JPS62119433A - Hydrogen transmission coefficient measuring apparatus for film - Google Patents

Hydrogen transmission coefficient measuring apparatus for film

Info

Publication number
JPS62119433A
JPS62119433A JP26054585A JP26054585A JPS62119433A JP S62119433 A JPS62119433 A JP S62119433A JP 26054585 A JP26054585 A JP 26054585A JP 26054585 A JP26054585 A JP 26054585A JP S62119433 A JPS62119433 A JP S62119433A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
concentration
chamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26054585A
Other languages
Japanese (ja)
Inventor
Katsuhiko Masuda
増田 雄彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26054585A priority Critical patent/JPS62119433A/en
Publication of JPS62119433A publication Critical patent/JPS62119433A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve handy, quick measurement at a high accuracy without use of costly hydrogen concentration analyzer, by providing a gas electrode type hydrogen sensor on the side of a measuring chamber divided from a gas chamber containing fixed concentration of hydrogen by a sample film. CONSTITUTION:A measuring chamber 3 is divided from a gas chamber 1 by sample film 5 fixed airtight in the perimeter with flange 7 having a packing 6. As a hydrogen gas flows into the gas chamber 1, with a passage of time, the concentration C of hydrogen in the measuring chamber 3 rises gradually by hydrogen passing through the sample film 5, in response an output voltage E of a gas electrode type hydrogen sensor 8 is inputted into a hydrogen concentration measuring circuit 11 and secular changes in the concentration of hydrogen is recorded with recorder 12. On the other hand, a hydrogen transmission coefficient measuring section 20 computes the hydrogen transmission coefficient P of the sample film from the transmission time of hydrogen gas, capacity of the measuring chamber 3, the thickness of supplied film and the like to be shown on a display unit 24.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は高分子フィルム金属薄膜などのガス透過係数
、特に水素ガスの透過係数を測定する装fK関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a device for measuring the gas permeability coefficient of a polymer film, metal thin film, etc., particularly the hydrogen gas permeation coefficient.

〔従来技術とその問題点〕[Prior art and its problems]

近年高分子化学の発達につれて各種の高分子フィルムが
作られるよう姉なり機械的、熱的特性や各種機能性の均
一性の向上に伴なって各種の機能性を生かした用途に用
いられている。ことに高分子フィルムの持つ機能の一つ
としてガスの透過性を利用したガスの濃縮分離機能が注
目されている。
In recent years, with the development of polymer chemistry, various types of polymer films have been produced, and as the uniformity of mechanical and thermal properties and various functionalities has improved, they have been used for applications that take advantage of various functionalities. . In particular, one of the functions that polymer films have is the ability to concentrate and separate gases using gas permeability.

その中でも酸素の濃縮分離と並んで水素の濃縮分離技術
の開発研究が盛んに行なわれている。水素の濃縮分離技
術を開発するに当って最も基本となるのはフィルムの水
素透過係数の測定であシ、簡便かつ短時間で透過係数を
求められる装置の開発が求められている。
Among them, research and development of hydrogen concentration and separation technology is being actively conducted along with oxygen concentration and separation technology. The most basic step in developing hydrogen concentration and separation technology is the measurement of the hydrogen permeability coefficient of a film, and there is a need for the development of an apparatus that can easily and quickly determine the permeability coefficient.

第3図は従来技術の一例を示す測定装置の原理的説明図
でsb、ガス室1と測定室5の間に供試フィルム5を固
定、し測定室3をあらかじめ真空にするか、窒素または
アルゴンなどの不活性ガスで充満しておく。その後コッ
ク2Aおよび2Bを通してガス室1に一定濃度の水素ガ
スを流し、一定時間経過後供試フィルム5を透過した水
素を含む測定室乙のガスを採取してガスクロマトグラフ
ィ−または質量分析計によシ水素ガス濃度を測定する。
FIG. 3 is an explanatory diagram of the principle of a measuring device showing an example of the prior art. sb, the sample film 5 is fixed between the gas chamber 1 and the measuring chamber 5, and the measuring chamber 3 is evacuated in advance or nitrogen or Fill with inert gas such as argon. After that, hydrogen gas of a certain concentration is flowed into the gas chamber 1 through the cocks 2A and 2B, and after a certain period of time, the gas in the measurement chamber B containing hydrogen that has permeated through the test film 5 is collected and analyzed by gas chromatography or mass spectrometry. Measure hydrogen gas concentration.

この場合密閉された測定室6の水素濃度Cと水素透過係
数Pおよび時間tとの間には次の式が成り立つ。
In this case, the following equation holds between the hydrogen concentration C in the sealed measurement chamber 6, the hydrogen permeability coefficient P, and the time t.

