WO2011052890A2 - 해저케이블 고장점 탐색 시스템 및 방법 - Google Patents

해저케이블 고장점 탐색 시스템 및 방법 Download PDF

Info

Publication number
WO2011052890A2
WO2011052890A2 PCT/KR2010/006318 KR2010006318W WO2011052890A2 WO 2011052890 A2 WO2011052890 A2 WO 2011052890A2 KR 2010006318 W KR2010006318 W KR 2010006318W WO 2011052890 A2 WO2011052890 A2 WO 2011052890A2
Authority
WO
WIPO (PCT)
Prior art keywords
submarine cable
fault point
discharge
detecting
point
Prior art date
Application number
PCT/KR2010/006318
Other languages
English (en)
French (fr)
Other versions
WO2011052890A3 (ko
Inventor
양병모
문경희
박준우
강지원
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2011052890A2 publication Critical patent/WO2011052890A2/ko
Publication of WO2011052890A3 publication Critical patent/WO2011052890A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the present invention relates to a submarine cable fault point search system. More specifically, the present invention relates to a system and method for searching for a fault point of a submarine cable using underwater discharge.
  • a schematic position is extracted by using a time domain reflector (TDR) device or a Murray Loop. Then, the detailed location of the fault point of the submarine cable is searched by visual search using a submersible at the extracted schematic position. Or, by using the search coil method, the change of the leakage magnetic flux generated by applying the test current to the submarine cable is searched for the detailed location of the point of failure of the submarine cable.
  • TDR time domain reflector
  • the search coil method the change of the leakage magnetic flux generated by applying the test current to the submarine cable is searched for the detailed location of the point of failure of the submarine cable.
  • the metal sheaths are grounded to the sea water at regular intervals, such as HVDC submarine cables, the amount of change in the leakage flux is generated in the metal sheaths.
  • the present invention relates to a submarine cable fault point position search system and method capable of searching for a detailed position of a fault point even when the leakage current and the magnetic field change amount is small or little at the fault point of the submarine cable.
  • the present invention relates to a submarine cable fault point location search system and method capable of searching the detailed position of the fault point of the submarine cable using underwater discharge.
  • a high voltage generator for generating a discharge induction voltage, underwater to detect the underwater discharge generated at the fault point of the submarine cable by the discharge induction voltage applied from the high voltage generator
  • a cable fault point detection system comprising a receiver for detecting a fault point of the submarine cable through the information of the underwater discharge detected from the discharge detector and the underwater discharge detector.
  • the submarine cable fault point search method (a) applying a discharge induction voltage to one end of the submarine cable, (b) detecting the underwater discharge of the submarine cable by the discharge induction voltage And (c) detecting a fault point of the submarine cable by the detected underwater discharge.
  • the detailed position search of the failure point can be performed even when the leakage current and the leakage magnetic field are small or hardly changed at the failure point of the submarine cable.
  • FIG. 1 is an exemplary view showing a system for searching for a submarine cable fault point according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a submarine cable fault point search method according to an embodiment of the present invention.
  • Figure 3 is an overall flow chart showing a submarine cable fault point search method according to an embodiment of the present invention.
  • FIG. 1 is an exemplary view showing a system for searching for a submarine cable fault point according to an embodiment of the present invention.
  • the submarine cable fault point search system 100 includes a high voltage generator 110, a fault point detector 120, an underwater discharge detector 130, and a receiver 140.
  • the high voltage generator 110 generates a discharge induced voltage.
  • the high voltage generator 110 generates a discharge induced voltage periodically and applies it to the submarine cable 200.
  • the discharge voltage is periodically applied to the submarine cable 200 by the high voltage generator 110, so that underwater discharge occurs at the failure point 220 of the submarine cable 200.
  • Underwater discharge generates underwater sound or leakage current.
  • the underwater discharge detector 130 detects the underwater sound or leakage current generated by the underwater discharge.
  • the high voltage generator 110 gradually increases the discharge induction voltage at a predetermined interval from 0 V and applies it to the submarine cable 200 up to 50 kV.
  • the discharge induced voltage generated by the high voltage generator 110 is not limited to 50 kV and may be set differently according to the type of cable and the range of the operating voltage of the cable.
  • the failure point detector 120 detects a rough failure point 220 of the submarine cable 200.
  • the failure point detector 120 is connected to one end 210 of the submarine cable 200 to detect a rough position of the failure point 220.
  • the failure point detector 120 may be a time domain reflector (TDR) device or a Murray Loop device.
  • the underwater discharge detector 130 detects the underwater discharge generated at the failure point 220 of the submarine cable 200 by the discharge induction voltage applied from the high voltage generator 110 to the submarine cable 200.
