WO2011048974A1 - Foamed electric wire and transmission cable comprising same - Google Patents

Foamed electric wire and transmission cable comprising same Download PDF

Info

Publication number
WO2011048974A1
WO2011048974A1 PCT/JP2010/067847 JP2010067847W WO2011048974A1 WO 2011048974 A1 WO2011048974 A1 WO 2011048974A1 JP 2010067847 W JP2010067847 W JP 2010067847W WO 2011048974 A1 WO2011048974 A1 WO 2011048974A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed
electric wire
insulating layer
resin
foamed electric
Prior art date
Application number
PCT/JP2010/067847
Other languages
French (fr)
Japanese (ja)
Inventor
亮 渡部
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2011537208A priority Critical patent/JPWO2011048974A1/en
Publication of WO2011048974A1 publication Critical patent/WO2011048974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/142Insulating conductors or cables by extrusion of cellular material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes

Definitions

  • the present invention relates to a foamed electric wire and a transmission cable having the same.
  • the foam insulation layer of foamed electric wires used for USB 3.0 cables, HDMI cables, Infiniband cables, micro USB cables, etc. has a small diameter, high heat resistance, and can be finely foamed. Is required.
  • an ethylene-propylene copolymer having a melt tension at break of 5.0 g (49 mN) or more and a melt mass flow rate at 190 ° C. of 2.16 kg of 1.0 g / 10 min or more is conventionally used.
  • a chemical foaming agent such as azodicarbonamide and a copper damage inhibitor such as 3- (N-salicyloyl) amino-1,2,4-triazole added to the coalesced foam. It has been proposed to stably and reliably form an insulating layer (Patent Document 1 below).
  • foamed cells may be coarsened, and sufficiently fine foamed cells may not be obtained.
  • the foamed insulating layer is required to have heat resistance, and it is desired that the foamed insulating layer can be used continuously for a long time even in a high temperature environment.
  • the present invention has been made in view of the above circumstances, and provides a foamed electric wire capable of obtaining a sufficiently fine foamed cell and capable of being continuously used over a long period of time even in a high temperature environment, and a transmission cable having the same. With the goal.
  • the present inventor conducted various experiments paying attention to the melt tension at the time of fracture of the base resin. At this time, the inventor considered that when the melt tension at the time of fracture was lower than the melt tension described in Patent Document 1, the amount of attenuation increased.
  • the inventor's research depending on the combination of the copper damage inhibitor added to the base resin containing the propylene resin and the chemical foaming agent, the coarsening of the foam cell is sufficiently suppressed, and the foam cell is sufficiently fine. It became clear that the amount of attenuation tends to be suppressed.
  • the above-mentioned specific copper damage inhibitor sufficiently suppresses the deterioration of the propylene-based resin by the conductor, which is considered to allow continuous use even in a high temperature environment.
  • the present invention is a foamed electric wire comprising a conductor and a foamed insulating layer covering the conductor, wherein the foamed insulating layer contains a propylene resin, has a melt tension at break of 20 to 55 mN, and a take-off speed.
  • a resin composition containing a base resin having a viscosity of 50 m / min or more, a chemical foaming agent, and a copper damage inhibitor, wherein the chemical foaming agent is azodicarbonamide,
  • the agent is 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide
  • foamed electric wire sufficiently fine foamed cells can be obtained, and it can be used continuously for a long time even in a high temperature environment.
  • the resin composition further includes silica particles. In this case, even if the resin composition is continuously melted and kneaded for a long time, the decrease in the discharge amount can be sufficiently suppressed, and the production efficiency of the foamed electric wire can be more sufficiently improved.
  • the present invention is a transmission cable having the above foamed electric wire. According to this transmission cable, a sufficiently fine foam cell can be obtained, and it can be used continuously for a long time even in a high-temperature environment. Therefore, it is easy to obtain a transmission cable with reduced attenuation, and the length of the transmission cable is increased. Life can be extended.
  • melt tension at break refers to melt tension measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Specifically, “melt tension at break” is defined as follows. That is, first, a base capillary is filled into a flat capillary having an inner diameter of 1.0 mm and a length of 10 mm. Thereafter, in the capillary rheometer, the piston speed is set to 5 mm / min, the barrel inner diameter is 9.55 mm, the take-up acceleration is set to 400 m / min 2 , and the temperature of the barrel, the capillary, and the thermostat immediately after the barrel is set to 200 ° C.
  • the base resin is filled in the barrel, and after 5 minutes preheating, piston extrusion is started at the piston speed. Then, the base resin is accelerated at the above-mentioned take-up acceleration and taken up, and the tension when it is broken is measured. The average value of the measured tension values obtained by performing this measurement 10 times is defined as “melt tension at break”.
  • a foamed electric wire that can obtain sufficiently fine foamed cells and can be used continuously for a long period of time even in a high-temperature environment, and a transmission cable having the same are provided.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is an end view which shows other embodiment of the transmission cable of this invention.
  • FIG. 1 is a partial side view showing an embodiment of a transmission cable according to the present invention, and shows an example in which a foamed electric wire is applied to a coaxial cable as a transmission cable.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the transmission cable 10 is a coaxial cable, and includes a foamed electric wire 5, an outer conductor 3 that surrounds the foamed electric wire 5, and a sheath 4 that covers the outer conductor 3.
  • the foamed electric wire 5 includes an inner conductor 1 and a foamed insulating layer 2 that covers the inner conductor 1.
  • the foam insulation layer 2 includes a base resin containing a propylene-based resin, a melt tension at break of 20 mN to 55 mN and a take-up speed of 50 m / min or more, a chemical foaming agent, and a copper damage preventing agent. It is obtained by melt-kneading the resin composition containing.
  • azodicarbonamide is used as the chemical foaming agent, and 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide and decamethylenedicarboxylic acid disalicyloyl hydrazide are used.
  • the foamed electric wire 5 having such a configuration a sufficiently fine foam cell can be obtained, and it can be continuously used over a long period of time even in a high temperature environment. Therefore, according to the transmission cable 10 having the foamed electric wire 5, it becomes easy to obtain the transmission cable 10 in which the attenuation amount is suppressed, and the life of the transmission cable 10 can be extended.
  • the inner conductor 1 is prepared.
  • the internal conductor 1 include metal wires such as copper wires, copper alloy wires, and aluminum wires.
  • a material obtained by plating the surface of the metal wire with tin, silver or the like can be used as the internal conductor 1.
  • the inner conductor 1 can be a single wire or a stranded wire.
  • a base resin In order to form the foam insulation layer 2, a base resin, a chemical foaming agent, and a copper damage prevention agent are prepared.
  • Base resin Here, the base resin will be described first.
  • the base resin includes a propylene resin.
