WO2011057711A1 - Connecteur microfluidique mâle de bus multiport - Google Patents

Connecteur microfluidique mâle de bus multiport Download PDF

Info

Publication number
WO2011057711A1
WO2011057711A1 PCT/EP2010/006489 EP2010006489W WO2011057711A1 WO 2011057711 A1 WO2011057711 A1 WO 2011057711A1 EP 2010006489 W EP2010006489 W EP 2010006489W WO 2011057711 A1 WO2011057711 A1 WO 2011057711A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
bus connector
fluidic
multiport
elements
Prior art date
Application number
PCT/EP2010/006489
Other languages
German (de)
English (en)
Inventor
Bastian Rapp
Thomas Duttenhofer
Original Assignee
Karlsruher Institut für Technologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut für Technologie filed Critical Karlsruher Institut für Technologie
Publication of WO2011057711A1 publication Critical patent/WO2011057711A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/565Seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices

Definitions

  • the present invention relates to a multi-port microfluidic bus connector.
  • microfluidic system An essential part of any microfluidic system is the connection of the microfluidic system components to the fluidic periphery of the system.
  • these fluidic connections convert analytes as well as carrier and rinsing solutions into the microfluidic system components.
  • the liquid is usually conveyed through a hose, which is preferably made of a chemically inert material such as, for example, polytetrafluoroethylene (PTFE, commonly known by the brand name Teflon), into the system.
  • PTFE polytetrafluoroethylene
  • Teflon polytetrafluoroethylene
  • One of the most widely used systems for connecting a single tube to a microfluidic system component is a system known from high performance liquid chromatography (HPLC) using a PTFE tube with a thermally-created flange and a female screw.
  • HPLC high performance liquid chromatography
  • the great advantage of this system is mainly due to the fact that the fluids that are guided through this fluidic coupling only come into contact with the PTFE tube and the material of the microfluidic system. There are no further sealing elements necessary.
  • the disadvantage is that each fluidic coupling is closed and released individually have to be. For a parallel connection of several hoses, the parallel screwing a plurality of individual banjo bolts is necessary.
  • a first group includes connection systems that require additional elements for the connection. These may be, for example, nozzles, spigot pins, crimping rings or the like. These systems are particularly unsuitable especially if these additional elements must be made of certain materials, because they act as sealing elements, for example. It is critical that these elements are always in direct media contact.
  • US4900065A shows, for example, a connection system that is in principle executable as a bus connector. The disadvantage lies in the structural implementation, in particular in the use of an additional connecting element, which also generates a large additional Totvo- lumen in the transfer behavior. The element is also suitable only for connecting flexible hoses. PTFE as the most frequently required material in microfluidics is excluded because it is only insufficiently deformable at room temperature.
  • sealing materials being in direct contact with the media to be pumped through the system and therefore always being a source of sample change. In analytical applications or in the synthesis therefore often has to be completely dispensed sealing element.
  • connection systems which generate the contact pressure by a thread.
  • Such systems are disclosed, for example, in US7182371B1, US7311882B1 or US7553455B1.
  • these solutions are only suitable for single connections, but not for multiport systems, since each connection must be connected separately.
  • No. 6,319,476 B1 describes a system in which, in a first embodiment, the contact pressure is generated by a thread. Moreover, the document discloses, in all embodiments, the use of sealing elements. For the reasons mentioned above, it is therefore not transferable to the parallel connection of a plurality of hoses on a mi-krofluidisches system.
  • microfluidic systems are known from the prior art, which comprise several of the said connection systems.
  • US 5 988 703A discloses gluing or bonding the connection port to a plate and screwing the connection tubes.
  • the object of the invention is to provide a microfluidic multi-port bus connector that does not have the aforementioned limitations and drawbacks and which allows a reversible connecting a plurality of fluid supply lines with a microfluidic system ⁇ component.
  • a further object of the invention is to provide a device which simultaneously closes or opens each connection of the plurality of connections, wherein a static overdetermination is to be avoided.
  • the microfluidic multiport bus connector according to the invention has, as the core element of the system, a compression body which, like a chaining of individual springs, ensures the application of a sufficiently large prestress. Due to the compressibility, this preload enables a homogenous force distribution over all connection points and the problem of static overdetermination does not exist.
  • the multiport bus connector is on the one hand mechanically rigid by the combination of a rigid solid body with the compression body, on the other hand, however, allows for a deformation at the connection points.