  • the underwater discharge detector 130 detects underwater sound or leakage current leaking from the failure point 220 of the submarine cable 200 by applying the discharge induced voltage generated from the high voltage generator 110 to the submarine cable 200.
  • the underwater discharge detector 130 for detecting underwater sound or leakage current may be an underwater acoustic sensor or a leakage discharge current meter.
  • the receiver 140 calculates the position of the failure point 220 of the submarine cable 200 through the underwater discharge detected from the underwater discharge detector 120.
  • the receiver 140 receives the information of the underwater discharge detected from the underwater discharge detector 130 to calculate the position of the failure point 220 of the submarine cable 200.
  • Receiver 140 is mounted on a ship or submersible.
  • Figure 2 is a flow chart showing a submarine cable fault point search method according to an embodiment of the present invention.
  • the submarine cable fault point search system first applies a discharge induction voltage to one end of the submarine cable.
  • the submarine cable fault point search system connects a high voltage generator to one end of the submarine cable.
  • the submarine cable fault detection system applies a discharge induced voltage to the submarine cable while gradually increasing the discharge induced voltage generated from the high voltage generator from 0V to 50kV.
  • the maximum value of the discharge induction voltage is not limited to 50 kV and can be set differently according to the type of cable and the range of the operating voltage of the cable.
  • the submarine cable failure point search system detects the underwater discharge of the submarine cable due to the discharge induction voltage.
  • S202 When the submarine cable is a failure due to incomplete insulation breakdown, when a threshold discharge induction voltage is applied to the submarine cable. However, underwater discharge occurs at the point of failure of the submarine cable. Underwater discharges at fault points generate underwater sound and leakage currents. That is, the submarine cable fault point search system detects underwater discharges, such as underwater sound or leakage current, for detailed location calculation of the fault point.
  • the submarine cable fault point searching system detects a fault point of the submarine cable by using the detected underwater discharge (S201). Changes or changes in the magnitude of the leakage current can be used to detect the detailed location of the failure point.
  • FIG. 3 is an overall flowchart illustrating a method for searching for a subsea cable fault point according to an exemplary embodiment of the present invention.
  • the submarine cable fault point search system first receives a failure of the submarine cable (S301).
  • the failure of the submarine cable can be determined by measuring the withstand voltage or insulation resistance.
  • the submarine cable fault point search system searches for a rough fault location of the submarine cable.
  • S302 When the submarine cable fault point search system receives that a submarine cable has failed, a time domain reflector (TDR) is detected. Using the method or Murray Loop method, the location of the fault point is outlined.
  • the submarine cable fault detection system connects a visual range reflector and a Murray loop device to one end of a faulty submarine cable. At this time, the submarine cable fault detection system opens the other end of the submarine cable. That is, the submarine cable fault point search system opens the conductor at the other end of the submarine cable and separates the metal sheath.
  • the submarine cable fault finding system employs a visual range reflector and a Murray loop device to apply signals such as pulse waves to the submarine cable.
  • the submarine cable fault point detection system measures the position of the fault point of the submarine cable by measuring the time when the signal applied to the submarine cable is reflected back from the fault point.
  • the submarine cable fault point search system detects a rough fault point including a device error range by using a visual range reflection measuring device and a Murray loop device.
  • the submarine cable failure point search system applies a discharge induction voltage to the submarine cable.
  • the high voltage generator connected to one end of the submarine cable is applied to the submarine cable from 0V up to 50kV while increasing the discharge induced voltage at regular intervals.
  • the maximum value of the discharge induced voltage applied here may be set differently according to the type of cable and the cable state.
  • the submarine cable fault point search system determines the degree of insulation breakdown of the submarine cable fault point. (S304) If no discharge occurs at the fault point until the discharge induction voltage is applied to the submarine cable to the maximum value, the submarine cable fault point Is a complete dielectric breakdown state. However, if discharge is generated at a failure point by applying a discharge induction voltage to the submarine cable, the failure point of the submarine cable is in an insulated breakdown state. The magnitude of the discharge voltage may vary depending on the degree of incomplete insulation breakdown at the submarine cable failure point.
  • the discharge voltage is a discharge induced voltage when a discharge occurs at a failure point of the submarine cable.
  • the submarine cable fault point search system detects an underwater discharge occurring at the point of failure of the submarine cable. If a discharge voltage is applied to the submarine cable when the point is incomplete insulation breakdown, underwater discharge occurs at the point of failure of the submarine cable. At this time, the underwater sound or the leakage discharge current due to the underwater discharge can be detected.
  • the submarine cable failure point search system detects the location of the failure point of the submarine cable.
