要はない。
As shown in FIGS. 3 (a) and 3 (b), the sample holder 32 is formed with two metal plates 33a each having a circular opening having a diameter Φ1 at the center and formed of a known metal material such as stainless steel. , 33b with the metal plate 33a, 33b in close contact with the screws 34a-d with the film F inserted between them, and can be fixed, opposite the one surface (gas exposed surface) of the film sample F from the opening. The other surface (gas permeable surface) is exposed.
Further, the sample holder 32 is provided with an attachment portion 35 and can be detachably attached to the transfer rod 31 by switch-type fitting between the one end side of the transfer rod 31 and the attachment portion 35 or their magnetic attachment. Is done. Note that the attachment portion 35 is not necessarily provided in the case of magnetic attachment or the like.

一方、上流側及び下流側Oリング4a,bは、それぞれフッ素ゴム等の公知の樹脂材料やインジウム、金等の軟性金属材料で形成され、外径がΦ、内径がΦとされる(図4参照)。
上流側及び下流側Oリング4a,bの外径Φは、試料ホルダ32開口部の直径Φよりも小さく上流側及び下流側Oリング4a,bで、直接、試料ホルダ32から露出する状態のフィルム試料Fを狭持可能とされ、内径Φで囲まれた領域がフィルム試料Fのガス透過領域とされる。また、上流側及び下流側Oリング4a,bとしては、非シール時における断面形状が円形状のものであってもよいが、高い気密性を得る観点から、断面形状が四角形状のものが好ましい。
なお、この例は、説明を簡単にするためのものであり、試料ホルダ32の前記開口部は、上流側及び下流側Oリング4a,bの外径がΦよりも大きいサイズであれば、特に円形である必要はなく、また、上流側及び下流側Oリング4a,bは、フィルム試料Fを狭持可能である限り、同じ材質、全く同じ大きさである必要はない。
On the other hand, the upstream and downstream O-rings 4a and 4b are each formed of a known resin material such as fluororubber, or a soft metal material such as indium or gold, and has an outer diameter of Φ 2 and an inner diameter of Φ 3 ( (See FIG. 4).
The outer diameter Φ 2 of the upstream and downstream O-rings 4a, 4b is smaller than the diameter Φ 1 of the opening of the sample holder 32, and is exposed directly from the sample holder 32 at the upstream and downstream O-rings 4a, b. The film sample F can be sandwiched, and the area surrounded by the inner diameter Φ 3 is the gas permeation area of the film sample F. The upstream and downstream O-rings 4a and 4b may have a circular cross-sectional shape when not sealed, but preferably have a square cross-sectional shape from the viewpoint of obtaining high airtightness. .
Note that this example is intended to simplify the description, the opening of the sample holder 32, the upstream-side and downstream-side O-ring 4a, if a size larger than the outer diameter [Phi 2 of b, In particular, the upstream and downstream O-rings 4a and 4b do not need to be the same material and the same size as long as the film sample F can be sandwiched.

ガス透過度測定装置100について再び図1を参照しつつ説明する。
シール機構1では、上流側Oリング4aと下流側Oリング4bとでフィルム試料Fを狭持した状態で、フィルム試料Fの前記ガス暴露面と上流側Oリング4aの内側と上流側シール部材2の内側とで画成されるガス暴露室40及びフィルム試料Fの前記ガス透過面と下流側Oリング4bの内側と下流側シール部材3の内側と試料分析部10(真空容器11)の内壁で画成されるガス透過量測定室41を形成する。
The gas permeability measuring apparatus 100 will be described with reference to FIG. 1 again.
In the seal mechanism 1, the film sample F is sandwiched between the upstream O-ring 4a and the downstream O-ring 4b, the gas exposed surface of the film sample F, the inside of the upstream O-ring 4a, and the upstream seal member 2 The gas permeation surface 40 defined by the inside of the gas, the gas permeable surface of the film sample F, the inside of the downstream O-ring 4b, the inside of the downstream seal member 3, and the inner wall of the sample analyzer 10 (vacuum vessel 11). A gas permeation amount measurement chamber 41 to be defined is formed.

また、下流側シール部材3(下流側Oリング保持部3’)では、下流側シール部材3から一部が突出する下流側Oリング4bの内側に一部が開口された金属板5が嵌着される等により、フィルム試料Fが金属板5により支持されることが好ましい。即ち、ガス暴露室40よりもガス透過量測定室41の方が圧力が小さいため、フィルム試料Fがガス透過量測定室41側に引き寄せられ、試料フォルダ32からの外れや湾曲により上流側及び下流側Oリング4a,bの内径Φで囲まれた領域でフィルム試料Fのガス透過領域を見積もれない状況が発生することがあり、フィルム試料Fの前記ガス透過面側を金属板5で支持することが好ましい。
なお、金属板5としては、ステンレス鋼等の公知の金属材料で形成され、任意の場所に一又は複数の開口が形成された金属板やメッシュ状に開口が形成された金属板等を用いることができる。
In addition, in the downstream seal member 3 (downstream O-ring holding portion 3 ′), a metal plate 5 having a part opened inside the downstream O-ring 4 b partially protruding from the downstream seal member 3 is fitted. For example, the film sample F is preferably supported by the metal plate 5. That is, since the pressure in the gas permeation amount measurement chamber 41 is lower than that in the gas exposure chamber 40, the film sample F is drawn toward the gas permeation amount measurement chamber 41, and upstream and downstream due to detachment or bending from the sample folder 32. may side O-ring 4a, situations where Estimate the area in gas transmission area of the film sample F surrounded by the inner diameter [Phi 3 of b is generated, the gas permeation side of the film sample F for supporting a metal plate 5 It is preferable.
In addition, as the metal plate 5, a metal plate formed of a known metal material such as stainless steel and having one or a plurality of openings formed in an arbitrary place or a metal plate having openings formed in a mesh shape is used. Can do.