  • a particular advantage of the microfluidic multiport bus connector is that a multiplicity of fluidic connections can be closed or opened in parallel. As a result, at the same time a multiplicity of fluidic supply lines can be connected to a microfluidic system. The user must then only integrally establish the connection between the entire bus connector and the microfluidic system component.
  • the bus connector By connecting the bus connector to the microfluidic system component, the plurality of individual fluidic connections are integrally closed and each individual connection is made. In the same way, by disconnecting the bus connector be solved by the microfluidic system component, the plurality of individual fluidic compounds at the same time.
  • the compression body is arranged in the microfluidic multiport bus connector according to the invention such that contact with the fluid to be analyzed is excluded. This is a strict requirement for use of the system in analysis, reduces the number of parts required, and makes the system simpler and less expensive to manufacture.
  • Another advantage of the system is that the described design of the compression body enables the scalability of the system. To close a plurality of connections simultaneously implies that a once closed connection does not hinder the closure of another connection.
  • the compression element generates the necessary for the fluidic coupling bias over a large area, regardless of how many fluidic compounds are distributed over this area.
  • the system thus scales the number of connections to be closed only by its size and the maximum force that is required to be applied to the system to compress the compression element.
  • bus connector In addition to the connection of bus connector to microfluidic system components, the system allows advantageously the connection of individual bus connectors with each other.
  • the present invention has the advantages listed below.
  • the multiport bus plug according to the invention is subject to no restrictions, which represents a further advantage.
  • the device can be operated with the usual material systems made of glass, metal, polymers or ceramics.
  • the system uses known and established connection standards. The system should therefore achieve rapid acceptance by the users, since no expensive additional equipment or devices are necessary.
  • the system only brings the surfaces of the microfluidic system into contact with the fluids to be pumped through the system. In particular, no sealing materials or the like are necessary to contaminate the samples and render the system unusable for a variety of applications.
  • the system is almost arbitrary scalable to the number of connections and requires no special manufacturing technology, the body of the bus connector and the compression element are easy to manufacture components and therefore suitable for the mass market.
  • Fig. 1 shows schematically the principle of the invention.
  • FIG. 3 contains a schematic representation of an embodiment of the invention.
  • a rigid solid 1 is connected to a compression element 2.
  • the compression element 2 is formed by spring elements 21.
  • the connection point 3 was designed so that the previously held as rigid connection points are replaced by flexible elements.
  • the principle of the invention shown in Fig. 1 comprises fluidic conduits 4, e.g. designed as PTFE hoses, which are provided with flanges 5.
  • the bias on the flanges 5 of the PTFE tubing 4 takes place in the embodiment shown no longer by a solid but by a spring element 21.
  • This spring element 21 can be further compressed after full contact of the flange 5 with the microfluidic system 6. In this way, it is possible to compress the remaining connection points 3 to such an extent that they form a positive connection with the microfluidic system component 6. The necessary force for the fluidic sealing of the microfluidic system component 6 is minimized in this way.
  • the mechanical replacement model of the compression body 2 is shown.
  • the spring element 21 with the spring constant c we i Ch is doing so according to the construction with the solid 1 with the element with the spring constant c rigid 11, connected in series. If such a serially connected spring chain 11, 21 is acted upon by a force, the softer spring 21 is first compressed. The original height of the soft spring 21 is reduced from h soft , o to h soft , 1, whereas the original height of the rigid element 11 h rigid , o as h rigid , 1 remains almost unchanged. In this way, a compensation of the original height of several individual spring elements with the heights h soft , o to h soft , i possible.
  • the additional applied force first closes the fluidic seals sequentially according to their original height. Once all the spring elements have been closed and the individual soft springs have been reduced to the maximum compression, the force is introduced almost homogeneously over the entire number of individual closing elements.
  • FIG. 3 shows the basic schematic structure of an embodiment of the compression body 2 with a connected microfluidic system component 6.
  • FIG. 3 shows a microfluidic system component 6 with a microfluidic channel structure 7, which connects two supply lines 4 in pairs.
  • a carrier element 8 has suitable holes 9 for receiving screws 10. The screws 10 provide the necessary force to compress the compression element 2 and thus close the fluidic seal. As a result, the fluidic supply lines 4 with the flanges not shown in the figure fluidly sealed with the
  • microfluidic system component 6 connected.
  • a compressible solid is used. This preferably consists of a compressible thermoplastic, a foamed composite material or comparable compressible materials. LIST OF REFERENCE NUMBERS