  • the submarine cable failure point search system detects the detailed location of the failure point of the submarine cable by using the detected underwater discharge information.
  • the magnitude of the underwater sound or leakage discharge current caused by underwater discharge at the point of failure of the submarine cable is changed by the distance from the failure point.
  • the location where the magnitude of the underwater acoustic or leakage discharge current has a maximum value is a failure point of the submarine cable.
  • the submarine cable fault point search system performs visual detection using a submersible. Or the submarine cable fault point search system detects leakage current or leakage magnetic flux using the search coil method (S307).
  • the submarine cable fault point search system detects a fault point of the submarine cable (S306).
  • the fault point is detected by visual detection using a submersible.
  • the fault point position of the submarine cable is detected by using the leakage current or leakage magnetic flux information detected by the search coil method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

본 발명은 해저케이블 고장점 탐색 시스템 및 방법에 관한 것이다. 본 발명에 의한 해저케이블 고장점 탐색 시스템은 방전유도전압을 발생하는 고전압발생기, 고전압발생기로부터 인가된 방전유도전압에 의해 해저케이블의 고장점에서 발생하는 수중방전을 검출하는 수중방전 검출기 및 수중방전 검출기로부터 검출된 수중방전의 정보를 통해서 해저케이블의 고장점을 탐지하는 수신기를 포함한다. 본 발명에 의한 해저케이블 고장점 탐색 시스템에 의하면, 해저케이블의 고장점에서 누설전류 및 누설자계의 변화량이 작은 경우에도 고장점의 상세 위치 탐색이 가능하다는 이점이 있다.

Description

해저케이블 고장점 탐색 시스템 및 방법
본 발명은 해저케이블 고장점 탐색 시스템에 관한 것이다. 보다 자세하게는 수중방전을 이용하여 해저케이블의 고장점을 탐색하는 시스템 및 방법에 관한 것이다.
종래에는 해저케이블의 고장점을 탐색하기 위해서, 시각범위 반사측정(Time Domain Reflectrometer : TDR) 장치 또는 머레이 루프(Murray Loop)를 이용하여 개략적 위치를 추출한다. 이후, 추출된 개략적 위치에서 잠수정을 활용한 육안탐색으로 해저케이블의 고장점의 상세한 위치를 탐색한다. 또는 써칭 코일 방법을 이용하여 해저케이블에 시험전류을 인가하여 발생되는 누설자속의 변화를 검출함으로써 해저케이블의 고장점의 상세한 위치를 탐색한다. 그러나, HVDC 해저케이블과 같이 금속 시스가 일정 간격으로 해수에 접지되어 있는 경우, 누설 자속의 변화량이 금속 시스에서 발생된다. 이와 같은 경우, 고장점에서 측정되는 누설 자속 및 누설 전류의 변화량이 작거나 거의 없기 때문에 써칭 코일 방법을 이용하여 해저케이블의 정확한 고정점 위치를 탐색하는 것은 불가능하다. 또한, 잠수정을 이용한 육안탐색의 경우 천해구간 및 조수간만의 차가 큰 해양환경에 의해 많은 제약이 따르고, 해저케이블이 해저에 매설된 경우에 불가능하다.
본 발명은 해저케이블의 고장점에서 누설전류 및 누설자계의 변화량이 작거나 거의 없는 경우에도 고장점의 상세 위치 탐색이 가능한 해저케이블 고장점 위치 탐색 시스템 및 방법에 관한 것이다.
본 발명은 수중방전을 이용하여 해저케이블의 고장점의 상세 위치 탐색이 가능한 해저케이블 고장점 위치 탐색 시스템 및 방법에 관한 것이다.
본 발명의 일 측면에 따르면, 해저케이블 고장점 탐색 시스템에 있어서, 방전유도전압을 발생하는 고전압발생기, 고전압발생기로부터 인가된 방전유도전압에 의해 해저케이블의 고장점에서 발생하는 수중방전을 검출하는 수중방전 검출기 및 수중방전 검출기로부터 검출된 수중방전의 정보를 통해서 해저케이블의 고장점을 탐지하는 수신기를 포함하는 것을 특징으로 하는 해저케이블 고장점 탐색 시스템이 제공된다.
본 발명의 다른 일 측면에 따르면, 해저케이블 고장점 탐색 방법에 있어서, (a) 해저케이블의 일단에 방전유도전압을 인가하는 단계, (b) 방전유도전압에 의한 해저케이블의 수중방전을 검출하는 단계 및 (c) 검출된 수중방전에 의해 해저케이블의 고장점을 탐지하는 단계를 포함하는 것을 특징으로 하는 해저케이블 고장점 탐색 방법이 제공된다.