ここでCo:ガス室1に通すガス中の水素濃度A :フ
ィルムの透過面積 vO:測定室6の容積 d :フィルムの厚さ 第4図は測定室6中の水素濃度の経時変化を示す特性線
図であり、横軸に時間t、縦軸に測定室6の水素濃度C
をとって図示したものである。したがって、ある時間t
における測定室乙の水素濃度Cが測定されれば(1)弐
に基づいて透過係数Pをば、ガス室1に一定濃度の水素
を密封した状態でに、何らかの方法でガスを採取する必
要があシ、一般的には測定室乙に接続しているコック4
Aまたは4Bを介してその外側のパイプにガスサンプラ
ーをとりつけて採取する方法がとられている。
Here, Co: hydrogen concentration in the gas passed through gas chamber 1 A: permeation area of the film vO: volume of measurement chamber 6 d: thickness of film It is a diagram in which the horizontal axis represents time t, and the vertical axis represents hydrogen concentration C in the measurement chamber 6.
This is an illustration of the figure. Therefore, for a certain time t
If the hydrogen concentration C in measurement chamber B is measured at Reeds, generally the cock 4 connected to the measurement chamber B
A method is used to collect gas by attaching a gas sampler to the pipe outside A or 4B.

この方法では、測定を早めるために測定室6の容積を小
さくした場合、ガスサンプラーおよび接続部の容積と測
定室6の容積vOとが同等の容積になるかあるいはvO
O方が小さくなることもあシ得る。この場合にはサンプ
リングによる誤差が生じ易く、測定の精度が悪くなると
いう問題を生ずる。
In this method, when the volume of the measurement chamber 6 is reduced in order to speed up the measurement, the volume of the gas sampler and the connection part and the volume of the measurement chamber 6 vO become the same volume or vO
It is also possible for O to become smaller. In this case, errors due to sampling are likely to occur, resulting in a problem of poor measurement accuracy.

こうした欠点をなくすために、測定室6に透過してきた
水素をキャリヤーガスを用いて直接ガスコロマドグラフ
や質量分析計へ導く方法も考えられている。このような
方法によれば、分析ガスのサンプリングによる誤差の問
題を低減できるが、測定のためにガスクロマトグラフや
質量分析計などの高価な別の測定手段を用意しなければ
ならず、測定までの機器の調整、カラムの選定、温度、
感度の調整、標準ガスによる校正、ウオーミングアツプ
など非常に手間のかかる操作をあらかじめ行なっておか
なければならず、測定準備に長時間を要するという問題
がある。さらに最も大きな問題は1回の測定によシ第4
図に示した特性曲線中の一点の水素濃度だけしか測定で
きないことである。
In order to eliminate these drawbacks, a method has been considered in which the hydrogen that has permeated into the measurement chamber 6 is guided directly to a gas colomatograph or mass spectrometer using a carrier gas. Although this method can reduce the problem of errors caused by sampling the analysis gas, it requires the preparation of another expensive measurement means such as a gas chromatograph or mass spectrometer for measurement, and the time required for measurement is Equipment adjustment, column selection, temperature,
There is a problem in that very time-consuming operations such as sensitivity adjustment, standard gas calibration, and warming-up must be performed in advance, and measurement preparation requires a long time. Furthermore, the biggest problem is that only one measurement is required.
The problem is that it is possible to measure only the hydrogen concentration at one point on the characteristic curve shown in the figure.

水素透過係数を精度よく測定するにはガス室1の濃度C
o  (測定室6の飽和濃度)に対して測定濃度Cが小
さすぎても、また近づきすぎても不適当であり、飽和濃
度Coに対して30%〜90%の測定濃度範囲が適当で
ある。しかしながら、未知の透過係数を持った供試フィ
ルム5について水素濃度を測定する場合、適当な時間で
サンプリングをしてその濃度を測定すると、必らずしも
最適濃度範囲で測定できるとは限らず、そのために大き
な誤差を生ずる危険性を伴う。したがって測定後年適当
とわかれば再度測定をしなければならず、それだけ余分
な時間を必要とする。以上に示したように従来の方法で
は測定装置そのものが高価であるとともに、測定誤差を
生じる要因も多く、精度のよい測定を行うKは多くの時
間を必要とする欠点があった。
To accurately measure the hydrogen permeability coefficient, the concentration C in gas chamber 1 is
o It is inappropriate if the measured concentration C is too small or too close to (the saturated concentration of the measurement chamber 6), and it is appropriate that the measured concentration range is 30% to 90% with respect to the saturated concentration Co. . However, when measuring the hydrogen concentration of the test film 5 with an unknown permeability coefficient, it is not always possible to measure the concentration within the optimum concentration range by sampling at an appropriate time and measuring the concentration. Therefore, there is a risk of large errors occurring. Therefore, if it is determined that it is appropriate after the measurement, the measurement must be taken again, which requires extra time. As described above, in the conventional method, the measuring device itself is expensive, there are many factors that cause measurement errors, and K to perform accurate measurement requires a lot of time.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術の持つ上記欠点を克服し、簡便かつ
短時間に精度よく供試フィルムの水素透過係数を測定で
きる装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks of the prior art and to provide an apparatus that can easily and accurately measure the hydrogen permeability coefficient of a test film in a short time.

