WO2011049015A1 - エバポレータ - Google Patents

エバポレータ Download PDF

Info

Publication number
WO2011049015A1
WO2011049015A1 PCT/JP2010/068140 JP2010068140W WO2011049015A1 WO 2011049015 A1 WO2011049015 A1 WO 2011049015A1 JP 2010068140 W JP2010068140 W JP 2010068140W WO 2011049015 A1 WO2011049015 A1 WO 2011049015A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
rear direction
header
evaporator
hollow body
Prior art date
Application number
PCT/JP2010/068140
Other languages
English (en)
French (fr)
Inventor
基之 ▲高▼木
直久 東山
北斗 峯
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009240211A external-priority patent/JP2011085364A/ja
Priority claimed from JP2009240209A external-priority patent/JP2011085363A/ja
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN2010900010564U priority Critical patent/CN202547197U/zh
Priority to US13/501,800 priority patent/US20120198882A1/en
Publication of WO2011049015A1 publication Critical patent/WO2011049015A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the present invention relates to an evaporator preferably used for a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.
  • the present applicant has previously set a width direction between a pair of header tanks arranged at intervals in the vertical direction and between both header tanks.
  • a plurality of flat heat exchange tubes made of aluminum extruded sections that are oriented in the front-rear direction and spaced apart in the length direction of the header tank and both ends are connected to the header tank, and adjacent heat exchange tubes
  • a tank is provided on the rear side of the first intermediate header portion so as to face the refrigerant outlet header portion, and a first intermediate header portion provided so as to face the refrigerant inlet header portion.
  • An object of the present invention is to provide an evaporator that solves the above problems and is excellent in drainage of condensed water generated on the surface of the fin.
  • the present invention comprises the following aspects in order to achieve the above object.
  • An evaporator comprising a plurality of connected flat heat exchange tubes and corrugated fins arranged between adjacent heat exchange tubes, The left and right side portions of the front and rear end walls of the heat exchange pipe are provided with inclined portions that are linearly inclined outward in the front-rear direction toward the central portion in the left-right direction of the heat exchange tube.
  • An evaporator whose angle between the left and right edges is 25 to 40 degrees.
  • Corrugated fins are in contact with the left and right side surfaces of the heat exchange tube, the width in the front-rear direction of the heat exchange tube is W1mm, and the length in the front-rear direction of the contact portion between the left and right side surfaces of the heat exchange tube and the corrugated fins
  • W2 / W1 80 to 95% when W2 mm is set.
  • a plurality of flat heat exchange tubes arranged at intervals in the front-rear direction are arranged at intervals in the left-right direction, and heat adjacent to each other in the left-right direction. Fins are arranged between pairs of exchange tubes, and in each group of a plurality of heat exchange tubes, the width in the front-rear direction of the gap formed between the heat exchange tubes adjacent in the front-rear direction is 1.5-3.
  • the evaporator according to 1) which is 5 mm.
  • the heat exchange tube is provided in a flat hollow body in which two rectangular metal plates that have been pressed are joined together in a laminated manner, and both metal plates forming the flat hollow body are outward.
  • a heat exchange tube having both upper and lower ends opened is provided, and both front and rear walls of the outward bulge portion forming the heat exchange tube in each metal plate are directed toward the central portion of the thickness of the flat hollow body
  • the evaporator according to 1) above which is inclined linearly outward in the front-rear direction.
  • one of the two metal plates protrudes toward the corrugated fin where the other metal plate is in contact with the other metal plate rather than the other metal plate.
  • the right and left both end portions of the front and rear end walls of the heat exchange pipe have inclined portions that are linearly inclined outward in the front-rear direction toward the central portion in the left-right direction of the heat exchange pipe. Since the angle formed between the inclined portion and the left and right side edges of the corrugated fin is 25 to 40 degrees, the inclined portion of the front and rear end walls of the heat exchange pipe and the left and right side edges of the corrugated fin In the meantime, a corner portion having a sharp corner at the inner side in the width direction of the heat exchange tube is formed. Therefore, the condensed water generated on the surface of the corrugated fin flows so as to be attracted to the entering corner portion by surface tension, and then flows downward through the entering corner portion. Therefore, the drainage of the condensed water generated on the surface of the corrugated fin is improved, and the deterioration of the heat exchange performance due to the scattering of the condensed water and the freezing of the condensed water is prevented.
  • the gaps formed between the heat exchange tubes adjacent in the front-rear direction are arranged in the front-rear direction. Since the width is 1.5 to 3.5 mm, the condensed water generated on the surface of the corrugated fin flows so as to be drawn to the gap between the adjacent heat exchange tubes before and after each set by the surface tension, and then It flows down through the gap. Therefore, the drainage of the condensed water generated on the surface of the corrugated fin is improved, and the deterioration of the heat exchange performance due to the scattering of the condensed water and the freezing of the condensed water is prevented.
  • the evaporator of 6 on the left and right side portions of the front and rear end walls of the heat exchange tube, it is relatively easy to incline in a straight line outwardly in the front-rear direction toward the center in the left-right direction of the heat exchange tube.
  • the angle formed between the inclined portion and the left and right side edges of the corrugated fin can be set to 25 to 40 degrees.
  • FIG. 1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged sectional view taken along line AA in FIG. 1 with a part thereof omitted.
  • FIG. 3 is an enlarged sectional view taken along line BB in FIG. 2.
  • 3 is a graph showing the results of Experimental Examples 1 and 2 and Comparative Experimental Examples 1 and 2.
  • 5 is a graph showing the relationship between the water retention amount, the contact rate, and the angle between the inclined part of the heat exchange pipe and the left and right side edges of the corrugated fin in Experimental Examples 1 and 2 and Comparative Experimental Example 1.
  • FIG. 5 is a graph showing the relationship between the ratio of the water retention amount to the contact rate in Experimental Examples 1 and 2 and Comparative Experimental Example 1 obtained from the graph of FIG. 5 and the angle formed between the inclined portion of the heat exchange pipe and the left and right side edges of the corrugated fin.
  • FIG. 6 is a graph showing the results of Experimental Examples 3 to 4 and Comparative Experimental Examples 3 to 4.
  • FIG. 2 which shows the evaporator of Embodiment 2 of this invention.
  • FIG. 9 is an enlarged sectional view taken along the line CC in which a part of FIG. 8 is omitted.
  • FIG. 11 is an enlarged sectional view taken along the line DD in which a part of FIG. 10 is omitted.
  • aluminum includes aluminum alloys in addition to pure aluminum.
  • Embodiment 1 This embodiment is shown in FIGS.
  • FIG. 1 shows the overall configuration of the evaporator
  • FIGS. 2 and 3 show the configuration of the main part of the evaporator.
  • the evaporator (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) that are spaced apart in the vertical direction and extend in the horizontal direction, and both headers.
  • the tank (2) (3) is spaced in the left-right direction (the length direction of the header tank (2) (3)) with the width direction facing in the front-rear direction and the length direction facing in the up-down direction.
  • the first header tank (2) is located on the front side (downstream side in the ventilation direction) and extends in the left-right direction, and the refrigerant inlet header portion (7) extends on the rear side (upstream side in the ventilation direction) and extends in the left-right direction.
  • the outlet header portion (8) and the connecting portion (9) for connecting and integrating the header portions (7) and (8) to each other are provided.
  • An aluminum refrigerant inlet pipe (11) is connected to the refrigerant inlet header section (7) of the first header tank (2), and an aluminum refrigerant outlet pipe (12) is connected to the refrigerant outlet header section (8). .
  • the second header tank (3) includes a first intermediate header portion (13) located on the front side and extending in the left-right direction; a second intermediate header portion (14) located on the rear side and extending in the left-right direction; A connecting portion (15) for connecting and integrating the portions (13) and (14) to each other;
  • the first header tank (2) is a plate-shaped first member (16) formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides and connected to all flat hollow bodies (4).
  • a second member (17) formed by pressing an aluminum brazing sheet having a brazing material layer on both sides and covering the upper side of the first member (16); and an aluminum brazing sheet having a brazing material layer on both sides
  • a flat partition formed by pressing aluminum bare material and disposed between the first member (16) and the second member (17) and brazed to both members (16) and (17).
  • a part forming plate (18) and a first member (16), a second member (17) and a partition part forming plate (18) formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides.
  • the first member (16) includes a front and rear header forming portions (22) and (23) having a downward bulging shape that form lower portions of the refrigerant inlet header portion (7) and the refrigerant outlet header portion (8), and front and rear header formation.
  • the portions (22) and (23) are integrally connected to each other and are formed with a connecting wall (24) that forms the lower portion of the connecting portion (9).
  • a plurality of pipe insertion holes (25) that are long in the front-rear direction in the header forming portions (22), (23) of the first member (21) are spaced in the left-right direction and are located at the same position in the left-right direction. Is formed.
  • the second member (17) includes upper and lower front and rear header forming portions (26) and (27) that form upper portions of the refrigerant inlet header portion (7) and the refrigerant outlet header portion (8), and front and rear header formation.
  • the portions (26) and (27) are integrally connected to each other and the connecting wall (28) forming the upper portion of the connecting portion (9).
  • the partition forming plate (18) includes a front partition (29) that divides the refrigerant inlet header (7) into two upper and lower spaces (7A) and (7B), and a refrigerant outlet header (8).
  • the rear partition section (31) partitioned into two spaces (8A) and (8B) and the partition sections (29) and (31) are integrally connected to form an intermediate portion in the vertical direction of the connection section (9). It consists of a connecting wall (32).
  • a plurality of circular communication holes (34) passed through the upper and lower spaces (7A) and (7B) of the refrigerant inlet header (7) in the middle part in the front-rear direction of the front partition (29) of the partition forming plate (18) ) Are formed at intervals in the left-right direction. Further, in the portion excluding the left and right end portions of the rear portion of the rear partition portion (31) of the partition portion forming plate (18), the upper and lower spaces of the refrigerant outlet header portion (8) are long in the left-right direction ( A plurality of oval communication holes (35) through which 8A and 8B are passed are formed at intervals in the left-right direction. The length of the oval communication hole (35) in the center is shorter than the lengths of the other oval communication holes (35).
  • the left end member (19) closes the left end opening of the refrigerant inlet header portion (7) and the refrigerant outlet header portion (8)
  • the right end member (19) is the refrigerant inlet header portion (7) and the refrigerant outlet header portion (8 ) Close the right end opening.
  • a refrigerant inlet is formed in a portion facing the upper space (7A) in a portion closing the right end opening of the refrigerant inlet header portion (7) of the right end member (19), and the refrigerant outlet header portion (8)
  • a refrigerant outlet is formed in a portion facing the upper space (8A) in the portion closing the right end opening.
  • the joint plate (21) has a refrigerant passage communicating with the refrigerant inlet and the refrigerant outlet of the right end member (19).
  • the second header tank (3) has substantially the same configuration as the first header tank, and is disposed upside down with respect to the first header tank (2). .
  • the header forming portions (22) and (23) of the first member (16) of the second header tank (3) form the upper portions of the first intermediate header portion (13) and the second intermediate header portion (14).
  • the header forming portions (26) and (27) of the second member (17) form the lower portions of the first intermediate header portion (13) and the second intermediate header portion (14).
  • the first intermediate header portion (13) is divided into two upper and lower spaces (13A) and (13B) by the front partition portion (29) of the partition portion forming plate (18), and the rear partition portion (31).
  • the inside of the second intermediate header portion (14) is partitioned into two upper and lower spaces (14A) and (14B).
  • the intermediate part of the connection part (15) in the up-down direction is formed by the connection wall (32) of the partition part forming plate (18).
  • the difference between the second header tank (3) and the first header tank (2) is as follows.
