WO2010041806A1 - 관로 감시 시스템 및 방법 - Google Patents

관로 감시 시스템 및 방법 Download PDF

Info

Publication number
WO2010041806A1
WO2010041806A1 PCT/KR2009/003018 KR2009003018W WO2010041806A1 WO 2010041806 A1 WO2010041806 A1 WO 2010041806A1 KR 2009003018 W KR2009003018 W KR 2009003018W WO 2010041806 A1 WO2010041806 A1 WO 2010041806A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
reflected wave
signal
tube
conductive material
Prior art date
Application number
PCT/KR2009/003018
Other languages
English (en)
French (fr)
Inventor
정대원
Original Assignee
Jeong Dae Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeong Dae Won filed Critical Jeong Dae Won
Publication of WO2010041806A1 publication Critical patent/WO2010041806A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/024Laying or reclaiming pipes on land, e.g. above the ground
    • F16L1/028Laying or reclaiming pipes on land, e.g. above the ground in the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/024Laying or reclaiming pipes on land, e.g. above the ground
    • F16L1/06Accessories therefor, e.g. anchors
    • F16L1/11Accessories therefor, e.g. anchors for the detection or protection of pipes in the ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means

Definitions

  • the present invention relates to a pipeline monitoring system and method, and more particularly to a pipeline monitoring system and method for determining the location and size of the pipeline failure point in real time using TDR technology.
  • the water and sewage system in Korea has a history of about 100 years, and as the history of the water is old, the aging of water and sewage systems is rapidly progressing, and the damage of water and sewage pipes caused by old pipes or various causes is leaked. Causes a phenomenon.
  • the amount of flow of tap water produced in our water purification plant is 80.2%, which is much lower than that of Europe, the United States, and Japan, which are advanced countries of waterworks. have.
  • the leakage phenomenon is not only a loss of water resources, but also a need for additional pressurization equipment due to pressure loss and a weakening of the soil around the pipeline where the leak occurred, which makes it difficult to maintain water and sewage pipes, thereby causing serious economic problems.
  • Cause loss is not only a loss of water resources, but also a need for additional pressurization equipment due to pressure loss and a weakening of the soil around the pipeline where the leak occurred, which makes it difficult to maintain water and sewage pipes, thereby causing serious economic problems.
  • the present invention has been made to solve such a conventional problem, by using the TDR technology to grasp the location and size of the pipeline failure point in real time, and using the information to repair the damage point within a short time
  • the purpose is to make it possible.
  • the pipeline monitoring system includes a signal input and output sensor, and a signal transmission and reception unit.
  • the signal input / output sensor is insulated and attached to the conductive material coated on the tube to receive the output of the detection signal and the detection signal reflected wave generated at the damaged part of the tube, and the signal transceiver outputs the detection signal to the input / output sensor.
  • the reflected wave input from the sensor is converted into data and transmitted to the outside.
  • the pipeline monitoring system may further include a central control unit for receiving the reflected wave data from the signal transmission and reception unit to detect whether the passage is broken compared to the steady state pattern.
  • the pipe breakage position can be grasped by the time taken for the reflected wave to be input, and the degree of tube breakage can be grasped by the magnitude of the reflected wave.
  • the conductive material may be painted on the inside, outside, or inside and outside of the tube.
  • the input / output sensor may be implemented in a form that is easily attached to a conductive material such as a bar, a contact, or a ring.
  • the signal transmission and reception unit may be mounted at a position where communication with the outside is easy, and may include a connector for connection with a signal input / output sensor.
  • the pipeline monitoring method includes a detection signal output step, a reflected wave input step, and a pipeline breakage detection step.
  • the detection signal output step outputs a detection signal to a tube coated with a conductive material through a signal input / output sensor, and the reflection wave input step receives and reflects a reflected wave of a detection signal generated at a damaged portion of the tube, and the pipeline breakage detection step is a reflected wave.
  • the data is compared with the steady state pattern to detect whether the pipeline is broken.
  • the pipe breakage position can be grasped by the time taken for the reflected wave to be input, and the degree of tube breakage can be grasped by the magnitude of the reflected wave.
  • the signal input / output sensor may be implemented in a form that is easily attached to a conductive material such as a bar, a contact, or a ring shape.
  • the conductive material may be painted on the inside, outside, or inside and outside of the tube, and may be insulated to insulate the tube or the fluid.
  • the management is monitored in real time using the TDR technology, so that the position and the degree of the breakage point of the pipeline can also be identified in real time, and using the identified information. We can let you perform repair work of damage point in a short time.
  • FIG. 1 is a block diagram schematically showing the configuration of a pipeline monitoring system according to the present invention.
  • FIG. 2 shows an embodiment of a tubular body.
  • FIG. 3 is a longitudinal sectional view of the tubular body of FIG. 2;
  • FIG. 4 illustrates an embodiment in which various types of signal input / output sensors are attached to a conductive material.
  • FIG. 5 is a diagram illustrating an embodiment of detecting a breakage by receiving a reflected wave of a detection signal when a breakage occurs at a point of a plurality of connected bodies.
  • Figure 6 illustrates an embodiment of a pipeline monitoring system in accordance with the present invention.
  • FIG. 7 is a flowchart illustrating an embodiment of a pipeline monitoring method according to the present invention.
  • FIG. 1 is a block diagram schematically showing the configuration of a pipeline monitoring system 100 according to the present invention.
  • the pipeline monitoring system 100 includes a pipe 110, a signal input / output sensor 120, a signal transceiver 130, and a central controller 200.
  • the tubular body 110 is coated with a conductive material that is insulated, and the conductive material may be painted inside, outside, or inside and outside of the tubular body 110.
  • FIGS. 2 and 3 is an illustration of an embodiment of the tube body 110.
  • a conductive material is formed inside and outside of the tube body 110. It can be seen that the coating, and such a conductive material may include a conductive paint or conductive film.
  • the conductive paint may be made by mixing carbon nanoparticles or other conductive materials with an existing paint, or by designing and using a polymer material, and using a material suitable for drinking water so that the pipe body 110 may be used for water and sewage pipes. would be preferred.