본 발명의 일 실시예에 의하면, 해저케이블의 고장점에서 누설전류 및 누설자계의 변화량이 작거나 거의 없는 경우에도 고장점의 상세 위치 탐색이 가능하다는 이점이 있다.
본 발명의 일 실시예에 의하면, 해저케이블의 고장점에서 불완전절연파괴로 누설전류가 작거나 거의 없는 경우에도 고장점의 상세 위치 탐색이 가능하다는 이점이 있다.
본 발명의 일 실시예에 의하면, 해저케이블의 금속 시스가 접지되어 있는 경우에도 고장점의 상세 위치 탐색이 가능하다는 이점이 있다.
본 발명의 일 실시예에 의하면, 선박과 잠수정에서 선택이 용이하므로 잠수정을 이용하여 해저케이블의 고장점 상세 위치 탐색이 불가능한 경우에도 탐색이 가능하다는 이점이 있다.
도1은 본 발명의 일 실시예에 따른 해저케이블 고장점을 탐색 시스템을 나타낸 예시도.
도2는 본 발명의 일 실시예에 따른 해저케이블 고장점 탐색 방법을 나타낸 순서도.
도3은 본 발명의 일 실시예에 따른 해저케이블 고장점 탐색 방법을 나타낸 전체 순서도.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
이하, 본 발명에 따른 해저케이블 고장점 탐색 시스템 및 방법의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도1은 본 발명의 일 실시예에 따른 해저케이블 고장점을 탐색 시스템을 나타낸 예시도이다.
도1을 참조하면, 해저케이블 고장점 탐색 시스템(100)은 고전압발생기(110), 고장점 검출기(120), 수중방전 검출기(130) 및 수신기(140)을 포함한다.
고전압발생기(110)는 방전유도전압을 발생한다. 고전압발생기(110)는 주기적으로 방전유도전압을 발생시켜 해저케이블(200)에 인가한다. 이와 같이 고전압발생기(110)에 의해 주기적으로 방전유도전압을 해저케이블(200)에 인가함으로써, 해저케이블(200)의 고장점(220)에 수중방전이 발생되도록 한다. 수중방전에 의해서 수중 음향 또는 누설 전류가 발생한다. 수중방전에 의해서 발생한 수중 음향 또는 누설 전류를 수중 방전 검출기(130)가 검출한다. 고전압발생기(110)는 방전유도전압을 0V에서부터 일정한 간격으로 서서히 증가 시켜 최대 50kV까지 해저케이블(200)에 인가한다. 이때 고전압발생기(110)에서 발생하는 방전유도전압은 50kV로 한정되지 아니하고 케이블의 종류 및 케이블의 운전전압의 범위에 따라 다르게 설정될 수 있다.
고장점 검출기(120)는 해저케이블(200)의 개략적인 고장점(220)을 탐지한다. 고장점 검출기(120)는 해저케이블(200)의 일단(210)과 연결되어 고장점(220)의 개략적인 위치를 탐지한다. 고장점 검출기(120)는 시각범위 반사측정(Time Domain Reflectrometer : TDR) 장치 또는 머레이 루프(Murray Loop) 장치가 될 수 있다.
수중방전 검출기(130)는 고전압발생기(110)로부터 해저케이블(200)에 인가된 방전유도전압에 의해 해저케이블(200)의 고장점(220)에서 발생하는 수중방전을 검출한다. 수중방전 검출기(130)는 고전압발생기(110)에서 발생한 방전유도전압이 해저케이블(200)에 인가됨으로써, 해저케이블(200)의 고장점(220)에서 누설되는 수중 음향 또는 누설 전류를 검출한다. 수중 음향 또는 누설 전류를 검출하기 위한 수중방전 검출기(130)는 수중 음향센서 또는 누설방전전류측정기 등이 될 수 있다.
수신기(140)는 수중방전 검출기(120)로부터 검출된 수중방전을 통해서 해저케이블(200)의 고장점(220)의 위치를 계산한다. 수신기(140)는 수중방전 검출기(130)로부터 검출된 수중방전의 정보를 수신하여 해저케이블(200)의 고장점(220)의 위치를 계산한다. 수신기(140)는 선박 또는 잠수정에 탑재된다.
도2는 본 발명의 일 실시예에 따른 해저케이블 고장점 탐색 방법을 나타낸 순서도이다.