  • Propylene-type resin means resin containing the structural unit derived from propylene. Therefore, such propylene-based resins include homopolypropylene obtained by homopolymerization of propylene, copolymers of olefins other than propylene and propylene, and mixtures of two or more thereof. Examples of olefins other than propylene include ethylene, 1-butene, 2-butene, 1-hexene, 2-hexene and the like.
  • ⁇ -olefins such as ethylene, 1-butene, and 1-hexene are preferably used from the viewpoint of realizing more sufficient miniaturization of the foamed cell and obtaining better heat resistance, and more preferably ethylene. .
  • the propylene-based resin is a copolymer of olefin other than propylene and propylene
  • the copolymer includes a random copolymer in addition to the block copolymer, but the copolymer includes a block copolymer. It is preferable.
  • the copolymer contains a block copolymer, the foamed cells can be more sufficiently miniaturized and better heat resistance can be obtained as compared with the case where the block copolymer is not contained.
  • the copolymer may be composed only of a block copolymer, or may be composed of a mixture of a block copolymer and a random copolymer, but only composed of a block copolymer. Is preferred. In this case, compared with the case where a copolymer is comprised with the mixture of a block copolymer and a random copolymer, a foamed cell can be refined more fully.
  • the propylene resin preferably has a melting point of 150 ° C. or higher.
  • the heat resistance of the foamed electric wire 5 is further improved as compared with the case where the melting point is less than 150 ° C.
  • the melting point of the propylene-based resin is more preferably 160 ° C. or higher.
  • the melting point of the propylene-based resin is preferably 170 ° C. or lower because the good balance between heat resistance and resistance to low temperature embrittlement and bending resistance can be maintained.
  • the melt tension at break of the base resin is 20 to 55 mN.
  • the foam cell becomes coarse.
  • the take-off speed at the time of breaking of the base resin is 50 m / min or more, preferably 80 m / min or more, more preferably 100 m / min or more.
  • the take-up speed at the time of breaking is preferably 200 m / min or less for the reason that fine foam cells can be stably obtained, and more preferably 150 m / min or less.
  • ADCA azodicarbonamide
  • N 2 , NH 3 , and CO 2 a gas such as N 2 , NH 3 , and CO 2 by thermal decomposition
  • ADCA has a thermal decomposition temperature sufficiently higher than the melting point of the propylene-based resin and lower than the decomposition temperature of the propylene-based resin. Therefore, the degree of freedom of the temperature profile is high and the foaming is easily controlled. Further, when ADCA is used, sufficiently fine foam cells can be stably obtained as compared with the case of using a chemical foaming agent other than ADCA, and fluctuations in the outer diameter of the foamed insulating layer 2 can also be suppressed.
  • the chemical foaming agent is preferably added in an amount of 0.3 to 1 part by weight, more preferably 0.5 to 0.7 parts by weight, based on 100 parts by weight of the base resin.
  • the addition amount of the chemical foaming agent is within the above range, sufficiently fine foam cells can be obtained more stably.
  • the copper damage prevention agent is for preventing deterioration of the propylene-based resin due to contact with the inner conductor 1, and the copper damage prevention agent is 3- (N-salicyloyl) amino-1,2,4- Triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide or decamethylenedicarboxylic acid disalicyloyl hydrazide is used. These can be used alone or in admixture of two or more.
  • 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide This is preferable because finer foam cells can be obtained.
  • the copper damage inhibitor is preferably added in an amount of 0.01 to 1 part by weight, more preferably 0.1 to 1 part by weight, even more preferably 0.25 to 0.5 parts by weight, based on 100 parts by weight of the base resin. Add part.
  • the addition amount of the copper damage inhibitor is within the above range, deterioration due to heat aging is more sufficiently suppressed, and the life of the foamed electric wire 5 can be extended. In addition, an adverse effect on the signal attenuation can be reduced.
  • silica particles It is preferable to add silica particles to the base resin together with a copper damage inhibitor. In this case, even if the resin composition is continuously melted and kneaded for a long time, a decrease in the discharge amount can be sufficiently suppressed, and the production efficiency of the foamed electric wire 5 can be improved. As a result, the price of the foamed electric wire 5 can be reduced.
  • silica particles promote the coarsening of foamed cells when used together with a copper damage inhibitor.
  • the foaming cell is prevented from becoming coarse, and when the silica particles are combined with a copper damage inhibitor other than the specific copper damage inhibitor, It has been clarified by research of the present inventor that coarsening tends to be promoted.
  • the addition amount of silica particles is preferably 0.03 to 1 part by mass with respect to 100 parts by mass of the base resin.
  • the addition amount of the silica particles is within the above range, it is possible to more sufficiently suppress the decrease in the discharge amount from the extruder, and more sufficiently increase the signal attenuation in the foamed electric wire 5 due to the hygroscopic property of silica. It tends to be suppressed.
  • antioxidant It is preferable to add an antioxidant to the base resin. In this case, heat aging characteristics and the like are further improved, and the foamed electric wire 5 can be continuously used over a longer period even in a high temperature environment.
  • the amount of the antioxidant added to 100 parts by mass of the base resin is, for example, 0.05 to 1 part by mass.
  • antioxidants examples include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-methylphenol, Monophenols such as 2,6-di-tert-butyl- ⁇ -dimethylamino-p-cresol, 2,4,6-tri-tert-butylphenol, o-tert-butylphenol, 2,2′- Methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4′-methylene-bis- (2 , 6-di-tert-butylphenol), 4,4′-butylidene-bis- (4-methyl-6-tert-butylphenol), alkylated bisphenol, 1,3,5-trimethyl-2,4,6 -Tris (3,5 Polyphenols such as di-tert-butyl-4-hydroxybenzyl) benz
  • the melt tension at the time of rupture of the base resin in the foamed insulating layer 2 is 30 mN or more because the foamed cells can be more sufficiently miniaturized, and more preferably 45 mN or more. preferable.
  • the melt tension is preferably 55 mN or less, more preferably 50 mN or less. Preferably, it is 48 mN or less.
  • the melt tension of the base resin at the time of breaking can be adjusted by adjusting the temperature at the die outlet of the extruder, for example.
  • the outer diameter of the foam insulation layer 2 is preferably less than 1.5 mm and more preferably 1.0 mm or less when the foamed electric wire 5 is used for a high-frequency cable.
  • the foamed insulating layer 2 preferably has a foaming degree of 30 to 60%. In this case, crushing (deformation) of the transmission cable 10 can be suppressed, and even if a foamed electric wire for a transmission cable used in a high frequency band is made of a foamed insulating layer 2 using a propylene resin, the foamed cell becomes coarse.
  • the foamed insulating layer 2 in a foamed state having fine and uniform foamed cells can be obtained.
