WO2011048980A1 - 燃焼熱量測定システム及び燃焼熱量測定方法 - Google Patents

燃焼熱量測定システム及び燃焼熱量測定方法 Download PDF

Info

Publication number
WO2011048980A1
WO2011048980A1 PCT/JP2010/067904 JP2010067904W WO2011048980A1 WO 2011048980 A1 WO2011048980 A1 WO 2011048980A1 JP 2010067904 W JP2010067904 W JP 2010067904W WO 2011048980 A1 WO2011048980 A1 WO 2011048980A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
closing member
air
outside
outside air
Prior art date
Application number
PCT/JP2010/067904
Other languages
English (en)
French (fr)
Inventor
哲哉 早川
雄二 早川
Original Assignee
株式会社東京システムバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京システムバック filed Critical 株式会社東京システムバック
Priority to GB1207128.8A priority Critical patent/GB2486862B/en
Publication of WO2011048980A1 publication Critical patent/WO2011048980A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures

Definitions

  • the present invention relates to a system and method for measuring the heat of combustion of a specimen using a cone calorimeter.
  • a corn calorimeter is an apparatus for obtaining the heat generation rate and the total heat generation amount of a sample using an oxygen consumption method (see Patent Document 1 below). It is known that the relationship between the calorific value due to the combustion of a sample and the amount of oxygen consumed in the process of combustion is substantially constant (13.1 MJ per kg of oxygen) regardless of the sample.
  • the corn calorimeter calculates the calorific value of a sample using the amount of oxygen consumed by combustion based on this law.
  • the reference oxygen concentration is the atmospheric oxygen concentration.
  • the oxygen concentration in the atmosphere is known to exhibit a very stable and constant value in the dry state. For this reason, the measurement accuracy of the calorific value can be expected to be improved by using the oxygen concentration in the atmosphere as a reference.
  • the calorific value of the sample can be measured by burning the sample by ignition by heating or ignition by an ignition source and measuring the oxygen concentration etc. in the exhaust gas at the time of combustion.
  • ignition source for example, discharge is used as the ignition source.
  • the heat generation rate in the oxygen consumption method is obtained by the following formula.
  • the total calorific value can be calculated from the calorific rate.
  • heat generation may be used including the meaning of the heat generation rate.
  • methane calibration is a method of calibrating the device by using methane as a combustion target in a cone calorimeter. Since this method itself is already known, detailed description is omitted.
  • the present invention has been made in view of the above situation.
  • the main object of the present invention is to improve the accuracy of the test results obtained using a corn calorimeter.
  • the installation chamber includes a first opening communicating the inside and the outside of the installation chamber,
  • the corn calorimeter is installed inside the installation room,
  • the indoor air intake unit is configured to blow outside air introduced through piping into the installation room,
  • the first closing member is formed in a flexible sheet-like shape.
  • the first closing member is attached to the first opening to restrict air flow through the first opening, Furthermore, at least a part of the side edge of the first closing member is separable from the peripheral edge of the first opening, whereby an operator can enter and exit via the first opening.
  • Another part of the side edge of the first closing member is a first separated portion spaced apart from the periphery of the first opening, whereby the air in the installation chamber is It is a structure which can leak to the exterior of the said installation chamber via a 1st separation part.
  • the combustion calorie measuring system characterized by the above-mentioned.
  • (Item 2) It further comprises a second closing member, And, the installation room further comprises a second opening,
  • the second closing member is formed in a substantially sheet shape having flexibility.
  • the second closing member is attached to the second opening to restrict air flow through the second opening.
  • at least a part of the side edge of the second closing member is a second separated portion separated from the peripheral edge of the second opening, whereby the air in the installation chamber is the second separation portion. 2 can be leaked to the outside of the installation room via the separated portion,
  • the corn calorimeter comprises a furnace for heating the sample,
  • the indoor air unit includes a first outlet and a second outlet,
  • the first air outlet is configured to send outside air toward the second opening,
  • the combustion heat quantity measuring system according to item 2 wherein the second blowout port is configured to send the outside air toward the heating furnace or its vicinity.
  • the outdoor exhaust unit sends out the exhaust gas from the cone calorimeter to the outside of the installation room,
  • the combustion heat quantity measuring system according to any one of items 1 to 7, wherein an intake amount by the indoor intake unit is larger than an exhaust amount by the outdoor exhaust unit.
  • a measurement method using a combustion heat measurement system comprising an installation room, a cone calorimeter, an indoor air intake unit, and a first closing member
  • the installation chamber includes a first opening communicating the inside and the outside of the installation chamber
  • the corn calorimeter is installed inside the installation room
  • the indoor air intake unit is configured to blow outside air introduced through piping into the installation room
  • the first closing member is formed in a flexible sheet-like shape.
  • the first closing member is attached to the first opening to restrict air flow through the first opening, Furthermore, at least a part of the side edge of the first closing member is separable from the peripheral edge of the first opening, whereby an operator can enter and exit via the first opening.
  • another part of the side edge of the first closing member is a first separated portion spaced apart from the periphery of the first opening, whereby the air in the installation chamber is It is configured to be able to leak to the outside of the installation room through the first separating portion,
  • a measurement method using a calorimeter of calorimeter wherein the measurement by the cone calorimeter is performed while the outside air is released from the first separated portion of the first closing member by blowing the outside air into the installation room by the indoor air intake unit.
  • combustion heat measurement system of the present invention it is possible to improve the accuracy of the test result obtained by using the cone calorimeter.
  • FIG. 4 is a cross-sectional view of main parts along the line AA of FIG. 3; It is explanatory drawing equivalent to the left side of an installation chamber which shows the 2nd opening part formed in the installation chamber.
  • the system of the present embodiment includes an installation room 1, a cone calorimeter 2, an indoor intake unit 3, an outdoor exhaust unit 4, a first closing member 5, a second closing member 6, and a computer terminal 7. (See Figure 1 and Figure 2).
  • the installation room 1 is installed inside the building 100 which is substantially sealed.
  • substantially closed refers to a state in which the amount of outside air introduced is small or almost completely shut off, as in a room in which ordinary measurement devices are arranged.
  • the building 100 may be a room provided in the building.
  • the installation chamber 1 is provided with a first opening 11 and a second opening 12. Both the first opening 11 and the second opening 12 communicate the inside and the outside of the installation chamber 1 (see FIG. 1). The first opening 11 and the second opening 12 are disposed at substantially opposite positions (see FIG. 1).
  • the corn calorimeter 2 is installed inside the installation room 1.
  • the cone calorimeter 2 includes an explosion proof door 21, a heating furnace 22, a main body 23, a hood 24 and an exhaust duct 25.
  • the explosion-proof door 21 covers the side of the heating furnace 22. And the upper surface of the explosion proof door 21 is opened. Further, the lower surface of the explosion-proof door 21 is also open, and the necessary air can be taken into the heating furnace 22 from the open lower surface. Further, the explosion-proof door 21 can be opened and closed so that the heating furnace 22 can be exposed to the outside when the sample is placed in the heating furnace 22.
  • the explosion-proof door 21 is for protecting the surrounding environment and workers from splashed materials caused by the burning of the sample.
  • the heating furnace 22 includes a sample holder and a combustion unit so that the sample can be heated and burned.
  • the main body 23 is provided with a flow rate measuring unit for measuring the properties of the combustion gas flowing inside the exhaust duct 25 and an oxygen analyzer (not shown).
  • the main unit 23 acquires measured values such as gas concentration, temperature, pressure, etc., which are basic data of calorific value calculation, calorific value of calorific value and calorific rate of sample based on the amount of oxygen consumed by burning of the sample, data to computer It is possible to do output etc.
  • the main body 23 includes various gas concentrations (for the air flowing through the exhaust duct 25 (the ambient air if it is before the combustion test, the exhaust gas after the combustion if it is under the combustion test) Data such as oxygen, CO 2 , CO etc.), fluid temperature, fluid pressure etc.
  • thermocouples are inserted in multiple places in the exhaust duct 25 to measure the temperature, and the output of the thermocouple is collected by a data collector (data logger) incorporated in the main body 23 .
  • a small branch pipe is attached to the exhaust duct 25 (particularly, a portion extended in the vertical direction), and this branch pipe is connected to a differential pressure gauge installed in the main body 23 Measurement is possible.
  • the type of measurement data and the measurement method described above are merely examples.
  • the main body 23 also includes a mechanism for drying the combustion gas flowing from the exhaust duct 25 to the oxygen analyzer, such as a heater (not shown). Since this drying mechanism is already known, the description is omitted.
  • the hood 24 is disposed above the heating furnace 22 and collects the combustion gas generated in the heating furnace 22.
  • the exhaust duct 25 is for transporting the combustion gas collected by the hood 24 to the outside.
  • the exhaust duct 25 sends the exhaust gas from the hood 24 to the outdoor exhaust unit 4.
  • the exhaust blower 251 is used to transfer the exhaust gas in the direction of the outdoor exhaust unit 4.
  • the other configuration in the corn calorimeter 2 may be basically the same as the conventional one, and thus further detailed description will be omitted.
  • the indoor air intake unit 3 includes a first air outlet 31, a second air outlet 32, and a pipe 33.
  • the first outlet 31 and the second outlet 32 are installed near the ceiling of the installation room 1.
  • the piping 33 can introduce outside air into these outlets.
  • one end of the pipe 33 is connected to each air outlet, and the other end of the pipe 33 is disposed outside the building 100.
  • a blower (not shown) is attached to each air outlet to send outside air into the installation chamber 1.
  • each air outlet is configured to blow the outside air introduced through the piping 33 into the installation chamber 1.
  • the first air outlet 31 is configured to blow outside air in the direction of the second opening 12. More specifically, the first outlet 31 in this embodiment includes a wind direction control member 311. Then, the blowing direction of the outside air is directed to the second opening 12 by the wind direction control member 311.
  • the second outlet 32 is configured to blow outside air toward the heating furnace 22 or in the vicinity thereof.
  • the amount of outside air blown from the first outlet 31 is larger than the amount of outside air blown from the second outlet 32.
  • the total intake amount by the indoor intake unit 3 is larger than the exhaust amount by the recovery hood 41 (described later) of the outdoor exhaust unit 4.
  • the total intake amount by the indoor intake unit 3 is 1.5 or more times the exhaust amount by the recovery hood 41 of the outdoor exhaust unit 4.
  • the outdoor exhaust unit 4 includes a recovery hood 41 and an exhaust passage 42.
  • the recovery hood 41 is disposed in the vicinity of the outlet of the exhaust duct 25 of the cone calorimeter 2, and the exhaust from the duct 25 is recovered.
  • the exhaust passage 42 extends to the outside of the building 100 so that the exhaust collected by the collection hood 41 can be sent to the outside of the building 100 via an exhaust blower (not shown) attached to the exhaust passage 42. It has been extended.