ガス透過量計測部42(ガス分析器)は、試料分析部10(真空容器11)のガス透過量測定室41を画成する部分と接続され、フィルム試料Fからガス透過量測定室41内に透過したガス透過量を測定する。ガス透過量計測部42としては、特に制限はなく、電離真空計等の公知の真空計、四重極質量分析計等の公知の質量分析計を用いることができる。
また、ガス透過度の測定方法に応じて、試料分析部10(真空容器11)のガス透過量測定室を画成する部分と接続され、ガス透過量測定室41内を排気する第3の真空ポンプ43が配される。即ち、ガス透過度をガス透過量測定室41内を真空排気しつつ、ガス透過量測定室41内壁への気体の吸脱着反応が平衡で、かつ、ガス透過量測定室41内でのガス透過量と真空ポンプの排気量とが平衡となった時点における圧力等を計測してガス透過度を測定する場合、その真空ポンプとして第3の真空ポンプ43が配される。
第3の真空ポンプ43としては、公知の真空ポンプを用いることができるが、ハイガスバリア性のフィルムを測定対象とする場合、ガス透過量測定室41内を10−6Pa以下に排気可能なものが好ましく、例えば、ターボ分子ポンプ等を用いることができる。
試料分析室12内を第2の真空ポンプ13で真空排気した後、ガス透過量測定室41を形成し、フィルム試料Fからのガス透過量をガス透過量測定室41内における圧力上昇又はガス量の増加として測定する場合には、必ずしも第3の真空ポンプ43を配する必要はない。
なお、ガス透過度測定装置100は、試料準備部20と試料分析部10とを鉛直方向に連結させた例に係るが、水平方向に連結させてもよい。この場合、フィルム試料Fが水平面に対して垂直に配されるよう、シール機構1を構成することが好ましい。
また、ガス透過度測定装置100は、本発明の一実施形態を示すものであり、本発明は、この実施形態に限定されない。
The gas permeation amount measuring unit 42 (gas analyzer) is connected to a portion that defines the gas permeation amount measurement chamber 41 of the sample analysis unit 10 (vacuum vessel 11), and enters the gas permeation amount measurement chamber 41 from the film sample F. Measure the amount of permeated gas. There is no restriction | limiting in particular as the gas permeation | transmission amount measurement part 42, Well-known vacuum gauges, such as an ionization vacuum gauge, and well-known mass spectrometers, such as a quadrupole mass spectrometer, can be used.
Further, a third vacuum that is connected to a portion that defines the gas permeation amount measurement chamber of the sample analyzer 10 (vacuum vessel 11) and evacuates the gas permeation amount measurement chamber 41 according to the gas permeability measurement method. A pump 43 is arranged. That is, while the gas permeability is evacuated in the gas permeation measurement chamber 41, the gas adsorption / desorption reaction to the inner wall of the gas permeation measurement chamber 41 is balanced, and the gas permeation in the gas permeation measurement chamber 41 is achieved. When the gas permeability is measured by measuring the pressure and the like at the time when the amount and the exhaust amount of the vacuum pump are in equilibrium, a third vacuum pump 43 is disposed as the vacuum pump.
As the third vacuum pump 43, a known vacuum pump can be used, but when a high gas barrier film is a measurement target, the gas permeation amount measurement chamber 41 can be evacuated to 10 −6 Pa or less. For example, a turbo molecular pump or the like can be used.
After the inside of the sample analysis chamber 12 is evacuated by the second vacuum pump 13, a gas permeation amount measurement chamber 41 is formed, and the gas permeation amount from the film sample F is set to the pressure increase or gas amount in the gas permeation amount measurement chamber 41 In the case of measuring as an increase, the third vacuum pump 43 is not necessarily provided.
In addition, although the gas permeability measuring apparatus 100 concerns on the example which connected the sample preparation part 20 and the sample analysis part 10 to the perpendicular direction, you may connect it to a horizontal direction. In this case, it is preferable to configure the sealing mechanism 1 so that the film sample F is arranged perpendicular to the horizontal plane.
Moreover, the gas permeability measuring apparatus 100 shows one embodiment of the present invention, and the present invention is not limited to this embodiment.

次に、ガス透過度測定装置100の動作について図1を参照しつつ説明をする。
ゲート弁30を閉じた状態で、試料分析室12内を第2の真空ポンプ13で排気する。ガス透過度測定対象のフィルム試料Fがハイバリア性(ガス透過度が高い)のフィルムである場合、試料分析室12内を10−3Pa以下程度に真空排気する。
Next, the operation of the gas permeability measuring apparatus 100 will be described with reference to FIG.
With the gate valve 30 closed, the sample analysis chamber 12 is evacuated by the second vacuum pump 13. When the film sample F to be measured for gas permeability is a high barrier (high gas permeability) film, the sample analysis chamber 12 is evacuated to about 10 −3 Pa or less.