  • the transmission cable 10 using the foamed electric wire 5 has a small outer diameter variation, and even if the foamed insulating layer 2 is thin, there is little problem of crushing, and variations such as deterioration of attenuation are sufficiently suppressed.
  • the foamed insulating layer 2 and the inner conductor 1 interpose a thin layer made of unfoamed resin, so-called inner layer, between the foamed insulating layer 2 and the inner conductor 1.
  • inner layer can also prevent deterioration (embrittlement) of the foamed insulating layer 2 due to copper in the inner conductor 1.
  • the thickness of the thin layer may be, for example, 0.01 to 0.1 mm.
  • the adhesiveness of the foam insulation layer 2 and the external conductor 3 can be improved.
  • the unfoamed resin is made of polyethylene
  • the adhesion between the foamed insulating layer 2 and the outer conductor 3 can be further improved.
  • the outer layer is interposed between the foamed insulating layer 2 and the outer conductor 3, the outer diameter fluctuation is reduced, and the skew and VSWR are improved.
  • crush resistance improves and the outer diameter of the foamed electric wire 5 can also be made small.
  • the thickness of the thin layer may be set to 0.02 to 0.05 mm, for example.
  • the outer conductor 3 is formed so as to surround the foamed electric wire 5 obtained as described above.
  • the external conductor 3 a known one that has been conventionally used can be used.
  • the external conductor 3 can be formed by winding a conductive wire or a tape formed by sandwiching a conductive sheet between resin sheets along the outer periphery of the insulating layer 2.
  • the outer conductor 3 can be constituted by a corrugated metal tube, that is, a corrugated metal tube. In this case, the flexibility of the foamed electric wire 5 can be improved.
  • the sheath 4 protects the outer conductor 3 from physical or chemical damage.
  • the material constituting the sheath 4 include resins such as fluororesin, polyethylene, and polyvinyl chloride. From the viewpoint of the above, a halogen-free material such as polyethylene resin is preferably used.
  • the transmission cable 10 is obtained as described above.
  • FIG. 3 is an end view showing a Twinax type transmission cable having the foamed electric wire 5.
  • the Twinax type transmission cable 20 is a laminate layer composed of two foamed electric wires 5, a drain wire 6, a laminate tape 7, two power lines 8, an aluminum tape layer and a braided layer. 9 and a sheath 4.
  • the two foamed electric wires 5 are arranged in parallel to each other, and these are used as signal lines.
  • the laminate tape 7 is wound around the foamed electric wire 5 and the drain wire 6, and the sheath 4 is formed on the laminate layer 9 so as to surround the laminate layer 9.
  • the laminate tape 7 is composed of a laminate of, for example, an aluminum foil and a polyethylene terephthalate film, and the sheath 4 is composed of, for example, an olefin-based non-halo material such as ANA 9897N manufactured by Riken Technos.
  • the foamed electric wire 5 and the foamed insulating layer 2 are the same as those in the above embodiment.
  • the present invention is not limited to the above embodiment.
  • an example in which the foamed electric wire 5 is applied to a coaxial cable or a Twinax type transmission cable as a transmission cable is shown.
  • the foamed electric wire 5 is a USB 3.0 cable, an HDMI cable, Infiniband. It can also be applied to high-speed transmission cables such as cables and micro USB cables.
  • Example 1 First, FB3312 (trade name, manufactured by Nippon Polypro Co., Ltd., hereinafter referred to as “EP1”), which is an ethylene-propylene block copolymer, was prepared as a base resin.
  • EP1 ethylene-propylene block copolymer
  • EP1 in an extruder product name: Laboplast Mill D2020, screw diameter (D): ⁇ 20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • copper damage inhibitor and chemical foaming shown in Table 1
  • the agent was added and melt-kneaded to perform extrusion molding.
  • a copper damage inhibitor and a chemical foaming agent were added in amounts shown in Table 1 to 100 parts by mass of EP1.
  • the unit of blending amount is parts by mass.
  • the temperature of the extruder was set to 200 to 220 ° C., so that ADCA was thermally decomposed while melting the base resin.
  • the extrudate was extruded from the extruder into a tube shape, and the twisted wire conductor in which seven copper wires having a diameter of 0.127 mm were twisted was covered with the tube-like extrudate.
  • a foamed electric wire composed of a stranded wire conductor and a foamed insulating layer covering the stranded wire conductor was produced.
  • the extrudate was extruded so that the foamed insulating layer had an outer diameter of 0.92 mm and a thickness of 0.3 mm.
  • Two foamed electric wires thus obtained were arranged in parallel, and these were wound together with a drain wire and a laminate tape having a thickness of 22 ⁇ m made of a laminate of an aluminum layer and a polyethylene terephthalate layer.
  • this was wound with an aluminum tape layer having a thickness of 25 ⁇ m together with two power lines having an outer diameter of 0.8 mm, and then covered with a braided layer, and further olefin-based non-halo material ANA9897N (trade name, manufactured by Riken Technos) Covered with a sheath consisting of In this way, a Twinax type transmission cable was produced.
  • Example 2 to 52 and Comparative Examples 1 to 11 Type of base resin, type and amount of copper damage preventive agent, silica content, type of chemical foaming agent and amount thereof, melt tension and take-off speed when base resin breaks, transmission cable impedance, foam insulation layer A twinax type transmission cable was prepared in the same manner as in Example 1 except that the outer diameter of each and the foaming degree in the foamed insulating layer were as shown in Tables 1, 3 and 5. In Tables 1, 3, and 5, the unit of the blending amount is parts by mass.
  • Base resin (1-1)
  • EP1 FB3312 Nippon Polypro Co., Ltd.
  • ethylene / propylene copolymer 1-2
  • EP2 FB5100 Nippon Polypro Co., Ltd.
  • melt tension and take-off speed at break were measured for the foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11 as follows.
  • melt tension and take-up speed were measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Specifically, the melt tension and the take-up speed were measured as follows. First, a base resin was filled into a flat capillary having an inner diameter of 1.0 mm and a length of 10 mm. Thereafter, in the capillary rheometer, the piston speed was set to 5 mm / min, the barrel inner diameter was set to 9.55 mm, the take-up acceleration was set to 400 m / min 2 , and the temperatures of the barrel, the capillary, and the thermostat immediately after the barrel were set to 200 ° C.
  • a capillary rheometer Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Attenuation amount With respect to the transmission cables obtained in Examples 1 to 52 and Comparative Examples 1 to 11, using a network analyzer (manufactured by 8722ES Agilent Technologies), a frequency signal of 1.25 GHz and a signal of 2.5 GHz The attenuation was measured for each of the above. Next, these transmission cables were left in an atmosphere of 85 ° C. and 90% RH for 1000 hours, and then the signal attenuation was measured in the same manner as before. The ratio of the attenuation amount of the signal after being left to the attenuation amount of the signal before being left is expressed by the following formula: Calculated based on The results are shown in Tables 2, 4 and 6.