  • FIG. 3 is a view showing a longitudinal section of the tubular body 110 of FIG. 2. Looking at the enlarged conductive material painted on the outside of the tube 110, the insulating material is insulated between the conductive material and the tube 110 and between the conductive material and the outside. This is to prevent the interference by the material of the tube (iron, cement, etc.) and the soil covering the tube 110 when coating the conductive material on the tube 110.
  • the above-described insulating portion may be omitted as long as the conductive film is in an insulating form.
  • the signal input / output sensor 120 may be implemented in a form that is easily attached to a conductive material such as a bar, a contact, or a ring.
  • FIG. 4 is a diagram illustrating an embodiment in which various types of signal input / output sensors 120 are attached to a conductive material.
  • the signal input / output sensors 120 are all attached to a conductive material painted on the outside of the tubular body 110, but the conductive material or painted on the inside of the tubular body 110 is coated on the inside and outside of the tubular body 110. It may be attached to both conductive materials.
  • the signal input / output sensor 120 is attached to a conductive material and receives the output of the detection signal and the detection signal reflected wave generated at the breakage portion of the tube, that is, whether or not the abnormality of the tube 110 through the periodic detection signal input and output
  • the detection method is based on TDR technology.
  • TDR Time Domain Reflectomerty
  • TDR technology consists of a device that generates electrical signals, a transmission medium that carries electrical signals and detects changes in the environment, and a device that measures and analyzes reflected signals.
  • the electrical signal generator and the reflective signal measuring device are embedded in the cable tester, and the electrical signal generated by the cable tester is transmitted along the transmission medium, so that the shape change of the transmission medium itself or the physical and electrical changes around the transmission medium are not. If present, the signal is reflected and passed to the cable tester.
  • TDR technology is easier to install the system than conventional measurement methods, and it is possible to collect data by modem or wireless communication, so that the inside of the ground can be continuously recognized at a long distance, and the shear deformation location and displacement can be immediately checked. It has the advantage of knowing.
  • the signal transceiver 130 outputs a detection signal to the signal input / output sensor 120, and converts the reflected wave input from the signal input / output sensor 120 into a central control unit 200 through a wired or wireless communication network.
  • the controller 200 may receive the reflected wave data from the signal transceiver 130 and detect whether the pipe is damaged in real time by comparing with the steady state pattern.
  • the central control unit 200 may include a notification system to enable a real time response of a person in charge, or may be connected to a notification system and may be linked with other social infrastructure management systems.
  • FIG. 5 is a diagram illustrating an embodiment of detecting breakage by receiving a reflected wave of a detection signal when breakage occurs at a point of a plurality of connected tubular bodies 110.
  • the signal transceiving unit 130 when the signal transceiving unit 130 outputs a detection signal of + 5V to the signal input / output sensor 120, the signal input / output sensor 120 outputs a detection signal with a conductive material. If the breakage does not occur in all of the plurality of tubular bodies 110, the detection signal reflected wave (hereinafter referred to as a normal pattern signal) of the normal pattern may be input. Referring to the normal pattern signal, as shown in FIG. 5. It can be seen that a very small signal occurs at the connection of the tubular 110. The normal pattern signal is measured immediately after the tube 110 is installed and stored in the central controller 200.
  • the detection signal reflected wave includes an abnormal pattern signal at the point where the breakdown occurs. This can be seen by comparing with the stored normal pattern signal.
  • the time at which an abnormal pattern signal is returned may indicate the distance of the point of breakage, and the magnitude of the signal may indicate the degree of breakage. That is, the longer it takes the input time of the reflected wave of the output signal, it can be seen that the damage occurs at a point far from the signal input and output sensor 120, the magnitude of the signal at the point of damage except the connection portion of the tube 110 The larger the value, the more severe the damage.
  • the signal transceiver 130 is mounted at a position where communication with the outside is easy such as a manhole wall, and may be connected to the signal input / output sensor 120 through a connector.
  • the signal transceiver 130 may directly transmit the detection signal reflected wave data to the central controller 200 or through a wired or wireless communication network such as wired or wireless Internet.
  • FIG. 7 is a flowchart illustrating an embodiment of a pipeline monitoring method according to the present invention.
  • the construction In order to perform the pipeline monitoring method according to the present invention, the construction must be performed first, the cleaning proceeds in the tube body 110, and the conductive material in the tube body 110 is painted. At this time, the conductive material is coated with a base (insulation) or insulated for insulation.
  • the signal input and output sensor 120 is connected to the conductive material, the signal transmitting and receiving unit 130 is attached to the cutting point or manhole of the tube 110.
  • the signal transmission / reception unit 130 receives a steady state pattern, which is a carrier of a detection signal input from the signal input / output sensor 120 to the signal transmission / reception unit 130 in a state where no damage occurs to the tube 110.
  • a steady state pattern which is a carrier of a detection signal input from the signal input / output sensor 120 to the signal transmission / reception unit 130 in a state where no damage occurs to the tube 110.
  • Data is converted into the central control unit 200, and the central control unit 200 stores the transmitted steady state pattern data (S100).
  • the signal transceiver 130 outputs a detection signal to the tube 110 coated with a conductive material through the signal input / output sensor 120 (S200).
  • the signal may be output at a predetermined time interval or the signal may be output only when the central control unit 200 instructs the signal.
  • the signal input / output sensor 120 receives the reflected wave of the output detection signal (S300), and the signal transmission / reception unit 130 converts the reflected wave received from the signal input / output sensor 120 into the central control unit 200. Transmit (S400).
  • the transmitted reflected wave data is compared with the steady state pattern stored in the central controller 200 (S500), and the damage of the pipeline failure information, that is, how far from the signal input / output sensor 120, the damage degree is Determine how much (S600).