  • the first difference is that the first intermediate header portion (13) is separated from the lower space (13B) (14B) between the intermediate header portions (13) and (14) of the second member (17).
  • a plurality of communication portions (36) for allowing passage through the lower space (13B) and the lower space (14B) of the second intermediate header portion (14) are provided at intervals in the left-right direction. is there.
  • the communicating portion (36) is a flat hollow body (4) adjacent in the left-right direction at a plurality of locations in the second intermediate header portion (14) where the amount of refrigerant in the length direction of the second header tank (3) can be made uniform. ) It is provided between each other.
  • the second difference is that instead of the communication hole (33) and the circular communication hole (34) in the front partition part (29) of the partition part forming plate (18), a plurality of relatively large squares that are long in the left-right direction. Communication holes (37) are formed at intervals in the left-right direction, and a plurality of circular communication holes (38) are provided in the rear portion of the rear partition (31) instead of the oval communication holes (34). That is, it is formed in a penetrating manner with an interval in the left-right direction.
  • the third difference is that the right end member (21) is not formed with a refrigerant inlet and a refrigerant outlet, and the joint plate (21) is not brazed.
  • the flat hollow body (4) is composed of two rectangular metal plates (41) made of pressed aluminum brazing sheet and the front and rear side edges and the center in the front-rear direction.
  • Two heat exchange pipes (45) which are formed by brazing each other over the entire length and open in the vertical direction and open at both the upper and lower ends, are spaced apart in the front-rear direction, that is, the first header tank. (2) and the number of header portions (7), (8), (13) and (14) of the second header tank (3) are provided.
  • the heat exchange pipe (45) of the flat hollow body (4) is located between the brazed part (46) between the front and rear side edges of both metal plates (41) and the brazed part (47) between the central parts in the front and rear direction.
  • both metal plates (41) are provided by forming outward bulging portions (48) extending over the entire length, and are flattened with the width direction in the front-rear direction.
  • the flat hollow body (4) is provided with a set (44) composed of a plurality of (here, two flat heat exchange tubes (45)) with the width direction directed in the front-rear direction and spaced in the front-rear direction.
  • a gap (43) is formed between the heat exchange tubes (45) adjacent in the front-rear direction. That is, it is composed of a plurality of flat heat exchange tubes (45) disposed between the first header tank (2) and the second header tank (3) with the width direction directed in the front-rear direction and spaced in the front-rear direction.
  • a plurality of sets (44) are arranged at intervals in the left-right direction, and corrugated fins (5) are arranged between sets of heat exchange tubes (45) adjacent in the left-right direction.
  • the upper and lower ends of the brazed portion (46) between the front and rear side edges of both metal plates (41) in the flat hollow body (4) are cut from the front and rear outer edges to the upper and lower end surfaces.
  • the excised part is indicated by (51).
  • the upper and lower ends of the brazed portion (47) between the center portions in the front-rear direction of both metal plates (41) in the flat hollow body (4) are wider in the front-rear direction than the other portions, and are wider.
  • a notch (52) is formed in the brazed portion (47a) from the outer end in the vertical direction.
  • the upper and lower end portions of the heat exchange tube (45) are narrower in the front-rear direction than the other portions.
  • the cut portion (51) is formed in the brazed portion (46) at the front and rear side edges, and the notch (52) is formed in the wide brazed portion (47a) in the center portion in the front and rear direction.
  • the upper and lower ends of each heat exchange pipe (45) protrude outward in the vertical direction from the other parts, and the protrusions are pipes of the first header tank (2) and the second header tank (3).
  • the insertion portion (53) is inserted into the insertion hole (25).
  • the upper and lower end insertion portions (53) of the front heat exchange pipe (45) are arranged on the front side of the first member (16) in the first header tank (2) and the second header tank (3). Inserted into the pipe insertion hole (25) and the upper and lower end insertion portions (53) of the rear heat exchange pipe (45) are the first members in the first header tank (2) and the second header tank (3). (16) The bottom portion of the cut portion (51) of the brazed portion (46) of the front and rear side edges of the flat hollow body (4) and the center portion in the front-rear direction are inserted into the rear tube insertion hole (25).
  • the bottom side of the notch (52) of the wide brazed portion (47a) of the first header tank (2) and the second header tank (3) are the header forming portions (22) and (23) of the first member (16). )
  • the corrugated fin (5) is shared by both the front and rear heat exchange tubes (45) of the flat hollow body (4), and the corrugated fin (5) has a wave crest or wave bottom brazed to the heat exchange tube (45).
  • a plurality of louvers are formed at the connecting portion between the wave crest and the wave bottom of the corrugated fin (5).
  • an aluminum corrugated inner fin (54) is disposed so as to straddle both heat exchange tubes (45) of the flat hollow body (4), and is brazed to both metal plates (41).
  • both front and rear end walls (45a) of both heat exchange pipes (45) of the flat hollow body (4) are linearly outward in the front-rear direction toward the center in the left-right direction of the heat exchange pipe (45).
  • An inclined portion (55) is provided. That is, the front and rear side walls (48a) of the outwardly bulging portion (48) forming both heat exchange tubes (45) in each metal plate (41) of the flat hollow body (4) are formed on the flat hollow body (4). It inclines linearly outward in the front-rear direction toward the center of the thickness.
  • entry corner portions (56) between the outer surfaces of the inclined portions (55) of the front and rear end walls (45a) of the flat hollow heat exchange pipe (45) and the left and right side edges of the corrugated fin (5), respectively. Is formed.
  • the corner portion on the inner side in the width direction of the heat exchange tube (45) in the entering corner portion (56) is an acute angle.
  • the angle ⁇ formed between the inclined portion (55) of the front and rear end walls (45a) of both heat exchange tubes (45) and the left and right side edges of the corrugated fin (5) is determined by the flat hollow body (4) and the corrugated fin (5). Considering the drainage property of the condensed water generated on the surface, the temperature is 25 to 40 degrees.
  • the width of the heat exchange pipe (45) in the front-rear direction is W1mm and the length of the contact part between the left and right sides of the heat exchange pipe (45) and the corrugated fin (5) is W2mm
  • the width W1 in the front-rear direction of the heat exchange tube (45) is preferably 10 to 20 mm
  • the thickness H in the left-right direction of the heat exchange tube (45) is preferably 1 to 1.8 mm.
  • the metal plate (41) of either of the two metal plates (41) has a tip portion of the other metal plate than the other metal plate (41).
  • a protrusion (57) protruding toward the corrugated fin (5) with which the plate (41) is in contact is formed over the entire length. That is, on the front edge of the left metal plate (41) of the flat hollow body (4), a protrusion (57) whose tip protrudes to the right of the right metal plate (41) is formed over the entire length, and also on the right side.
  • a protrusion (57) is formed over the entire length with the tip protruding leftward from the left metal plate (41).
  • the width S in the front-rear direction of the gap (43) formed between the heat exchange tubes (45) adjacent in the front-rear direction is 1.5-3. It is preferably 5 mm. If the width S in the front-rear direction of the gap (43) is smaller than 1.5 mm, it will occur on the surface of the corrugated fin (5), and between the adjacent heat exchange tubes (45) before and after each pair (44) due to surface tension Condensed water that has flown so as to be attracted to the gap (43) is stagnated in the gap (43) due to surface tension, and is difficult to flow downward.
  • the width S in the front-rear direction of the gap (43) is larger than 3.5 mm, the condensed water generated on the surface of the corrugated fin (5) becomes difficult to flow so as to be attracted to the gap (43).
  • the thickness H in the left-right direction of the heat exchange tube (45) is preferably 1 to 1.8 mm, and the width W in the front-rear direction of the heat exchange tube (45) is preferably 10 to 20 mm.
  • the above-described evaporator (1) is manufactured by combining all parts except the inlet pipe (11) and the outlet pipe (12) and brazing them together.
  • the evaporator (1) constitutes a refrigeration cycle using a chlorofluorocarbon refrigerant together with a compressor and a condenser as a refrigerant cooler, and is mounted on a vehicle such as an automobile as a car air conditioner.
  • the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve passes from the refrigerant inlet pipe (11) to the upper space of the refrigerant inlet header (7) ( 7A), the lower space (7B), the heat exchange pipe (45) on the front side of the flat hollow body (4), the upper space (13A) of the first intermediate header (13), the lower space ( 13B), lower space (14B) of the second intermediate header portion (14), upper space (14A), heat exchange pipe (45) on the rear side of the flat hollow body (4), refrigerant outlet header portion (8) It flows out into the refrigerant outlet pipe (12) through the lower space (8B) and the upper space (8A).
  • condensed water is generated on the surface of the corrugated fin (5).
  • This condensed water is caused by the surface tension between the outer surface of the inclined portion (55) of the front and rear end walls (45a) of the heat exchange pipe (45) in the flat hollow body (4) and the left and right side edges of the corrugated fin (5). It flows so as to be attracted to the entering corner portion (56) formed at the bottom, and then flows downward through the entering corner portion (56). Accordingly, the drainage of the condensed water is improved, and the performance of the evaporator (1) is prevented from being lowered. Further, the forward scattering of the condensed water is suppressed by the action of the protrusions (57) on the front side edge of the flat hollow body (4).
  • Experimental example 2 The same combination as in Experimental Example 1 except that the angle ⁇ formed by the inclined part (55) of the front and rear end walls (45a) of the heat exchange pipe (45) and the right and left side edges of the corrugated fin (5) is 35 degrees. A body was prepared, and the change in water retention amount was examined in the same manner as in Experimental Example 1. The width W1 in the front-rear direction of the heat exchange tube (45) and the thickness H in the left-right direction of the heat exchange tube (4) are the same as in Experimental Example 1.
  • Comparative Experiment Example 1 The same combination as in Experimental Example 1 except that the angle ⁇ formed by the inclined part (55) of the front and rear end walls (45a) of the heat exchange pipe (45) and the left and right side edges of the corrugated fin (5) is 45 degrees. A body was prepared, and the change in water retention amount was examined in the same manner as in Experimental Example 1. The width W1 in the front-rear direction of the heat exchange tube (45) and the thickness H in the left-right direction of the heat exchange tube (4) are the same as in Experimental Example 1.
  • Comparative Experiment Example 2 Instead of a flat hollow body (4), use a set of two heat exchange tubes lined up in the front-rear direction, and braze the corrugated fin (5) and side plate (6) together A prepared combination was prepared.
  • a heat exchange tube described in Patent Document 1 that is, a heat exchange tube in which the cross-sectional shape of both front and rear end walls is an arc shape protruding outward in the front-rear direction. Note that the width in the front-rear direction and the thickness in the left-right direction of the heat exchange tube of Comparative Experimental Example 2 are the same as those of Experimental Example 1. Then, the change in the water retention amount was examined in the same manner as in Experimental Example 1.
  • FIG. 6 shows the relationship between the contact ratio: the ratio of the water retention amount to W2 / W1, and the angle ⁇ between the inclined portions of the front and rear end walls of the heat exchange pipe and the left and right side edges of the corrugated fin.
  • the above contact ratio the smaller the ratio of the water retention amount to W2 / W1, the lowering of the drainage is prevented, and the reduction of the heat transfer performance due to the reduction of the contact area between the heat exchange pipe and the corrugated fin is suppressed. It means that it is possible. Therefore, from the results shown in FIG. 6, when the angle between the inclined portions of the front and rear end walls of the heat exchange tube and the left and right side edges of the corrugated fin: ⁇ is 25 to 40 degrees, necessary heat transfer properties are secured. Thus, it is possible to improve drainage of condensed water.
  • Experimental Example 4 A combination similar to Experimental Example 3 is prepared, except that the width in the front-rear direction of the gap (43) formed between the heat exchange tubes (45) adjacent to the front and rear of the flat hollow body (4) is 2.8 mm. In the same manner as in Experimental Example 3, the amount of water retained after 30 minutes was measured. Note that the width W in the front-rear direction of the heat exchange tube (45) and the thickness H in the left-right direction of the heat exchange tube (45) are the same as in Experimental Example 1.