  • Examples 1 to 52 and Comparative Examples 1 to 11 are indicated by any one of A to C based on the following criteria.
  • Discharge rate reduction rate The resin composition was continuously fed into an extruder (product name: Laboplast mill D2020, screw diameter (D): ⁇ 20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho). Then, the extrusion molding is continued, and the discharge amount of the extrudate after 10 hours has elapsed after being charged into the extruder (hereinafter referred to as “initial discharge amount”), and the discharge amount of the extrudate after another one hour has passed. From the following formula, the rate of decrease in the discharge amount of the extrudate is: Calculated based on The results are shown in Tables 2, 4 and 6.
  • Example 1 to 52 and Comparative Examples 1 to 11 are indicated by any one of A to D based on the following criteria.
  • a ... Reduction rate is less than 0.2%
  • B ... Reduction rate is 0.2% or more and less than 0.5%
  • C ... Reduction rate is 0.5% or more and less than 1.0%
  • D ... Reduction rate is 1.0% or more
  • Examples 1 to 52 and Comparative Examples 1 to 11 were over 2.5 years in terms of heat aging deterioration, and passed the acceptance criteria.
  • the foamed electric wires of Examples 1 to 52 had a foamed insulating layer having an average foamed cell diameter of less than 50 ⁇ m and a standard deviation of less than 25 ⁇ m, and all of them reached the acceptance standard.
  • the foamed electric wires of Comparative Examples 1 to 11 have a foam insulation layer with an average cell diameter of 50 ⁇ m and a standard deviation of 25 ⁇ m, and both the average foam cell diameter and the standard deviation have reached the acceptance criteria. There wasn't.
  • the foamed electric wire of the present invention it was confirmed that a sufficiently fine foamed cell can be obtained and can be continuously used for a long time even in a high temperature environment.
  • SYMBOLS 1 Internal conductor (conductor), 2 ... Foam insulation layer, 5 ... Foam electric wire, 10, 20 ... Transmission cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Insulating Materials (AREA)
  • Communication Cables (AREA)

Abstract

Disclosed is a foamed electric wire comprising an electric conductor and a foamed insulation layer that covers the conductor, wherein the foamed insulation layer is obtained by melt kneading a resin compound including a base resin containing a propylene-based resin and having a melt strength of 20-55mN and a haul-off speed greater than or equal to 50m/min. at break, a chemical foaming agent, and a copper corrosion inhibitor, such that the chemical foaming agent is azodicarbonamide and the copper corrosion inhibitor is of at least one type selected from the group consisting of 3-(N-salicyloyl) amino-1,2,4-triazole, 2',3-Bis [3-(3,5 di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide, and decamethylene dicarboxylic di-salicyloyl hydrazide.

Description

発泡電線及びこれを有する伝送ケーブルFoamed electric wire and transmission cable having the same
 本発明は、発泡電線及びこれを有する伝送ケーブルに関する。 The present invention relates to a foamed electric wire and a transmission cable having the same.
 USB3.0ケーブル、HDMIケーブル、インフィニバンドケーブル、マイクロUSBケーブルなどの高速伝送ケーブルなどに使用される発泡電線の発泡絶縁層には、細径で耐熱性が高く、微細発泡成形が可能であることが求められる。 The foam insulation layer of foamed electric wires used for USB 3.0 cables, HDMI cables, Infiniband cables, micro USB cables, etc., has a small diameter, high heat resistance, and can be finely foamed. Is required.
 このような発泡絶縁層として、従来、破断時の溶融張力が5.0g(49mN)以上であり、かつ190℃、2.16kgにおけるメルトマスフローレートが1.0g/10min以上のエチレン-プロピレン共重合体に、アゾジカルボンアミドなどの化学発泡剤と、3-(N-サリチロイル)アミノ-1,2,4-トリアゾールなどの銅害防止剤とを添加したものを用いることにより、高発泡度の発泡絶縁層を安定して確実に形成することが提案されている(下記特許文献1)。 As such a foamed insulating layer, an ethylene-propylene copolymer having a melt tension at break of 5.0 g (49 mN) or more and a melt mass flow rate at 190 ° C. of 2.16 kg of 1.0 g / 10 min or more is conventionally used. By using a chemical foaming agent such as azodicarbonamide and a copper damage inhibitor such as 3- (N-salicyloyl) amino-1,2,4-triazole added to the coalesced foam, It has been proposed to stably and reliably form an insulating layer (Patent Document 1 below).
特開2006-236978号公報JP 2006-236978 A
 ところで、伝送ケーブルの細径化に伴って、発泡絶縁層における発泡セルについてさらなる微細化が求められるようになっている。 By the way, with the reduction of the diameter of the transmission cable, further miniaturization of the foam cell in the foam insulation layer is required.
 しかし、上記特許文献1に記載の発泡絶縁層では、発泡セルが粗大化する場合があり、十分に微細な発泡セルを得ることができない場合があった。 However, in the foamed insulating layer described in Patent Document 1, foamed cells may be coarsened, and sufficiently fine foamed cells may not be obtained.
 また発泡絶縁層には耐熱性も求められており、高温環境下でも長期間にわたって継続使用できることが望まれる。 Also, the foamed insulating layer is required to have heat resistance, and it is desired that the foamed insulating layer can be used continuously for a long time even in a high temperature environment.
 本発明は、上記事情に鑑みてなされたものであり、十分微細な発泡セルを得ることができ、且つ高温環境下でも長期間にわたって継続使用可能な発泡電線及びこれを有する伝送ケーブルを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a foamed electric wire capable of obtaining a sufficiently fine foamed cell and capable of being continuously used over a long period of time even in a high temperature environment, and a transmission cable having the same. With the goal.
 本発明者は上記課題を解決するため、ベース樹脂の持つ破断時における溶融張力に着目して種々の実験を行った。このとき、本発明者は、破断時における溶融張力を特許文献1に記載された溶融張力よりも低くすると、減衰量が大きくなるものと考えていた。しかし、本発明者の研究により、プロピレン系樹脂を含むベース樹脂に添加する銅害防止剤と化学発泡剤との組み合わせによっては、発泡セルの粗大化が十分に抑制されて発泡セルの十分な微細化が可能となり、それにより減衰量が抑制される傾向があることが明らかとなった。また上記特定の銅害防止剤により、導体によるプロピレン系樹脂の劣化促進が十分に抑制され、これにより高温環境下でも継続使用が可能なると考えた。そして、本発明者はさらに鋭意研究を重ねた結果、下記発明により上記課題を解決し得ることを見出した。 In order to solve the above problems, the present inventor conducted various experiments paying attention to the melt tension at the time of fracture of the base resin. At this time, the inventor considered that when the melt tension at the time of fracture was lower than the melt tension described in Patent Document 1, the amount of attenuation increased. However, according to the inventor's research, depending on the combination of the copper damage inhibitor added to the base resin containing the propylene resin and the chemical foaming agent, the coarsening of the foam cell is sufficiently suppressed, and the foam cell is sufficiently fine. It became clear that the amount of attenuation tends to be suppressed. Further, the above-mentioned specific copper damage inhibitor sufficiently suppresses the deterioration of the propylene-based resin by the conductor, which is considered to allow continuous use even in a high temperature environment. As a result of further earnest studies, the present inventor has found that the above-described problems can be solved by the following invention.