また、真空容器21の密閉扉(不図示)を通じて挿通部26から真空容器21内に垂下されたトランスファーロッド31の一端側に試料ホルダ32を取着させる。なお、トランスファーロッド31からの試料ホルダ32の着脱は、例えば、トランスファーロッド31の電磁石で試料ホルダ32が取着される場合、前記電磁石の励磁をオンオフ動作させて行う。トランスファーロッド31に取着される試料ホルダ32は、試料ホルダストック機構25におけるストック部23にストックされていないものを直接取着させて用いてもよいが、吸着ガス等を脱離させる観点から、予めストック部23にストックさせておいたものが好ましい。試料ホルダストック機構25のストック部23に対する試料ホルダ32のストックは、真空容器21の密閉扉(不図示)を通じて行う。密閉扉は、作業完了後、速やかに閉じるようにする。
また、試料準備室27内に滞留される試料ホルダ32等に吸着される水蒸気等は、ヒータ22による加熱により脱離され、第1の真空ポンプ28で効率的に排気可能とされる。ヒータ22による加熱は、フィルム試料Fの耐熱温度未満の温度で行う。また、第1の真空ポンプ28では、フィルム試料Fがハイバリア性のフィルムである場合、試料準備室27内を10−3Pa以下程度に真空排気させる。
In addition, the sample holder 32 is attached to one end side of the transfer rod 31 that is suspended from the insertion portion 26 into the vacuum container 21 through a sealed door (not shown) of the vacuum container 21. The sample holder 32 is attached to and detached from the transfer rod 31 when the sample holder 32 is attached by the electromagnet of the transfer rod 31, for example, by turning on and off the excitation of the electromagnet. The sample holder 32 attached to the transfer rod 31 may be used by directly attaching one not stocked in the stock portion 23 in the sample holder stock mechanism 25, but from the viewpoint of desorbing adsorbed gas and the like. Those previously stocked in the stock section 23 are preferable. Stock of the sample holder 32 with respect to the stock portion 23 of the sample holder stock mechanism 25 is performed through a sealed door (not shown) of the vacuum vessel 21. The closed door should be closed immediately after the work is completed.
Further, water vapor or the like adsorbed on the sample holder 32 or the like retained in the sample preparation chamber 27 is desorbed by heating by the heater 22 and can be efficiently exhausted by the first vacuum pump 28. Heating by the heater 22 is performed at a temperature lower than the heat resistant temperature of the film sample F. Further, in the first vacuum pump 28, when the film sample F is a high barrier film, the inside of the sample preparation chamber 27 is evacuated to about 10 −3 Pa or less.

試料分析部10では、予め上流側シール部材2のガス導入部2bの真空容器11外に突出して延在する部分又は当該部分と接続される配管をスライド操作し、上流側Oリング4aと下流側Oリング4bとの間に試料ホルダ32を挿通させるよう上流側シール部材2(上流側Oリング保持部2a)を下流側シール部材3(下流側Oリング保持部3’)から離間させておく。
ストック部23にストックされた試料ホルダ32をトランスファーロッド31に取着させた後、ゲート弁30を開き、トランスファーロッド31を試料分析部12内の所定の深さまで搬送操作することで、試料ホルダ32を内挿される試料フィルムFの上流側Oリング4aと下流側Oリング4bとによる狭持位置まで搬送する。
この状態で、上流側シール部材2のスライド操作により、上流側Oリング保持部2aを下流側Oリング保持部3に接近させて上流側Oリング4aと下流側Oリング4bとでフィルム試料Fを狭持させる。
この時、シール機構1内では、フィルム試料Fの前記ガス暴露面(一の面)と上流側Oリング4aの内側と上流側シール部材2の内側とで画成されるガス暴露室40と、フィルム試料Fの前記ガス透過面(一の面と反対側の他の面)と下流側Oリング4bの内側と下流側シール部材3の内側と試料分析部10(真空容器11)の内壁で画成されるガス透過量測定室41とが気密状態で形成される。
その後、試料ホルダ32からトランスファーロッド31を脱着させ、トランスファーロッド31を試料準備室27に戻し、ゲート弁30を再び閉じ、引き続き第2の真空ポンプ13で試料分析室12内を真空排気し、ガス透過度測定の測定準備を完了させる。
In the sample analysis unit 10, the upstream O-ring 4 a and the downstream side are slid in advance by projecting a portion extending out of the vacuum vessel 11 of the gas introduction portion 2 b of the upstream side seal member 2 or a pipe connected to the portion. The upstream seal member 2 (upstream O-ring holding portion 2a) is separated from the downstream seal member 3 (downstream O-ring holding portion 3 ') so that the sample holder 32 is inserted between the O-ring 4b.
After the sample holder 32 stocked in the stock unit 23 is attached to the transfer rod 31, the gate valve 30 is opened, and the transfer rod 31 is transported to a predetermined depth in the sample analysis unit 12. Is transported to a holding position by the upstream O-ring 4a and the downstream O-ring 4b of the sample film F to be inserted.
In this state, the upstream O-ring holding portion 2a is moved closer to the downstream O-ring holding portion 3 by the sliding operation of the upstream sealing member 2, and the film sample F is moved between the upstream O-ring 4a and the downstream O-ring 4b. Hold it.
At this time, in the seal mechanism 1, a gas exposure chamber 40 defined by the gas exposure surface (one surface) of the film sample F, the inner side of the upstream O-ring 4a, and the inner side of the upstream sealing member 2, It is defined by the gas permeation surface (the other surface opposite to the one surface) of the film sample F, the inside of the downstream O-ring 4b, the inside of the downstream seal member 3, and the inner wall of the sample analyzer 10 (vacuum vessel 11). The formed gas permeation amount measurement chamber 41 is formed in an airtight state.
Thereafter, the transfer rod 31 is detached from the sample holder 32, the transfer rod 31 is returned to the sample preparation chamber 27, the gate valve 30 is closed again, and the inside of the sample analysis chamber 12 is subsequently evacuated by the second vacuum pump 13, and the gas is discharged. Complete the measurement preparation for transmission measurement.