Abstract

TDR 기술을 이용하여 관로 파손 지점의 위치 및 규모를 실시간으로 파악하기 위한 관로 감시 시스템은 신호 입출력 센서, 및 신호 송수신부를 포함한다. 신호 입출력 센서는 절연 처리가 되어 관체에 도장된 전도성 물질에 부착되어, 탐지 신호의 출력 및 관체의 파손 부위에서 발생하는 탐지 신호 반사파를 입력받으며, 신호 송수신부는 입출력 센서로 탐지 신호를 출력하고, 입출력 센서로부터 입력된 반사파를 데이터화하여 외부로 전송한다.

Description

관로 감시 시스템 및 방법
본 발명은 관로 감시 시스템 및 방법에 관한 것으로, 보다 상세하게는 TDR 기술을 이용하여 관로 파손 지점의 위치 및 규모를 실시간으로 파악하기 위한 관로 감시 시스템 및 방법에 관한 것이다.
우리나라의 상, 하수도는 약 100여 년의 역사를 가지고 있는데, 그 역사가 오래됨에 따라 상, 하수도의 노후화가 빠르게 진행되고 있고, 노후한 관 또는 다양한 원인에 의하여 발생하는 상, 하수도 관의 파손은 누수 현상을 발생시킨다.
그 예를 보면, 우리 나라의 정수장에서 생산된 수돗물 중 요금이 징수된 유수 수량은 유수율 80.2%로, 상수도의 선진국이라 할 수 있는 유럽, 미국, 일본 등에 비하여 매우 낮은 수준을 나타내고 있는 것을 알 수 있다.
이와 같이, 누수 현상은 수자원의 손실일뿐만 아니라, 압력손실로 인한 추가적인 가압 설비의 필요 및 누수가 발생한 관로 주변의 토질 약화 등을 초래하여 상, 하수도 관의 유지 관리를 어렵게 하고, 이로 인한 심각한 경제적 손실을 야기한다.
또한, 가스관이나 송유관 등의 관체에서도 상, 하수도관과 마찬가지로 노후화 및 다양한 원인에 의하여 발생하는 관체의 파손은 가스 또는 기름 누출 현상을 발생시킬 수 있다.
이 또한, 에너지 자원의 손실일뿐만 아니라, 가스 또는 기름 누출이 발생한 관로 주변의 오염을 초래하여 이로 인한 심각한 경제적 손실 및 환경 오염을 야기한다.
때문에, 매설 또는 설치된 관체의 안정성 확보가 중요한 과제로 대두되고 있으며, 이를 위해, 누수 현상, 가스 또는 기름 누출 현상이 발생하기 전에 관체의 파손 부분을 탐지하여 상기 현상들을 예방하거나 관체의 파손부분을 신속하게 수리할 수 있는 방법이 필요하다.
하지만, 대부분이 누수, 가스 누출, 또는 기름 누출이 발생했을 경우의 현상 및 징후를 파악한 후, 이미 진행되고 있을 경우에 관로 탐지를 실시하여 탐지된 관체의 파손 부분을 수리하므로, 예방 보다는 사후 보수 쪽의 의미가 크다고 할 수 있다.
또한, 관리자가 방문하여 일일이 점검해서 파손 부분을 탐지하므로, 파손 부분 탐지에 많은 시간이 소요되며 실시간 모니터링이 불가능하다.
그러므로, 관로를 감시하여 누수, 가스 누출, 또는 기름 누출 현상을 효과적으로 예방할 수 있고, 실시간 감시가 가능한 방법의 마련이 시급하다고 할 수 있다.
본 발명은 이와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, TDR 기술을 이용하여 관로 파손 지점의 위치 및 규모를 실시간으로 파악하고, 파악된 정보를 이용하여 파손 지점의 보수 공사를 빠른 시간내에 실시할 수 있도록 하는 것을 목적으로 한다.
상기 목적을 달성하기 위해 본 발명에 따른 관로 감시 시스템은 신호 입출력 센서, 및 신호 송수신부를 포함한다.
신호 입출력 센서는 절연 처리가 되어 관체에 도장된 전도성 물질에 부착되어, 탐지 신호의 출력 및 관체의 파손 부위에서 발생하는 탐지 신호 반사파를 입력받으며, 신호 송수신부는 입출력 센서로 탐지 신호를 출력하고, 입출력 센서로부터 입력된 반사파를 데이터화하여 외부로 전송한다.
또한, 본 발명에 따른 관로 감시 시스템은 신호 송수신부로부터 반사파 데이터를 전송받아 정상 상태 패턴과 비교하여 관로 파손 여부를 검출하는 중앙 관제부를 더 포함할 수 있다.
또한, 관체 파손이 검출된 경우, 반사파가 입력되는데 걸리는 시간으로 관체 파손 위치를 파악할 수 있고, 반사파의 크기로 관체 파손 정도를 파악할 수 있다.
또한, 전도성 물질은 관체의 내부, 외부, 또는 내, 외부에 도장될 수 있다.
또한, 입출력 센서는 바, 접점 또는 링 형태와 같이 전도성 물질에 부착이 용이한 형태로 구현될 수 있다.
또한, 신호 송수신부는 외부와의 통신이 용이한 위치에 장착되며, 신호 입출력 센서와의 연결을 위한 커넥터를 포함할 수 있다.
상기 목적을 달성하기 위해 본 발명에 따른 관로 감시 방법은 탐지 신호 출력 단계, 반사파 입력 단계, 및 관로 파손 검출 단계를 포함한다.
탐지 신호 출력 단계는 신호 입출력 센서를 통해 전도성 물질이 도장된 관체로 탐지 신호를 출력하고, 반사파 입력 단계는 관체의 파손 부위에서 발생하는 탐지 신호의 반사파를 입력받아 데이터화하며, 관로 파손 검출 단계는 반사파 데이터를 정상 상태 패턴과 비교하여 관로 파손 여부를 검출한다.