〔発明の要点〕[Key points of the invention]

本発明は、ガス電極形(電気化学的)水素センサー(以
下単に水素センサーと呼ぶ)が、水素濃度に対応した電
圧を常温においても出力することに着目し、供試フィル
ムによシ一定濃度の水素を含むガス室と区画された測定
室側に水素センサーを設け、水素センサーの出力回路側
に設けられた水素濃度測定部により水素濃度の経時変化
を測定記録するとともに、水素濃度測定部の出力信号と
、タイマーおよび条件設定回路の出力信号とを受けて所
定の算式に基づいて供試フィルムの水素透過係数を演算
し、演算結果を表示する水素透過係数測定部とを備える
よう構成したこと例より、高価な水素濃度の分析装置を
用いることなく、最適水素濃度範囲において供試フィル
ムの水素透過係数を簡便かつ迅速に精度よく測定1表示
できるようKしたものである。
The present invention focuses on the fact that a gas electrode type (electrochemical) hydrogen sensor (hereinafter simply referred to as a hydrogen sensor) outputs a voltage corresponding to the hydrogen concentration even at room temperature. A hydrogen sensor is installed in the measurement chamber side that is separated from the gas chamber containing hydrogen, and the hydrogen concentration measuring section installed on the output circuit side of the hydrogen sensor measures and records the change in hydrogen concentration over time, and the output of the hydrogen concentration measuring section is An example of a configuration including a hydrogen permeability coefficient measurement section that receives the signal and the output signal of the timer and condition setting circuit, calculates the hydrogen permeability coefficient of the test film based on a predetermined formula, and displays the calculation result. Furthermore, the hydrogen permeability coefficient of a test film can be easily, quickly, and accurately measured and displayed in the optimum hydrogen concentration range without using an expensive hydrogen concentration analyzer.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例装置の概略構成図である。図に
おいて、1は一定濃度の水素ガスが封入あるいは流通す
るガス室、6は測定室であり、画室はバッキング6を有
する7ランジ7たよシ周囲が気密忙固定された高分子フ
ィルムあるいは金属箔などの供試フィルム5により区画
されている。
FIG. 1 is a schematic diagram of an apparatus according to an embodiment of the present invention. In the figure, 1 is a gas chamber in which hydrogen gas of a certain concentration is sealed or circulated, 6 is a measurement chamber, and the compartment is a polymer film or metal foil that is airtightly fixed around the 7 flange 7 having a backing 6. It is divided by the test film 5.

8は測定室乙に収納された水素センサーであシ、例えば
発明者らKよシ既に提案された水素電極−金属・金属塩
(金属酸化物)電極形水素センサー(特開昭57−14
5529号公報参照)や、水素電極−水素電極形水素セ
ンサー(特開昭57−145528号公報参照)などの
ガス電極形(電気化学的)水素センサーを用いることが
できる。
8 is a hydrogen sensor housed in the measurement chamber B, for example, a hydrogen electrode-metal/metal salt (metal oxide) electrode type hydrogen sensor (Japanese Patent Application Laid-Open No. 57-14
A gas electrode type (electrochemical) hydrogen sensor such as a hydrogen electrode-hydrogen electrode type hydrogen sensor (see Japanese Patent Laid-Open No. 57-145528) can be used.

なお、水素ガスを検知できるセンサーとしては接触燃焼
式ガスセンサーや半導体式ガスセンサーがあるが、これ
らは空気の存在下で触媒電極を水素と接触させて燃焼反
応または酸化反応を起こさせるものであシ、酸素の存在
を必要とし高温になるために本装置への適用は不適当で
ある。
Sensors that can detect hydrogen gas include catalytic combustion gas sensors and semiconductor gas sensors, but these sensors bring a catalyst electrode into contact with hydrogen in the presence of air to cause a combustion or oxidation reaction. However, since it requires the presence of oxygen and generates high temperatures, it is unsuitable for application to this device.