  • the outdoor exhaust unit 4 can discharge the air in the installation chamber 1 to the outside of the building 100.
  • the first closing member 5 is formed in a substantially sheet-like shape having flexibility. Specifically, the first closing member 5 in this embodiment is formed of a transparent sheet made of a deformable synthetic resin.
  • the first closing member 5 is attached to the first opening 11 to restrict air flow through the first opening 11 (see FIGS. 1, 3 and 4).
  • the two side edges of the first closing member 5 are fixed to the periphery of the first opening 11. Specifically, the side edge of the upper end of the first closing member 5 and the side edge of the left end in the figure are fixed to the periphery of the first opening 11.
  • the remaining two side edges of the first closing member 5 can be separated from the periphery of the first opening 11. More specifically, one side edge (the left side edge in FIG. 3) of the first closing member 5 is detachable with respect to the periphery of the first opening 11 or in the vicinity thereof.
  • a hook and loop fastener (not shown) can be used as the detachable means. As a result, the operator can enter and exit through the first opening 11.
  • the side edge in the vicinity of the lower end of the first closing member 5 is a first separating portion 51 separated from the peripheral edge of the first opening 11.
  • the first separating portion 51 may have any structure as long as external air is blown away from the opening when outside air is blown into the installation chamber 1, and from the opening when external air is not introduced. It does not have to be separated.
  • a reinforcing portion 52 for restricting the deformation of the first closing member 5 is provided in the vicinity of the side edge of the first closing member 5 which can be separated from the peripheral edge of the first opening 11. (See FIGS. 3 and 4).
  • the reinforcement 52 is constituted by a thin plate and is attached to the surface of the first closing member 5.
  • the second closing member 6 is configured substantially the same as the first closing member 5, so the description of the common configuration will be simplified.
  • the second closing member 6 is formed in a flexible sheet-like shape. Furthermore, the second closing member 6 is attached to the second opening 12 to restrict air flow through the second opening 12.
  • the upper and left and right side edges of the second closing member 6 are fixed to the periphery of the second opening 12.
  • the side edges in the vicinity of the lower ends of the left and right side edges of the second closing member 6 form a second separation portion 61 separated from the peripheral edge of the second opening 12. Thereby, the air in the installation chamber 1 can leak to the outside of the installation chamber 1 through the second separation portion 61.
  • the material of the second closing member 6 is similar to that of the first closing member 5 in this embodiment, but may be different.
  • the computer terminal 7 is installed outside the installation room 1 and inside the building 100.
  • the computer terminal 7 controls the operation of the cone calorimeter 2 and stores the obtained data.
  • An exhaust fan 8 for exhausting the air inside the building 100 to the outside is attached to the wall of the building 100 (see FIG. 1).
  • an air conditioner 9 for adjusting the temperature in the installation room 1 is installed.
  • the blowing direction of the air from the air conditioner is preferably along the ceiling, thereby preventing the interference with the flow of the introduced outside air.
  • an intake blower (not shown) of the indoor intake unit 3 is operated to take in outside air from the pipe 33.
  • the taken-in outside air is blown into the installation chamber 1 from the first outlet 31 and the second outlet 32, respectively.
  • the first blowout port 31 blows outside air toward the second opening 12.
  • the blown air creates an air flow toward the second opening 12 in the installation chamber 1.
  • the air pressure in the installation chamber 1 slightly rises due to the blowout of the outside air.
  • a part of the outside air blown out from the first outlet 31 is mixed with the air in the installation chamber 1 and mainly the second separated portion of the second closing member 6 of the second opening 12 It is discharged to the outside from 61.
  • the outside air may be discharged to the outside from the first separation portion 51 of the first closing member 5 of the first opening 11.
  • the second blowout port 31 blows the outside air toward the heating furnace 22 of the cone calorimeter 2 or in the vicinity thereof. Therefore, a part of the outside air blown out from the second blowout port 31 flows from the opening surface of the explosion-proof door 21 to the heating furnace 22.
  • the combustion test of the sample disposed in the heating furnace 22 is performed in the same manner as in the conventional case.
  • the combustion gas generated by the combustion is sent to the recovery hood 41 of the outdoor exhaust unit 4 through the exhaust duct 25, and is further discharged to the outside through the exhaust passage 42.
  • a part of the outside air blown into the installation chamber 1 is also discharged to the outside by the outdoor exhaust unit 4, but the main purpose of the outdoor exhaust unit 4 is the exhaust duct of the cone calorimeter 2. It is a treatment of the exhaust gas discharged from 25.
  • outside air is constantly blown into the installation chamber 1 by the indoor suction unit 3 during the combustion test in the heating furnace 22.
  • the blown-in outside air is constantly discharged to the outside through the first separation portion 51 of the first closing member 5 or the second separation portion 61 of the second closing member 6.
  • the worker moves in and out of the vicinity of the corn calorimeter 2, the worker's exhalation diffuses, and the oxygen concentration in the vicinity of the corn calorimeter 2 may fluctuate, though only slightly.
  • the air inside the building 100 which may have an oxygen concentration different from the outside air
  • the measurement accuracy does not deteriorate even if the atmospheric pressure in the installation chamber 1 slightly rises by blowing the outside air into the installation chamber 1.
  • first closing member 5 and the second closing member 6 are made of a flexible material, even if the amount of the outside air blown into the installation chamber 1 changes, these closing members 5 and 6 can be used. By appropriately deforming, the outside air can be released to the outside quickly. Even if the amount of the blown-in air increases, if the flow-out amount of the outside air does not change, the outside air may stagnate in the installation chamber 1 and the irregular or unintended air flow may adversely affect the measurement. On the other hand, in the present embodiment, since the blown outside air can be quickly released to the outside of the room, the flow of the blown outside air is stabilized, and as a result, it is possible to further improve the measurement accuracy.
  • a plurality of openings are formed in the installation chamber 1 and the outside air is discharged therefrom, so that there is also an advantage that the discharge of the outside air becomes smooth. That is, when the number of the opening is one, the time until the outside air is discharged becomes long, and the measurement accuracy may be deteriorated due to an unexpected air flow or the like as described above. On the other hand, in the present embodiment, the measurement accuracy can be improved by smoothing the discharge of the outside air.
  • the outside air can be discharged more quickly.
  • the outside air is sent from the first blowout port 31 toward the second opening 12.
  • the air flow is reflected by the movement of the person and the movement of the closing member (curtain) accompanying it, and the heating furnace 22 There is a risk of shaking the heating flame in the For this reason, it becomes difficult to increase the amount of blowoff from the first blowout port 31.
  • the same problem may occur because all of the air flow is reflected by the wall.
  • the outside air is sent out toward the second opening 12 where people are not supposed to go in and out, and escaped to the outside there, so the amount of blowout from the first outlet 31 is increased.
  • the side edge of the first closing member 5 attached to the first opening 11 is made attachable to and detachable from the first opening 11.
  • the side edge of the closing member 5 can be fixed to the first opening 11.
  • the first closing member 5 largely flaps due to the flow of the outside air blown into the installation chamber 1, and as a result, the outside of the installation chamber 1 ( That is, there is a possibility that the air in the building) may be caught in the installation room 1. Then, there is a possibility that the oxygen concentration in the installation room 1 may fluctuate.
  • the present embodiment since fluttering of the side edge of the first closing member 5 can be suppressed to a low level, fluctuation of the oxygen concentration in the installation chamber 1 can be prevented.
  • the outside air is blown out from the second outlet 32 toward the heating furnace 22 or its vicinity, so the oxygen concentration in the vicinity of the heating furnace 22 can be made closer to the oxygen concentration in the outside air.
  • the amount of outside air blown out from the second outlet 32 is made considerably smaller than the amount blown out from the first outlet 31. For this reason, the possibility that the flame of the heating furnace 22 shakes due to the blowing of the outside air from the second air outlet 32 can be reduced.
  • variable element for example, exhalation
  • the first closing member 5 since the first closing member 5 is provided with the reinforcing portion 52, it is possible to reduce the possibility of outdoor air being caught and intruded due to people coming and going. Since the first closing member 5 is flexible, it may be largely deformed when the operator moves in and out, and air outside the installation chamber 1 may be brought into the installation chamber 1. On the other hand, in the present embodiment, since the reinforcing portion 52 is provided, excessive deformation of the closing member 5 caused by the worker's coming and going is prevented, thereby suppressing the variation of the oxygen concentration in the installation chamber 1 to a low level. It becomes possible. In addition, although the reinforcement part 52 was made into the thin plate in this embodiment, if the excessive deformation
  • the computer terminal 7 since the computer terminal 7 is disposed outside the installation room 1, there is also an advantage that the oxygen concentration in the installation room 1 does not change even when the operator operates the computer terminal 7.
  • the first separating portion 51 is provided in the vicinity of the lower end of the first closing member 5 and the second separating portion 61 is provided in the vicinity of the lower end of the second closing member 6. External air blown out can be discharged smoothly. For this reason, the fluctuation of the oxygen concentration in the installation chamber 1 can be suppressed more reliably.
  • the present embodiment since a sheet made of a synthetic resin is used as the first closing member 5 and the second closing member 6, the flow of air passing through these closing members can be blocked almost certainly. If a highly breathable member is used as these members, air may intrude from the outside of the installation chamber 1 and the oxygen concentration may fluctuate. On the other hand, in the present embodiment, such a possibility can be reduced. Furthermore, in the present embodiment, since the first closing member 5 and the second closing member 6 are transparent, there is an advantage that the room can be observed through them.
  • combustion calorie measuring system using the corn calorimeter of this invention is not limited to the said embodiment. This system can be variously modified without departing from the scope of the present invention.
  • first closing member 5 and the second closing member 6 paper or cloth can be used as a material other than synthetic resin.
  • the oxygen concentration may fluctuate due to the infiltration of air from the outside, so it is preferable to use a material with as low air permeability as possible.
  • the temperature around the cone calorimeter 2 is easily influenced by the outside air.
  • the temperature fluctuation can be suppressed low by increasing the capacity of the air conditioner 9 (for example, three or more times the normal capacity).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本発明の目的は、コーンカロリメーターを用いて得られる試験結果の精度を向上させることである。本発明の一実施例において、室内吸気部3は、配管33を介して導入された外気を設置室1内に吹き込む。第1閉鎖部材5は、可撓性を有する略シート状に形成されている。第1閉鎖部材5は、第1開口部11を介する通気を制約する。第1閉鎖部材5の側縁の少なくとも一部は、第1開口部11の周縁から離間可能となっており、これによって、第1開口部11を介して作業者が出入りできる。第1閉鎖部材5の側縁における他の一部は、第1開口部11の周縁に対して離間された第1離間部51となっている。これにより、設置室1内の空気が、第1離間部51を介して、設置室1の外部に漏れることができる。