 即ち本発明は、導体と、前記導体を被覆する発泡絶縁層とを備える発泡電線であって、前記発泡絶縁層が、プロピレン系樹脂を含み、破断時における溶融張力が20~55mNで且つ引取速度が50m/分以上であるベース樹脂と、化学発泡剤と、銅害防止剤とを含む樹脂組成物を溶融混練することにより得られ、前記化学発泡剤がアゾジカルボンアミドであり、前記銅害防止剤が、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2’,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド及びデカメチレンジカルボン酸ジサリチロイルヒドラジドからなる群より選ばれる少なくとも1種であることを特徴とする発泡電線である。 That is, the present invention is a foamed electric wire comprising a conductor and a foamed insulating layer covering the conductor, wherein the foamed insulating layer contains a propylene resin, has a melt tension at break of 20 to 55 mN, and a take-off speed. Obtained by melting and kneading a resin composition containing a base resin having a viscosity of 50 m / min or more, a chemical foaming agent, and a copper damage inhibitor, wherein the chemical foaming agent is azodicarbonamide, The agent is 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide And at least one selected from the group consisting of decamethylenedicarboxylic acid disalicyloyl hydrazide.
 この発泡電線によれば、十分微細な発泡セルを得ることができ、且つ高温環境下でも長期間にわたって継続使用可能となる。 According to this foamed electric wire, sufficiently fine foamed cells can be obtained, and it can be used continuously for a long time even in a high temperature environment.
 上記発泡電線においては、前記樹脂組成物がシリカ粒子を更に含むことが好ましい。この場合、樹脂組成物を長時間にわたって連続的に溶融混練しても、その吐出量の低下を十分に抑制することができ、発泡電線の製造効率をより十分に向上させることができる。 In the foamed electric wire, it is preferable that the resin composition further includes silica particles. In this case, even if the resin composition is continuously melted and kneaded for a long time, the decrease in the discharge amount can be sufficiently suppressed, and the production efficiency of the foamed electric wire can be more sufficiently improved.
 また本発明は、上記発泡電線を有する伝送ケーブルである。この伝送ケーブルによれば、十分微細な発泡セルを得ることができ、且つ高温環境下でも長期間にわたって継続使用可能となるので、減衰量が抑制された伝送ケーブルを得やすくなると共に伝送ケーブルの長寿命化が可能となる。 Further, the present invention is a transmission cable having the above foamed electric wire. According to this transmission cable, a sufficiently fine foam cell can be obtained, and it can be used continuously for a long time even in a high-temperature environment. Therefore, it is easy to obtain a transmission cable with reduced attenuation, and the length of the transmission cable is increased. Life can be extended.
 なお、本発明において、「破断時における溶融張力」とは、キャピラリーレオメータ(キャピログラフ 1D、東洋精機製作所株式会社製)を用いて測定した溶融張力を言う。詳細に述べると、「破断時における溶融張力」は、以下のように定義される。即ちまず内径1.0mm、長さ10mmのフラットキャピラリーにベース樹脂を充填する。その後、キャピラリーレオメータにおいて、ピストンスピードを5mm/分、バレル内径を9.55mm、引取加速度を400m/min、バレル、キャピラリー及びバレル直後の恒温槽それぞれの温度を200℃の条件に設定する。それからバレルにベース樹脂を充填して5分予熱後に上記ピストンスピードでピストン押出を開始する。そして、ベース樹脂を上記引取加速度で加速して引き取り、破断したときの張力を測定する。この測定を10回行って得られた張力の測定値の平均値が「破断時における溶融張力」と定義される。 In the present invention, “melt tension at break” refers to melt tension measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Specifically, “melt tension at break” is defined as follows. That is, first, a base capillary is filled into a flat capillary having an inner diameter of 1.0 mm and a length of 10 mm. Thereafter, in the capillary rheometer, the piston speed is set to 5 mm / min, the barrel inner diameter is 9.55 mm, the take-up acceleration is set to 400 m / min 2 , and the temperature of the barrel, the capillary, and the thermostat immediately after the barrel is set to 200 ° C. Then, the base resin is filled in the barrel, and after 5 minutes preheating, piston extrusion is started at the piston speed. Then, the base resin is accelerated at the above-mentioned take-up acceleration and taken up, and the tension when it is broken is measured. The average value of the measured tension values obtained by performing this measurement 10 times is defined as “melt tension at break”.
 本発明によれば、十分微細な発泡セルを得ることができ、且つ高温環境下でも長期間にわたって継続使用可能な発泡電線及びこれを有する伝送ケーブルが提供される。 According to the present invention, a foamed electric wire that can obtain sufficiently fine foamed cells and can be used continuously for a long period of time even in a high-temperature environment, and a transmission cable having the same are provided.
本発明の伝送ケーブルの一実施形態を示す部分側面図である。It is a partial side view which shows one Embodiment of the transmission cable of this invention. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 本発明の伝送ケーブルの他の実施形態を示す端面図である。It is an end view which shows other embodiment of the transmission cable of this invention.
 以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2.
 図1は、本発明に係る伝送ケーブルの一実施形態を示す部分側面図であり、発泡電線を伝送ケーブルとしての同軸ケーブルに適用した例を示すものである。図2は、図1のII-II線に沿った断面図である。図1に示すように、伝送ケーブル10は同軸ケーブルを示しており、発泡電線5と、発泡電線5を包囲する外部導体3と、外部導体3を被覆するシース4とを備えている。そして、発泡電線5は、内部導体1と、内部導体1を被覆する発泡絶縁層2とを有している。 FIG. 1 is a partial side view showing an embodiment of a transmission cable according to the present invention, and shows an example in which a foamed electric wire is applied to a coaxial cable as a transmission cable. FIG. 2 is a sectional view taken along line II-II in FIG. As shown in FIG. 1, the transmission cable 10 is a coaxial cable, and includes a foamed electric wire 5, an outer conductor 3 that surrounds the foamed electric wire 5, and a sheath 4 that covers the outer conductor 3. The foamed electric wire 5 includes an inner conductor 1 and a foamed insulating layer 2 that covers the inner conductor 1.