本例におけるガス透過度測定では、ガス透過量測定室41内を第3の真空ポンプで真空排気しつつ、上流側シール部材2のガス導入部2bを介してガス供給源6から供給される測定用ガスをガス暴露室40内に導入させ、フィルム試料Fからガス透過量測定室41内に透過する前記測定用ガスの透過量を透過量ガス透過量計測部42(ガス分析器)で計測して行う。計測は、ガス透過量測定室41内壁への気体の吸脱着反応が平衡で、かつ、ガス透過量測定室41内でのガス透過量と第3の真空ポンプ43の排気量とが平衡となった時点における圧力等を計測してガス透過度を測定する。なお、フィルム試料Fがハイバリア性のフィルムである場合、ガス透過量測定室41内を第3の真空ポンプを用いて10−6Pa以下程度に真空排気する。In the gas permeability measurement in this example, the measurement is supplied from the gas supply source 6 via the gas introduction part 2b of the upstream side seal member 2 while the gas permeation amount measurement chamber 41 is evacuated by the third vacuum pump. Gas is introduced into the gas exposure chamber 40 and the permeation amount of the measurement gas permeating from the film sample F into the gas permeation amount measurement chamber 41 is measured by a permeation amount gas permeation amount measurement unit 42 (gas analyzer). Do it. In the measurement, the gas adsorption / desorption reaction on the inner wall of the gas permeation amount measurement chamber 41 is in equilibrium, and the gas permeation amount in the gas permeation amount measurement chamber 41 and the exhaust amount of the third vacuum pump 43 are in equilibrium. The gas permeability is measured by measuring the pressure at the time point. When the film sample F is a high-barrier film, the gas permeation amount measurement chamber 41 is evacuated to about 10 −6 Pa or less using a third vacuum pump.

次に、本発明の効果について、ガス透過度測定装置100を例にとり詳細に説明する。
ガス透過度測定装置100では、装置に対してフィルム試料Fを搬出入する度に装置内を大気に暴露することがなく、予め所望の真空環境にまで真空排気された試料分析部10でガス透過度を測定するため、短時間で測定条件の真空環境を得ることができ、延いては、フィルム試料Fのガス透過度を短時間で効率的に測定することができる。
また、フィルム試料F、試料ホルダ32等に吸着したガスをガス透過度測定前に予め試料準備部20で排除することができるため、試料分析部10において、これらが脱離せず短時間で測定条件の真空環境を得ることができ、延いては、フィルム試料Fのガス透過度を短時間で効率的に測定することができる。
また、試料準備部20において、試料ホルダストック機構25に試料ホルダ32をストックしておくことで、試料ホルダ32に吸着したガス、水蒸気等が排除された試料ホルダ32を予め準備することができる。したがって、試料分析部10においてより短時間で測定条件の真空環境を得ることができ、延いては、フィルム試料Fのガス透過度を短時間で効率的に測定することができる。
Next, the effect of the present invention will be described in detail by taking the gas permeability measuring apparatus 100 as an example.
In the gas permeability measuring apparatus 100, the film sample F is not exposed to the atmosphere every time the film sample F is carried in and out of the apparatus, and the gas permeation is performed in the sample analyzer 10 that has been evacuated to a desired vacuum environment in advance. In order to measure the degree, the vacuum environment under the measurement conditions can be obtained in a short time, and as a result, the gas permeability of the film sample F can be measured efficiently in a short time.
Further, since the gas adsorbed on the film sample F, the sample holder 32, etc. can be eliminated in advance by the sample preparation unit 20 before the gas permeability measurement, the sample analysis unit 10 does not desorb them and the measurement conditions can be measured in a short time. Thus, the gas permeability of the film sample F can be measured efficiently in a short time.
In addition, by storing the sample holder 32 in the sample holder stock mechanism 25 in the sample preparation unit 20, the sample holder 32 from which the gas, water vapor, etc. adsorbed on the sample holder 32 are excluded can be prepared in advance. Therefore, the sample analysis unit 10 can obtain a vacuum environment under measurement conditions in a shorter time, and by extension, the gas permeability of the film sample F can be efficiently measured in a short time.

また、ガス透過度測定装置100では、装置内に配され、また、金属製の試料ホルダ32の開口部直径Φよりも小さな外径Φの上流側及び下流側Oリング4a,bで直接試料ホルダ32を狭持してガス透過度測定を行うため、高精度にガス透過度の測定を行うことができ、延いては、10−6g/m/dayといったハイバリア性のフィルム試料を測定対象とすることができる。
この点について、更に、図2,図5〜7を参照しつつ、下記参考例1及び2に係るガス透過度測定装置と比較した説明を行う。なお、図5は、参考例1に係るガス透過度測定装置のシール機構を拡大して示す説明図であり、図6は、参考例1に係るガス透過度測定装置の変形例に係るガス透過度測定装置のシール機構を拡大して示す説明図であり、図7は、参考例2に係るガス透過度測定装置シール機構を拡大して示す説明図である。
Further, in the gas permeability measuring apparatus 100, the upstream and downstream O-rings 4a and 4b having an outer diameter Φ 2 smaller than the opening diameter Φ 1 of the metal sample holder 32 are directly provided in the apparatus. Since the gas permeability measurement is performed by holding the sample holder 32, it is possible to measure the gas permeability with high precision. As a result, a high barrier film sample such as 10 −6 g / m 2 / day can be obtained. It can be a measurement object.
With respect to this point, a description will be given in comparison with the gas permeability measuring apparatus according to Reference Examples 1 and 2 below, with reference to FIGS. 2 and 5 to 7. 5 is an explanatory diagram showing an enlarged seal mechanism of the gas permeability measuring device according to Reference Example 1, and FIG. 6 is a gas permeation according to a modification of the gas permeability measuring device according to Reference Example 1. FIG. 7 is an explanatory diagram showing an enlarged seal mechanism of the gas measuring device, and FIG. 7 is an explanatory diagram showing an enlarged gas permeability measuring device seal mechanism according to Reference Example 2.