上述のように構成された水素濃度の検知部において、水
素センサー8の出力電圧Eと測定室6内の水素濃度Cと
の間には次の関係が成立つ。
In the hydrogen concentration detection section configured as described above, the following relationship holds between the output voltage E of the hydrogen sensor 8 and the hydrogen concentration C in the measurement chamber 6.

T EwEo十−Σ丁=ifLC・・・・・・・・・・(2
)ただし、EOは水素センサーの基準電極の種類ごとに
定まる基準電圧、Rは気体定数、Tは絶対温度、Fは7
アラデ一定数であり、基準電圧は測定室6に既知の濃度
Coの水素ガスを流して水素ガスセン?−8の出力電圧
Eを測定することによシ容易に求めることができる。こ
のように水素濃度Cと出力電圧Eとの関係が校正された
水素センサー8を収納した測定室3は、真空状態あるい
は不活性ガスを充填した状態にされた後コック4A。
T EwEo 1 - Σ Ding = ifLC・・・・・・・・・・(2
) However, EO is the reference voltage determined for each type of reference electrode of the hydrogen sensor, R is the gas constant, T is the absolute temperature, and F is 7
The reference voltage is set by flowing hydrogen gas with a known concentration of Co into the measurement chamber 6 and measuring the hydrogen gas temperature. It can be easily determined by measuring the output voltage E of -8. The measurement chamber 3 housing the hydrogen sensor 8 whose relationship between the hydrogen concentration C and the output voltage E has been calibrated in this way is brought into a vacuum state or filled with an inert gas, and is then turned off by the cock 4A.

4Bが閉じられる。また、ガス室IKは測定室3の状態
に対応して既知の濃度Co (圧力)の水素ガスあるい
は既知の濃度COの水素を含む窒素あるいはアルゴンな
どの不活性ガスがコック2A、2Bを介して流される。
4B is closed. In addition, depending on the state of the measurement chamber 3, hydrogen gas with a known concentration Co (pressure) or an inert gas such as nitrogen or argon containing hydrogen with a known concentration CO is supplied to the gas chamber IK via cocks 2A and 2B. be swept away.

ただし、ガス室1の容積が測定室3の容積vOに比べて
十分大きい(例えば100倍以上)場合にはガス室1に
水素濃度COなるガスを封入してもよい。このような状
態で時間tが経過するにしたがい供試フィルム5を透過
した水素により測定室5内の水素濃度Cは徐々に上昇し
、これに対応して水素センサー8の出力端子8AK出力
電圧Eが発生する。
However, if the volume of the gas chamber 1 is sufficiently larger than the volume vO of the measurement chamber 3 (for example, 100 times or more), the gas chamber 1 may be filled with gas having a hydrogen concentration of CO. As time t elapses in this state, the hydrogen concentration C in the measurement chamber 5 gradually increases due to the hydrogen that has passed through the sample film 5, and correspondingly, the output voltage E of the output terminal 8AK of the hydrogen sensor 8 increases. occurs.