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La présente invention concerne un connecteur microfluidique mâle de bus multiport. Le connecteur microfluidique mâle de bus multiport selon l'invention comporte un corps de compression (2) qui constitue l'élément central du système, et qui assure à la façon d'un chaînage de ressorts individuels, l'application d'une prétension suffisamment grande. Grâce à la compressibilité, cette prétension permet une distribution homogène des forces sur l'ensemble des points de raccordement (3), ce qui élimine le problème de la redondance statique. Grâce à l'association entre un corps plein rigide (1) et un corps de compression (2), ce connecteur microfluidique mâle de bus multiport est mécaniquement rigide d'un côté, alors que de l'autre côté il admet une déformation des points de raccordement (3). Un avantage particulier de ce connecteur microfluidique mâle de bus multiport réside dans la possibilité de fermer, voire d'ouvrir, en parallèle une pluralité de liaisons fluidiques. L'invention permet ainsi de raccorder un même système microfluidique (6), simultanément à une pluralité de conduits d'amenée fluidiques (4).
PCT/EP2010/006489 2009-11-13 2010-10-23 Connecteur microfluidique mâle de bus multiport WO2011057711A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053285.4 2009-11-13
DE200910053285 DE102009053285B4 (de) 2009-11-13 2009-11-13 Verfahren zum reversiblen, parallelen Schließen einer Vielzahl von fluidischen Zuleitungen mit einem mikrofluidischen System

Publications (1)

Publication Number Publication Date
WO2011057711A1 true WO2011057711A1 (fr) 2011-05-19

Family

ID=43432344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/006489 WO2011057711A1 (fr) 2009-11-13 2010-10-23 Connecteur microfluidique mâle de bus multiport

Country Status (2)

Country Link
DE (1) DE102009053285B4 (fr)
WO (1) WO2011057711A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041705A1 (fr) * 2010-09-14 2012-04-05 Andreas Hettich Gmbh & Co. Kg Dispositif de raccordement pour la mise en contact fluidique de puces microfluidiques