  • Comparative Experiment Example 3 A combination similar to Example 3 is prepared except that the width in the front-rear direction of the gap (43) formed between the heat exchange tubes (45) adjacent to the front and rear of the flat hollow body (4) is 1.0 mm. In the same manner as in Experimental Example 3, the amount of water retained after 30 minutes was measured. Note that the width W in the front-rear direction of the heat exchange tube (45) and the thickness H in the left-right direction of the heat exchange tube (45) are the same as in Experimental Example 1.
  • Comparative Experiment Example 4 Instead of the flat hollow body (4), a group consisting of two heat exchange tubes having the same configuration as in the comparative experimental example 2 is used, and the group, the corrugated fin (5), and the side plate (6) are brazed. The attached combination was prepared. In addition, the width in the front-rear direction and the thickness in the left-right direction of the heat exchange pipe, and the width in the front-rear direction of the gap formed between the heat exchange pipes adjacent to each other in the front-rear direction are the same as in Experimental Example 3. Then, the amount of water retained after 30 minutes was measured in the same manner as in Experimental Example 3.
  • Embodiment 2 This embodiment is shown in FIG. 8 and FIG. 8 and 9 show the configuration of the main part of the evaporator.
  • the evaporator (60) includes an aluminum first header tank (61) and an aluminum second header tank (62) which are arranged at intervals in the vertical direction and extend in the horizontal direction, and both headers. Between the tanks (61) and (62), the plurality of flat aluminum hollow bodies (63) and the adjacent flat hollow bodies (63) disposed between the tanks (61) and (62) with the width direction directed in the front-rear direction and spaced in the left-right direction. Between the corrugated fins (5), and the aluminum corrugated fins (5) disposed on the outside of the flat hollow bodies (63) on both the left and right ends and brazed to the flat hollow bodies (63), respectively And aluminum side plates (not shown) brazed to the corrugated fins (5).
  • the entire first header tank (61) is a refrigerant inlet header (65), and the entire second header tank (62) is a refrigerant outlet header (66).
  • a refrigerant inlet pipe (not shown) is connected to the refrigerant inlet header part (65) of the first header tank (61), and an aluminum refrigerant outlet pipe (not shown) is connected to the refrigerant outlet header part (66) of the second header tank (62). Abbreviation) is connected.
  • the first header tank (61) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides, and a plate-shaped first member (67) to which all flat hollow bodies (63) are connected.
  • a second member (68) formed by pressing an aluminum brazing sheet having a brazing material layer on both sides and covering the upper side of the first member (67); and an aluminum brazing sheet having a brazing material layer on both sides
  • a flat partition formed by pressing an aluminum bare material and disposed between the first member (67) and the second member (68) and brazed to both members (67) (68).
  • the first member (67) forms the lower part of the refrigerant inlet header part (65), and the second member (68) forms the upper part of the refrigerant inlet header part (65).
  • a plurality of pipe insertion holes (71) that are long in the front-rear direction are formed in the first member (67) at intervals in the left-right direction.
  • the partition forming plate (69) includes a partition (73) that partitions the refrigerant inlet header (65) into two upper and lower spaces (65A) and (65B).
  • a plurality of relatively large rectangular communication holes (74) that are long in the left-right direction are formed at intervals in the left-right direction on the front and rear portions of the partition (73) of the partition forming plate (69).
  • the left and right end members close the left and right end openings of the refrigerant inlet header portion (65).
  • a refrigerant inlet is formed in a portion corresponding to the upper space (65A) in the left end member or the right end member.
  • the second header tank (62) has the same configuration as the first header tank (61) and is disposed upside down with respect to the first header tank (61). .
  • the first member (67) of the second header tank (3) forms the upper part of the refrigerant outlet header part (66), and the second member (68) forms the lower part of the refrigerant outlet header part (66).
  • the inside of the refrigerant outlet header portion (66) is partitioned into two upper and lower spaces (66A) and (66B) by the partition portion (73) of the partition portion forming plate (69).
  • a refrigerant outlet is formed in a portion corresponding to the lower space (66B) in the left end member or the right end member.
  • the flat hollow body (63) is formed by brazing the front and rear side edges of two rectangular metal plates (75) made of pressed aluminum brazing sheet over the entire length.
  • the number of heat exchange pipes (76) extending in the vertical direction and having both upper and lower ends opened is the same as the number of header portions (65) and (66) of the first header tank (61) and the second header tank (62), that is, 1 Only one is provided.
  • the heat exchange pipe (76) of the flat hollow body (63) is connected to the two metal plates (75) over the entire length in the portion between the brazed portions (77) between the front and rear side edges of the two metal plates (75). It is provided by forming the side bulging portion (78), and has a flat shape with the width direction directed in the front-rear direction.
  • the upper and lower ends of the brazed portion (77) between the front and rear side edges of both metal plates (75) in the flat hollow body (63) are cut away from the front and rear outer edges to the upper and lower end surfaces.
  • the excised part is indicated by (81).
  • the projecting portion is an insertion portion (82) that is inserted into the pipe insertion hole (71) of the first header tank (61) and the second header tank (63).
  • the upper and lower end insertion portions (82) of the heat exchange pipe (76) are inserted into the pipe insertion holes of the first member (67) in the first header tank (61) and the second header tank (62). (71), and the bottom part of the cut part (81) of the brazed part (77) at the front and rear side edges of the flat hollow body (63) is the first header tank (61) and the second header tank (62 )
  • the corrugated fin (5) is brazed to the heat exchange pipe (76) at the wave crest or wave crest.
  • An aluminum corrugated inner fin (79) is disposed in the heat exchange pipe (76) of the flat hollow body (63), and is brazed to both metal plates (75).
  • the left and right sides of the front and rear end walls (76a) of the heat exchange pipe (76) of the flat hollow body (63) are linearly outward in the front-rear direction toward the center in the left-right direction of the heat exchange pipe (76).
  • An inclined portion (83) that is inclined is provided. That is, the front and rear side walls (78a) of the outwardly bulging portion (78) forming both heat exchange tubes (76) in each metal plate (75) of the flat hollow body (63) are the flat hollow body (63). It inclines linearly outward in the front-rear direction toward the center of the thickness.
  • the width W1 in the front-rear direction of the heat exchange tube (76) is preferably 10 to 20 mm
  • the thickness H in the left-right direction of the heat exchange tube (76) is preferably 1 to 1.8 mm.
  • one of the two metal plates (75) is attached to one of the metal plates (75), and the other end of the metal plate (75) is more distal than the other metal plate (75).
  • a protrusion (85) protruding toward the corrugated fin (5) with which the plate (75) is in contact is formed over the entire length. That is, on the front edge of the left metal plate (75) of the flat hollow body (63), a protrusion (85) whose tip protrudes rightward from the right metal plate (75) is formed over the entire length, and also on the right side.
  • a ridge (85) having a tip protruding leftward from the left metal plate (75) is formed over the entire length.
  • the evaporator (60) constitutes a refrigeration cycle using a chlorofluorocarbon refrigerant together with a compressor and a condenser as a refrigerant cooler, and is mounted on a vehicle such as an automobile as a car air conditioner.
  • the gas-liquid mixed-phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve passes through the refrigerant inlet of the right end member or the left end member from the refrigerant inlet pipe to the first header.
  • the refrigerant enters the refrigerant inlet header part (65) of the tank (61), and flows out to the refrigerant outlet pipe through the heat exchange pipe (76) and the refrigerant outlet header part (66).
  • condensed water is generated on the surface of the corrugated fin (5).
  • This condensed water is caused by the surface tension between the outer surface of the inclined part (83) of the front and rear end walls (76a) of the heat exchange pipe (76) of the flat hollow body (63) and the left and right side edges of the corrugated fin (5). It flows so as to be attracted to the entering corner portion (84) formed in the above, and then flows downward through the entering corner portion (84). Accordingly, the drainage of the condensed water is improved, and the performance of the evaporator (1) is prevented from being lowered. Further, the forward scattering of the condensed water is suppressed by the action of the protrusions (85) at the front edge of the flat hollow body (63).
  • Embodiment 3 This embodiment is shown in FIG. 10 and FIG. 10 and 11 show the configuration of the main part of the evaporator.
  • the evaporator (90) has the same configuration as the two header tanks (2) and (3) of the evaporator (1) of the first embodiment and is arranged at intervals in the vertical direction. 1 header tank (2) and 2nd header tank (3) are provided. Between the header tanks (2) and (3), the header portions (7) and (8) of both header tanks (2) and (3) are arranged with the width direction facing in the front-rear direction and spaced in the front-rear direction.
  • the upper and lower end portions of the rear heat exchange pipe (91) are brazed to the first member (16) of both header tanks (2) and (3), and the first header tank (2) and the second header tank ( In the state of being inserted into the rear pipe insertion hole (25) of the first member (16) in 3), it is brazed to the first member (16) of both header tanks (2) and (3).
  • the corrugated fin (5) is shared by both the front and rear heat exchange pipes (91), and the wave top or wave bottom of the corrugated fin (5) is brazed to the heat exchange pipe (91).
  • the left and right side portions of the front and rear end walls (91a) of the heat exchange pipe (91) are inclined portions (93) that are inclined linearly outward in the front-rear direction toward the center in the left-right direction of the heat exchange pipe (91). Is provided.
  • portions perpendicular to the left and right side edges of the corrugated fin (5) In addition, corner portions (94) are formed between the outer surface of the inclined portion (93) of the front and rear end walls (91a) of the heat exchange pipe (91) and the left and right side edges of the corrugated fin (5), respectively. .
  • the corner portion on the inner side in the width direction of the heat exchange pipe (91) in the entering corner portion (94) is an acute angle.
  • the angle ⁇ formed by the inclined portions (93) of the front and rear end walls (91a) of the heat exchange pipe (91) and the left and right edges of the corrugated fin (5) is determined between the heat exchange pipe (91) and the corrugated fin (5). Considering the drainage of condensed water generated on the surface, it is 25 to 40 degrees.
  • the width in the front-rear direction of the heat exchange pipe (91) is W1 mm and the length in the front-rear direction of the contact portion between the left and right side surfaces of the heat exchange pipe (91) and the corrugated fin (5) is W2 mm
  • the width W1 in the front-rear direction of the heat exchange pipe (91) is preferably 10 to 20 mm, and the thickness H in the left-right direction of the heat exchange pipe (91) is preferably 1 to 1.8 mm.
  • the width S in the front-rear direction of the gap (95) formed between the heat exchange tubes (91) adjacent in the front-rear direction is 1. It is preferably 5 to 3.5 mm.
  • the width S in the front-rear direction of the gap (63) is smaller than 1.5 mm, it occurs on the surface of the corrugated fin (5), and between the adjacent heat exchange tubes (91) before and after each pair (92) due to surface tension. Condensed water that has flown so as to be attracted to the gap (95) is stagnated in the gap (95) due to surface tension, and is difficult to flow downward.
  • the width S in the front-rear direction of the gap (95) is larger than 3.5 mm, the condensed water generated on the surface of the corrugated fin (5) becomes difficult to flow so as to be attracted to the gap (95).
  • the evaporator (90) constitutes a refrigeration cycle using a chlorofluorocarbon refrigerant together with a compressor and a condenser as a refrigerant cooler, and is mounted on a vehicle such as an automobile as a car air conditioner.
  • the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet pipe (11) to the upper space of the refrigerant inlet header (7) ( 7A), the lower space (7B), the front heat exchange pipe (91), the upper space (13A) of the first intermediate header (13), the lower space (13B), the second intermediate header Lower space (14B), upper space (14A), rear heat exchange pipe (91), lower space (8B) and upper space (8A) of the refrigerant outlet header (8) And then flows out into the refrigerant outlet pipe (12).
  • condensed water is generated on the surface of the corrugated fin (5).
  • This condensed water is formed by the surface tension between the outer surfaces of the inclined portions (93) of the front and rear end walls (91a) of each heat exchange pipe (91) and the left and right side edges of the corrugated fin (5). It flows so as to be attracted to the part (94) and then flows downward through the corner part (94). Accordingly, the drainage of the condensed water is improved, and the performance of the evaporator (1) is prevented from being lowered.
  • the evaporator according to the present invention is suitably used for a refrigeration cycle constituting a car air conditioner.