도2를 참조하면, 해저 케이블 고장점 탐색 시스템은 우선, 해저케이블의 일단에 방전유도전압을 인가한다.(S201) 해저 케이블 고장점 탐색 시스템은 해저케이블의 일단에 고전압발생기를 연결한다. 해저 케이블 고장점 탐색 시스템은 고전압발생기로부터 발생되는 방전유도전압을 0V에서부터 50kV까지 서서히 증가시키면서 해저케이블에 방전유도전압을 인가한다. 여기서 방전유도전압의 최대값은 50kV로 한정되지 않고 케이블의 종류 및 케이블의 운전전압의 범위에 따라 다르게 설정 가능하다.
이어서, 해저 케이블 고장점 탐색 시스템은 방전유도전압에 의한 해저케이블의 수중방전을 검출한다.(S202) 해저케이블이 불완전절연파괴에 의한 고장인 경우, 임계치의 방전유도전압이 해저 케이블에 인가되었을 때, 해저 케이블의 고장점에 수중방전이 발생한다. 고장점에서 수중방전이 발생하면 수중 음향 및 누설 전류가 발생한다. 즉, 해저 케이블 고장점 탐색 시스템은 고장점의 상세한 위치 계산을 위해서 수중 음향 또는 누설 전류와 같은 수중방전을 검출한다.
이어서, 해저 케이블 고장점 탐색 시스템은 검출된 수중방전을 이용하여 해저케이블의 고장점을 탐지한다.(S201) 예를 들어, 해저 케이블 고장점 탐색 시스템은 해저케이블의 고장점에서 발생한 수중 음향의 크기 변화 또는 누설 전류의 크기 변화 등을 이용하여 고장점의 상세한 위치를 탐지할 수 있다.
도3은 본 발명의 일 실시예에 따른 해저케이블 고장점 탐색 방법을 나타낸 전체 순서도이다.
도3을 참조하면, 해저 케이블 고장점 탐색 시스템은 우선 해저케이블의 고장을 수신한다.(S301) 해저케이블의 고장은 내전압 또는 절연저항의 측정에 의해서 판단될 수 있다.
이어서, 해저 케이블 고장점 탐색 시스템은 해저 케이블의 개략적 고장 위치를 탐색한다.(S302) 해저 케이블 고장점 탐색 시스템은 해저케이블에 고장이 발생했음을 수신하면, 시각범위 반사측정(Time Domain Reflectrometer : TDR) 방법 또는 머레이 루프(Murray Loop) 방법을 이용하여 개략적으로 고장점 위치를 파악한다. 해저 케이블 고장점 탐색 시스템은 고장이 발생한 해저케이블의 일단에 시각범위 반사측정 장치 및 머레이 루프 장치를 연결한다. 이때 해저 케이블 고장점 탐색 시스템은 해저케이블의 타단을 개방한다. 즉, 해저 케이블 고장점 탐색 시스템은 해저케이블의 타단의 도체를 개방하고, 금속 시스를 분리한다. 해저 케이블 고장점 탐색 시스템은 시각범위 반사측정 장치 및 머레이 루프 장치를 사용하여, 펄스파와 같은 시그널을 해저케이블에 인가한다. 해저 케이블 고장점 탐색 시스템은 해저케이블에 인가된 시그널이 고장점에서 반사되어 되돌아 오는 시간을 측정함으로써, 해저케이블의 고장점의 위치를 측정한다. 그러나 시각범위 반사측정 및 머레이 루프의 경우 장치의 오차로 인해 정확한 고장점을 찾기는 힘들다. 즉, 해저 케이블 고장점 탐색 시스템은 시각범위 반사측정 장치 및 머레이 루프 장치를 이용하여 장치 오차범위를 포함한 개략적인 고장점 위치를 파악한다.
이어서, 해저 케이블 고장점 탐색 시스템은 해저케이블에 방전유도전압을 인가한다.(S303) 해저 케이블 고장점 탐색 시스템은 시각범위 반사측정 장치 또는 머레이 루프 장치로 해저케이블의 개략적 고장점 위치가 파악되면, 고전압발생기를 해저케이블 일단에 연결하고 방전유도전압을 인가한다. 해저 케이블 고장점 탐색 시스템에서 해저케이블 일단에 연결된 고전압발생기는 0V에서부터 방전유도전압을 일정한 간격으로 증가시키면서 최대 50kV까지 해저케이블에 인가한다. 여기서 인가되는 방전유도전압의 최대값은 케이블의 종류 및 케이블 상태에 따라서 다르게 설정될 수 있다.