또한, 관체 파손이 검출된 경우, 반사파가 입력되는데 걸리는 시간으로 관체 파손 위치를 파악할 수 있고, 반사파의 크기로 관체 파손 정도를 파악할 수 있다.
또한, 신호 입출력 센서는 바, 접점 또는 링 형태와 같이 전도성 물질에 부착이 용이한 형태로 구현될 수 있다.
또한, 전도성 물질은 관체의 내부, 외부, 또는 내, 외부에 도장될 수 있으며, 관체 또는 유체와의 절연을 위한 절연 처리가 되어 있을 수 있다.
본 발명에 의해 관리자가 직접 방문하여 파손 지점을 탐지할 필요 없이, TDR 기술을 이용하여 실시간으로 관리를 감시하므로, 관로 파손 지점의 위치 및 파손 정도 또한 실시간으로 파악할 수 있고, 파악된 정보를 이용하여 파손 지점의 보수 공사를 빠른 시간내에 실시할 수 있도록 할 수 있다.
도 1은 본 발명에 따른 관로 감시 시스템의 구성을 개략적으로 나타낸 블록도.
도 2는 관체의 일 실시예를 나타낸 도면.
도 3은 도 2의 관체의 종단면도를 나타낸 도면.
도 4는 다양한 형태의 신호 입출력 센서가 전도성 물질에 부착된 일 실시예를 도시한 도면.
도 5는 다수개의 연결된 관체의 한 지점에서 파손이 일어났을 경우, 탐지 신호의 반사파를 입력받아 파손을 감지하는 일 실시예를 도시한 도면.
도 6은 본 발명에 따른 관로 감시 시스템의 일 실시예를 도시한 도면.
도 7은 본 발명에 따른 관로 감시 방법의 일 실시예를 나타낸 흐름도.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다. 발명의 이해를 보다 명확하게 하기 위해 동일한 구성요소에 대해서는 상이한 도면에서도 동일한 부호를 사용하도록 한다.
도 1은 본 발명에 따른 관로 감시 시스템(100)의 구성을 개략적으로 나타낸 블록도이다.
관로 감시 시스템(100)은 관체(110), 신호 입출력 센서(120), 및 신호 송수신부(130), 중앙 관제부(200)를 포함한다.
관체(110)는 절연 처리가 되어 있는 전도성 물질이 도장 되어 있는데, 전도성 물질은 관체(110)의 내부, 외부, 또는 내, 외부에 도장 될 수 있다.
이는, 도 2 및 도 3을 추가로 참조하여 자세히 설명될 수 있는데, 도 2는 관체(110)의 일 실시예를 나타낸 도면으로, 도 2에서는 관체(110)의 내, 외부 모두에 전도성 물질이 도장 되어 있는 것을 볼 수 있으며, 이러한 전도성 물질로는 전도성 도료 또는 전도 필름 등이 포함될 수 있다.
전도성 도료는 탄소 나노입자나 기타 전도성 물질을 기존 도료와 혼합하여 만들거나, 고분자 물질을 특성 설계하여 활용할 수 있고, 관체(110)를 상, 하수도관에 사용할 수 있도록 음용수에 적합한 물질을 사용하는 것이 바람직할 것이다.
도 3은 도 2의 관체(110)의 종단면을 나타낸 도면이다. 관체(110) 외부에 도장 된 전도성 물질을 확대하여 살펴보면, 전도성 물질과 관체(110) 사이 및 전도성 물질과 외부 사이에 절연 처리가 되어 있다. 이는 관체(110)에 전도성 물질을 도장할 때, 관의 재질(철, 시멘트 등)에 의한 간섭과 관체(110)를 덮는 토양에 의한 간섭을 막기 위함이다.
또한, 확대하진 않았지만, 관체(110) 내부에 도장 된 전도성 물질의 경우는 관의 재질(철, 시멘트 등)에 의한 간섭과 관체(110)의 내부로 흐르는 유체의 흐름에 의한 간섭을 막기 위함이다.
전도 필름을 도장할 경우, 전도 필름이 절연 처리가 되어 있는 형태라면 상술한 절연 처리 부분은 생략되어도 무방할 것이다.
신호 입출력 센서(120)는 바, 접점 또는 링 형태와 같이 전도성 물질에 부착이 용이한 형태로 구현될 수 있다.
도 4는 다양한 형태의 신호 입출력 센서(120)가 전도성 물질에 부착된 일 실시예를 도시한 도면이다. 도 4에서는 신호 입출력 센서(120)들이 모두 관체(110) 외부에 도장 된 전도성 물질에 부착되어 있는 모습이지만, 관체(110) 내부에 도장 된 전도성 물질이나, 관체(110) 내, 외부에 도장 된 전도성 물질 모두에 부착될 수 있을 것이다.
또한, 신호 입출력 센서(120)는 전도성 물질에 부착되어, 탐지 신호의 출력 및 관체의 파손 부위에서 발생하는 탐지 신호 반사파를 입력받는데, 즉, 주기적인 탐지 신호 입출력을 통해 관체(110)의 이상 유무를 탐지하는 방식은 TDR 기술을 이용한 것이다.
TDR 기술을 자세히 살펴보면, TDR(Time Domain Reflectomerty, 시간 영역 반사) 기술은 원격 감지식 전기 계측 기술로, 전기 송전선이나, 전화선, 광케이블이 파손된 경우, 즉, 동축 전송 케이블의 불연속 지점을 파악하기 위해 개발된 전기파형 분석기술이다.
TDR 기술은 전기 신호를 발생하는 장치, 전기 신호를 전달하고 환경의 변화를 감지하는 전달 매체, 반사 신호를 측정하여 분석하는 장치로 구성된다.