Description

燃焼熱量測定システム及び燃焼熱量測定方法
 本発明は、コーンカロリメーターを用いて、試験体の燃焼熱量を測定するためのシステム及び方法に関するものである。
 コーンカロリメーターとは、酸素消費法を用いて、試料の発熱速度や総発熱量を求める装置である(下記特許文献1参照)。試料の燃焼による発熱量と、燃焼の過程で消費される酸素量との関係は、試料に依らずに概ね一定(酸素1kgあたり13.1MJ)であることが知られている。コーンカロリメーターは、この法則に基づき、燃焼による消費酸素量を利用して、試料の発熱量を求めている。ここで、基準となる酸素濃度は大気酸素濃度となっている。
 大気中の酸素濃度は、乾燥状態では、極めて安定的に一定の値を示すことが知られている。このため、大気中の酸素濃度を基準とすることによって、発熱量の測定精度の向上が期待できる。
 コーンカロリメーターでは、加熱による発火、又は、着火源による着火により試料を燃焼させ、燃焼時の排気中の酸素濃度等を測定することで、試料の発熱量を測定することができる。ここで、着火源としては、例えば放電が用いられている。
 酸素消費法における発熱速度は、以下の計算式によって求められる。なお、総発熱量は、発熱速度から算出できる。以下の説明においては、発熱量という言葉を、発熱速度の意味を含めて用いることがある。