이어서, 해저 케이블 고장점 탐색 시스템은 해저케이블 고장점의 절연파괴 정도를 판단한다.(S304) 해저케이블에 방전유도전압이 최대치까지 인가될때까지 고장점에서 방전이 발생하지 않는다면, 해저케이블의 고장점은 완전절연파괴 상태이다. 그러나, 해저케이블에 방전유도전압이 인가에 의해서 고장점에서 방전이 발생한다면, 해저케이블의 고장점은 불완전절연파괴 상태이다. 해저케이블 고장점의 불완전절연파괴 상태의 정도에 따라서 방전전압의 크기는 달라질 수 있다. 여기서 방전전압은 해저케이블의 고장점에 방전이 발생하였을 때의 방전유도전압이다.
단계 S304에서의 판단결과, 해저케이블 고장점의 절연파괴 정도가 불완전절연파괴 상태인 경우, 해저 케이블 고장점 탐색 시스템은 해저케이블의 고장점에서 발생하는 수중방전을 검출한다.(S305) 해저케이블 고장점이 불완전절연파괴 상태일 때 해저 케이블에 방전전압이 인가되면, 해저케이블의 고장점에서 수중방전이 발생한다. 이때, 수중방전에 의한 수중음향 또는 누설방전전류를 검출할 수 있다.
이어서, 해저 케이블 고장점 탐색 시스템은 해저케이블의 고장점 위치를 탐지한다.(S306) 해저 케이블 고장점 탐색 시스템은 검출된 수중방전의 정보를 이용하여 해저케이블의 고장점의 상세한 위치를 탐지한다. 해저케이블의 고장점에서 수중방전에 의한 수중음향 또는 누설방전전류의 크기는 고장점과의 거리에 의해서 변화된다. 이와 같은 수중음향 또는 누설방전전류의 크기가 최대값을 갖는 위치가 해저케이블의 고장점이 된다.
단계 S304에서의 판단결과, 해저케이블 고장점의 절연파괴 정도가 완전절연파괴 상태인 경우, 해저 케이블 고장점 탐색 시스템은 잠수정을 이용하여 육안탐지를 실행한다. 또는 해저 케이블 고장점 탐색 시스템은 써칭코일 방법을 이용하여 누설전류 또는 누설자속을 검출한다.(S307)
이어서, 해저 케이블 고장점 탐색 시스템은 해저케이블의 고장점을 탐지한다.(S306) 잠수정을 이용한 육안탐지로 고장점을 탐지한다. 또는 써칭코일 방법에 의해서 검출된 누설전류 또는 누설자속의 정보를 이용하여 해저케이블의 고장점 위치를 탐지한다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 해저케이블 고장점 탐색 시스템에 있어서,
    해저케이블의 개략적인 고장점을 탐지하는 고장점 검출기;
    방전유도전압을 발생하는 고전압발생기;
    상기 고전압발생기로부터 인가된 방전유도전압에 의해 상기 해저케이블의 고장점에서 발생하는 수중방전을 검출하는 수중방전 검출기; 및
    상기 수중방전 검출기로부터 검출된 상기 수중방전의 정보를 통해서 상기 해저케이블의 고장점을 탐지하는 수신기를 포함하는 것을 특징으로 하는 해저케이블 고장점 탐색 시스템.
  2. 제1항에 있어서,
    상기 고전압발생기는 주기적으로 방전유도전압을 발생하는 것을 특징으로 하는 해저케이블 고장점 탐색 시스템.
  3. 제1항에 있어서,
    상기 수신기는 선박 또는 잠수정에 탑재되는 것을 특징으로 하는 해저케이블 고장점 탐색 시스템.
  4. 제1항에 있어서,
    상기 고장점 검출기는 시각범위 반사측정(Time Domain Reflectrometer : TDR) 장치 또는 머레이 루프(Murray Loop) 장치인 것을 특징으로 하는 해저케이블 고장점 탐색 시스템.
  5. 해저케이블 고장점 탐색 방법에 있어서,
    (a) 상기 해저케이블의 개략적인 고장점을 탐지하는 단계;
    (b) 상기 해저케이블의 일단에 방전유도전압을 인가하는 단계;
    (c) 상기 방전유도전압에 의한 상기 해저케이블의 수중방전을 검출하는 단계; 및
    (d) 상기 검출된 수중방전에 의해 상기 해저케이블의 고장점을 탐지하는 단계를 포함하는 것을 특징으로 하는 해저케이블 고장점 탐색 방법.
  6. 제5항에 있어서,
    (b)단계 이전에 상기 해저 케이블의 타단을 개방하는 단계를 더 포함하는 것을 특징으로 하는 해저케이블 고장점 탐색 방법.
  7. 제5항에 있어서,
    상기 (b)단계 이후에,
    (b-1) 상기 해저케이블의 절연파괴 정도를 판단하는 단계를 더 포함하는 해저 케이블 고장점 탐색 방법.