Abstract

 エバポレータは、上下方向に間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向を前後方向に向けるとともに左右方向に間隔をおいて配置され、かつ両端部がヘッダタンクに接続された複数の扁平状熱交換管45と、隣り合う熱交換管45間に配置されたコルゲートフィン5とを備えている。熱交換管45の前後両端壁45aの左右両側部分に、熱交換管45の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部55を設ける。傾斜部55とコルゲートフィン5の左右両側縁部とのなす角度θを25~40度とする。

Description

エバポレータ
 この発明は、たとえば自動車に搭載される冷凍サイクルであるカーエアコンに好適に使用されるエバポレータに関する。
 この明細書および特許請求の範囲において、隣接する熱交換管どうしの間の通風間隙を流れる空気の下流側(図1、図2、図8および図10に矢印Xで示す方向)を前、これと反対側を後というものとし、図1の上下、左右を上下、左右というものとする。
 小型軽量化および高性能化を図りうるカーエアコン用エバポレータとして、本出願人は、先に、上下方向に間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向を前後方向に向けるとともにヘッダタンクの長さ方向に間隔をおいて配置され、かつ両端部がヘッダタンクに接続された複数のアルミニウム押出形材製の扁平状熱交換管と、隣り合う熱交換管どうしの間に配置されたルーバ付きコルゲートフィンとを備えており、上側ヘッダタンクが、前後方向に並んで設けられるとともに相互に一体化された冷媒入口ヘッダ部および冷媒出口ヘッダ部を備え、下側ヘッダタンクが、冷媒入口ヘッダ部と対向するように設けられた第1中間ヘッダ部と、冷媒出口ヘッダ部と対向するように第1中間ヘッダ部の後側に設けられるとともに第1中間ヘッダ部に一体化された第2中間ヘッダ部とを備え、前側の熱交換管の上下両端部が冷媒入口ヘッダ部および第1中間ヘッダ部に接続されるとともに、同じく後側の熱交換管の上下両端部が冷媒出口ヘッダ部および第2中間ヘッダ部に接続されており、熱交換管の前後両端壁の横断面形状が前後方向外方に突出した円弧状であるエバポレータを提案した(特許文献1参照)。
 特許文献1記載のエバポレータにおいては、小型軽量化および高性能化が図られているので、コルゲートフィンの表面に多くの凝縮水が発生し、エバポレータの単位体積あたりの凝縮水量が多くなる。ところで、通常のエバポレータにおいては、フィン表面に発生した凝縮水は、隣り合うルーバ間の間隙を通って落下するようになっており、排水性を高めるにはルーバの長さを長くすればよい。ところが、特許文献1のエバポレータのように、小型軽量化を図るためには、ヘッダタンクの長さ方向に隣接する熱交換管の間隔も小さくする必要があるので、ルーバ長さを長くすることにも限界があり、凝縮水量が多い場合、排水性が不足するおそれがある。
特開2008-20098号公報
 この発明の目的は、上記問題を解決し、フィンの表面に発生した凝縮水の排水性に優れたエバポレータを提供することにある。
 本発明は、上記目的を達成するために以下の態様からなる。
 1)上下方向に間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向を前後方向に向けるとともに左右方向に間隔をおいて配置され、かつ両端部がヘッダタンクに接続された複数の扁平状熱交換管と、隣り合う熱交換管間に配置されたコルゲートフィンとを備えているエバポレータであって、
 熱交換管の前後両端壁の左右両側部分に、熱交換管の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部が設けられており、当該傾斜部とコルゲートフィンの左右両側縁部とのなす角度が25~40度であるエバポレータ。
 2)熱交換管の左右両側面にコルゲートフィンが接触しており、熱交換管の前後方向の幅をW1mm、熱交換管の左右両側面とコルゲートフィンとの接触部の前後方向の長さをW2mmとした場合、W2/W1=80~95%である上記1)記載のエバポレータ。
 3)熱交換管の前後方向の幅が10~20mmである上記1)記載のエバポレータ。
 4)熱交換管の左右方向の厚みが1~1.8mmである上記1)記載のエバポレータ。
 5)上下1対のヘッダタンク間に、前後方向に間隔をおいて配置された複数の扁平状熱交換管からなる組が、左右方向に間隔をおいて複数配置され、左右方向に隣り合う熱交換管の組どうしの間にフィンが配置され、複数の熱交換管からなる各組において、前後方向に隣り合う熱交換管間に形成された隙間の前後方向の幅が、1.5~3.5mmである上記1)記載のエバポレータ。
 6)熱交換管が、プレス加工が施された2枚の長方形状金属板どうしが積層状に接合された扁平中空体に設けられており、扁平中空体を形成する両金属板が外方に膨出させられることによって上下両端が開口した熱交換管が設けられ、各金属板における熱交換管を形成する外方膨出部の前後両壁が、扁平中空体の厚みの中央部に向かって前後方向外方に直線状に傾斜している上記1)記載のエバポレータ。
 7)扁平中空体の前側縁部において、両金属板のうちのいずれか一方の金属板に、先端部が同他方の金属板よりも当該他方の金属板が接触しているコルゲートフィン側に突出した凸条が全長にわたって形成されている上記6)記載のエバポレータ。
 上記1)~7)のエバポレータによれば、熱交換管の前後両端壁の左右両側部分に、熱交換管の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部が設けられており、当該傾斜部とコルゲートフィンの左右両側縁部とのなす角度が25~40度であるから、熱交換管の前後両端壁の傾斜部と、コルゲートフィンの左右両側縁部との間に、熱交換管の幅方向内側の角部が鋭角となっている入り隅部分が形成されることになる。したがって、コルゲートフィンの表面に発生した凝縮水は、表面張力により上記入り隅部分に引き寄せられるように流れ、その後上記入り隅部分を通って下方に流れ落ちる。したがって、コルゲートフィンの表面に発生した凝縮水の排水性が向上し、凝縮水の飛散や、凝縮水の氷結による熱交換性能の低下が防止される。
 上記2)のエバポレータによれば、熱交換管の前後両端壁の傾斜部と、コルゲートフィンの左右両側縁部との間に形成された入り隅部分内への凝縮水の流れを妨げることなく、熱交換管とコルゲートフィンとの接触面積の減少に起因する伝熱性能の低下を抑制することができる。
 上記5)のエバポレータによれば、1対のヘッダタンク間に配置された複数の扁平状熱交換管からなる各組において、前後方向に隣り合う熱交換管間に形成された隙間の前後方向の幅が、1.5~3.5mmであるから、コルゲートフィンの表面に発生した凝縮水が、表面張力により各組の前後に隣り合う熱交換管間の隙間に引き寄せられるように流れ、その後当該隙間を通って下方に流れ落ちる。したがって、コルゲートフィンの表面に発生した凝縮水の排水性が向上し、凝縮水の飛散や、凝縮水の氷結による熱交換性能の低下が防止される。
 上記6)のエバポレータによれば、熱交換管の前後両端壁の左右両側部分に、比較的簡単に、熱交換管の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部を形成することができるとともに、当該傾斜部とコルゲートフィンの左右両側縁部とのなす角度を25~40度とすることができる。
 上記7)のエバポレータによれば、扁平中空体の前側縁部からの凝縮水の飛散を防止することができる。
この発明の実施形態1のエバポレータの全体構成を示す一部切り欠き斜視図である。 一部を省略した図1のA-A線拡大断面図である。 図2のB-B線拡大断面図である。 実験例1~2および比較実験例1~2の結果を示すグラフである。 実験例1~2および比較実験例1における保水量、接触率、および熱交換管の傾斜部とコルゲートフィンの左右両側縁部とのなす角度の関係を示すグラフである。 図5のグラフから求めた実験例1~2および比較実験例1における接触率に対する保水量の比率と、熱交換管の傾斜部とコルゲートフィンの左右両側縁部とのなす角度の関係を示すグラフである。 実験例3~4および比較実験例3~4の結果を示すグラフである。 この発明の実施形態2のエバポレータを示す図2相当の図である。 図8の一部を省略したC-C線拡大断面図である。 この発明の実施形態3のエバポレータを示す図2相当の図である。 図10の一部を省略したD-D線拡大断面図である。
(1)(60)(90):エバポレータ
(2)(3)(61)(62):ヘッダタンク
(4)(63):扁平中空体
(5):コルゲートフィン
(41)(75):金属板
(43)(95):隙間
(44)(92):前後に並んだ熱交換管からなる組
(48)(78):外方膨出部
(48a)(78a):前後両壁
(45)(76)(91):熱交換管
(45a)(76a)(91a):前後両端壁
(55)(83)(93):傾斜部
(57)(85):凸条
 以下、この発明の実施形態を、図面を参照して説明する。全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。
 なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。
実施形態1
 この実施形態は図1~図3に示すものである。図1はエバポレータの全体構成を示し、図2および図3はエバポレータの要部の構成を示す。
 図1および図2において、エバポレータ(1)は、上下方向に間隔をおいて配置されかつ左右方向にのびるアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に、幅方向を前後方向に向けるとともに長さ方向を上下方向に向けた状態で左右方向(ヘッダタンク(2)(3)の長さ方向)に間隔をおいて配置された複数のアルミニウム製扁平中空体(4)と、隣接する扁平中空体(4)どうしの間の通風間隙、および左右両端の扁平中空体(4)の外側にそれぞれ配置されて扁平中空体(4)にろう付されたアルミニウム製ルーバ付きコルゲートフィン(5)と、左右両端のコルゲートフィン(5)の外側にそれぞれ配置されてコルゲートフィン(5)にろう付されたアルミニウム製サイドプレート(6)とを備えている。
 第1ヘッダタンク(2)は、前側(通風方向下流側)に位置しかつ左右方向にのびる冷媒入口ヘッダ部(7)と、後側(通風方向上流側)に位置しかつ左右方向にのびる冷媒出口ヘッダ部(8)と、両ヘッダ部(7)(8)を相互に連結一体化する連結部(9)とを備えている。第1ヘッダタンク(2)の冷媒入口ヘッダ部(7)にアルミニウム製冷媒入口管(11)が接続され、同じく冷媒出口ヘッダ部(8)にアルミニウム製冷媒出口管(12)が接続されている。第2ヘッダタンク(3)は、前側に位置しかつ左右方向にのびる第1中間ヘッダ部(13)と、後側に位置しかつ左右方向にのびる第2中間ヘッダ部(14)と、両ヘッダ部(13)(14)を相互に連結一体化する連結部(15)とを備えている。