 ここで、発泡絶縁層2は、プロピレン系樹脂を含み、破断時における溶融張力が20mN~55mNで且つ引取速度が50m/分以上であるベース樹脂と、化学発泡剤と、銅害防止剤とを含む樹脂組成物を溶融混練することによって得られる。ここで、化学発泡剤としては、アゾジカルボンアミドが用いられ、銅害防止剤としては、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2’,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド及びデカメチレンジカルボン酸ジサリチロイルヒドラジドからなる群より選ばれる少なくとも1種が用いられる。 Here, the foam insulation layer 2 includes a base resin containing a propylene-based resin, a melt tension at break of 20 mN to 55 mN and a take-up speed of 50 m / min or more, a chemical foaming agent, and a copper damage preventing agent. It is obtained by melt-kneading the resin composition containing. Here, azodicarbonamide is used as the chemical foaming agent, and 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide and decamethylenedicarboxylic acid disalicyloyl hydrazide are used.
 このような構成を有する発泡電線5によれば、十分微細な発泡セルを得ることができ、且つ高温環境下でも長期間にわたって継続使用可能となる。よって、この発泡電線5を有する伝送ケーブル10によれば、減衰量の抑制された伝送ケーブル10を得やすくなると共に伝送ケーブル10の長寿命化が可能となる。 According to the foamed electric wire 5 having such a configuration, a sufficiently fine foam cell can be obtained, and it can be continuously used over a long period of time even in a high temperature environment. Therefore, according to the transmission cable 10 having the foamed electric wire 5, it becomes easy to obtain the transmission cable 10 in which the attenuation amount is suppressed, and the life of the transmission cable 10 can be extended.
 次に、伝送ケーブル10の製造方法について説明する。 Next, a method for manufacturing the transmission cable 10 will be described.
 まず発泡電線5の製造方法について説明する。 First, a method for manufacturing the foamed electric wire 5 will be described.
 <内部導体>
 はじめに内部導体1を準備する。内部導体1としては、例えば銅線、銅合金線、アルミニウム線等の金属線が挙げられる。また、上記金属線の表面にスズや銀等のめっきを施したものを内部導体1として用いることもできる。また内部導体1としては、単線または撚線を用いることができる。
<Inner conductor>
First, the inner conductor 1 is prepared. Examples of the internal conductor 1 include metal wires such as copper wires, copper alloy wires, and aluminum wires. In addition, a material obtained by plating the surface of the metal wire with tin, silver or the like can be used as the internal conductor 1. The inner conductor 1 can be a single wire or a stranded wire.
 <発泡絶縁層>
 次に、内部導体1上に発泡絶縁層2を形成する。
<Foam insulation layer>
Next, the foamed insulating layer 2 is formed on the inner conductor 1.
 発泡絶縁層2を形成するためには、ベース樹脂と、化学発泡剤と、銅害防止剤とを準備する。 In order to form the foam insulation layer 2, a base resin, a chemical foaming agent, and a copper damage prevention agent are prepared.
 (ベース樹脂)
 ここで、まずベース樹脂について説明する。
(Base resin)
Here, the base resin will be described first.
 ベース樹脂はプロピレン系樹脂を含む。プロピレン系樹脂とは、プロピレンに由来する構成単位を含む樹脂を言う。従って、このようなプロピレン系樹脂には、プロピレンの単独重合により得られるホモポリプロピレン、プロピレン以外のオレフィンとプロピレンとの共重合体、これらの2種以上の混合物が含まれる。プロピレン以外のオレフィンとしては、例えばエチレン、1-ブテン、2-ブテン、1-ヘキセン、2-ヘキセンなどが挙げられる。中でも、エチレン、1-ブテン、1-ヘキセンなどのα-オレフィンが、発泡セルのより十分な微細化を実現し、より優れた耐熱性を得る観点から好ましく用いられ、より好ましくはエチレンが用いられる。 The base resin includes a propylene resin. Propylene-type resin means resin containing the structural unit derived from propylene. Therefore, such propylene-based resins include homopolypropylene obtained by homopolymerization of propylene, copolymers of olefins other than propylene and propylene, and mixtures of two or more thereof. Examples of olefins other than propylene include ethylene, 1-butene, 2-butene, 1-hexene, 2-hexene and the like. Among them, α-olefins such as ethylene, 1-butene, and 1-hexene are preferably used from the viewpoint of realizing more sufficient miniaturization of the foamed cell and obtaining better heat resistance, and more preferably ethylene. .
 プロピレン系樹脂が、プロピレン以外のオレフィンとプロピレンとの共重合体である場合、この共重合体は、ブロック共重合体のほかランダム共重合体を含むが、共重合体はブロック共重合体を含むことが好ましい。共重合体がブロック共重合体を含むと、ブロック共重合体を含まない場合に比べて、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。 When the propylene-based resin is a copolymer of olefin other than propylene and propylene, the copolymer includes a random copolymer in addition to the block copolymer, but the copolymer includes a block copolymer. It is preferable. When the copolymer contains a block copolymer, the foamed cells can be more sufficiently miniaturized and better heat resistance can be obtained as compared with the case where the block copolymer is not contained.
 ここで、共重合体は、ブロック共重合体のみで構成されてもよく、ブロック共重合体とランダム共重合体との混合物で構成されてもよいが、ブロック共重合体のみで構成されることが好ましい。この場合、共重合体がブロック共重合体とランダム共重合体との混合物で構成される場合と比較して、発泡セルをより十分に微細化できる。 Here, the copolymer may be composed only of a block copolymer, or may be composed of a mixture of a block copolymer and a random copolymer, but only composed of a block copolymer. Is preferred. In this case, compared with the case where a copolymer is comprised with the mixture of a block copolymer and a random copolymer, a foamed cell can be refined more fully.
 プロピレン系樹脂は、150℃以上の融点を有することが好ましい。この場合、融点が150℃未満である場合に比べて、発泡電線5の耐熱性がより向上する。またプロピレン系樹脂の融点は、160℃以上であることがより好ましい。但し、プロピレン系樹脂の融点は、170℃以下であることが、耐熱性と、耐低温脆化や耐屈曲性とのバランスを良好に保てるという理由から好ましい。 The propylene resin preferably has a melting point of 150 ° C. or higher. In this case, the heat resistance of the foamed electric wire 5 is further improved as compared with the case where the melting point is less than 150 ° C. The melting point of the propylene-based resin is more preferably 160 ° C. or higher. However, the melting point of the propylene-based resin is preferably 170 ° C. or lower because the good balance between heat resistance and resistance to low temperature embrittlement and bending resistance can be maintained.
 ベース樹脂の破断時における溶融張力は20~55mNである。溶融張力が上記範囲を外れると、発泡セルが粗大化する。 The melt tension at break of the base resin is 20 to 55 mN. When the melt tension is out of the above range, the foam cell becomes coarse.