일반적으로, 전기 신호 발생 장치와 반사 신호 측정 장치는 케이블 시험기에 내장되어 있으며, 케이블 시험기에서 발생된 전기 신호가 전달 매체를 따라 전달되면서 전달 매체 자체의 형상 변화나 전달 매체 주변의 물리적, 전기적 변화가 있는 경우 신호가 반사되어 케이블 시험기로 전달된다.
TDR 기술은 기존의 계측 방식에 비해 시스템의 설치가 쉽고, 모뎀이나 무선 통신으로 데이터의 수집이 가능하므로 원거리에서 지반 내부의 변화를 연속적으로 파악할 수 있으며, 전단 변형 발생 위치와 변위의 증감 여부를 즉시 알 수 있다는 장점이 있다.
신호 송수신부(130)는 신호 입출력 센서(120)로 탐지 신호를 출력하고, 신호 입출력 센서(120)로부터 입력된 반사파를 데이터화하여 유선 또는 무선 통신망을 통해 중앙 관제부(200)로 전송하는데, 중앙 관제부(200)는 신호 송수신부(130)로부터 반사파 데이터를 전송받아 정상 상태 패턴과 비교하여 실시간으로 관로 파손 여부를 검출할 수 있다.
이러한 중앙 관제부(200)는 담당자의 실시간 대응이 가능하도록 통지 시스템을 포함하고 있거나, 통지 시스템과 연결되며, 기타 사회 기반 시설 관리 체계와 연동될 수 있다.
도 5는 다수개의 연결된 관체(110)의 한 지점에서 파손이 일어났을 경우, 탐지 신호의 반사파를 입력받아 파손을 감지하는 일 실시예를 도시한 도면이다.
도 5를 참조하면, 신호 송수신부(130)에서 신호 입출력 센서(120)로 +5V의 탐지 신호를 출력하면, 신호 입출력 센서(120)는 전도성 물질로 탐지 신호를 출력한다. 만약, 다수의 관체(110) 모두에서 파손이 일어나지 않았을 경우에는 정상 패턴의 탐지 신호 반사파(이하 정상 패턴 신호라 언급함)를 입력받을 수 있는데, 정상 패턴 신호를 보면, 도 5에서 도시한 바와 같이 관체(110)들의 연결 부위에서 아주 작은 신호가 발생함을 볼 수 있다. 이러한 정상 패턴 신호는 관체(110)가 설치된 직후 측정되어 중앙 관제부(200)에 저장된다.
다수의 관체(110) 중 일부에서 파손이 일어났을 경우에는 탐지 신호 반사파는 파괴가 일어난 지점에서 비정상적인 패턴 신호를 포함하게 된다. 이는 저장되어 있는 정상 패턴 신호와 비교하여 알 수 있다.
비정상적인 패턴 신호가 되돌아오는 시간으로 파손이 일어난 지점의 거리를 알 수 있고, 신호의 크기로 파손 정도를 알 수 있다. 즉, 출력한 신호의 반사파가 입력되는 시간이 오래 걸릴수록 신호 입출력 센서(120)로부터 멀리 떨어진 지점에서 파손이 발생함을 알 수 있고, 관체(110)의 연결 부위를 제외한 파손 지점의 신호의 크기가 클수록 파손 정도가 심각하다는 것을 알 수 있다.
도 6은 본 발명에 따른 관로 감시 시스템(100)의 일 실시예를 도시한 도면이다. 신호 송수신부(130)는 맨홀 벽면과 같은 외부와의 통신이 용이한 위치에 장착되며, 커넥터를 통해 신호 입출력 센서(120)와 연결될 수 있다.
또한, 신호 송수신부(130)는 중앙 관제부(200)로 탐지 신호 반사파 데이터를 직접 전송하거나 유, 무선 인터넷과 같은 유, 무선 통신망을 통해서 전송할 수 있다.
도 7은 본 발명에 따른 관로 감시 방법의 일 실시예를 나타낸 흐름도이다.
본 발명에 따른 관로 감시 방법이 수행되기 위해서는, 먼저 시공을 해야하는데, 관체(110) 내 세정을 진행하고, 관체(110) 내 전도성 물질을 도장한다. 이때 전도성 물질에는 절연을 위해 바탕칠(하도)을 하거나 절연 처리를 한다.
다음으로, 전도성 물질과 연결되는 신호 입출력 센서(120)를 부착하고, 신호 송수신부(130)는 관체(110) 절단 지점이나 맨홀 등에 부착한다.
이러한 과정을 거쳐 시공이 끝나면, 관체(110)에 파손이 발생하지 않은 상태에서 신호 입출력 센서(120)에서 신호 송수신부(130)로 입력된 탐지 신호의 반송파인 정상 상태 패턴을 신호 송수신부(130)에서 데이터화하여 중앙 관제부(200)로 전송하고, 중앙 관제부(200)는 전송된 정상 상태 패턴 데이터를 저장한다(S100).
그리고나서, 관체(110)의 파손 지점을 실시간으로 파악하기 위해 신호 송수신부(130)는 신호 입출력 센서(120)를 통해 전도성 물질이 도장 된 관체(110)로 탐지 신호를 출력한다(S200). 이때, 일정 시간을 주기로 하여 신호를 출력하거나, 중앙 관제부(200)의 지시가 있을 경우에만 신호를 출력할 수 있다.
다음으로, 신호 입출력 센서(120)는 출력한 탐지 신호의 반사파를 입력받고(S300), 신호 송수신부(130)는 신호 입출력 센서(120)로부터 수신한 반사파를 데이터화 하여 중앙 관제부(200)로 전송한다(S400).
전송된 반사파 데이터는 중앙 관제부(200)에 저장되어 있는 정상 상태 패턴과 비교하여(S500), 관로 파손 정보, 즉, 신호 입출력 센서(120)로부터 얼마나 떨어진 지점에서 파손이 발생했는지, 파손 정도는 어느 정도인지를 파악한다(S600).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (11)