10は水素センサー8の出力側に設けられた水素濃度測
定部であシ、水素センサー8の出力電圧Eを水素濃度C
に換算して出力する水素濃度測定回路11を介して、記
録計12に水素濃度の経時変化が記録される。20は供
試フィルム5の水素透過係数測定部であり、水素ガスの
透過時間tを計測するタイマー21 、(11式におい
て水素透過係数Cを求めるに必要なガス室1の水素濃度
C0、供試フィルム5の有効透過面積A、測定室3の容
積vO2供試フィルムの厚みdなどあらかじめ定まる定
数を入力する条件設定回路22、水素濃度測定部10.
タイマ−219条件設定回路22それぞれの出力信号を
受け(1)式に基づいて供試フィルムの水素透過係数P
を演算し出力する演算回路26、ならびにこの演算回路
23の演算結果を表示する表示器24とで構成されてお
シ、演算回路23を水素濃度測定部10の出力水素濃度
信号が第4図における飽和値Go(ガス室1側の水素濃
度CoK等しい)の60%ないし90%の最適測定範囲
内の所定レベルに到達するのを見計らってタイマー9に
内蔵されたスイッチを動作させることKよシ、1回また
は数回の演算忙よシ供試フィルムの水素透過係数Pを精
度・よく測定することができる。また、演算回路23を
連続的に動作させて水素透過係数の経時変化特性を求め
ることも可能である。
10 is a hydrogen concentration measuring section provided on the output side of the hydrogen sensor 8, which converts the output voltage E of the hydrogen sensor 8 into the hydrogen concentration C.
Changes in the hydrogen concentration over time are recorded on the recorder 12 via the hydrogen concentration measurement circuit 11 which converts the hydrogen concentration into output. 20 is a hydrogen permeability coefficient measurement unit of the sample film 5, a timer 21 for measuring the permeation time t of hydrogen gas, (the hydrogen concentration C0 in the gas chamber 1 necessary to obtain the hydrogen permeability coefficient C in equation 11, the sample A condition setting circuit 22 for inputting predetermined constants such as the effective permeation area A of the film 5, the volume vO2 of the measurement chamber 3, the thickness d of the test film, and the hydrogen concentration measuring section 10.
The timer 219 receives the output signals from the condition setting circuit 22 and calculates the hydrogen permeability coefficient P of the test film based on equation (1).
It is composed of an arithmetic circuit 26 that calculates and outputs the arithmetic circuit 26, and a display 24 that displays the arithmetic results of the arithmetic circuit 23. Activate the switch built into the timer 9 after reaching a predetermined level within the optimal measurement range of 60% to 90% of the saturation value Go (hydrogen concentration CoK on the gas chamber 1 side is equal). After one or several calculations, the hydrogen permeability coefficient P of the test film can be measured with high accuracy. Furthermore, it is also possible to continuously operate the arithmetic circuit 23 to obtain the temporal change characteristics of the hydrogen permeability coefficient.

第2図は実施例における水素センサーの一例を示す要部
の側断面図であシ、水素電極−金属・金属塩(金属酸化
物)電極形のガス電極電気化学的な水素センサーの一例
を示したものである。図において、31は7ランジを有
する絶縁材からなる容器でsb、測定室6中のガスに接
触する側に水素電極62、容器31の奥には例えば銀・
塩化銀電極、銀・リン酸銀電極等の対電極36、両電極
32.33間には例えば銀イオンを通さない隔壁34に
よシニ層に区画されそれぞれ50%以上の気孔率を有す
る多孔質板に塩酸水溶液あるいはシん酸水溶液等の電界
液を含浸したマ) IJソックス5および66、それぞ
れの積層体からなる水素センサ主体部分が収納されてお
シ、対電極33側からは電気端子37が、水素電極32
側からは抑圧板を兼ねた導電金具58に電気端子69が
設けられている。また、水素電極52には触媒としての
白金黒付きの黒鉛からなる電極が、対電極63には鍜ま
たは銀メツキ電極が、またマトリックス36には塩化銀
またはリン酸銀などを飽和溶解した電界液が含浸され、
隔壁64によシ銀イオンがマトリックス55側に移動し
てマトリックスの導電性を阻害しないよう構成される。
Figure 2 is a side cross-sectional view of the main parts of an example of a hydrogen sensor according to an embodiment, and shows an example of a hydrogen electrode-metal/metal salt (metal oxide) electrode type gas electrode electrochemical hydrogen sensor. It is something that In the figure, reference numeral 31 denotes a container made of an insulating material having seven lunges, a hydrogen electrode 62 is placed on the side that comes into contact with the gas in the measurement chamber 6, and a silver electrode, for example,
A counter electrode 36 such as a silver chloride electrode or a silver/silver phosphate electrode, and a porous layer partitioned between the two electrodes 32 and 33 by a partition wall 34 that does not allow silver ions to pass through, each having a porosity of 50% or more. The hydrogen sensor main part consisting of IJ socks 5 and 66 and their respective laminates is housed in a plate impregnated with an electrolytic solution such as a hydrochloric acid aqueous solution or a cynic acid aqueous solution, and an electrical terminal 37 is connected from the counter electrode 33 side. However, the hydrogen electrode 32
From the side, an electrical terminal 69 is provided on a conductive metal fitting 58 that also serves as a suppression plate. Further, the hydrogen electrode 52 is an electrode made of graphite with platinum black as a catalyst, the counter electrode 63 is a molten or silver-plated electrode, and the matrix 36 is an electrolytic solution containing saturated silver chloride or silver phosphate. is impregnated with
The partition wall 64 is configured so that silver ions do not move toward the matrix 55 and inhibit the conductivity of the matrix.