 第1ヘッダタンク(2)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されかつすべての扁平中空体(4)が接続されたプレート状の第1部材(16)と、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されかつ第1部材(16)の上側を覆う第2部材(17)と、両面にろう材層を有するアルミニウムブレージングシートまたはアルミニウムベア材にプレス加工を施すことにより形成されかつ第1部材(16)と第2部材(17)との間に配置されて両部材(16)(17)にろう付された平坦な仕切部形成用板(18)と、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されかつ第1部材(16)、第2部材(17)および仕切部形成用板(18)の左右両端にろう付されたアルミニウム製左右両端部材(19)と、右端部材(19)の外面に、冷媒入口ヘッダ部(7)および冷媒出口ヘッダ部(8)に跨るようにろう付された前後方向に長いアルミニウム製のジョイントプレート(21)とよりなり、ジョイントプレート(21)に、冷媒入口管(11)および冷媒出口管(12)が接続されている。なお、ジョイントプレート(21)は、アルミニウムベア材にプレス加工を施すことにより形成されている。
 第1部材(16)は、冷媒入口ヘッダ部(7)および冷媒出口ヘッダ部(8)の下部を形成する下方膨出状の前後両ヘッダ形成部(22)(23)と、前後両ヘッダ形成部(22)(23)どうしを一体に連結しかつ連結部(9)の下部を形成する連結壁(24)とよりなる。第1部材(21)の両ヘッダ形成部(22)(23)に、それぞれ前後方向に長い複数の管挿通穴(25)が、左右方向に間隔をおきかつ左右方向に関して同一位置に来るように形成されている。
 第2部材(17)は、冷媒入口ヘッダ部(7)および冷媒出口ヘッダ部(8)の上部を形成する上方膨出状の前後両ヘッダ形成部(26)(27)と、前後両ヘッダ形成部(26)(27)どうしを一体に連結しかつ連結部(9)の上部を形成する連結壁(28)とよりなる。
 仕切部形成用板(18)は、冷媒入口ヘッダ部(7)内を上下2つの空間(7A)(7B)に区画する前側仕切部(29)と、冷媒出口ヘッダ部(8)内を上下2つの空間(8A)(8B)に区画する後側仕切部(31)と、両仕切部(29)(31)を一体に連結しかつ連結部(9)の上下方向の中間部を形成する連結壁(32)とよりなる。仕切部形成用板(18)の前側仕切部(29)における左端部に配置された扁平中空体(4)よりも左側の部分には、冷媒入口ヘッダ部(7)内の上下2つの空間(7A)(7B)を通じさせる連通穴(33)が形成されている。仕切部形成用板(18)の前側仕切部(29)の前後方向の中間部には、冷媒入口ヘッダ部(7)の上下両空間(7A)(7B)を通じさせる複数の円形連通穴(34)が、左右方向に間隔をおいて形成されている。また、仕切部形成用板(18)の後側仕切部(31)の後側部分における左右両端部を除いた部分には、左右方向に長くかつ冷媒出口ヘッダ部(8)の上下両空間(8A)(8B)を通じさせる複数の長円形連通穴(35)が、左右方向に間隔をおいて形成されている。中央部の長円形連通穴(35)の長さは他の長円形連通穴(35)の長さよりも短くなっている。
 左端部材(19)は、冷媒入口ヘッダ部(7)および冷媒出口ヘッダ部(8)の左端開口を閉鎖し、右端部材(19)は、冷媒入口ヘッダ部(7)および冷媒出口ヘッダ部(8)の右端開口を閉鎖する。図示は省略したが、右端部材(19)の冷媒入口ヘッダ部(7)の右端開口を閉鎖する部分における上側空間(7A)に臨む部分に冷媒入口が形成され、冷媒出口ヘッダ部(8)の右端開口を閉鎖する部分における上側空間(8A)に臨む部分に冷媒出口が形成されている。ジョイントプレート(21)は、右端部材(19)の冷媒入口および冷媒出口に通じる冷媒通路を有している。
 第2ヘッダタンク(3)は、第1ヘッダタンクとほぼ同様な構成であるとともに、第1ヘッダタンク(2)とは上下逆向きに配置されたものであり、同一部分には同一符号を付す。
 なお、第2ヘッダタンク(3)の第1部材(16)の両ヘッダ形成部(22)(23)は第1中間ヘッダ部(13)および第2中間ヘッダ部(14)の上部を形成し、第2部材(17)の両ヘッダ形成部(26)(27)は第1中間ヘッダ部(13)および第2中間ヘッダ部(14)の下部を形成する。また、仕切部形成用板(18)の前側仕切部(29)によって第1中間ヘッダ部(13)内が上下2つの空間(13A)(13B)に区画され、後側仕切部(31)によって第2中間ヘッダ部(14)内が上下2つの空間(14A)(14B)に区画されている。さらに、仕切部形成用板(18)の連結壁(32)によって連結部(15)の上下方向の中間部が形成されている。
 第2ヘッダタンク(3)の第1ヘッダタンク(2)との相違点は、次の通りである。
 第1の相違点は、第2部材(17)における両中間ヘッダ部(13)(14)の下側空間(13B)(14B)どうしを区画する部分に、第1中間ヘッダ部(13)の下側空間(13B)内と、第2中間ヘッダ部(14)の下側空間(14B)内とを通じさせる複数の連通部(36)が、左右方向に間隔をおいて設けられていることにある。連通部(36)は、第2中間ヘッダ部(14)内における第2ヘッダタンク(3)の長さ方向での冷媒量を均一にしうる複数箇所において、左右方向に隣り合う扁平中空体(4)どうしの間に設けられている。
 第2の相違点は、仕切部形成用板(18)の前側仕切部(29)に、連通穴(33)および円形連通穴(34)に代えて、左右方向に長い比較的大きな複数の方形連通穴(37)が、左右方向に間隔をおいて形成され、後側仕切部(31)の後側部分に、長円形連通穴(34)に代えて、複数の円形連通穴(38)が左右方向に間隔をおいて貫通状に形成されていることにある。
 第3の相違点は、右端部材(21)には冷媒入口および冷媒出口が形成されておらず、ジョイントプレート(21)がろう付されていないことにある。
 図2および図3に示すように、扁平中空体(4)は、プレス加工が施されたアルミニウムブレージングシート製の2枚の長方形状金属板(41)の前後両側縁部どうしおよび前後方向中央部どうしが全長にわたってろう付されることにより形成されたものであり、上下方向にのびるとともに上下両端が開口した熱交換管(45)が、前後方向に間隔をおいて2つ、すなわち第1ヘッダタンク(2)および第2ヘッダタンク(3)のヘッダ部(7)(8)(13)(14)の数と同数だけ設けられている。扁平中空体(4)の熱交換管(45)は、両金属板(41)の前後両側縁部どうしのろう付部(46)と前後方向中央部どうしのろう付部(47)との間の部分において、両金属板(41)にそれぞれ全長にわたる外方膨出部(48)が形成されることにより設けられており、幅方向を前後方向に向けた扁平状となっている。扁平中空体(4)には、幅方向を前後方向に向けるとともに前後方向に間隔をおいて配置された複数、ここでは2つの扁平状熱交換管(45)からなる組(44)が設けられており、各組(44)において前後方向に隣り合う熱交換管(45)間に隙間(43)が形成されている。すなわち、第1ヘッダタンク(2)および第2ヘッダタンク(3)間に、幅方向を前後方向に向けるとともに前後方向に間隔をおいて配置された複数の扁平状熱交換管(45)からなる組(44)が左右方向に間隔をおいて複数配置されるとともに、左右方向に隣り合う熱交換管(45)の組どうしの間にコルゲートフィン(5)が配置されていることになる。
 扁平中空体(4)における両金属板(41)の前後両側縁部どうしのろう付部(46)の上下両端部は、前後方向外側縁から上下両端面にかけて切除されている。当該切除部を(51)で示す。また、扁平中空体(4)における両金属板(41)の前後方向中央部どうしのろう付部(47)の上下両端部は、他の部分よりも前後方向の幅が広くなっており、幅広ろう付部(47a)に上下方向外端部から切り欠き(52)が形成されている。なお、扁平中空体(4)に幅広ろう付部(47a)が設けられることにより、熱交換管(45)の上下両端部は、他の部分よりも前後方向の幅が狭くなっている。そして、前後両側縁部のろう付部(46)に切除部(51)が形成されるとともに、前後方向中央部の幅広ろう付部(47a)に切り欠き(52)が形成されることによって、各熱交換管(45)の上下両端部が他の部分よりも上下方向外方に突出することになり、当該突出部が、第1ヘッダタンク(2)および第2ヘッダタンク(3)の管挿通穴(25)内に挿入される挿入部(53)となっている。扁平中空体(4)は、前側の熱交換管(45)の上下両端挿入部(53)が、第1ヘッダタンク(2)および第2ヘッダタンク(3)における第1部材(16)の前側管挿通穴(25)に挿入されるとともに、後側の熱交換管(45)の上下両端挿入部(53)が、第1ヘッダタンク(2)および第2ヘッダタンク(3)における第1部材(16)の後側管挿通穴(25)に挿入され、さらに扁平中空体(4)における前後両側縁部のろう付部(46)の切除部(51)の底辺部分、および前後方向中央部の幅広ろう付部(47a)の切り欠き(52)の底辺部分が第1ヘッダタンク(2)および第2ヘッダタンク(3)における第1部材(16)の両ヘッダ形成部(22)(23)外面に当接することにより扁平中空体(4)の端部の位置決めが行われた状態で、両ヘッダタンク(2)(3)の第1部材(16)にろう付されている。コルゲートフィン(5)は、扁平中空体(4)の前後両熱交換管(45)に共有されているとともに、コルゲートフィン(5)の波頂部または波底部が熱交換管(45)にろう付されている。また、コルゲートフィン(5)の波頂部と波底部との連結部に複数のルーバが形成されている。さらに、扁平中空体(4)の両熱交換管(45)内に跨るように、アルミニウム製コルゲート状インナーフィン(54)が配置されており、両金属板(41)にろう付されている。
 扁平中空体(4)の両熱交換管(45)の前後両端壁(45a)の左右両側部分には、熱交換管(45)の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部(55)が設けられている。すなわち、扁平中空体(4)の各金属板(41)における両熱交換管(45)を形成する外方膨出部(48)の前後両側壁(48a)は、扁平中空体(4)の厚みの中央部に向かって前後方向外方に直線状に傾斜している。そして、扁平中空体の熱交換管(45)の前後両端壁(45a)の傾斜部(55)外面とコルゲートフィン(5)の左右両側縁部との間に、それぞれ入り隅部分(56)が形成されている。入り隅部分(56)における熱交換管(45)の幅方向内側の角部は鋭角となっている。両熱交換管(45)の前後両端壁(45a)の傾斜部(55)とコルゲートフィン(5)の左右両側縁部とのなす角度θは、扁平中空体(4)およびコルゲートフィン(5)の表面に発生した凝縮水の排水性を考慮して25~40度となっている。また、熱交換管(45)の前後方向の幅をW1mm、熱交換管(45)の左右両側面とコルゲートフィン(5)との接触部の前後方向の長さをW2mmとした場合、熱交換管(45)の前後方向の幅:W1に対する熱交換管(45)の左右両側面とコルゲートフィン(5)との接触部の前後方向の長さ:W2の比率である接触率:W2/W1=80~95%であることが好ましい。さらに、熱交換管(45)の前後方向の幅W1が10~20mmであり、熱交換管(45)の左右方向の厚みHが1~1.8mmであることが好ましい。
 扁平中空体(4)の前後両側縁部において、両金属板(41)のうちのいずれか一方の金属板(41)に、先端部が同他方の金属板(41)よりも当該他方の金属板(41)が接触しているコルゲートフィン(5)側に突出した凸条(57)が全長にわたって形成されている。すなわち、扁平中空体(4)の左側金属板(41)の前側縁部に、先端部が右側金属板(41)よりも右方に突出した凸条(57)が全長にわたって形成され、同じく右側金属板(41)の後側縁部に、先端部が左側金属板(41)よりも左方に突出した凸条(57)が全長にわたって形成されている。