  8. 제7항에 있어서,
    상기 (b-1)단계 이후에,
    상기 해저케이블의 절연파괴 정도가 불완전절연파괴상태인 경우, 상기 (c)단계 및 (d)단계를 수행하는 것을 특징으로 하는 해저케이블 고장점 탐색 방법.
  9. 제7항에 있어서,
    상기 (b-1)단계 이후에,
    상기 해저케이블의 절연파괴 정도가 완전절연파괴상태인 경우,
    잠수정을 이용한 육안탐지 또는 써칭코일 방법으로 상기 해저케이블의 고장점을 탐지하는 단계를 더 포함하는 것을 특징으로 하는 해저케이블 고장점 탐색 방법.
  10. 제5항에 있어서,
    상기 해저케이블의 개략적인 고장점 탐지는 시각범위 반사측정기(Time Domain Reflectrometer : TDR) 방법 또는 머레이 루프(Murray Loop) 방법을 이용하여 수행되는 것을 특징으로 하는 해저케이블 고장점 탐색 방법.
PCT/KR2010/006318 2009-10-30 2010-09-15 해저케이블 고장점 탐색 시스템 및 방법 WO2011052890A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090104593A KR100983561B1 (ko) 2009-10-30 2009-10-30 해저케이블 고장점 탐색 시스템 및 방법
KR10-2009-0104593 2009-10-30

Publications (2)

Publication Number Publication Date
WO2011052890A2 true WO2011052890A2 (ko) 2011-05-05
WO2011052890A3 WO2011052890A3 (ko) 2011-07-07

Family

ID=43010371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006318 WO2011052890A2 (ko) 2009-10-30 2010-09-15 해저케이블 고장점 탐색 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR100983561B1 (ko)
WO (1) WO2011052890A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809713A (zh) * 2012-08-01 2012-12-05 国家电网公司 一种海底电缆断点探测方法
CN107329061A (zh) * 2017-07-21 2017-11-07 中国南方电网有限责任公司超高压输电公司检修试验中心 一种海底电缆高压绝缘性能试验系统及确定方法
EP3264115A1 (de) * 2016-06-28 2018-01-03 Bender GmbH & Co. KG Verfahren zum bestimmen eines isolationsfehlerortes auf einem elektrischen leiter einer untermeeresversorgungsleitung
CN111856208A (zh) * 2020-07-17 2020-10-30 山东科汇电力自动化股份有限公司 一种超高压电缆护层故障点定位装置及方法
CN116520073A (zh) * 2023-03-17 2023-08-01 上海交通大学 海底观测网供电系统故障定位方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0921632D0 (en) 2009-12-10 2010-01-27 Viper Subsea Ltd Line monitoring device
KR102244743B1 (ko) * 2014-08-19 2021-04-28 엘에스전선 주식회사 광전케이블집합체의 장애감시시스템 및 장애감시방법
WO2016027966A1 (ko) * 2014-08-19 2016-02-25 엘에스전선 주식회사 광전케이블집합체의 장애감시시스템 및 장애감시방법
KR102258907B1 (ko) * 2014-09-24 2021-06-01 엘에스전선 주식회사 광전케이블집합체의 장애감시시스템 및 장애감시방법
KR101468033B1 (ko) * 2014-10-07 2014-12-10 주식회사 지오뷰 수중 음향신호를 이용한 해저 전력케이블 고장점 탐지시스템
KR101862613B1 (ko) * 2016-07-15 2018-06-01 한국전력공사 해저케이블의 고장점 탐지 시스템, 해저케이블의 고장점 탐지 장치 및 해저케이블의 고장점 탐지 방법
CN116500384B (zh) * 2023-06-27 2023-09-05 深圳凯升联合科技有限公司 高压电路故障自动诊断装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237193A (ja) * 1993-02-10 1994-08-23 Fujitsu Ltd 海底ケーブル通信システムの海中機器および障害点標定方法
JP2636161B2 (ja) * 1994-02-28 1997-07-30 日本電気株式会社 海底ケーブルの探査方式
JP2000234952A (ja) * 1999-02-15 2000-08-29 Kansai Electric Power Co Inc:The 遮音カバー付きハイドロホンによる海底ケーブルの事故点検出方法
JP3138663B2 (ja) * 1997-06-06 2001-02-26 国際ケーブル・シップ株式会社 海底ケーブルの障害点検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237193A (ja) * 1993-02-10 1994-08-23 Fujitsu Ltd 海底ケーブル通信システムの海中機器および障害点標定方法
JP2636161B2 (ja) * 1994-02-28 1997-07-30 日本電気株式会社 海底ケーブルの探査方式
JP3138663B2 (ja) * 1997-06-06 2001-02-26 国際ケーブル・シップ株式会社 海底ケーブルの障害点検出方法
JP2000234952A (ja) * 1999-02-15 2000-08-29 Kansai Electric Power Co Inc:The 遮音カバー付きハイドロホンによる海底ケーブルの事故点検出方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809713A (zh) * 2012-08-01 2012-12-05 国家电网公司 一种海底电缆断点探测方法