  1. 절연처리가 되어 관체에 도장 된 전도성 물질에 부착되어, 탐지 신호의 출력 및 상기 관체의 파손 부위에서 발생하는 탐지 신호 반사파를 입력받는 신호 입출력 센서; 및
    상기 입출력 센서로 탐지 신호를 출력하고, 상기 입출력 센서로부터 입력된 반사파를 데이터화하여 외부로 전송하는 신호 송수신부; 를 포함하는 것을 특징으로 하는 관로 감시 시스템.
  2. 제 1항에 있어서,
    상기 신호 송수신부로부터 상기 반사파 데이터를 전송받아 정상 상태 패턴과 비교하여 관체 파손 여부를 검출하는 중앙 관제부; 를 더 포함하는 것을 특징으로 하는 관로 감시 시스템.
  3. 제 2항에 있어서,
    상기 관체 파손이 검출된 경우,
    상기 반사파가 입력되는데 걸리는 시간으로 상기 관체 파손 위치를 파악하고, 상기 반사파의 크기로 상기 관체 파손 정도를 파악하는 것을 특징으로 하는 관로 감시 시스템.
  4. 제 1항에 있어서,
    상기 전도성 물질은,
    상기 관체의 내부, 외부, 또는 내, 외부에 도장 되는 것을 특징으로 하는 관로 감시 시스템.
  5. 제 1항에 있어서,
    상기 입출력 센서는,
    바, 접점 또는 링 형태와 같이 상기 전도성 물질에 부착이 용이한 형태로 구현되는 것을 특징으로 하는 관로 감시 시스템.
  6. 제 1항에 있어서,
    상기 신호 송수신부는,
    외부와의 통신이 용이한 위치에 장착되며, 상기 신호 입출력 센서와의 연결을 위한 커넥터를 포함하는 것을 특징으로 하는 관로 감시 시스템.
  7. 신호 입출력 센서를 통해 전도성 물질이 도장 된 관체로 탐지 신호를 출력하는 탐지 신호 출력 단계;
    상기 관체의 파손 부위에서 발생하는 상기 탐지 신호의 반사파를 입력받아 데이터화하는 반사파 입력 단계; 및
    상기 반사파 데이터를 정상 상태 패턴과 비교하여 관체 파손 여부를 검출하는 관체 파손 검출 단계; 를 포함하는 것을 특징으로 하는 관로 감시 방법.
  8. 제 7항에 있어서,
    상기 관체 파손이 검출된 경우,
    상기 반사파가 입력되는데 걸리는 시간으로 상기 관체 파손 위치를 파악하고, 상기 반사파의 크기로 상기 관체 파손 정도를 파악하는 것을 특징으로 하는 관로 감시 방법.
  9. 제 7항에 있어서,
    상기 신호 입출력 센서는,
    바, 접점 또는 링 형태와 같이 상기 전도성 물질에 부착이 용이한 형태로 구현되는 것을 특징으로 하는 관로 감시 방법.
  10. 제 7항에 있어서,
    상기 전도성 물질은,
    상기 관체의 내부, 외부, 또는 내, 외부에 도장 되는 것을 특징으로 하는 관로 감시 방법.
  11. 제 7항 내지 제 10항 중 어느 한 한에 있어서,
    상기 전도성 물질은,
    상기 관체 또는 유체와의 절연을 위한 절연 처리가 되어 있는 것을 특징으로 하는 관로 감시 방법.
PCT/KR2009/003018 2008-10-06 2009-06-05 관로 감시 시스템 및 방법 WO2010041806A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0097504 2008-10-06
KR1020080097504A KR101098528B1 (ko) 2008-10-06 2008-10-06 관로 감시 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2010041806A1 true WO2010041806A1 (ko) 2010-04-15