Figure JPOXMLDOC01-appb-I000001
 ところで、従来から、コーンカロリメーターを用いた発熱量の測定において、測定値にばらつきや偏りが散発的に発生することがあった。本発明者がその原因を調査したところ、次のような知見を得た。
 コーンカロリメーターのためのメタンキャリブレーションや、この装置を用いた燃焼試験を実施すると、装置の設置室内における酸素が消費され、酸素量が低下する。そして、この酸素濃度の回復は、一般に著しく遅く、次の測定結果に影響することが多い。ここで、メタンキャリブレーションとは、コーンカロリメーターにおける燃焼対象としてメタンを用いることによって、当該装置のキャリブレーションを行う手法である。この手法自体は既に知られているので、詳しい説明を省略する。
 さらに、コーンカロリメーターの操作や保守のために、作業員がコーンカロリメーターの近傍で動き回ったり、作業を行う場合がある。すると、コーンカロリメーター、特にその加熱炉の近傍での酸素濃度がわずかに変動し、測定結果に影響するという知見を得た。
特開2006-308288号公報
 本発明は、前記の状況に鑑みてなされたものである。本発明の主な目的は、コーンカロリメーターを用いて得られる試験結果の精度を向上させることである。
 前記した課題を解決する手段は、以下の項目のように記載できる。
 (項目1)
 設置室と、コーンカロリメーターと、室内吸気部と、第1閉鎖部材とを備えており、
 前記設置室は、前記設置室の内外を連通させる第1開口部を備えており、
 前記コーンカロリメーターは、前記設置室の内部に設置されており、
 前記室内吸気部は、配管を介して導入された外気を前記設置室内に吹き込む構成となっており、
 前記第1閉鎖部材は、可撓性を有する略シート状に形成されており、
 かつ、前記第1閉鎖部材は、前記第1開口部に取り付けられて、前記第1開口部を介する通気を制約する構成となっており、
 さらに、前記第1閉鎖部材の側縁の少なくとも一部は、前記第1開口部の周縁から離間可能となっており、これによって、前記第1開口部を介して作業者が出入りできる構成とされており、
 さらに、前記第1閉鎖部材の側縁における他の一部は、前記第1開口部の周縁に対して離間された第1離間部となっており、これにより、前記設置室内の空気が、前記第1離間部を介して、前記設置室の外部に漏れることができる構成となっている
 ことを特徴とする燃焼熱量測定システム。
 (項目2)
 さらに第2閉鎖部材を備えており、
 かつ、前記設置室は、第2開口部をさらに備えており、
 前記第2閉鎖部材は、可撓性を有する略シート状に形成されており、
 かつ、前記第2閉鎖部材は、前記第2開口部に取り付けられて、前記第2開口部を介する通気を制約する構成となっており、
 さらに、前記第2閉鎖部材の側縁の少なくとも一部は、前記第2開口部の周縁に対して離間された第2離間部となっており、これにより、前記設置室内の空気が、前記第2離間部を介して、前記設置室の外部に漏れることができる構成となっており、
 前記第1開口部と、前記第2開口部とは、ほぼ対向する位置に設置されている
 項目1に記載の燃焼熱量測定システム。
 (項目3)
 前記室内吸気部は、前記第2開口部に向けて外気を吹き出す構成となっている
 項目2に記載の燃焼熱量測定システム。
 (項目4)
 前記第1開口部の周縁から離間可能とされた前記第1閉鎖部材の側縁は、前記第1開口部の周縁又はその近傍に対して着脱可能となっている
項目1~3のいずれか1項に記載の燃焼熱量測定システム。
 (項目5)
 前記コーンカロリメーターは、試料を加熱するための加熱炉を備えており、
 前記室内空気部は、第1吹出口と第2吹出口とを備えており、
 前記第1吹出口は、前記第2開口部に向けて外気を送り出す構成となっており、
 前記第2吹出口は、前記加熱炉又はその近傍に向けて外気を送り出す構成となっている
項目2に記載の燃焼熱量測定システム。
 (項目6)
 前記第1吹出口からの前記外気の吹き出し量は、前記第2吹出口からの前記外気の吹き出し量よりも多いものとされている
 項目5に記載の燃焼熱量測定システム。
 (項目7)
 前記第1開口部を介して作業者が出入りするために前記第1開口部の周縁から離間可能とされた前記第1閉鎖部材の側縁の近傍には、前記第1閉鎖部材の変形を制約するための補強部が備えられている
 項目1~6のいずれか1項に記載の燃焼熱量測定システム。
 (項目8)
 さらに室外排気部を備えており、
 前記室外排気部は、前記コーンカロリメーターからの排気を前記設置室の外部に送り出すものであり、
 前記室内吸気部による吸気量は、前記室外排気部による排気量よりも多いものとされている
 項目1~7のいずれか1項に記載の燃焼熱量測定システム。
 (項目9)
 設置室と、コーンカロリメーターと、室内吸気部と、第1閉鎖部材とを備えた燃焼熱量測定システムを用いた測定方法であって、
 前記設置室は、前記設置室の内外を連通させる第1開口部を備えており、
 前記コーンカロリメーターは、前記設置室の内部に設置されており、
 前記室内吸気部は、配管を介して導入された外気を前記設置室内に吹き込む構成となっており、
 前記第1閉鎖部材は、可撓性を有する略シート状に形成されており、
 かつ、前記第1閉鎖部材は、前記第1開口部に取り付けられて、前記第1開口部を介する通気を制約する構成となっており、
 さらに、前記第1閉鎖部材の側縁の少なくとも一部は、前記第1開口部の周縁から離間可能となっており、これによって、前記第1開口部を介して作業者が出入りできる構成とされており、
 さらに、前記第1閉鎖部材の側縁における他の一部は、前記第1開口部の周縁に対して離間された第1離間部となっており、これにより、前記設置室内の空気が、前記第1離間部を介して、前記設置室の外部に漏れることができる構成となっており、
 前記室内吸気部によって前記設置室内に外気を吹き込むことによって、前記第1閉鎖部材の前記第1離間部から外気を放出させつつ、前記コーンカロリメーターによる測定を行う
 ことを特徴とする燃焼熱量測定方法。
 本発明の燃焼熱量測定システムによれば、コーンカロリメーターを用いて得られる試験結果の精度を向上させることが可能となる。
本発明の一実施形態に係る燃焼熱量測定システムの概略を説明するための縦断面図である。 図1の設置室部分の横断面図である。 設置室に形成された第1開口部を示す、設置室の右側面に相当する説明図である。 図3のA-A線に沿う要部断面図である。 設置室に形成された第2開口部を示す、設置室の左側面に相当する説明図である。
 以下、本発明の一実施形態に係る、コーンカロリメーターを用いた燃焼熱量測定システムを、添付図面を参照して説明する。
 (本実施形態の構成)
 本実施形態のシステムは、設置室1と、コーンカロリメーター2と、室内吸気部3と、室外排気部4と、第1閉鎖部材5と、第2閉鎖部材6と、コンピュータ端末7とを備えている(図1及び図2参照)。
 (設置室)
 設置室1は、実質的に密閉状態である建物100の内部に設置されている。ここで、「実質的に閉鎖された」とは、通常の測定装置類を配置する部屋のように、外気の導入量が少ないか、ほぼ完全に遮断されている状態を言う。また、ここで、建物100は、建物内に設けられた部屋であってもよい。
 設置室1は、第1開口部11と第2開口部12とを備えている。これらの第1開口部11及び第2開口部12は、いずれも、設置室1の内外を連通させるものとなっている(図1参照)。第1開口部11と、第2開口部12とは、ほぼ対向する位置に設置されている(図1参照)。
 (コーンカロリメーター)
 コーンカロリメーター2は、設置室1の内部に設置されている。コーンカロリメーター2は、防爆用ドア21と、加熱炉22と、本体23と、フード24と、排気ダクト25とを備えている。
 防爆用ドア21は、加熱炉22の側面を覆っている。そして、防爆用ドア21の上面は開口されている。また、防爆用ドア21の下面も開放されており、開放された下面から、加熱炉22に必要な空気を取り入れることができるようになっている。また、防爆用ドア21は、加熱炉22に試料を配置する場合に加熱炉22を外部に露出できるように、開閉可能となっている。防爆用ドア21は、試料の燃焼に伴う飛散物から周辺環境や作業者を守るためのものである。
 加熱炉22は、試料ホルダや燃焼部を備えており、試料を加熱して燃焼させることができるようになっている。