 またベース樹脂の破断時における引取速度は50m/分以上であり、好ましくは80m/分以上であり、より好ましくは100m/分以上である。引取速度が50m/分未満では、発泡セルが粗大化し、十分微細な発泡セルを安定的に得ることができない。但し、破断時における引取速度は、200m/分以下であることが微細な発泡セルを安定的に得ることができるという理由から好ましく、150m/分以下であることがより好ましい。 Further, the take-off speed at the time of breaking of the base resin is 50 m / min or more, preferably 80 m / min or more, more preferably 100 m / min or more. When the take-up speed is less than 50 m / min, the foam cells are coarsened, and sufficiently fine foam cells cannot be stably obtained. However, the take-up speed at the time of breaking is preferably 200 m / min or less for the reason that fine foam cells can be stably obtained, and more preferably 150 m / min or less.
 (化学発泡剤)
 次に化学発泡剤について説明する。
(Chemical foaming agent)
Next, the chemical foaming agent will be described.
 化学発泡剤としては、熱分解してN2、NH3、CO2等のガスを発生するアゾジカルボンアミド(以下、「ADCA」と呼ぶ)が用いられる。ADCAは、熱分解温度がプロピレン系樹脂の融点より十分高く、かつプロピレン系樹脂の分解温度より低いため、温度プロファイルの自由度が高く、発泡の制御がしやすい。またADCAを用いると、ADCA以外の化学発泡剤を用いる場合に比べて、十分微細な発泡セルを安定して得ることができると共に、発泡絶縁層2の外径変動を抑制することもできる。 As the chemical foaming agent, azodicarbonamide (hereinafter referred to as “ADCA”) that generates a gas such as N 2 , NH 3 , and CO 2 by thermal decomposition is used. ADCA has a thermal decomposition temperature sufficiently higher than the melting point of the propylene-based resin and lower than the decomposition temperature of the propylene-based resin. Therefore, the degree of freedom of the temperature profile is high and the foaming is easily controlled. Further, when ADCA is used, sufficiently fine foam cells can be stably obtained as compared with the case of using a chemical foaming agent other than ADCA, and fluctuations in the outer diameter of the foamed insulating layer 2 can also be suppressed.
 化学発泡剤は、ベース樹脂100質量部に対して好ましくは0.3~1質量部添加し、より好ましくは0.5~0.7質量部添加する。化学発泡剤の添加量が上記範囲内にあると、十分微細な発泡セルをより安定して得ることができる。 The chemical foaming agent is preferably added in an amount of 0.3 to 1 part by weight, more preferably 0.5 to 0.7 parts by weight, based on 100 parts by weight of the base resin. When the addition amount of the chemical foaming agent is within the above range, sufficiently fine foam cells can be obtained more stably.
 (銅害防止剤)
 次に銅害防止剤について説明する。
(Copper damage prevention agent)
Next, the copper damage preventing agent will be described.
 銅害防止剤とは、内部導体1との接触によるプロピレン系樹脂の劣化を防止するためのものであり、銅害防止剤としては、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2’,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド又はデカメチレンジカルボン酸ジサリチロイルヒドラジドが用いられる。これらは単独で又は2種以上を混合して用いることができる。中でも、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2’,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジドが、より微細な発泡セルを得ることができるという理由から好ましい。 The copper damage prevention agent is for preventing deterioration of the propylene-based resin due to contact with the inner conductor 1, and the copper damage prevention agent is 3- (N-salicyloyl) amino-1,2,4- Triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide or decamethylenedicarboxylic acid disalicyloyl hydrazide is used. These can be used alone or in admixture of two or more. Among them, 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide This is preferable because finer foam cells can be obtained.
 銅害防止剤は、ベース樹脂100質量部に対して好ましくは0.01~1質量部添加し、より好ましくは0.1~1質量部添加し、さらに好ましくは0.25~0.5質量部添加する。銅害防止剤の添加量が上記範囲内であると、熱老化による劣化がより十分に抑制され、発泡電線5の寿命をより長くすることができる。また、信号の減衰量への悪影響も低減することができる。 The copper damage inhibitor is preferably added in an amount of 0.01 to 1 part by weight, more preferably 0.1 to 1 part by weight, even more preferably 0.25 to 0.5 parts by weight, based on 100 parts by weight of the base resin. Add part. When the addition amount of the copper damage inhibitor is within the above range, deterioration due to heat aging is more sufficiently suppressed, and the life of the foamed electric wire 5 can be extended. In addition, an adverse effect on the signal attenuation can be reduced.
 (シリカ粒子)
 上記ベース樹脂には、銅害防止剤とともに、シリカ粒子を添加することが好ましい。この場合、樹脂組成物を長時間にわたって連続的に溶融混練しても、その吐出量の低下を十分に抑制することができ、発泡電線5の製造効率を向上させることができる。その結果、発泡電線5の低価格化が可能となる。
(Silica particles)
It is preferable to add silica particles to the base resin together with a copper damage inhibitor. In this case, even if the resin composition is continuously melted and kneaded for a long time, a decrease in the discharge amount can be sufficiently suppressed, and the production efficiency of the foamed electric wire 5 can be improved. As a result, the price of the foamed electric wire 5 can be reduced.
 なお、一般的に、シリカ粒子は、銅害防止剤とともに使用されると、発泡セルの粗大化を促進するものと考えられていた。しかし、シリカ粒子が上記特定の銅害防止剤と組み合わされると、発泡セルの粗大化が抑制され、シリカ粒子が上記特定の銅害防止剤以外の銅害防止剤と組み合わされると、発泡セルの粗大化が促進される傾向があることが本発明者の研究により明らかとなったものである。 In general, it has been considered that silica particles promote the coarsening of foamed cells when used together with a copper damage inhibitor. However, when the silica particles are combined with the specific copper damage inhibitor, the foaming cell is prevented from becoming coarse, and when the silica particles are combined with a copper damage inhibitor other than the specific copper damage inhibitor, It has been clarified by research of the present inventor that coarsening tends to be promoted.
 このとき、シリカ粒子の添加量は、ベース樹脂100質量部に対して0.03~1質量部であることが好ましい。シリカ粒子の添加量が上記範囲内にあると、押出機からの吐出量の低下をより十分に抑制できるとともに、シリカの持つ吸湿性に起因する発泡電線5における信号の減衰量の増加をより十分に抑制することができる傾向にある。 At this time, the addition amount of silica particles is preferably 0.03 to 1 part by mass with respect to 100 parts by mass of the base resin. When the addition amount of the silica particles is within the above range, it is possible to more sufficiently suppress the decrease in the discharge amount from the extruder, and more sufficiently increase the signal attenuation in the foamed electric wire 5 due to the hygroscopic property of silica. It tends to be suppressed.