EP3264115A1 (de) * 2016-06-28 2018-01-03 Bender GmbH & Co. KG Verfahren zum bestimmen eines isolationsfehlerortes auf einem elektrischen leiter einer untermeeresversorgungsleitung
CN107544003A (zh) * 2016-06-28 2018-01-05 本德尔有限两合公司 用于确定海底供电线的电导体上的绝缘故障位置的方法及定位系统
US10598716B2 (en) 2016-06-28 2020-03-24 Bender Gmbh & Co. Kg Methods and locating systems for determining an insulation fault location on an electric conductor of a subsea supply line
AU2017203684B2 (en) * 2016-06-28 2020-10-08 Bender Gmbh & Co. Kg Methods and locating systems for determining an insulaton fault location on an electric conductor of a subsea supply line
DE102016211651B4 (de) 2016-06-28 2022-03-24 Bender Gmbh & Co. Kg Verfahren zum Bestimmen eines Isolationsfehlerortes auf einem elektrischen Leiter einer Untermeeresversorgungsleitung
CN107329061A (zh) * 2017-07-21 2017-11-07 中国南方电网有限责任公司超高压输电公司检修试验中心 一种海底电缆高压绝缘性能试验系统及确定方法
CN107329061B (zh) * 2017-07-21 2023-05-16 中国南方电网有限责任公司超高压输电公司检修试验中心 一种海底电缆高压绝缘性能试验系统及确定方法
CN111856208A (zh) * 2020-07-17 2020-10-30 山东科汇电力自动化股份有限公司 一种超高压电缆护层故障点定位装置及方法
CN111856208B (zh) * 2020-07-17 2023-09-19 山东科汇电力自动化股份有限公司 一种超高压电缆护层故障点定位装置及方法
CN116520073A (zh) * 2023-03-17 2023-08-01 上海交通大学 海底观测网供电系统故障定位方法
CN116520073B (zh) * 2023-03-17 2024-01-30 上海交通大学 海底观测网供电系统故障定位方法

Also Published As

Publication number Publication date
KR100983561B1 (ko) 2010-09-27
WO2011052890A3 (ko) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2011052890A2 (ko) 해저케이블 고장점 탐색 시스템 및 방법
WO2016178447A1 (ko) 케이블 고장 진단 방법 및 시스템
RU2664711C2 (ru) Защита в переходном режиме для мультитерминальной hdvc сети
EP2437075B1 (en) Locating partial discharge in a power cable
WO2010041806A1 (ko) 관로 감시 시스템 및 방법
US8324906B2 (en) Methods for detecting a hidden peak in wire fault location applications—improving the distance range resolution
US6194706B1 (en) Methods and systems for locating buried fiber optic cables
WO2019083144A1 (ko) 지중케이블 고장위치 탐지 장치 및 그 방법
CN103675029A (zh) 检测装置和方法
KR101548288B1 (ko) 반사파 계측을 이용한 배선 진단 시스템
CN109932614A (zh) 一种电缆故障排查方法及装置
US11789060B2 (en) Grounded socket and method for insulation fault location in an ungrounded power supply system including insulation monitoring
CN112540268B (zh) 一种输电线路故障检测
US6677761B1 (en) Wire insulation defect detector
Maloney Locating cable faults
EP3244116B1 (en) Fault detection system for subsea pipeline direct electrical heating (deh) cable
WO2016027966A1 (ko) 광전케이블집합체의 장애감시시스템 및 장애감시방법
CN110726906B (zh) 一种检测电缆长度的方法和系统
CN112067955A (zh) 一种三相同步的局部放电检测方法
JPH1090337A (ja) ケーブルの劣化測定方法
RU2208233C1 (ru) Способ обнаружения токов утечки, возможности их появления и поиска мест их возникновения в системах электроснабжения
JP3362755B2 (ja) 通信用平衡回線の心線誤接続位置探索方法
KR20150021669A (ko) 해저케이블 감지시스템 및 감지방법
US2931975A (en) Fault location in electrical cables
Gräf et al. Nonconventional partial discharge measurement using fiber optic sensor system for transmission systems and switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826975

Country of ref document: EP

Kind code of ref document: A2