上述のように形成された水素センサー8を測定室3に設
置した場合、測定室6内の水素濃度Cの上昇にともない
、水素電極32によシ水素はイオン化してマトリックス
65中の電解液中に溶解し、両電極52,66の間の電
位差が変化する。このようにして、小形に形成された水
素センサーにより測定室6円の水素濃度の僅かな変化を
電圧信号の変化として検知することができる。
When the hydrogen sensor 8 formed as described above is installed in the measurement chamber 3, as the hydrogen concentration C in the measurement chamber 6 increases, the hydrogen is ionized by the hydrogen electrode 32 and is dissolved in the electrolyte in the matrix 65. The potential difference between the electrodes 52 and 66 changes. In this way, a small change in the hydrogen concentration in the measurement chamber 6 can be detected as a change in the voltage signal using the small hydrogen sensor.

なお、対電極66としては前述の金属−金属塩(金属酸
化物)電極に限定されるものではなく、例えば電極32
と同様な一対の水素電極で構成してもよく、またマトリ
ックス35.36の代シに電解液槽を用いてもよい。
Note that the counter electrode 66 is not limited to the metal-metal salt (metal oxide) electrode described above; for example, the counter electrode 32
It may be constructed with a pair of hydrogen electrodes similar to the above, or an electrolyte bath may be used in place of the matrices 35 and 36.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、供試フィルムによシ既知の水素
濃度のガスを包蔵するガス室と区画された供試フィルム
の透過水素ガスの測定室側にガス電極形の水素センサー
を設け、その出力側に配された水素濃度測定部により連
続して水素濃度を測定、記録するととも罠、タイマーお
よび条件設定回路を備え、これらの出力信号および水素
濃度信号を受けて所定の算式に基づいて供試フィルムの
水素透過係数を演算かつ表示する水素透過係数測定部を
備えるよう構成した。その結果、従来技術で問題となっ
た分析ガスのサンプリングに伴う水素濃度の測定誤差、
測定準備時間や測定の繰シ返し時間の長期化などの問題
点が排除され、特別な分析装置を用いることなく測定室
の水素濃度を連続して精度よく測定記録できるととも釦
、この測定水素濃度が最適測定濃度範囲忙到達した時点
を見計らって水素透過係数測定部を動作させることによ
シ、供試フィルムの水素透過係数を簡便、迅速かつ精度
よく測定できるフィルムの水素透過係数測定装置を経済
的洗有利に提供することができる。
As described above, the present invention provides a hydrogen sensor in the form of a gas electrode on the measurement chamber side of the permeated hydrogen gas of the test film, which is separated from the gas chamber containing gas with a known hydrogen concentration in the test film. The hydrogen concentration measurement unit placed on the output side continuously measures and records the hydrogen concentration, and is equipped with a trap, timer, and condition setting circuit, and receives these output signals and hydrogen concentration signals and calculates the hydrogen concentration based on a predetermined formula. It was configured to include a hydrogen permeability coefficient measuring section that calculates and displays the hydrogen permeability coefficient of the test film. As a result, the measurement error of hydrogen concentration due to sampling of analysis gas, which was a problem with conventional technology,
Problems such as long measurement preparation time and measurement repeat time are eliminated, and the hydrogen concentration in the measurement chamber can be continuously measured and recorded with high accuracy without using special analyzers. We have developed a film hydrogen permeability coefficient measuring device that can easily, quickly, and accurately measure the hydrogen permeability coefficient of a sample film by operating the hydrogen permeation coefficient measuring section at the point when the concentration reaches the optimal measurement concentration range. It can be provided economically.