 また、各扁平中空体(4)の組(44)において、前後方向に隣り合う熱交換管(45)間に形成された隙間(43)の前後方向の幅Sは、1.5~3.5mmであることが好ましい。隙間(43)の前後方向の幅Sが1.5mmよりも狭いと、コルゲートフィン(5)の表面に発生し、表面張力により各組(44)の前後に隣り合う熱交換管(45)間の隙間(43)に引き寄せられるように流れてきた凝縮水が、表面張力により隙間(43)内に停滞し、下方に流れ落ちにくくなる。また、隙間(43)の前後方向の幅Sが3.5mmよりも広いと、コルゲートフィン(5)の表面に発生した凝縮水が、隙間(43)に引き寄せられるように流れにくくなる。また、熱交換管(45)の左右方向の厚みHが1~1.8mmであり、熱交換管(45)の前後方向の幅Wが10~20mmであることが好ましい。
 上述したエバポレータ(1)は、入口管(11)および出口管(12)を除いたすべての部品が組み合わされて一括ろう付されることにより製造される。
 エバポレータ(1)は、コンプレッサおよび冷媒冷却器としてのコンデンサとともに、フロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。
 上述したエバポレータ(1)においては、コンプレッサのオン時には、コンプレッサ、コンデンサおよび膨張弁を通過した気液混相の2相冷媒は、冷媒入口管(11)から冷媒入口ヘッダ部(7)の上側空間(7A)内に入り、同下側空間(7B)、扁平中空体(4)の前側の熱交換管(45)、第1中間ヘッダ部(13)の上側空間(13A)、同下側空間(13B)、第2中間ヘッダ部(14)の下側空間(14B)、同上側空間(14A)、扁平中空体(4)の後側の熱交換管(45)、冷媒出口ヘッダ部(8)の下側空間(8B)および同上側空間(8A)を経て冷媒出口管(12)に流出する。
 そして、冷媒が扁平中空体(4)の前後両熱交換管(45)内を流れる間に、隣り合う扁平中空体(4)どうしの間の通風間隙を通過する空気と熱交換をし、冷媒は気相となって流出する。
 このとき、コルゲートフィン(5)の表面に凝縮水が発生する。この凝縮水は、表面張力によって、扁平中空体(4)における熱交換管(45)の前後両端壁(45a)の傾斜部(55)外面とコルゲートフィン(5)の左右両側縁部との間に形成された入り隅部分(56)に引き寄せられるように流れ、その後入り隅部分(56)を通って下方に流下する。したがって、凝縮水の排水性が向上し、エバポレータ(1)の性能低下が防止される。また、扁平中空体(4)の前側縁部の凸条(57)の働きにより、凝縮水の前方への飛散が抑制される。
 次に、実施形態1のエバポレータ(1)の扁平中空体(4)を用いて行った実験例について、比較実験例とともに説明する。
実験例1
 実施形態1のエバポレータ(1)から両ヘッダタンク(2)(3)、冷媒入口管(11)および冷媒出口管(12)を除いた状態であり、扁平中空体(4)、コルゲートフィン(5)およびサイドプレート(6)のみがろう付された組み合わせ体を用意した。扁平中空体(4)の熱交換管(45)の前後両端壁(45a)の傾斜部(55)とコルゲートフィン(5)の左右両側縁部とのなす角度θは25度である。そして、上記組み合わせ体を水槽内の水に浸し、上記組み合わせたに残存していた空気を除去した後、30分間放置した。ついで、上記組み合わせ体を、扁平中空体(4)が垂直になるように吊り上げて水から出し、この状態で上記組み合わせ体の重量を30分間測定することにより保水量変化を調べた。
実験例2
 熱交換管(45)の前後両端壁(45a)の傾斜部(55)とコルゲートフィン(5)の左右両側縁部とのなす角度θを35度とした他は、実験例1と同様な組み合わせ体を用意し、実験例1と同様にして保水量変化を調べた。なお、熱交換管(45)の前後方向の幅W1および熱交換管(4)の左右方向の厚みHは、実験例1と同じである。
比較実験例1
 熱交換管(45)の前後両端壁(45a)の傾斜部(55)とコルゲートフィン(5)の左右両側縁部とのなす角度θを45度とした他は、実験例1と同様な組み合わせ体を用意し、実験例1と同様にして保水量変化を調べた。なお、熱交換管(45)の前後方向の幅W1および熱交換管(4)の左右方向の厚みHは、実験例1と同じである。
比較実験例2
 扁平中空体(4)の代わりに、前後方向に間隔をおいて並んだ2つの熱交換管からなる組を用い、当該組と、コルゲートフィン(5)と、サイドプレート(6)とがろう付された組み合わせ体を用意した。熱交換管としては、特許文献1記載の熱交換管、すなわち前後両端壁の横断面形状が前後方向外方に突出した円弧状である熱交換管を用いた。なお、比較実験例2の熱交換管の前後方向の幅および左右方向の厚みは、実験例1と同じである。そして、実験例1と同様にして保水量変化を調べた。
 実験例1~2および比較実験例1~2の結果を図4に示す。図4に示す結果から明らかなように、実験例1~2においては、30分間経過した後の保水量は比較実験例1~2に比べて少なくなっており、排水性が優れていることが分かる。
 また、実験例1~2および比較実験例1の保水量、実験例1~2および比較実験例1の熱交換管の前後方向の幅:W1に対する熱交換管の左右両側面とコルゲートフィンとの接触部の前後方向の長さ:W2の比率である接触率:W2/W1、ならびに熱交換管の前後両端壁の傾斜部とコルゲートフィンの左右両側縁部とのなす角度:θの関係を図5に示す。
 さらに、上記接触率:W2/W1に対する保水量の比率、ならびに熱交換管の前後両端壁の傾斜部とコルゲートフィンの左右両側縁部とのなす角度:θの関係を図6に示す。上記接触率:W2/W1に対する保水量の比率が小さい方が、排水性の低下を防止した上で、熱交換管とコルゲートフィンとの接触面積の減少に起因する伝熱性能の低下の抑制が可能であることを意味する。したがって、図6に示す結果から、熱交換管の前後両端壁の傾斜部とコルゲートフィンの左右両側縁部とのなす角度:θが25~40度の場合に、必要な伝熱性を確保した上で、凝縮水の排水性を向上させることが可能である。
実験例3
 実施形態1のエバポレータ(1)から両ヘッダタンク(2)(3)、冷媒入口管(11)および冷媒出口管(12)を除いた状態であり、扁平中空体(4)、コルゲートフィン(5)およびサイドプレート(7)のみがろう付された組み合わせ体を用意した。扁平中空体(4)の前後に隣り合う熱交換管(45)間に形成された隙間(43)の前後方向の幅Sは1.6mmである。そして、上記組み合わせ体を水槽内の水に浸し、上記組み合わせたに残存していた空気を除去した後、30分間放置した。ついで、上記組み合わせ体を、扁平中空体(4)が垂直になるように吊り上げて水から出し、この状態で上記組み合わせ体を30分間保持し、30分間経過後の保水量を測定した。
実験例4
 扁平中空体(4)の前後に隣り合う熱交換管(45)間に形成された隙間(43)の前後方向の幅を2.8mmとした他は、実験例3と同様な組み合わせ体を用意し、実験例3と同様にして30分間経過後の保水量を測定した。なお、熱交換管(45)の前後方向の幅Wおよび熱交換管(45)の左右方向の厚みHは、実験例1と同じである。
比較実験例3
 扁平中空体(4)の前後に隣り合う熱交換管(45)間に形成された隙間(43)の前後方向の幅を1.0mmとした他は、実験例3と同様な組み合わせ体を用意し、実験例3と同様にして30分間経過後の保水量を測定した。なお、熱交換管(45)の前後方向の幅Wおよび熱交換管(45)の左右方向の厚みHは、実験例1と同じである。
比較実験例4
 扁平中空体(4)の代わりに、上記比較実験例2と同様な構成の2つの熱交換管からなる組を用い、当該組と、コルゲートフィン(5)と、サイドプレート(6)とがろう付された組み合わせ体を用意した。なお、熱交換管の前後方向の幅および左右方向の厚み、ならびに各組の前後に隣り合う熱交換管間に形成された隙間の前後方向の幅は、実験例3と同じである。そして、実験例3と同様にして30分間経過後の保水量を測定した。
 実験例3~4および比較実験例3~4の結果を図7に示す。図7に示す結果から明らかなように、実験例3~4においては、30分間経過した後の保水量は比較実験例3~4に比べて少なくなっており、排水性が優れていることが分かる。したがって、エバポレータの排水性を向上させるには、前後に隣り合う熱交換管の間に形成された隙間の前後方向の幅を1.5~3.5mmとする必要がある。
実施形態2
 この実施形態は図8および図9に示すものである。図8および図9はエバポレータの要部の構成を示す。
 図8および図9において、エバポレータ(60)は、上下方向に間隔をおいて配置されかつ左右方向にのびるアルミニウム製第1ヘッダタンク(61)およびアルミニウム製第2ヘッダタンク(62)と、両ヘッダタンク(61)(62)間に、幅方向を前後方向に向けるとともに左右方向に間隔をおいて配置された複数のアルミニウム製扁平中空体(63)と、隣接する扁平中空体(63)どうしの間の通風間隙、および左右両端の扁平中空体(63)の外側にそれぞれ配置されて扁平中空体(63)にろう付されたアルミニウム製コルゲートフィン(5)と、左右両端のコルゲートフィン(5)の外側にそれぞれ配置されてコルゲートフィン(5)にろう付されたアルミニウム製サイドプレート(図示略)とを備えている。
 第1ヘッダタンク(61)の全体が冷媒入口ヘッダ部(65)となっており、第2ヘッダタンク(62)の全体が冷媒出口ヘッダ部(66)となっている。第1ヘッダタンク(61)の冷媒入口ヘッダ部(65)に冷媒入口管(図示略)が接続され、第2ヘッダタンク(62)の冷媒出口ヘッダ部(66)にアルミニウム製冷媒出口管(図示略)が接続されている。
 第1ヘッダタンク(61)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されかつすべての扁平中空体(63)が接続されたプレート状の第1部材(67)と、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されかつ第1部材(67)の上側を覆う第2部材(68)と、両面にろう材層を有するアルミニウムブレージングシートまたはアルミニウムベア材にプレス加工を施すことにより形成されかつ第1部材(67)と第2部材(68)との間に配置されて両部材(67)(68)にろう付された平坦な仕切部形成用板(69)と、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されかつ第1部材(67)、第2部材(68)および仕切部形成用板(69)の左右両端にろう付されたアルミニウム製左右両端部材(図示略)とを備えている。
 第1部材(67)は、冷媒入口ヘッダ部(65)の下部を形成し、第2部材(68)は冷媒入口ヘッダ部(65)の上部を形成する。第1部材(67)に、前後方向に長い複数の管管挿通穴(71)が、左右方向に間隔をおいて形成されている。仕切部形成用板(69)は、冷媒入口ヘッダ部(65)内を上下2つの空間(65A)(65B)に区画する仕切部(73)を備えている。仕切部形成用板(69)の仕切部(73)の前側部分および後側部分には、それぞれ左右方向に長い比較的大きな複数の方形連通穴(74)が、左右方向に間隔をおいて形成されている。左右両端部材は冷媒入口ヘッダ部(65)の左右両端開口を閉鎖する。左端部材または右端部材における上側空間(65A)と対応する部分に冷媒入口が形成されている。
 第2ヘッダタンク(62)は、第1ヘッダタンク(61)と同一構成であるとともに第1ヘッダタンク(61)とは上下逆向きに配置されたものであり、同一部分には同一符号を付す。