参考例1に係るガス透過度測定装置では、図5に示すように、上流側及び下流側Oリング4a,bの外径Φに対して、開口部の直径Φが小さい金属製の試料ホルダ50を用いることとし、試料ホルダ50の金属板51a,51bでフィルム試料Fを狭持してガス透過度測定を行う点で、ガス透過度測定装置100と異なる。なお、符号53は、トランスファーロッド31への取付部を示す。The gas permeability measuring apparatus according to the reference example 1, as shown in FIG. 5, the upstream-side and downstream-side O-ring 4a, the outer diameter [Phi 2 of b, the diameter [Phi 1 is smaller metal samples of the opening It is different from the gas permeability measuring apparatus 100 in that the holder 50 is used and the gas sample is measured by holding the film sample F with the metal plates 51a and 51b of the sample holder 50. Reference numeral 53 denotes an attachment portion to the transfer rod 31.

この参考例1に係るガス透過度測定装置をガス透過度測定を行うと、ガス導入部2bから導入される測定用ガスが、Oリングによるシールがないため金属板51aとフィルム試料Fとの間から試料分析室12内に漏れ出した後、金属板51bとフィルム試料Fとの間からガス透過量測定室側に漏れ出し(図5中の黒矢印参照)、フィルム試料Fを透過したガス(図5中の白抜き矢印参照)と混ざり込み、フィルム試料Fのガス透過度測定を精度良く実施することができない。   When the gas permeability measurement apparatus according to Reference Example 1 performs the gas permeability measurement, the measurement gas introduced from the gas introduction portion 2b is not sealed by the O-ring, so that the gap between the metal plate 51a and the film sample F is not measured. From the metal plate 51b and the film sample F to the gas permeation amount measurement chamber side (see the black arrow in FIG. 5), and the gas that has permeated the film sample F (see FIG. 5). 5), the gas permeability measurement of the film sample F cannot be performed with high accuracy.

また、図6に示すように、参考例1に係るガス透過度測定装置の問題を解消する変形例として、金属板51a,51bの対向面にOリング52a,bを埋設し、これらOリング52a,bでフィルム試料Fを狭持させても、Oリング52a,bが試料ホルダ50とともに装置内外に搬出入されるため、装置外でOリング52bに吸収されたガスが金属板51bとフィルム試料Fとの間からガス透過量測定室側に漏れ出し(図6中の黒矢印参照)、フィルム試料を透過したガス(図6中の白抜き矢印参照)と混ざり込み、フィルム試料Fのガス透過度測定を精度良く実施することができない。   Moreover, as shown in FIG. 6, as a modification to solve the problem of the gas permeability measuring apparatus according to Reference Example 1, O-rings 52a and 52b are embedded in opposing surfaces of the metal plates 51a and 51b, and these O-rings 52a are embedded. , B, the O-rings 52a, b are carried into and out of the apparatus together with the sample holder 50 even when the film sample F is held between the metal plate 51b and the film sample. Leaks into the gas permeation measuring chamber side from between F (see the black arrow in FIG. 6), mixes with the gas that has permeated through the film sample (see the white arrow in FIG. 6), and passes through the gas through the film sample F. The degree measurement cannot be performed with high accuracy.

参考例2に係るガス透過度測定装置では、図7に示すように、上流側及び下流側Oリング4a,bの外径Φに対して、開口部の直径Φが小さい金属製の試料ホルダ60を用いることとし、試料ホルダ60の金属板61a,61bでフィルム試料Fを狭持してガス透過度測定を行う点で、ガス透過度測定装置100と異なる。また、金属板51aよりもサイズが小さい金属板61aを用い、金属板61bのみを上流側及び下流側Oリング4a,bで狭持する点で、参考例1に係るガス透過度測定装置と異なる。なお、符号63は、トランスファーロッド31への取付部を示す。In the gas permeability measuring apparatus according to Reference Example 2, as shown in FIG. 7, a metal sample in which the diameter Φ 1 of the opening is smaller than the outer diameter Φ 2 of the upstream and downstream O-rings 4 a and 4 b. It is different from the gas permeability measuring apparatus 100 in that the holder 60 is used and the gas sample is measured by holding the film sample F between the metal plates 61a and 61b of the sample holder 60. Moreover, it differs from the gas permeability measuring apparatus according to Reference Example 1 in that a metal plate 61a having a smaller size than the metal plate 51a is used and only the metal plate 61b is sandwiched between the upstream and downstream O-rings 4a and 4b. . Reference numeral 63 denotes an attachment portion to the transfer rod 31.