 本体23は、排気ダクト25の内部を流れる燃焼ガスの性状を測定するための流量測定部や酸素分析計(図示せず)を備えている。本体23は、発熱量計算の基本データとなるガス濃度・温度・圧力等の実測値の取得、試料の燃焼により消費された酸素量に基づく試料の発熱量や発熱速度の算出、コンピュータへのデータ出力などを行うことができるようになっている。より具体的には、本体23は、排気ダクト25を流れている空気(燃焼試験前であれば周囲の空気であり、燃焼試験中であれば、燃焼後の排気ガス)についての各種ガス濃度(酸素・CO2・CO等)・流体温度・流体圧力などのデータを測定している。なお、これらのデータを取得するための機器の詳細については、既存の手法を利用できるので、図示を省略している。例えば、各種ガス濃度を測定するためには、排気ダクト25の途中に小さな分岐管を設け、ポンプを用いて、本体23に備えられたガス分析計へ排気ダクト25内の流体を引き込むことで測定が可能である。また、流体温度を測定するためには、排気ダクト25内の複数箇所に熱電対を差し込んで温度を測定し、熱電対の出力を、本体23に組み込まれたデータ収集器(データロガ)で収集する。そして、流体圧力を測定するには、排気ダクト25(特に、鉛直方向に延長された部分)に小さな分岐管を取り付け、この分岐管を、本体23内に設置された差圧計へ接続することで測定が可能である。なお、前記した測定データの種類や測定方法はあくまで一例である。
 また、本体23は、排気ダクト25から酸素分析計に流れる燃焼ガスを乾燥させるための機構、例えばヒータ(図示せず)も備えている。この乾燥機構は既に知られているので説明を省略する。
 フード24は、加熱炉22の上方に配置されており、加熱炉22において生成された燃焼ガスを収集するものである。
 排気ダクト25は、フード24で収集された燃焼ガスを外部に搬送するためのものである。排気ダクト25は、フード24から室外排気部4まで排気を送り出すものである。排気ダクト25では、排気ブロア251を用いて、排気を室外排気部4の方向に移送している。
 コーンカロリメーター2における他の構成は、基本的に従来と同様でよいので、これ以上詳細な説明は省略する。
 (室内吸気部)
 室内吸気部3は、第1吹出口31と、第2吹出口32と、配管33とを備えている。第1吹出口31及び第2吹出口32は、設置室1の天井付近に設置されている。配管33は、これらの吹出口に外気を導入できるようになっている。具体的には、配管33の一端は、各吹出口に接続され、配管33の他端は、建物100の外部に配置されている。また、各吹出口には、外気を設置室1の内部に送り出すためのブロア(図示せず)が取り付けられている。これにより、各吹出口は、配管33を介して導入された外気を設置室1の内部に吹き込む構成となっている。
 第1吹出口31は、第2開口部12の方向に外気を吹き出す構成とされている。より具体的には、この実施形態における第1吹出口31は、風向制御部材311を備えている。そして、この風向制御部材311によって、外気の吹き出し方向が、第2開口部12に向かうようになっている。
 第2吹出口32は、加熱炉22又はその近傍に向けて外気を吹き出す構成とされている。
 さらに、この実施形態では、第1吹出口31からの外気の吹き出し量は、第2吹出口32からの外気の吹き出し量よりも多くされている。
 さらに、この実施形態では、室内吸気部3による合計の吸気量は、室外排気部4の回収フード41(後述)による排気量よりも多いものとされている。好ましくは、室内吸気部3による合計の吸気量は、室外排気部4の回収フード41による排気量の1.5倍以上である。
 (室外排気部)
 室外排気部4は、回収フード41と、排気路42とを備えている。
 回収フード41は、コーンカロリメーター2の排気ダクト25の出口近傍に配置されており、このダクト25からの排気を回収するようになっている。
 排気路42は、回収フード41で回収された排気を、排気路42に取り付けられた排気用ブロア(図示せず)を介して建物100の外部に送り出すことができるように、建物100の外部まで延長されている。
 以上の構成により、室外排気部4は、設置室1内の空気を建物100の外に排出することができるようになっている。
 (第1閉鎖部材)
 第1閉鎖部材5は、可撓性を有する略シート状に形成されている。具体的には、この実施形態における第1閉鎖部材5は、変形しやすい合成樹脂製の透明シートによって構成されている。
 第1閉鎖部材5は、第1開口部11に取り付けられて、第1開口部11を介する通気を制約する構成となっている(図1、図3及び図4参照)。第1閉鎖部材5の二つの側縁は、第1開口部11の周縁に固定されている。具体的には、第1閉鎖部材5の上端の側縁と、図中左端の側縁とは、第1開口部11の周縁に固定されている。
 さらに、第1閉鎖部材5における残りの二つの側縁は、第1開口部11の周縁から離間可能となっている。より具体的には、第1閉鎖部材5の一側縁(図3において左側の側縁)は、第1開口部11の周縁又はその近傍に対して着脱可能となっている。着脱可能とする手段としては、例えば、面ファスナ(図示せず)を用いることができる。これによって、第1開口部11を介して作業者が出入りできるようになっている。
 さらに、図1に示されるように、第1閉鎖部材5の下端近傍の側縁は、第1開口部11の周縁に対して離間された第1離間部51となっている。これにより、設置室1内の空気が、第1離間部51を介して、設置室1の外部に漏れることができるようになっている。なお、第1離間部51は、外気が設置室1の内部に吹き込まれたときに、開口部から離間して外気を逃がす構造であれば良く、外気が導入されていないときは、開口部から離間していなくとも良い。
 また、本実施形態では、第1開口部11の周縁から離間可能とされた第1閉鎖部材5の側縁の近傍には、第1閉鎖部材5の変形を制約するための補強部52が備えられている(図3及び図4参照)。この実施形態においては、補強部52は、薄い板によって構成されており、第1閉鎖部材5の表面に取り付けられている。
 (第2閉鎖部材)
 第2閉鎖部材6は、第1閉鎖部材5とほぼ同様の構成とされているので、共通する構成については説明を簡略化する。第2閉鎖部材6は、可撓性を有する略シート状に形成されている。さらに、第2閉鎖部材6は、第2開口部12に取り付けられて、第2開口部12を介する通気を制約する構成となっている。
 この実施形態においては、第2閉鎖部材6の上側及び左右の側縁は、第2開口部12の周縁に固定されている。
 また、第2閉鎖部材6の左右両側縁の下端近傍の側縁は、第2開口部12の周縁に対して離間された第2離間部61となっている。これにより、設置室1内の空気が、第2離間部61を介して、設置室1の外部に漏れることができるようになっている。
 第2閉鎖部材6の材質は、この実施形態では、第1閉鎖部材5と同様とされているが、異なる材質とすることは可能である。
 コンピュータ端末7は、設置室1の外部であって、かつ、建物100の内部に設置されている。コンピュータ端末7は、コーンカロリメーター2の動作を制御し、さらに、得られたデータを格納するものである。
 建物100の壁面には、建物100の内部の空気を外部に排出するための排気ファン8が取り付けられている(図1参照)。
 また、設置室1の天井には、設置室1内の温度調節をするためのエアコン9が設置されている。エアコンからの空気の吹き出し方向は、なるべく、天井に沿ったものとされ、これにより、導入される外気の流れとの干渉を防いでいる。
 (本実施形態の動作)
 次に、前記のように構成された燃焼熱量測定システムの動作を説明する。
 まず、室内吸気部3の吸気用ブロア(図示せず)を動作させて、配管33から外気を取り込む。取り込まれた外気は、第1吹出口31及び第2吹出口32から、それぞれ、設置室1の内部に吹き込まれる。
 ここで、第1吹出口31は、図1に示されるように、第2開口部12に向けて外気を吹き出す。吹き出された空気は、設置室1内において、第2開口部12に向かう空気流を作り出す。さらに、外気の吹き出しにより、設置室1内の空気圧が若干上昇する。
 これらの作用により、第1吹出口31から吹き出された外気の一部は、設置室1内の空気と混合されながら、主に、第2開口部12の第2閉鎖部材6における第2離間部61から外部に排出される。あるいは、空気の流れによっては、第1開口部11の第1閉鎖部材5の第1離間部51からも外気が室外に排出されうる。
 一方、第2吹出口31は、コーンカロリメーター2の加熱炉22又はその近傍に向けて外気を吹き出す。このため、第2吹出口31から吹き出された外気の一部は、防爆用ドア21の開口面から加熱炉22に流れる。