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834423A (en) 1987-12-22 1989-05-30 Schmelzer Corporation Quick connect fluid fitting assembly
US4900065A (en) 1988-10-31 1990-02-13 Dlh Industries, Inc. Quick-connect fluid coupling
WO1998033001A1 (fr) 1997-01-29 1998-07-30 The Board Of Trustees Of The Leland Stanford Junior University Coupleur fluidique micro-usine
US5988703A (en) 1997-07-31 1999-11-23 Hewlett-Packard Company Fluid connector system for a planar manifold assembly
WO1999063260A1 (fr) 1998-06-04 1999-12-09 The Regents Of The University Of California Raccords microfluidiques
WO2000052376A1 (fr) 1999-03-02 2000-09-08 Perseptive Biosystems, Inc. Connecteur microfluidique
WO2001009598A1 (fr) 1999-07-28 2001-02-08 University Of Washington Systeme d'interconnexion pour fluides, tubulure d'interconnexion et dispositifs microfluidiques destines a la distribution interne de gaz et a l'application d'un vide
US6273478B1 (en) 1999-03-30 2001-08-14 The Regents Of The University Of California Microfluidic interconnects
WO2002035132A2 (fr) * 2000-10-23 2002-05-02 Innovadyne Technologies, Inc. Ensemble de joint d'etancheite pour tube
WO2002040901A1 (fr) 2000-04-13 2002-05-23 California Institute Of Technology Raccords microfluidiques a joint torique elastomere micro-usine
WO2003004160A1 (fr) * 2001-07-04 2003-01-16 Diagnoswiss Sa Dispositif et procede de dosage chimique microfluidique
WO2003081113A1 (fr) * 2002-03-25 2003-10-02 Evotec Oai Ag Dispositif et procede de raccordement de conduites a des systemes microfluidiques
US20050072484A1 (en) * 2003-09-12 2005-04-07 Hans-Georg Haertl Conduit for drawing off and/or supplying a fluid
US7182371B1 (en) 2003-01-24 2007-02-27 Sandia National Laboratories Edge compression manifold apparatus
DE10249105B4 (de) 2002-10-21 2007-12-13 Sls Micro Technology Gmbh Mikrofluides System und Verfahren zur Herstellung eines solchen
US7311882B1 (en) 2003-01-24 2007-12-25 Sandia National Laboratories Capillary interconnect device
WO2008042482A2 (fr) 2006-06-19 2008-04-10 The Regents Of The University Of California Puces microfluidiques haute pression jetables
WO2008063070A1 (fr) 2006-11-23 2008-05-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Connecteur microfluidique multiple
WO2009002152A1 (fr) * 2007-06-26 2008-12-31 Micronit Microfluidics B.V. Dispositif et procédé permettant le couplage fluidique de conduits fluidiques à une puce microfluidique et leur découplage
US20090129728A1 (en) 2004-04-02 2009-05-21 Eksigent Technologies Llc Microfluidic Connections
US7553455B1 (en) 2003-04-02 2009-06-30 Sandia Corporation Micromanifold assembly
EP2230015A1 (fr) * 2009-03-13 2010-09-22 Samsung Electronics Co., Ltd. Composant de raccordement de tuyau et système microfluidique l'incluant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531380B2 (en) * 2003-04-30 2009-05-12 Cree, Inc. Methods of forming light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof
US7351380B2 (en) * 2004-01-08 2008-04-01 Sandia Corporation Microfluidic structures and methods for integrating a functional component into a microfluidic device

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834423A (en) 1987-12-22 1989-05-30 Schmelzer Corporation Quick connect fluid fitting assembly
US4900065A (en) 1988-10-31 1990-02-13 Dlh Industries, Inc. Quick-connect fluid coupling
WO1998033001A1 (fr) 1997-01-29 1998-07-30 The Board Of Trustees Of The Leland Stanford Junior University Coupleur fluidique micro-usine
US5988703A (en) 1997-07-31 1999-11-23 Hewlett-Packard Company Fluid connector system for a planar manifold assembly
WO1999063260A1 (fr) 1998-06-04 1999-12-09 The Regents Of The University Of California Raccords microfluidiques
WO2000052376A1 (fr) 1999-03-02 2000-09-08 Perseptive Biosystems, Inc. Connecteur microfluidique
US6319476B1 (en) 1999-03-02 2001-11-20 Perseptive Biosystems, Inc. Microfluidic connector
US6273478B1 (en) 1999-03-30 2001-08-14 The Regents Of The University Of California Microfluidic interconnects
WO2001009598A1 (fr) 1999-07-28 2001-02-08 University Of Washington Systeme d'interconnexion pour fluides, tubulure d'interconnexion et dispositifs microfluidiques destines a la distribution interne de gaz et a l'application d'un vide
WO2002040901A1 (fr) 2000-04-13 2002-05-23 California Institute Of Technology Raccords microfluidiques a joint torique elastomere micro-usine
US20020093143A1 (en) 2000-04-13 2002-07-18 Yu-Chong Tai Micromachined rubber O-ring microfluidic couplers
WO2002035132A2 (fr) * 2000-10-23 2002-05-02 Innovadyne Technologies, Inc. Ensemble de joint d'etancheite pour tube
WO2003004160A1 (fr) * 2001-07-04 2003-01-16 Diagnoswiss Sa Dispositif et procede de dosage chimique microfluidique
WO2003081113A1 (fr) * 2002-03-25 2003-10-02 Evotec Oai Ag Dispositif et procede de raccordement de conduites a des systemes microfluidiques
DE10213272A1 (de) 2002-03-25 2003-10-23 Evotec Ag Vorrichtung und Verfahren zur Leitungsankopplung an fluidische Mikrosysteme
DE10249105B4 (de) 2002-10-21 2007-12-13 Sls Micro Technology Gmbh Mikrofluides System und Verfahren zur Herstellung eines solchen
US7182371B1 (en) 2003-01-24 2007-02-27 Sandia National Laboratories Edge compression manifold apparatus
US7311882B1 (en) 2003-01-24 2007-12-25 Sandia National Laboratories Capillary interconnect device
US7553455B1 (en) 2003-04-02 2009-06-30 Sandia Corporation Micromanifold assembly
US20050072484A1 (en) * 2003-09-12 2005-04-07 Hans-Georg Haertl Conduit for drawing off and/or supplying a fluid
US20090129728A1 (en) 2004-04-02 2009-05-21 Eksigent Technologies Llc Microfluidic Connections
WO2008042482A2 (fr) 2006-06-19 2008-04-10 The Regents Of The University Of California Puces microfluidiques haute pression jetables
WO2008063070A1 (fr) 2006-11-23 2008-05-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Connecteur microfluidique multiple
WO2009002152A1 (fr) * 2007-06-26 2008-12-31 Micronit Microfluidics B.V. Dispositif et procédé permettant le couplage fluidique de conduits fluidiques à une puce microfluidique et leur découplage
EP2230015A1 (fr) * 2009-03-13 2010-09-22 Samsung Electronics Co., Ltd. Composant de raccordement de tuyau et système microfluidique l'incluant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041705A1 (fr) * 2010-09-14 2012-04-05 Andreas Hettich Gmbh & Co. Kg Dispositif de raccordement pour la mise en contact fluidique de puces microfluidiques