また、d:11定室の水素濃度を連続して簡便に測定記
録できることKよシ、透過係数が広い範囲にわたる高分
子フィルムや金属フィルム、あるいはそれに好適な透過
面積を有する測定室に対して最適測定濃度範囲を容易に
知ることができるとともに、条件設定回路やタイマーに
よシ上記条件に関連した計算条件を記憶させることがで
きるので、水素透過係数が大幅に異なるフィルム類の水
素透過係数を効率よく測定できる利点が得られる。
In addition, it is possible to easily and continuously measure and record the hydrogen concentration in a d:11 fixed chamber, making it ideal for polymer films and metal films with a wide range of permeability coefficients, or for measurement chambers with a permeation area suitable for them. Not only can you easily know the measurement concentration range, but also the calculation conditions related to the above conditions can be stored in the condition setting circuit and timer. It has the advantage of being well measurable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置を示す概略構成図、第2図
は実施例忙おける水素センサーの一例を示す要部の側断
面図、第3図は従来装置の一例を示す原理的説明図、第
4図は測定室の水素濃度の経時変化特性線図である。 1・・・ガス室、ろ・・・測定室、5・・・供試フィル
ム、8・・・ガス電極形水素センサー(水素センサー)
、10・・・水素濃度測定部、11・・・水素濃度測定
回路12・・・記録計、20・・・水素透過係数測定部
、21・・・タイマー、22・・・条件設定回路、23
・・・演算回路、24・・・表示器、32・・・ガス電
極、33・・・対電極、34・・・隔壁、35.36・
・・マトリックス。 第2図 第3図 第4図  時″−1
Fig. 1 is a schematic configuration diagram showing a device according to an embodiment of the present invention, Fig. 2 is a sectional side view of essential parts showing an example of a hydrogen sensor according to an embodiment, and Fig. 3 is a principle explanation showing an example of a conventional device. FIG. 4 is a characteristic diagram of the change in hydrogen concentration over time in the measurement chamber. 1... Gas chamber, filter... measurement chamber, 5... test film, 8... gas electrode type hydrogen sensor (hydrogen sensor)
, 10... Hydrogen concentration measuring section, 11... Hydrogen concentration measuring circuit 12... Recorder, 20... Hydrogen permeability coefficient measuring section, 21... Timer, 22... Condition setting circuit, 23
... Arithmetic circuit, 24 ... Display device, 32 ... Gas electrode, 33 ... Counter electrode, 34 ... Partition wall, 35.36.
··matrix. Figure 2 Figure 3 Figure 4 Time ″-1

Claims (1)

【特許請求の範囲】[Claims] 1)供試フィルムにより区画され一定濃度の水素を含む
ガスを貯えたガス室、および供試フィルムを透過した水
素の測定室と、この測定室に配されたガス電極形水素セ
ンサーと、このガス電極形水素センサーの出力電圧信号
を水素濃度に変換し出力する水素濃度測定部と、タイマ
ーと条件設定回路を備えそれぞれの出力信号および前記
水素濃度測定部の出力信号を受けて所定の算式に基づい
て供試フィルムの水素透過係数を求め演算結果を表示す
る水素透過係数測定部とを備えたことを特徴とするフィ
ルムの水素透過係数測定装置。
1) A gas chamber that is partitioned by a test film and stores gas containing a certain concentration of hydrogen, a measurement chamber for hydrogen that has passed through the test film, a gas electrode type hydrogen sensor placed in this measurement chamber, and a gas chamber that stores gas containing a certain concentration of hydrogen. It is equipped with a hydrogen concentration measuring section that converts the output voltage signal of the electrode type hydrogen sensor into a hydrogen concentration and outputs it, a timer and a condition setting circuit, and receives each output signal and the output signal of the hydrogen concentration measuring section based on a predetermined formula. 1. A hydrogen permeability coefficient measurement device for a film, comprising: a hydrogen permeation coefficient measurement unit that determines the hydrogen permeation coefficient of a test film and displays the calculation result.
JP26054585A 1985-11-20 1985-11-20 Hydrogen transmission coefficient measuring apparatus for film Pending JPS62119433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26054585A JPS62119433A (en) 1985-11-20 1985-11-20 Hydrogen transmission coefficient measuring apparatus for film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26054585A JPS62119433A (en) 1985-11-20 1985-11-20 Hydrogen transmission coefficient measuring apparatus for film

Publications (1)

Publication Number Publication Date
JPS62119433A true JPS62119433A (en) 1987-05-30

Family

ID=17349443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26054585A Pending JPS62119433A (en) 1985-11-20 1985-11-20 Hydrogen transmission coefficient measuring apparatus for film

Country Status (1)

Country Link
JP (1) JPS62119433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329337A (en) * 1991-04-30 1992-11-18 Kikkoman Corp Measuring method for gas permeability of film
US5591898A (en) * 1995-10-12 1997-01-07 Modern Controls, Inc. Method for measuring material permeability characteristics
WO2000028300A1 (en) * 1998-11-06 2000-05-18 Valtion Teknillinen Tutkimuskeskus Method and device for determining the permeability of a container or material to a gaseous substance
US6981403B2 (en) * 2003-10-31 2006-01-03 Mocon, Inc. Method and apparatus for measuring gas transmission rates of deformable or brittle materials
DE102005057031A1 (en) * 2005-11-25 2007-05-31 Innovent E.V. Technologieentwicklung Material e.g. polymer, permeability or fabric clearance testing device, has measuring cell, where sample is divided after placement in cell such that permeability or clearance of medium of substance takes place exclusively through sample
EP2113763A2 (en) * 2008-05-02 2009-11-04 Mocon, Inc. Coulometric analyte sensing instrument with an analyte-consuming sensor in a closed cell
WO2011058717A1 (en) * 2009-11-10 2011-05-19 株式会社アルバック Apparatus for measuring amount of water vapor transmission and method for measuring amount of water vapor transmission
US8074491B2 (en) 2009-02-11 2011-12-13 Seagate Technology Llc Monitoring gas leakage rates from hermetically sealed devices
JP2016500826A (en) * 2012-11-06 2016-01-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Device and method for estimating gas flow in an enclosure maintained at a low pressure relative to gas