Family

ID=42100739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003018 WO2010041806A1 (ko) 2008-10-06 2009-06-05 관로 감시 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101098528B1 (ko)
WO (1) WO2010041806A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269333A (zh) * 2011-07-20 2011-12-07 中国海洋石油总公司 一种频域自适应滤波消除管道堵塞声信号强干扰的方法
CN102392924A (zh) * 2011-09-21 2012-03-28 中国海洋石油总公司 一种抑制管道堵塞声信号中宽带背景噪声的方法
CN104949608A (zh) * 2014-03-27 2015-09-30 江西飞尚科技有限公司 一种tdr边坡监测仪
CN105650482A (zh) * 2016-01-25 2016-06-08 电子科技大学 一种基于频域的液体输送管道泄露和污堵检测方法
CN109780987A (zh) * 2018-12-29 2019-05-21 中国石油天然气集团有限公司 一种油气管道凹陷变形应变场测量中应变片粘贴定位方法
WO2021225243A1 (ko) * 2020-05-08 2021-11-11 재단법인 서울특별시 서울기술연구원 지중 무선 센서 네트워크 및 이를 이용한 열수송관 손상 감지 시스템
CN113870538A (zh) * 2021-11-01 2021-12-31 江西诚科建设咨询监理有限公司 一种用于智能化工程的通信管道监测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646604B1 (ko) * 2015-07-07 2016-08-09 김평 무선신호를 이용한 지하시설물의 이상 발생 조기경보 분석 시스템 및 방법
KR102077658B1 (ko) * 2018-12-03 2020-02-14 한국해양과학기술원 Tdr을 이용한 지하매설물 진단방법 및 이를 이용한 지하매설물 진단시스템
KR20210081136A (ko) 2019-12-23 2021-07-01 에스지에이비엘씨 주식회사 대규모 용수공급관로를 위한 gis 기반 진단감시 통합관리시스템
KR102187098B1 (ko) * 2020-05-08 2020-12-04 재단법인 서울특별시 서울기술연구원 Tdr 계측선을 이용한 열수송관 손상 감지 시스템 및 방법
JP2023152196A (ja) 2022-04-01 2023-10-16 リンナイ株式会社 給湯装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141554A (ja) * 1996-11-06 1998-05-29 Mitsubishi Kagaku Sanshi Corp 配管部材およびその施工方法
JPH11287783A (ja) * 1998-04-01 1999-10-19 Sekisui Chem Co Ltd 配管の損傷検知方法
KR20030088259A (ko) * 2002-05-14 2003-11-19 (주)와콘 액체관의 누수탐지 시스템 및 방법
KR20070050615A (ko) * 2005-11-11 2007-05-16 건일스틸 주식회사 누수와 파손의 탐지가 가능한 파이프 및 탐지 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141554A (ja) * 1996-11-06 1998-05-29 Mitsubishi Kagaku Sanshi Corp 配管部材およびその施工方法
JPH11287783A (ja) * 1998-04-01 1999-10-19 Sekisui Chem Co Ltd 配管の損傷検知方法
KR20030088259A (ko) * 2002-05-14 2003-11-19 (주)와콘 액체관의 누수탐지 시스템 및 방법
KR20070050615A (ko) * 2005-11-11 2007-05-16 건일스틸 주식회사 누수와 파손의 탐지가 가능한 파이프 및 탐지 시스템