Also Published As

Publication number Publication date
DE102009053285B4 (de) 2012-10-04
DE102009053285A1 (de) 2011-06-01

Similar Documents

Publication Publication Date Title
DE60013255T2 (de) Mikrofluidisches Anschlussstück
EP2549125B1 (fr) Dispositif de vanne
DE102008061315A1 (de) Aufhängung einer Ventilplatte an einer Ventilstange
DE102010043865A1 (de) Fluid device
DE102007030654A1 (de) Rohrtrenneranordnung
DE102011078770B4 (de) Mikrofluidische Vorrichtung, mikrofluidisches System und Verfahren zum Transport von Fluiden
DE102021119759A1 (de) Flusselement für eine fluidische Abdichtung
WO2011057711A1 (fr) Connecteur microfluidique mâle de bus multiport
EP2616179A1 (fr) Dispositif de raccordement pour la mise en contact fluidique de puces microfluidiques
WO2012116390A1 (fr) Vanne à partie déformable et utilisation de la vanne
DE10231920A1 (de) Mehrlagen-Membran
EP0745796A1 (fr) Robinet modulaire
DE102017219436B3 (de) Membran-Polymeraktuator, Herstellungsverfahren dafür und zugehörige Aktuatorbaugruppe
DE102020116704A1 (de) Fluidführungsmodul und Fluidführungssystem mit mindestens zwei Fluidführungsmodulen
EP2015000A2 (fr) Fixation d'un tube absorbeur dans le châssis d'un collecteur solaire
DE4235849C2 (de) Kombinations-Dosierventil
DE102021102932B3 (de) Hydrauliksteuereinheit aufweisend Zwischenplatte mit bereichsweise verfestigter Beschichtung
WO2009089835A1 (fr) Soupape, notamment soupape de commutation
EP1742243A1 (fr) Interrupteur à pression
DE3002760A1 (de) Schieberventil
EP2561211B1 (fr) Dispositif de soupape de régulation de pression servant à l'amenée de milieux corrosifs
DE102017219434B4 (de) Aktuatorbaugruppe, damit ausgestatteter Membran-Polymeraktuator und Herstellungsverfahren
DE202005016424U1 (de) Haltering zum Verbinden einer Presshülse mit einem Fitting
EP1403517B1 (fr) Utilisation d'un ensemble de soupape pour pompe à vide
DE102020125960A1 (de) Ausgleichskupplung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10770737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10770737

Country of ref document: EP

Kind code of ref document: A1