この参考例2に係るガス透過度測定装置では、参考例1に係るガス透過度測定装置と異なり、前記測定用ガスが試料分析室12内に漏れ出すことはないものの、前記測定用ガスが金属板61bとフィルム試料Fとの接合面に直接到達し、この接合面には、Oリングによるシールがされていないことから、前記測定用ガスが金属板61bとフィルム試料Fとの間からガス透過量測定室側に漏れ出し(図7中の黒矢印参照)、フィルム試料を透過したガス(図7中の白抜き矢印参照)と混ざり込み、ガス透過度測定を正確に実施することができない。また、金属板61bとフィルム試料Fとの接合面にOリングを配しても、参考例1に係るガス透過度測定装置の変形例について説明した問題が生じ、フィルム試料Fのガス透過度測定を精度良く実施することができない。   Unlike the gas permeability measuring apparatus according to Reference Example 1, the gas permeability measuring apparatus according to Reference Example 2 does not leak into the sample analysis chamber 12, but the measuring gas is a metal. Since it directly reaches the joint surface between the plate 61b and the film sample F, and this joint surface is not sealed with an O-ring, the measurement gas passes through between the metal plate 61b and the film sample F. It leaks out to the quantity measuring chamber side (see black arrow in FIG. 7), mixes with the gas that has passed through the film sample (see white arrow in FIG. 7), and the gas permeability cannot be measured accurately. In addition, even when an O-ring is provided on the joint surface between the metal plate 61b and the film sample F, the problem described in the modification of the gas permeability measuring device according to Reference Example 1 occurs, and the gas permeability measurement of the film sample F occurs. Cannot be carried out with high accuracy.

これらに対し、ガス透過度測定装置100では、前記測定ガスのガス透過量測定室側に漏れ出しがなく、フィルム試料Fを透過したガスのみを測定対象とすることができ(図2中の白抜き矢印参照)、フィルム試料Fのガス透過度測定を高精度に実施することができる。   On the other hand, in the gas permeability measuring apparatus 100, there is no leakage to the gas permeation amount measurement chamber side of the measurement gas, and only the gas that has passed through the film sample F can be measured (white in FIG. 2). The gas permeability measurement of the film sample F can be performed with high accuracy.

1 シール機構
2 上流側シール部材
2a 上流側Oリング保持部
2b ガス導入部
3 下流側シール部材
3’ 下流側Oリング保持部
4a,b,52a,b Oリング
5 金属板
6 ガス供給源
10 試料分析部
11,21 真空容器
12 試料分析室
13 第2の真空ポンプ
14 試料ホルダ支持部
20 試料準備部
22 ヒータ
23 ストック部
24 ストック部支持部
25 試料ホルダストック機構
26 挿通部
27 試料準備室
28 第1の真空ポンプ
30 ゲート弁
31 トランスファーロッド
32,50,60 試料ホルダ
33a,b,51a,b,61a,b 金属板
34a〜d ビス
35,53,63 取付部
40 ガス暴露室
41 ガス透過量測定室
42 ガス透過量計測部(ガス分析器)
43 第3の真空ポンプ
100 ガス透過度測定装置
DESCRIPTION OF SYMBOLS 1 Seal mechanism 2 Upstream side seal member 2a Upstream side O-ring holding | maintenance part 2b Gas introduction part 3 Downstream side sealing member 3 'Downstream side O-ring holding | maintenance part 4a, b, 52a, b O-ring 5 Metal plate 6 Gas supply source 10 Sample Analysis unit 11, 21 Vacuum container 12 Sample analysis chamber 13 Second vacuum pump 14 Sample holder support unit 20 Sample preparation unit 22 Heater 23 Stock unit 24 Stock unit support unit 25 Sample holder stock mechanism 26 Insertion unit 27 Sample preparation chamber 28 1 Vacuum pump 30 Gate valve 31 Transfer rod 32, 50, 60 Sample holder 33a, b, 51a, b, 61a, b Metal plate 34a to d Screw 35, 53, 63 Mounting portion 40 Gas exposure chamber 41 Gas permeation amount measurement Chamber 42 Gas permeation measurement unit (gas analyzer)
43 3rd vacuum pump 100 Gas permeability measuring device

Claims (6)