 また、第2吹出口31から吹き出された外気の大部分は、第1閉鎖部材5の第1離間部51あるいは第2閉鎖部材6の第2離間部61から室外に排出される。
 コーンカロリメーター2においては、加熱炉22に配置された試料の燃焼試験が、従来と同様にして行われる。
 燃焼により生成された燃焼ガスは、排気ダクト25を介して、室外排気部4の回収フード41に送られ、さらに、排気路42を介して外部に排出される。なお、本実施形態では、設置室1に吹き込まれた外気の一部が、室外排気部4によっても室外に排出されるが、室外排気部4の主な目的は、コーンカロリメーター2の排気ダクト25から排出される排気の処理である。
 本実施形態のシステムでは、加熱炉22における燃焼試験中においては、室内吸気部3によって外気を設置室1の内部に常時吹き込むようにする。これによって、吹き込まれた外気は、第1閉鎖部材5の第1離間部51あるいは第2閉鎖部材6の第2離間部61を介して、外部に常時排出される。
 通常、作業者がコーンカロリメーター2の近傍に出入りすると、作業者の呼気が拡散して、コーンカロリメーター2近傍の酸素濃度が、ごく僅かではあるが、変動する可能性がある。あるいは、作業者がコーンカロリメーター2に近付くために、設置室1に入ったり、あるいはそこから出たりすると、建物100の内部の空気(これは外気とは酸素濃度が異なる可能性がある)が設置室1の内部に入り込む可能性がある。
 これに対して、本実施形態では、前記したように、設置室1に吹き込んだ外気を室外に常時逃がしているので、仮に作業者が設置室1に入ったとしても、呼気が拡散して加熱炉22付近の酸素濃度が変動する前に、呼気を、外気と共に、室外に排出することができる。
 同様に、設置室1の内部に建物100内の空気が侵入したときも、速やかに、設置室1の外部に排出することができる。
 このため、この実施形態によれば、加熱炉22の近傍における酸素濃度の変動を防ぐことができ、コーンカロリメーターにおける測定精度の劣化を防止できるという利点がある。
 また、大気中の酸素濃度は、気圧には依存しないので、設置室1の内部に外気を吹き込むことで設置室1内部の気圧が若干上昇しても、測定精度の劣化は生じない。
 また、本実施形態では、第1閉鎖部材5及び第2閉鎖部材6を可撓性の材質としたので、設置室1内に吹き込む外気の量が変動しても、これらの閉鎖部材5及び6が適宜に変形することで、外気を室外に迅速に逃がすことができる。外気の吹き込み量が増加しても、外気の流出量が変化しないと、外気が設置室1内で滞留し、不規則な、あるいは意図しない空気流によって測定に悪影響を及ぼす可能性がある。これに対して、本実施形態では、吹き込んだ外気を迅速に室外に逃がすことができるので、吹き込まれた外気の流れが安定し、その結果、測定精度をさらに向上させることが可能になる。
 また、本実施形態では、設置室1に複数の開口部を形成し、これらから外気を排出する構成としたので、外気の排出が円滑になるという利点もある。すなわち、開口部が一つである場合は、外気が排出されるまでの時間が長くなり、前記と同様に、予期しない空気流などによって測定精度が劣化するおそれがある。これに対して、本実施形態では、外気の排出を円滑にすることによって、測定精度の向上を図ることが可能になる。
 さらに、本実施形態では、第1開口部11と第2開口部12とを対向して配置したので、外気の排出を一層迅速に行うことができる。
 また、本実施形態では、第1吹出口31から第2開口部12に向けて外気を送り出している。ここで、人の出入りがある第1開口部11に向けて外気を送り出した場合には、人の移動や、それに伴う閉鎖部材(カーテン)の移動により、空気流が反射して、加熱炉22における加熱用の炎を揺らすおそれがある。このため、第1吹出口31からの吹き出し量を大きくすることが難しくなってしまう。第1吹出口31から壁に向けて外気を吹き出す場合も、空気流の全てが壁で反射するために、同様の問題がありうる。これに対して、本実施形態では、人の出入りを想定していない第2開口部12に向けて外気を送り出し、そこで外部に逃がしているので、第1吹出口31からの吹き出し量を大きくすることが容易になるという利点もある。
 また、本実施形態では、第1開口部11に取り付けられた第1閉鎖部材5の側縁を、第1開口部11に対して着脱可能としたので、作業員の入退室時以外は、第1閉鎖部材5の側縁を第1開口部11に固定しておくことができる。第1閉鎖部材5における左右両側縁を常時開放とした場合には、設置室1の内部に吹き込まれた外気の流れにより、第1閉鎖部材5が大きくばたつき、その結果、設置室1の外側(つまり建物内)の空気を設置室1の内部に巻き込んでしまう可能性がある。すると、設置室1の内部における酸素濃度が変動するおそれがある。これに対して、本実施形態では、第1閉鎖部材5の側縁のばたつきを少なく抑えることができるので、設置室1内における酸素濃度の変動を防ぐことができる。
 また、本実施形態では、第2吹出口32から、加熱炉22又はその近傍に向けて外気を吹き出しているので、加熱炉22の近傍の酸素濃度を、外気における酸素濃度に一層近づけることができる。
 さらに、本実施形態では、第2吹出口32からの外気の吹き出し量を、第1吹出口31からの吹き出し量よりも相当に小さくしている。このため、第2吹出口32からの外気の吹き出しによって加熱炉22の炎が揺れる可能性を低くすることができる。
 また、本実施形態では、第1吹出口31からの外気の吹き出し量を、第2吹出口32よりも相当に多くしているため、設置室1の内部における変動要素(例えば呼気)を速やかに排出することが可能になる。
 さらに、本実施形態では、第1閉鎖部材5に補強部52を設けたので、人の出入りに伴う、室外の空気の巻き込みや侵入の可能性を減らすことができる。第1閉鎖部材5は可撓性となっているため、作業者が出入りするときに大きく変形し、設置室1の外部の空気を設置室1の中に持ち込んでしまうおそれがある。これに対して、本実施形態では、補強部52を設けたので、作業者の出入りに伴う閉鎖部材5の過剰な変形を防止し、これによって、設置室1内の酸素濃度の変動を低く抑えることが可能になる。なお、本実施形態では、補強部52を薄板としたが、閉鎖部材5の過剰な変形を防止できるものであれば、その形状は特に制約されない。
 また、本実施形態では、コンピュータ端末7を設置室1の外側に配置したので、作業者がコンピュータ端末7を操作しているときにおいても、設置室1における酸素濃度が変動しないという利点もある。
 さらに、本実施形態では、第1閉鎖部材5の下端近傍に第1離間部51を設け、第2閉鎖部材6の下端近傍に第2離間部61を設けたので、設置室1の天井付近から吹き出される外気を円滑に排出することができる。このため、設置室1内における酸素濃度の変動を一層確実に抑制できる。
 さらに、本実施形態では、第1閉鎖部材5及び第2閉鎖部材6として、合成樹脂製のシートを用いているので、これらの閉鎖部材を通過する空気の流れをほぼ確実に遮断できる。これらの部材として通気性の高いものを用いると、設置室1の外部から空気が侵入して、酸素濃度が変動するおそれがある。これに対して、本実施形態では、このような可能性を低下させることができる。さらに、本実施形態では、第1閉鎖部材5及び第2閉鎖部材6を透明としているので、これらを通して室内を観察できるという利点もある。
 なお、本発明のコーンカロリメーターを用いた燃焼熱量測定システムは、前記実施形態に限定されるものではない。このシステムは、本発明の要旨を逸脱しない範囲内において種々変更を加え得るものである。
 例えば、第1閉鎖部材5及び第2閉鎖部材6としては、合成樹脂以外に、紙や布を材料とすることができる。ただし、前記したように、これらの部材として通気性が高いものを用いると、室外からの空気の侵入によって酸素濃度が変動する可能性があるので、なるべく通気性の低い素材とすることが好ましい。
 さらに、本実施形態では、室内吸気部3による総吸気量を、室外排気部4による総排気量よりも多くしているので、過剰な吸気を、第1開口部11及び第2開口部12から常時排出することができるという利点もある。
 なお、本実施形態のように、吸気量を多くすると、コーンカロリメーター2の周辺の温度が、外気によって影響されやすくなる。これに対しては、エアコン9の能力を増大させる(例えば通常能力の3倍以上とする)ことによって、温度変動を低く抑えることが可能である。