 なお、第2ヘッダタンク(3)の第1部材(67)は冷媒出口ヘッダ部(66)の上部を形成し、第2部材(68)は冷媒出口ヘッダ部(66)の下部を形成する。また、仕切部形成用板(69)の仕切部(73)によって冷媒出口ヘッダ部(66)内が上下2つの空間(66A)(66B)に区画されている。また、左端部材または右端部材における下側空間(66B)と対応する部分に冷媒出口が形成されている。
 扁平中空体(63)は、プレス加工が施されたアルミニウムブレージングシート製の2枚の長方形状金属板(75)の前後両側縁部どうしが全長にわたってろう付されることにより形成されたものであり、上下方向にのびるとともに上下両端が開口した熱交換管(76)が、第1ヘッダタンク(61)および第2ヘッダタンク(62)のヘッダ部(65)(66)の数と同数、すなわち1つだけ設けられている。扁平中空体(63)の熱交換管(76)は、両金属板(75)の前後両側縁部どうしのろう付部(77)間の部分において、それぞれ両金属板(75)に全長にわたる外方膨出部(78)が形成されることにより設けられており、幅方向を前後方向に向けた扁平状となっている。
 扁平中空体(63)における両金属板(75)の前後両側縁部どうしのろう付部(77)の上下両端部は、前後方向外側縁から上下両端面にかけて切除されている。当該切除部を(81)で示す。そして、前後両側縁部のろう付部(77)に切除部(81)が形成されることによって、各熱交換管(76)の上下両端部が他の部分よりも上下方向外方に突出することになり、当該突出部が、第1ヘッダタンク(61)および第2ヘッダタンク(63)の管挿通穴(71)内に挿入される挿入部(82)となっている。扁平中空体(63)は、熱交換管(76)の上下両端挿入部(82)が、第1ヘッダタンク(61)および第2ヘッダタンク(62)における第1部材(67)の管挿通穴(71)に挿入され、さらに扁平中空体(63)における前後両側縁部のろう付部(77)の切除部(81)の底辺部分が第1ヘッダタンク(61)および第2ヘッダタンク(62)における第1部材(67)の外面に当接することにより扁平中空体(63)の端部の位置決めが行われた状態で、両ヘッダタンク(61)(62)の第1部材(67)にろう付されている。コルゲートフィン(5)は、波頂部または波底部が熱交換管(76)にろう付されている。また、扁平中空体(63)の熱交換管(76)内にアルミニウム製コルゲート状インナーフィン(79)が配置されており、両金属板(75)にろう付されている。
 扁平中空体(63)の熱交換管(76)の前後両端壁(76a)の左右両側部分には、熱交換管(76)の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部(83)が設けられている。すなわち、扁平中空体(63)の各金属板(75)における両熱交換管(76)を形成する外方膨出部(78)の前後両側壁(78a)は、扁平中空体(63)の厚みの中央部に向かって前後方向外方に直線状に傾斜している。そして、扁平中空体(63)における熱交換管(76)の前後両端壁(76a)の傾斜部(83)外面とコルゲートフィン(5)の左右両側縁部との間に、それぞれ入り隅部分(84)が形成されている。入り隅部分(84)の前後方向内側の角部は鋭角となっている。熱交換管(76)の前後両端壁(76a)の傾斜部(83)とコルゲートフィン(5)の左右両側縁部とのなす角度θは、扁平中空体(63)およびコルゲートフィン(5)の表面に発生した凝縮水の排水性を考慮して25~40度となっている。また、熱交換管(76)の前後方向の幅をW1mm、熱交換管(76)の左右両側面とコルゲートフィン(5)との接触部の前後方向の長さをW2mmとした場合、熱交換管(76)の前後方向の幅:W1に対する熱交換管(76)の左右両側面とコルゲートフィン(5)との接触部の前後方向の長さ:W2の比率である接触率:W2/W1=80~95%であることが好ましい。さらに、熱交換管(76)の前後方向の幅W1が10~20mmであり、熱交換管(76)の左右方向の厚みHが1~1.8mmであることが好ましい。
 扁平中空体(63)の前後両側縁部において、両金属板(75)のうちのいずれか一方の金属板(75)に、先端部が同他方の金属板(75)よりも当該他方の金属板(75)が接触しているコルゲートフィン(5)側に突出した凸条(85)が全長にわたって形成されている。すなわち、扁平中空体(63)の左側金属板(75)の前側縁部に、先端部が右側金属板(75)よりも右方に突出した凸条(85)が全長にわたって形成され、同じく右側金属板(75)の後側縁部に、先端部が左側金属板(75)よりも左方に突出した凸条(85)が全長にわたって形成されている。
 エバポレータ(60)は、コンプレッサおよび冷媒冷却器としてのコンデンサとともに、フロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。
 上述したエバポレータ(60)においては、コンプレッサのオン時には、コンプレッサ、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口管から右端部材または左端部材の冷媒入口を通って第1ヘッダタンク(61)の冷媒入口ヘッダ部(65)内に入り、熱交換管(76)および冷媒出口ヘッダ部(66)を経て冷媒出口管に流出する。
 そして、冷媒が扁平中空体(63)の熱交換管(76)内を流れる間に、隣り合う扁平中空体(63)どうしの間の通風間隙を通過する空気と熱交換をし、冷媒は気相となって流出する。
 このとき、コルゲートフィン(5)の表面に凝縮水が発生する。この凝縮水は、表面張力によって、扁平中空体(63)の熱交換管(76)の前後両端壁(76a)の傾斜部(83)外面とコルゲートフィン(5)の左右両側縁部との間に形成された入り隅部分(84)に引き寄せられるように流れ、その後入り隅部分(84)を通って下方に流下する。したがって、凝縮水の排水性が向上し、エバポレータ(1)の性能低下が防止される。また、扁平中空体(63)の前側縁部の凸条(85)の働きにより、凝縮水の前方への飛散が抑制される。
実施形態3
 この実施形態は図10および図11に示すものである。図10および図11はエバポレータの要部の構成を示す。
 図10および図11において、エバポレータ(90)は、実施形態1のエバポレータ(1)の両ヘッダタンク(2)(3)と同一の構成を有しかつ上下方向に間隔をおいて配置された第1ヘッダタンク(2)および第2ヘッダタンク(3)を備えている。両ヘッダタンク(2)(3)間には、幅方向を前後方向に向けるとともに前後方向に間隔をおいて配置された両ヘッダタンク(2)(3)のヘッダ部(7)(8)(13)(14)と同数、ここでは2つのアルミニウム押出形材製扁平状熱交換管(91)からなる組(92)が、左右方向に間隔をおいて複数配置され、前後両熱交換管(91)からなる組(92)どうしの間の通風間隙、および左右両端の組(92)の外側にそれぞれアルミニウム製コルゲートフィン(5)が配置されて熱交換管(91)にろう付され、左右両端のコルゲートフィン(5)の外側にそれぞれアルミニウム製サイドプレート(図示略)が配置されてコルゲートフィン(5)にろう付されている。前後方向に隣り合う2つの扁平状熱交換管(91)からなる組(92)において前後方向に隣り合う熱交換管(91)間に隙間(95)が形成されている。
 前側の熱交換管(91)の上下両端部が、第1ヘッダタンク(2)および第2ヘッダタンク(3)における第1部材(16)の前側管挿通穴(25)に挿入された状態で、両ヘッダタンク(2)(3)の第1部材(16)にろう付され、後側の熱交換管(91)の上下両端部が、第1ヘッダタンク(2)および第2ヘッダタンク(3)における第1部材(16)の後側管挿通穴(25)に挿入された状態で、両ヘッダタンク(2)(3)の第1部材(16)にろう付されている。コルゲートフィン(5)は、前後両熱交換管(91)に共有されているとともに、コルゲートフィン(5)の波頂部または波底部が熱交換管(91)にろう付されている。
 熱交換管(91)の前後両端壁(91a)の左右両側部分には、熱交換管(91)の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部(93)が設けられている。前後両端壁(91a)における両傾斜部(93)間の部分には、コルゲートフィン(5)の左右両側縁部と直角をなす部分が存在する。そして、熱交換管(91)の前後両端壁(91a)の傾斜部(93)外面とコルゲートフィン(5)の左右両側縁部との間に、それぞれ入り隅部分(94)が形成されている。入り隅部分(94)における熱交換管(91)の幅方向内側の角部は鋭角となっている。熱交換管(91)の前後両端壁(91a)の傾斜部(93)とコルゲートフィン(5)の左右両側縁部とのなす角度θは、熱交換管(91)およびコルゲートフィン(5)の表面に発生した凝縮水の排水性を考慮して25~40度となっている。また、熱交換管(91)の前後方向の幅をW1mm、熱交換管(91)の左右両側面とコルゲートフィン(5)との接触部の前後方向の長さをW2mmとした場合、熱交換管(91)の前後方向の幅:W1に対する熱交換管(91)の左右両側面とコルゲートフィン(5)との接触部の前後方向の長さ:W2の比率である接触率:W2/W1=80~95%であることが好ましい。さらに、熱交換管(91)の前後方向の幅W1が10~20mmであり、熱交換管(91)の左右方向の厚みHが1~1.8mmであることが好ましい。
 また、前後2つの熱交換管(91)からなる各組(92)において、前後方向に隣り合う熱交換管(91)間に形成された隙間(95)の前後方向の幅Sは、1.5~3.5mmであることが好ましい。隙間(63)の前後方向の幅Sが1.5mmよりも狭いと、コルゲートフィン(5)の表面に発生し、表面張力により各組(92)の前後に隣り合う熱交換管(91)間の隙間(95)に引き寄せられるように流れてきた凝縮水が、表面張力により隙間(95)内に停滞し、下方に流れ落ちにくくなる。また、隙間(95)の前後方向の幅Sが3.5mmよりも広いと、コルゲートフィン(5)の表面に発生した凝縮水が、隙間(95)に引き寄せられるように流れにくくなる。
 エバポレータ(90)は、コンプレッサおよび冷媒冷却器としてのコンデンサとともに、フロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。
 上述したエバポレータ(90)においては、コンプレッサのオン時には、コンプレッサ、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口管(11)から冷媒入口ヘッダ部(7)の上側空間(7A)内に入り、同下側空間(7B)、前側の熱交換管(91)、第1中間ヘッダ部(13)の上側空間(13A)、同下側空間(13B)、第2中間ヘッダ部(14)の下側空間(14B)、同上側空間(14A)、後側の熱交換管(91)、冷媒出口ヘッダ部(8)の下側空間(8B)および同上側空間(8A)を経て冷媒出口管(12)に流出する。
 そして、冷媒が前後両熱交換管(91)内を流れる間に、隣り合う熱交換管(91)からなる組(92)どうしの間の通風間隙を通過する空気と熱交換をし、冷媒は気相となって流出する。
 このとき、コルゲートフィン(5)の表面に凝縮水が発生する。この凝縮水は、表面張力によって、各熱交換管(91)の前後両端壁(91a)の傾斜部(93)外面とコルゲートフィン(5)の左右両側縁部との間に形成された入り隅部分(94)に引き寄せられるように流れ、その後入り隅部分(94)を通って下方に流下する。したがって、凝縮水の排水性が向上し、エバポレータ(1)の性能低下が防止される。
 この発明によるエバポレータは、カーエアコンを構成する冷凍サイクルに好適に用いられる。