開口部が形成され、前記開口部からフィルム試料のガス暴露面及びガス透過面の両面が露出する状態で前記フィルム試料が挿脱自在に内挿される金属製の試料ホルダと、
一端側が前記試料ホルダと脱着自在に取着可能とされるトランスファーロッドと、
前記トランスファーロッドを内部空間に気密状態で進退動自在として挿通させる挿通部が形成されるとともに前記試料ホルダが前記内部空間に滞留可能とされる試料準備部と、前記トランスファーロッドの進退動により内部空間で前記試料ホルダが搬出入可能とされる試料分析部と、開状態で前記試料準備部内−前記試料分析部内間で前記試料ホルダが搬出入可能とされ、閉状態で前記試料準備部内−前記試料分析部内間を気密状態で密閉可能とされるゲート弁とを有する真空容器部と、
下流側Oリングが前記試料ホルダから露出する前記フィルム試料の前記ガス透過面と当接するよう一部が突出した状態で埋設される下流側Oリング保持部を有し、前記試料分析部の内壁に固定される下流側シール部材と、上流側Oリングが前記試料ホルダから露出する前記フィルム試料の前記ガス暴露面と当接するよう一部が突出した状態で埋設され、前記上流側Oリングと前記下流側Oリングとで前記試料ホルダから露出する前記フィルム試料を狭持可能に前記下流側Oリング保持部と対向配置される上流側Oリング保持部及びガス供給源と接続されるガス導入部が形成され、前記下流側Oリング保持部に接近させて前記上流側Oリングと前記下流側Oリングとで前記フィルム試料を狭持させ、前記下流側Oリング保持部から離間させて前記上流側Oリングと前記下流側Oリングとの間に前記試料ホルダを挿通させるように少なくとも前記上流側Oリング保持部を移動可能として前記試料分析部に支持される上流側シール部材とで構成され、前記上流側Oリングと前記下流側Oリングとで前記フィルム試料を狭持した状態で、前記フィルム試料の前記ガス暴露面と前記上流側Oリングの内側と前記上流側シール部材の内側とで画成されるガス暴露室及び前記フィルム試料の前記ガス透過面と前記下流側Oリングの内側と前記下流側シール部材の内側と前記試料分析部の内壁で画成されるガス透過量測定室を形成するシール機構と、
前記試料準備部と接続され、前記真空容器内を排気する第1の真空ポンプと、
前記試料分析部の前記下流側Oリングからみて前記下流側シール部材の外側の位置に接続され、前記真空容器内を排気する第2の真空ポンプと、
前記試料分析部の前記ガス透過量測定室を画成する部分と接続され、前記フィルム試料から前記ガス透過量測定室内に透過した測定用ガスの透過量を測定するガス透過量計測器と、
を備えることを特徴とするガス透過度測定装置。
A metal sample holder in which an opening is formed, and the film sample is removably inserted in a state where both the gas exposed surface and the gas permeable surface of the film sample are exposed from the opening,
A transfer rod whose one end is detachably attached to the sample holder;
An insertion part for allowing the transfer rod to be inserted into the internal space in an airtight state so as to be movable forward and backward is formed, and a sample preparation part for allowing the sample holder to stay in the internal space; and an internal space by the forward and backward movement of the transfer rod The sample holder can be carried in and out, and the sample holder can be carried in and out between the sample preparation unit and the sample analysis unit in the open state, and in the sample preparation unit and the sample in the closed state. A vacuum vessel portion having a gate valve that can be hermetically sealed between the analysis portions;
A downstream O-ring holding portion embedded in a protruding state so that the downstream O-ring is in contact with the gas permeable surface of the film sample exposed from the sample holder, and is provided on the inner wall of the sample analysis portion A downstream seal member to be fixed and an upstream O-ring are embedded with a part protruding so as to come into contact with the gas exposure surface of the film sample exposed from the sample holder, and the upstream O-ring and the downstream O-ring A gas inlet that is connected to a gas supply source and an upstream O-ring holding portion that is disposed opposite to the downstream O-ring holding portion are formed so that the film sample exposed from the sample holder can be held by the side O-ring. The film sample is sandwiched between the upstream O-ring and the downstream O-ring by being brought close to the downstream O-ring holding portion and separated from the downstream O-ring holding portion. The upstream O-ring holding member is supported by the sample analysis unit so that at least the upstream O-ring holding unit can be moved so that the sample holder is inserted between the upstream O-ring and the downstream O-ring. In the state where the film sample is held between the upstream O-ring and the downstream O-ring, the gas exposure surface of the film sample, the inside of the upstream O-ring, and the inside of the upstream sealing member A gas exposure chamber defined by the gas exposure chamber defined, the gas permeable surface of the film sample, the inner side of the downstream O-ring, the inner side of the downstream seal member, and the inner wall of the sample analyzer; A sealing mechanism to be formed;
A first vacuum pump connected to the sample preparation unit and evacuating the vacuum vessel;
A second vacuum pump connected to a position outside the downstream seal member as viewed from the downstream O-ring of the sample analyzer and exhausting the vacuum vessel;
A gas permeation amount measuring device connected to a portion defining the gas permeation amount measurement chamber of the sample analysis unit and measuring a permeation amount of a measurement gas permeated from the film sample into the gas permeation amount measurement chamber;
A gas permeability measuring device comprising:
更に、試料分析部のガス透過量測定室を画成する部分と接続され、前記ガス透過量測定室内を排気する第3の真空ポンプを備える請求項1に記載のガス透過度測定装置。   The gas permeability measuring apparatus according to claim 1, further comprising a third vacuum pump connected to a portion defining a gas permeation amount measurement chamber of the sample analysis unit and exhausting the gas permeation amount measurement chamber. 下流側シール部材から一部が突出する下流側Oリングの内側に一部が開口された金属板が嵌着される請求項1から2のいずれかに記載のガス透過度測定装置。   The gas permeability measuring apparatus according to claim 1, wherein a metal plate having a part thereof opened is fitted inside a downstream O-ring partly projecting from the downstream side sealing member. 上流側シール部材が、一の面の外周側に厚肉の部として形成される上流側Oリング保持部と、前記一の面側を他の面側に押し出すように前記他の面上に立設され、胴部が前記上流側シール部材の下流側シール部材に対する離間移動及び接近移動の移動操作部をなすとともに試料分析部内の気密を取りつつ立設端側から測定用ガスを管内に導入可能な中空管状のガス導入部とを有する全体略円盤状部材として形成される請求項1から3のいずれかに記載のガス透過度測定装置。   An upstream seal member stands on an upstream O-ring holding portion formed as a thick portion on the outer peripheral side of one surface and the other surface so as to push the one surface side to the other surface side. It is possible to introduce the measurement gas into the pipe from the standing end side while the barrel part forms a moving operation part for separating and approaching the upstream side sealing member with respect to the downstream side sealing member while keeping the airtightness inside the sample analyzing part. The gas permeability measuring device according to any one of claims 1 to 3, wherein the gas permeability measuring device is formed as an overall substantially disk-shaped member having a hollow tubular gas introduction portion. 試料準備部の内部空間を加熱するヒータが配設される請求項1から4のいずれかに記載のガス透過度測定装置。   The gas permeability measuring apparatus according to any one of claims 1 to 4, wherein a heater for heating the internal space of the sample preparation unit is provided. 試料準備部内に配され、試料ホルダをストックするストック部を有する請求項1から5のいずれかに記載のガス透過度測定装置。   The gas permeability measuring device according to claim 1, further comprising a stock unit that is arranged in the sample preparation unit and stocks the sample holder.
JP2016569241A 2015-01-15 2015-11-24 Gas permeability measuring device Active JP6337293B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015005830 2015-01-15
JP2015005830 2015-01-15
PCT/JP2015/082853 WO2016114003A1 (en) 2015-01-15 2015-11-24 Gas permeability measurement device