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329337A (en) * 1991-04-30 1992-11-18 Kikkoman Corp Measuring method for gas permeability of film
US5591898A (en) * 1995-10-12 1997-01-07 Modern Controls, Inc. Method for measuring material permeability characteristics
WO2000028300A1 (en) * 1998-11-06 2000-05-18 Valtion Teknillinen Tutkimuskeskus Method and device for determining the permeability of a container or material to a gaseous substance
US6981403B2 (en) * 2003-10-31 2006-01-03 Mocon, Inc. Method and apparatus for measuring gas transmission rates of deformable or brittle materials
DE102005057031A1 (en) * 2005-11-25 2007-05-31 Innovent E.V. Technologieentwicklung Material e.g. polymer, permeability or fabric clearance testing device, has measuring cell, where sample is divided after placement in cell such that permeability or clearance of medium of substance takes place exclusively through sample
DE102005057031B4 (en) * 2005-11-25 2011-04-21 Innovent E.V. Technologieentwicklung Device for permeation or mass transfer studies
JP2009271072A (en) * 2008-05-02 2009-11-19 Mocon Inc Coulomb specimen detector having sensor consuming specimen in closed cell
EP2113763A2 (en) * 2008-05-02 2009-11-04 Mocon, Inc. Coulometric analyte sensing instrument with an analyte-consuming sensor in a closed cell
US8691071B2 (en) 2008-05-02 2014-04-08 Mocon, Inc. Coulometric analyte sensing instrument with an analyte-consuming sensor in a closed cell
US8074491B2 (en) 2009-02-11 2011-12-13 Seagate Technology Llc Monitoring gas leakage rates from hermetically sealed devices
WO2011058717A1 (en) * 2009-11-10 2011-05-19 株式会社アルバック Apparatus for measuring amount of water vapor transmission and method for measuring amount of water vapor transmission
JP5275473B2 (en) * 2009-11-10 2013-08-28 株式会社アルバック Water vapor permeation measuring device and water vapor permeation measuring method
JP2016500826A (en) * 2012-11-06 2016-01-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Device and method for estimating gas flow in an enclosure maintained at a low pressure relative to gas
US10281304B2 (en) 2012-11-06 2019-05-07 Commissariat à l'énergie atomique et aux énergies alternatives Device and method for estimating a flow of gas in an enclosure maintained at reduced pressure in relation to the gas

Similar Documents

Publication Publication Date Title
CN100437104C (en) Gas sensor, gas detector, and self-testing and self-correcting method therefor
US3719564A (en) Method of determining a reducible gas concentration and sensor therefor
US3966579A (en) Apparatus for measuring alcohol concentrations
EP0064337B1 (en) Carbon dioxide measurement
US5273640A (en) Electrochemical gas sensor
US7378852B2 (en) Measuring device having a plurality of potentiometric electrode pairs situated on a substrate
Lindner et al. Switched wall jet for dynamic response measurements
JPS62119433A (en) Hydrogen transmission coefficient measuring apparatus for film
EP0073153A2 (en) Improved solid electrolyte gas sensing apparatus
JP2005530994A (en) Electrochemical gas detection apparatus and method including a permeable membrane and an aqueous electrolyte
US5635627A (en) Carbon monoxide sensor having mercury doped electrodes
JPH02297054A (en) Electrochemical measuring cell for measuring ammonia or hydrazine in gaseous or liquid measuring sample
US3357908A (en) Electrolytic sensor with water diffusion compensation
RU2483300C1 (en) Solid electrolyte sensor for amperometric measurement of gas mixture moisture
US4333810A (en) Analyzer for chemical oxidizing or reducing agents
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
US4775456A (en) Electrochemical gas sensor
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
US4264328A (en) Method for recording measured values in an automatically performed blood gas analysis
US4973395A (en) Humidified high sensitivity oxygen detector
CN210221895U (en) Electrochemical gas sensor
US4492614A (en) Chlorine detection
US3950231A (en) Method of determining hydrogen cyanide
EP0096117B1 (en) Analyzer for chemical oxidizing or reducing agents
JP3962583B2 (en) Electrochemical gas sensor