Claims (9)

  1.  設置室と、コーンカロリメーターと、室内吸気部と、第1閉鎖部材とを備えており、
     前記設置室は、前記設置室の内外を連通させる第1開口部を備えており、
    前記コーンカロリメーターは、前記設置室の内部に設置されており、
     前記室内吸気部は、配管を介して導入された外気を前記設置室内に吹き込む構成となっており、
     前記第1閉鎖部材は、可撓性を有する略シート状に形成されており、
     かつ、前記第1閉鎖部材は、前記第1開口部に取り付けられて、前記第1開口部を介する通気を制約する構成となっており、
     さらに、前記第1閉鎖部材の側縁の少なくとも一部は、前記第1開口部の周縁から離間可能となっており、これによって、前記第1開口部を介して作業者が出入りできる構成とされており、
     さらに、前記第1閉鎖部材の側縁における他の一部は、前記第1開口部の周縁に対して離間された第1離間部となっており、これにより、前記設置室内の空気が、前記第1離間部を介して、前記設置室の外部に漏れることができる構成となっている
     ことを特徴とする燃焼熱量測定システム。
  2.  さらに第2閉鎖部材を備えており、
     かつ、前記設置室は、第2開口部をさらに備えており、
     前記第2閉鎖部材は、可撓性を有する略シート状に形成されており、
     かつ、前記第2閉鎖部材は、前記第2開口部に取り付けられて、前記第2開口部を介する通気を制約する構成となっており、
     さらに、前記第2閉鎖部材の側縁の少なくとも一部は、前記第2開口部の周縁に対して離間された第2離間部となっており、これにより、前記設置室内の空気が、前記第2離間部を介して、前記設置室の外部に漏れることができる構成となっており、
     前記第1開口部と、前記第2開口部とは、ほぼ対向する位置に設置されている
     請求項1に記載の燃焼熱量測定システム。
  3.  前記室内吸気部は、前記第2開口部に向けて外気を吹き出す構成となっている
     請求項2に記載の燃焼熱量測定システム。
  4.  前記第1開口部の周縁から離間可能とされた前記第1閉鎖部材の側縁は、前記第1開口部の周縁又はその近傍に対して着脱可能となっている
    請求項1~3のいずれか1項に記載の燃焼熱量測定システム。
  5.  前記コーンカロリメーターは、試料を加熱するための加熱炉を備えており、
     前記室内空気部は、第1吹出口と第2吹出口とを備えており、
     前記第1吹出口は、前記第2開口部に向けて外気を送り出す構成となっており、
     前記第2吹出口は、前記加熱炉又はその近傍に向けて外気を送り出す構成となっている
    請求項2に記載の燃焼熱量測定システム。
  6.  前記第1吹出口からの前記外気の吹き出し量は、前記第2吹出口からの前記外気の吹き出し量より多いものとされている
     請求項5に記載の燃焼熱量測定システム。
  7.  前記第1開口部を介して作業者が出入りするために前記第1開口部の周縁から離間可能された前記第1閉鎖部材の側縁の近傍には、前記第1閉鎖部材の変形を制約するための補強部が備えられている
     請求項1~6のいずれか1項に記載の燃焼熱量測定システム。
  8.  さらに室外排気部を備えており、
     前記室外排気部は、前記コーンカロリメーターからの排気を前記設置室の外部に送り出すものであり、
     前記室内吸気部による吸気量は、前記室外排気部による排気量よりも多いものとされている
     請求項1~7のいずれか1項に記載の燃焼熱量測定システム。
  9.  設置室と、コーンカロリメーターと、室内吸気部と、第1閉鎖部材とを備えた燃焼熱量測定システムを用いた測定方法であって、
     前記設置室は、前記設置室の内外を連通させる第1開口部を備えており、
     前記コーンカロリメーターは、前記設置室の内部に設置されており、
     前記室内吸気部は、配管を介して導入された外気を前記設置室内に吹き込む構成となっており、
     前記第1閉鎖部材は、可撓性を有する略シート状に形成されており、
     かつ、前記第1閉鎖部材は、前記第1開口部に取り付けられて、前記第1開口部を介する通気を制約する構成となっており、
     さらに、前記第1閉鎖部材の側縁の少なくとも一部は、前記第1開口部の周縁から離間可能となっており、これによって、前記第1開口部を介して作業者が出入りできる構成とされており、
     さらに、前記第1閉鎖部材の側縁における他の一部は、前記第1開口部の周縁に対して離間された第1離間部となっており、これにより、前記設置室内の空気が、前記第1離間部を介して、前記設置室の外部に漏れることができる構成となっており、
     前記室内吸気部によって前記設置室内に外気を吹き込むことによって、前記第1閉鎖部材の前記第1離間部から外気を放出させつつ、前記コーンカロリメーターによる測定を行う
     ことを特徴とする燃焼熱量測定方法。
PCT/JP2010/067904 2009-10-22 2010-10-13 燃焼熱量測定システム及び燃焼熱量測定方法 WO2011048980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1207128.8A GB2486862B (en) 2009-10-22 2010-10-13 Combustion calorimetry system and combustion calorimetry method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-243446 2009-10-22
JP2009243446A JP5462585B2 (ja) 2009-10-22 2009-10-22 燃焼熱量測定システム及び燃焼熱量測定方法