Publications (2)

Publication Number Publication Date
JPWO2016114003A1 JPWO2016114003A1 (en) 2017-07-27
JP6337293B2 true JP6337293B2 (en) 2018-06-06

Family

ID=56405560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016569241A Active JP6337293B2 (en) 2015-01-15 2015-11-24 Gas permeability measuring device

Country Status (2)

Country Link
JP (1) JP6337293B2 (en)
WO (1) WO2016114003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515087B1 (en) * 2022-12-06 2023-03-29 한국건설기술연구원 Test apparatus for measuring air permeability coefficient of concrete specimen, and test method using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446683B2 (en) * 2015-03-05 2019-01-09 埼玉県 Water vapor permeability measuring device and water vapor permeability measuring method of sample
WO2018155678A1 (en) * 2017-02-27 2018-08-30 国立研究開発法人産業技術総合研究所 Device for evaluating gas barrier properties and method for evaluating gas barrier properties
KR102538826B1 (en) * 2018-11-12 2023-06-02 삼성디스플레이 주식회사 Moisture permeability measuring device
CN109813643B (en) * 2019-01-01 2021-06-08 中国人民解放军63653部队 Concrete and gas permeability measuring method of surface coating material thereof
DE102020209493A1 (en) * 2020-07-28 2022-02-03 Robert Bosch Gesellschaft mit beschränkter Haftung Apparatus and method for determining a gas permeation index of a layer of material
KR102632280B1 (en) * 2023-04-28 2024-02-02 한국표준과학연구원 Sample Holder with Double Sealing and Exhaust Structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441324Y2 (en) * 1984-10-15 1992-09-29
JPS63157870A (en) * 1986-12-19 1988-06-30 Anelva Corp Substrate treatment device
JP3264458B2 (en) * 1993-02-17 2002-03-11 三井化学株式会社 Gas permeability measuring device for film
JP2007147648A (en) * 2000-12-01 2007-06-14 Ebara Corp Defect inspection method and substrate inspection device
JP3930871B2 (en) * 2004-06-04 2007-06-13 株式会社クリエテック Moisture permeability / gas permeability measuring device and gas permeability measuring method
GB2437136A (en) * 2006-03-30 2007-10-17 Ltd Technolox Measuring rate of permeation
CN101809427B (en) * 2007-09-28 2013-09-04 株式会社爱发科 Device for measuring steam permeability, and method for the device
US8388742B2 (en) * 2010-01-13 2013-03-05 E I Du Pont De Nemours And Company Apparatus to measure permeation of a gas through a membrane
JP5734109B2 (en) * 2011-06-20 2015-06-10 株式会社住化分析センター Measuring apparatus and measuring method
JP2014002038A (en) * 2012-06-19 2014-01-09 Seinan Kogyo Kk Vapor permeability measuring apparatus and vapor permeability measuring method
JP6345421B2 (en) * 2013-01-31 2018-06-20 国立研究開発法人産業技術総合研究所 Gas barrier property evaluation apparatus and evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515087B1 (en) * 2022-12-06 2023-03-29 한국건설기술연구원 Test apparatus for measuring air permeability coefficient of concrete specimen, and test method using the same

Also Published As

Publication number Publication date
WO2016114003A1 (en) 2016-07-21
JPWO2016114003A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6337293B2 (en) Gas permeability measuring device
JP5386319B2 (en) Leak detection system
JP4431144B2 (en) Method and apparatus for detecting large-scale leaks in sealed products
CN103454125B (en) The system and method for measuring hydrogen content in sample
US7555934B2 (en) Fluid permeation testing apparatus employing mass spectrometry
JP4759096B2 (en) Permeability evaluation apparatus and evaluation method
JP6281915B2 (en) Gas permeability measuring device
JP4511543B2 (en) Leakage detection apparatus and method using accumulation method
JP2011107034A (en) Leak detector
CN108660419A (en) One kind is based on volatile corrosion substance film deposition under UHV condition and catalysis reaction test device
US10502651B2 (en) Creating a mini environment for gas analysis
KR101298043B1 (en) Gas permeability measurement unit for plate-type sample
TW201729257A (en) Processing apparatus
JP7041665B2 (en) Gas barrier property evaluation device and gas barrier property evaluation method
CN115718133A (en) Device and method for measuring gas components in sealed vacuum tube
JPH06241978A (en) Gas transmittance measuring device for film
JP2014002038A (en) Vapor permeability measuring apparatus and vapor permeability measuring method
JP2014149215A (en) Gas permeability evaluation device
JP2016161315A (en) Flow rate calibration device
JP6324861B2 (en) Cryostat and outgas evaluation apparatus for superconducting magnet constituent material and outgas evaluation method thereof
JP2015017846A (en) Leak detecting device
RU2680159C9 (en) Method for determining volumes of closed cavities
JP2001330534A (en) Method of leak check for decompression treatment device and decompression treatment device
KR101063089B1 (en) Outgassing device and measuring method
JP2017050181A (en) Transport device, processing device, vacuum device, and charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6337293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250