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269333A (zh) * 2011-07-20 2011-12-07 中国海洋石油总公司 一种频域自适应滤波消除管道堵塞声信号强干扰的方法
CN102269333B (zh) * 2011-07-20 2013-11-06 中国海洋石油总公司 一种频域自适应滤波消除管道堵塞声信号强干扰的方法
CN102392924A (zh) * 2011-09-21 2012-03-28 中国海洋石油总公司 一种抑制管道堵塞声信号中宽带背景噪声的方法
CN104949608A (zh) * 2014-03-27 2015-09-30 江西飞尚科技有限公司 一种tdr边坡监测仪
CN105650482A (zh) * 2016-01-25 2016-06-08 电子科技大学 一种基于频域的液体输送管道泄露和污堵检测方法
CN109780987A (zh) * 2018-12-29 2019-05-21 中国石油天然气集团有限公司 一种油气管道凹陷变形应变场测量中应变片粘贴定位方法
WO2021225243A1 (ko) * 2020-05-08 2021-11-11 재단법인 서울특별시 서울기술연구원 지중 무선 센서 네트워크 및 이를 이용한 열수송관 손상 감지 시스템
CN113870538A (zh) * 2021-11-01 2021-12-31 江西诚科建设咨询监理有限公司 一种用于智能化工程的通信管道监测装置

Also Published As

Publication number Publication date
KR20100038505A (ko) 2010-04-15
KR101098528B1 (ko) 2011-12-26

Similar Documents

Publication Publication Date Title
WO2010041806A1 (ko) 관로 감시 시스템 및 방법
CN101255952B (zh) 管道泄漏监测与安全预警测试系统
CN206488060U (zh) 一种地下综合管廊天然气管道泄露在线监测预警装置
CN102011940B (zh) 基于分布式光纤与流量压力值的管路泄漏联合检测方法
CN205919126U (zh) 一种新型油管泄漏压力检测系统
BR102013020747A2 (pt) Aparelho de detecção e método
WO2021225242A1 (ko) Tdr 계측선을 이용한 열수송관 손상 감지 시스템 및 방법
RU2289753C1 (ru) Система оперативного дистанционного контроля состояния изоляции трубопроводов с теплоизоляцией из пенополиуретана, способ и устройство контроля
CN110578872A (zh) 一种用于监测非金属管道泄漏的系统及方法
WO2014120074A9 (en) System for monitoring pipeline leakage, pipeline element provided with the system, and method for mounting the monitoring system onto a pipeline
KR101103311B1 (ko) 단열 이중 관 손상감지 시스템
KR100269817B1 (ko) 배관의 상태를 감지하는 방법 및 이를 수행하기 위한 장치
WO2011021882A2 (ko) 누설 유체 및 배관 절단 감지 장치 및 그 제조방법과 이를 적용한 배관
CN108980637A (zh) 一种管道渗漏监测系统及监测方法
CN215908883U (zh) 一种适用于长距离海管泄漏监测的传感器
CN116972957A (zh) 一种输电gil管道的振动检测方法和系统
CN112944222A (zh) 一种适用于长距离海管泄露监测的传感器及其监测方法
CN211780254U (zh) 一种危化管道及城市管道的管网泄漏报警定位系统
KR20020039490A (ko) 지하매설 수도관로의 누수탐지연결장치
Inaudi et al. Distributed fiber-optic sensing for long-range monitoring of pipelines
CN209922080U (zh) 一种储罐底部油品泄漏监测装置
CN210860681U (zh) 用于监测非金属管道泄漏的系统
JP2009531826A (ja) 故障探索が可能な電力ケーブル
CN113446060A (zh) 地铁装配式车站和区间防渗防灾监测报警系统
CN207421796U (zh) 热力管道光纤在线检漏系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.08.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09819313

Country of ref document: EP

Kind code of ref document: A1