Publications (1)

Publication Number Publication Date
WO2011048980A1 true WO2011048980A1 (ja) 2011-04-28

Family

ID=43900207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067904 WO2011048980A1 (ja) 2009-10-22 2010-10-13 燃焼熱量測定システム及び燃焼熱量測定方法

Country Status (3)

Country Link
JP (1) JP5462585B2 (ja)
GB (1) GB2486862B (ja)
WO (1) WO2011048980A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778472A (zh) * 2011-05-09 2012-11-14 阿自倍尔株式会社 发热量测量系统以及发热量的测量方法
CN105424748A (zh) * 2015-12-18 2016-03-23 苏州菲尼克斯质检仪器有限公司 一种锥形量热仪

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616407A (zh) * 2013-11-15 2014-03-05 广州市纤维产品检测院 一种采用锥形量热仪测试轻薄样品的测试方法
CN103645209A (zh) * 2013-11-15 2014-03-19 华南理工大学 一种锥形量热仪用轻薄样品专用支架
JP6276059B2 (ja) * 2014-02-20 2018-02-07 大成建設株式会社 集煙装置
JP6287356B2 (ja) * 2014-03-05 2018-03-07 三菱電機株式会社 燃焼熱量測定システム
CN105510382A (zh) * 2015-11-03 2016-04-20 北京服装学院 锥形量热仪用的样品盛放装置和测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189428A (ja) * 1984-10-05 1986-05-07 Hitachi Ltd 温度試験機
JPH07198638A (ja) * 1993-12-28 1995-08-01 Showa Electric Wire & Cable Co Ltd 燃焼性試験装置
JPH07265031A (ja) * 1994-03-29 1995-10-17 Ono Shokuhin Kogyo Kk 食品防塵冷却装置
JPH09257731A (ja) * 1996-03-19 1997-10-03 Suzuki Motor Corp 燃焼性試験装置
JP2006308288A (ja) * 2005-04-26 2006-11-09 Tokyo System Vac:Kk コーンカロリメータを用いた燃焼熱量測定システム
JP2007187598A (ja) * 2006-01-16 2007-07-26 Toyo Seiki Seisakusho:Kk 燃焼試験機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189428A (ja) * 1984-10-05 1986-05-07 Hitachi Ltd 温度試験機
JPH07198638A (ja) * 1993-12-28 1995-08-01 Showa Electric Wire & Cable Co Ltd 燃焼性試験装置
JPH07265031A (ja) * 1994-03-29 1995-10-17 Ono Shokuhin Kogyo Kk 食品防塵冷却装置
JPH09257731A (ja) * 1996-03-19 1997-10-03 Suzuki Motor Corp 燃焼性試験装置
JP2006308288A (ja) * 2005-04-26 2006-11-09 Tokyo System Vac:Kk コーンカロリメータを用いた燃焼熱量測定システム
JP2007187598A (ja) * 2006-01-16 2007-07-26 Toyo Seiki Seisakusho:Kk 燃焼試験機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778472A (zh) * 2011-05-09 2012-11-14 阿自倍尔株式会社 发热量测量系统以及发热量的测量方法
CN105424748A (zh) * 2015-12-18 2016-03-23 苏州菲尼克斯质检仪器有限公司 一种锥形量热仪

Also Published As

Publication number Publication date
GB2486862A (en) 2012-06-27
JP5462585B2 (ja) 2014-04-02
JP2011089881A (ja) 2011-05-06
GB2486862B (en) 2013-08-21
GB201207128D0 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
WO2011048980A1 (ja) 燃焼熱量測定システム及び燃焼熱量測定方法
US7318771B2 (en) Air-isolator fume hood
US9970706B2 (en) System having a process chamber for workpieces
US9423179B2 (en) System having a process chamber for workpieces
KR101574682B1 (ko) 실내 급배기 연계 실험실용 흄 후드 시스템
CN104360419A (zh) 多参数传感模块
US10605529B2 (en) System having a process chamber for workpieces
CN204228984U (zh) 多参数传感模块
CN106944449A (zh) 风阀控制方法、控制装置、控制系统和通风柜
TW201710648A (zh) 測定裝置
JP3693948B2 (ja) 温度環境試験装置
JP2016164536A (ja) 測定装置
EP3246556B1 (en) Ventilation and leak detection system
KR101903549B1 (ko) 멀티 흄후드의 풍속제어에 의한 배기량 제어와 급기 제어에 따른 에너지 절감 시스템
US20140080403A1 (en) Methods and system design for providing leak detection of volatile liquid hydrocarbon vapors
US10624231B2 (en) Controller for machine
JP5863513B2 (ja) 風量調整ダンパ
JP6498541B2 (ja) 測定装置
CN206930636U (zh) 煤矿用阻燃软电缆料的阻燃性能检测舱
US6309294B1 (en) Lab-hood vent system
JP2023541847A (ja) 燃焼システム動作を分析するためのシステム及び方法
JP6889081B2 (ja) 火災実験設備及び火災実験設備の実験方法
JP7162493B2 (ja) 空気調和機
JP6287356B2 (ja) 燃焼熱量測定システム
JP3192235U (ja) ヒートパス機能を備える外気取り入れ装置の外気排出装置部に使用する開閉ダンパ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1207128

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20101013

WWE Wipo information: entry into national phase

Ref document number: 1207128.8

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 10824829

Country of ref document: EP

Kind code of ref document: A1