Claims (7)

  1. 上下方向に間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に、幅方向を前後方向に向けるとともに左右方向に間隔をおいて配置され、かつ両端部がヘッダタンクに接続された複数の扁平状熱交換管と、隣り合う熱交換管間に配置されたコルゲートフィンとを備えているエバポレータであって、
     熱交換管の前後両端壁の左右両側部分に、熱交換管の左右方向の中央部に向かって前後方向外方に直線状に傾斜した傾斜部が設けられており、当該傾斜部とコルゲートフィンの左右両側縁部とのなす角度が25~40度であるエバポレータ。
  2. 熱交換管の左右両側面にコルゲートフィンが接触しており、熱交換管の前後方向の幅をW1mm、熱交換管の左右両側面とコルゲートフィンとの接触部の前後方向の長さをW2mmとした場合、W2/W1=80~95%である請求項1記載のエバポレータ。
  3. 熱交換管の前後方向の幅が10~20mmである請求項1記載のエバポレータ。
  4. 熱交換管の左右方向の厚みが1~1.8mmである請求項1記載のエバポレータ。
  5. 上下1対のヘッダタンク間に、前後方向に間隔をおいて配置された複数の扁平状熱交換管からなる組が、左右方向に間隔をおいて複数配置され、左右方向に隣り合う熱交換管の組どうしの間にフィンが配置され、複数の熱交換管からなる各組において、前後方向に隣り合う熱交換管間に形成された隙間の前後方向の幅が、1.5~3.5mmである請求項1記載のエバポレータ。
  6. 熱交換管が、プレス加工が施された2枚の長方形状金属板どうしが積層状に接合された扁平中空体に設けられており、扁平中空体を形成する両金属板が外方に膨出させられることによって上下両端が開口した熱交換管が設けられ、各金属板における熱交換管を形成する外方膨出部の前後両壁が、扁平中空体の厚みの中央部に向かって前後方向外方に直線状に傾斜している請求項1記載のエバポレータ。
  7. 扁平中空体の前側縁部において、両金属板のうちのいずれか一方の金属板に、先端部が同他方の金属板よりも当該他方の金属板が接触しているコルゲートフィン側に突出した凸条が全長にわたって形成されている請求項6記載のエバポレータ。
PCT/JP2010/068140 2009-10-19 2010-10-15 エバポレータ WO2011049015A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010900010564U CN202547197U (zh) 2009-10-19 2010-10-15 蒸发器
US13/501,800 US20120198882A1 (en) 2009-10-19 2010-10-15 Evaporator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009240211A JP2011085364A (ja) 2009-10-19 2009-10-19 エバポレータ
JP2009240209A JP2011085363A (ja) 2009-10-19 2009-10-19 エバポレータ
JP2009-240211 2009-10-19
JP2009-240209 2009-10-19

Publications (1)

Publication Number Publication Date
WO2011049015A1 true WO2011049015A1 (ja) 2011-04-28

Family

ID=43900241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068140 WO2011049015A1 (ja) 2009-10-19 2010-10-15 エバポレータ

Country Status (3)

Country Link
US (1) US20120198882A1 (ja)
CN (1) CN202547197U (ja)
WO (1) WO2011049015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058953A1 (en) * 2011-10-19 2013-04-25 Carrier Corporation Flattened tube finned heat exchanger and fabrication method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157507A (ja) * 2014-02-21 2015-09-03 株式会社ケーヒン・サーマル・テクノロジー 車両用空調装置
CN113465427B (zh) * 2019-04-23 2022-04-26 山东大学 一种旋转对称环路热管换热装置
EP4134612A1 (en) * 2021-08-10 2023-02-15 Valeo Vymeniky Tepla S.r.o. A heat exchanger
EP4134613A1 (en) * 2021-08-10 2023-02-15 Valeo Vymeniky Tepla S.r.o. A heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441794A (en) * 1987-08-09 1989-02-14 Nippon Denso Co Lamination type heat exchanger
JP2000179988A (ja) * 1998-12-10 2000-06-30 Denso Corp 冷媒蒸発器
JP2000337788A (ja) * 1999-05-25 2000-12-08 Denso Corp 熱交換器
JP2001255040A (ja) * 2000-03-10 2001-09-21 Zexel Valeo Climate Control Corp 冷却用熱交換器
JP2007322007A (ja) * 2006-05-30 2007-12-13 Showa Denko Kk 熱交換管およびエバポレータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757856A (en) * 1971-10-15 1973-09-11 Union Carbide Corp Primary surface heat exchanger and manufacture thereof
US5186250A (en) * 1990-05-11 1993-02-16 Showa Aluminum Kabushiki Kaisha Tube for heat exchangers and a method for manufacturing the tube
DE4201791A1 (de) * 1991-06-20 1993-07-29 Thermal Waerme Kaelte Klima Flachrohre zum einbau in einen flachrohrwaermetauscher und verfahren zum vereinzeln der flachrohre
WO2004059235A1 (en) * 2002-12-31 2004-07-15 Modine Korea,Llc Evaporator
JP2007232246A (ja) * 2006-02-28 2007-09-13 Denso Corp 熱交換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441794A (en) * 1987-08-09 1989-02-14 Nippon Denso Co Lamination type heat exchanger
JP2000179988A (ja) * 1998-12-10 2000-06-30 Denso Corp 冷媒蒸発器
JP2000337788A (ja) * 1999-05-25 2000-12-08 Denso Corp 熱交換器
JP2001255040A (ja) * 2000-03-10 2001-09-21 Zexel Valeo Climate Control Corp 冷却用熱交換器
JP2007322007A (ja) * 2006-05-30 2007-12-13 Showa Denko Kk 熱交換管およびエバポレータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058953A1 (en) * 2011-10-19 2013-04-25 Carrier Corporation Flattened tube finned heat exchanger and fabrication method
CN103890532A (zh) * 2011-10-19 2014-06-25 开利公司 扁平管翅片式热交换器以及制造方法
US10767937B2 (en) 2011-10-19 2020-09-08 Carrier Corporation Flattened tube finned heat exchanger and fabrication method
EP3767219A1 (en) * 2011-10-19 2021-01-20 Carrier Corporation Flattened tube finned heat exchanger and fabrication method
US11815318B2 (en) 2011-10-19 2023-11-14 Carrier Corporation Flattened tube finned heat exchanger and fabrication method

Also Published As

Publication number Publication date
US20120198882A1 (en) 2012-08-09
CN202547197U (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
US7303003B2 (en) Heat exchanger
US7992401B2 (en) Evaporator
JP2010112695A (ja) エバポレータ
US7726389B2 (en) Evaporator
JP5142109B2 (ja) エバポレータ
JP4734021B2 (ja) 熱交換器
US20070084589A1 (en) Evaporator
JP2006132920A (ja) 熱交換器
JP6002421B2 (ja) 熱交換器
JP4786234B2 (ja) 熱交換器
WO2011049015A1 (ja) エバポレータ
JP2006078163A (ja) 偏平管、偏平管製造用板状体および熱交換器
US20070051504A1 (en) Heat exchanger
JP2006170601A (ja) エバポレータ
JP5574737B2 (ja) 熱交換器
JP2009113625A (ja) エバポレータ
JP2007187435A (ja) 熱交換器
JP2009299923A (ja) 熱交換器
JP2008089188A (ja) 熱交換器
JP2011158130A (ja) 熱交換器
JP5396255B2 (ja) 熱交換器
JP5525805B2 (ja) 熱交換器
JP2011085363A (ja) エバポレータ
JP2011085364A (ja) エバポレータ
JP2011158127A (ja) 熱交換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001056.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13501800

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10824864

Country of ref document: EP

Kind code of ref document: A1