 (酸化防止剤)
 上記ベース樹脂には、酸化防止剤を添加することが好ましい。この場合、熱老化特性等がより向上し、高温環境下でもより長期間にわたって発泡電線5を継続使用することができる。上記ベース樹脂100質量部に対する酸化防止剤の添加量は、例えば0.05~1質量部である。
(Antioxidant)
It is preferable to add an antioxidant to the base resin. In this case, heat aging characteristics and the like are further improved, and the foamed electric wire 5 can be continuously used over a longer period even in a high temperature environment. The amount of the antioxidant added to 100 parts by mass of the base resin is, for example, 0.05 to 1 part by mass.
 酸化防止剤としては、例えば2,6-ジ-第三-ブチルフェノール、2,6-ジ-第三-ブチル-4-エチルフェノール、2,6-ジ-第三-ブチル-4-メチルフェノール、2,6-ジ-第三-ブチル-α-ジメチルアミノ-p-クレゾール、2,4,6-トリ-第三-ブチルフェノール、o-第三-ブチルフェノール等のモノフェノール系、2,2’-メチレン-ビス-(4-メチル-6-第三-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-第三-ブチルフェノール)、4,4’-メチレン-ビス-(2,6-ジ-第三-ブチルフェノール)、4,4’-ブチリデン-ビス-(4-メチル-6-第三-ブチルフェノール)、アルキル化ビスフェノール、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-第三-ブチル-4-ヒドロキシベンジル)ベンゼン等のポリフェノール系、テトラキス-[メチレン-3-(3’,5’-ジ-第三-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-第三―ブチルフェニル)プロピオネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三-ブチルフェニル)ブタン、3,9-ビス[2-{3-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]-ウンデカン等のヒンダードフェノール系、4,4’-チオビス-(6-第三-ブチル-3-メチルフェノール)、4,4’-チオビス-(6-第三-ブチル-o-クレゾール)、ビス(3,5-ジ-第三-ブチル-4-ヒドロキシベンジル)スルフィド、ジアルキル・フェノール・スルフィド等のチオビスフェノール系、ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等のりん系トリス(ノニルフェニル)、ジラウリル・チオジプロピオネート、ジステアリル・チオジプロピオネート、ジステアリル-β,β-チオジブチレート、ラウリル・ステアリル・チオジプロピオネート、ジミリスチル-3,3’- チオジプロピオネート、ジトリデシル-3,3’- チオジプロピオネート、含硫黄エステル系化合物、アミル-チオグリコレート、1,1’- チオビス-(2-ナフトール)、2-メルカプトベンズイミダゾール、ヒドラジン誘導体等が挙げられる。これらは単独で又は2種以上を併用して使用することができる。 Examples of the antioxidant include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-methylphenol, Monophenols such as 2,6-di-tert-butyl-α-dimethylamino-p-cresol, 2,4,6-tri-tert-butylphenol, o-tert-butylphenol, 2,2′- Methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4′-methylene-bis- (2 , 6-di-tert-butylphenol), 4,4′-butylidene-bis- (4-methyl-6-tert-butylphenol), alkylated bisphenol, 1,3,5-trimethyl-2,4,6 -Tris (3,5 Polyphenols such as di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] methane, n -Octadecyl-3- (4'-hydroxy-3 ', 5'-di-tert-butylphenyl) propionate, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) ) Butane, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1, dimethylethyl] -2,4,8,10-tetraoxa Hindered phenols such as spiro [5,5] -undecane, 4,4′-thiobis- (6-tert-butyl-3-methylphenol), 4,4′-thiobis- (6-tert-butyl) Thiol-o-cresol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, thiobisphenols such as dialkyl / phenol / sulfide, phosphite, tris (2,4-di-tert) Phosphorus tris (nonylphenyl) such as -butylphenyl) phosphite, dilauryl thiodipropionate, distearyl thiodipropionate, distearyl-β, β-thiodibutyrate, lauryl stearyl thiodipropionate Dimyristyl-3,3′- thiodipropionate, ditridecyl-3,3′- thiodipropionate, sulfur-containing ester compound, amyl-thioglycolate, 1,1′- thiobis- (2-naphthol), Examples thereof include 2-mercaptobenzimidazole and hydrazine derivatives. These can be used alone or in combination of two or more.
 上記ベース樹脂、化学発泡剤及び銅害防止剤等を押出機に投入し押出機中の樹脂組成物を溶融混練する場合には、まず化学発泡剤をベース樹脂中に均一に分散させた後、化学発泡剤をその熱分解温度以上の温度に加熱して熱分解させ、分解ガスを発生させる。そして、分解ガスを含有した樹脂を押し出しながら発泡させて、この押出物で内部導体1を被覆する。こうして内部導体1上に発泡絶縁層2が得られる。 When the above base resin, chemical foaming agent, copper damage inhibitor and the like are charged into an extruder and the resin composition in the extruder is melt-kneaded, first the chemical foaming agent is uniformly dispersed in the base resin, A chemical foaming agent is heated to a temperature equal to or higher than its thermal decomposition temperature to cause thermal decomposition and generate a decomposition gas. Then, the resin containing the decomposition gas is foamed while being extruded, and the inner conductor 1 is covered with the extrudate. Thus, the foamed insulating layer 2 is obtained on the inner conductor 1.
 上記発泡電線5においては、発泡絶縁層2中のベース樹脂の破断時における溶融張力が30mN以上であると、発泡セルのより十分な微細化が可能になるため好ましく、45mN以上であることがより好ましい。但し、ベース樹脂の破断時における溶融張力が大きすぎると、ベース樹脂の押出時において発泡度が低くなりやすい傾向にあるため、溶融張力は55mN以下であることが好ましく、50mN以下であることがより好ましく、48mN以下であることがさらに好ましい。 In the foamed electric wire 5, it is preferable that the melt tension at the time of rupture of the base resin in the foamed insulating layer 2 is 30 mN or more because the foamed cells can be more sufficiently miniaturized, and more preferably 45 mN or more. preferable. However, if the melt tension at the time of rupture of the base resin is too large, the degree of foaming tends to be low at the time of extruding the base resin. Therefore, the melt tension is preferably 55 mN or less, more preferably 50 mN or less. Preferably, it is 48 mN or less.
 破断時におけるベース樹脂の溶融張力は、例えば押出機のダイス出口における温度を調整することで調整することができる。 The melt tension of the base resin at the time of breaking can be adjusted by adjusting the temperature at the die outlet of the extruder, for example.
 発泡絶縁層2の外径は、発泡電線5が高周波ケーブルに使用される場合には、1.5mm未満であることが好ましく、1.0mm以下であることがより好ましい。 The outer diameter of the foam insulation layer 2 is preferably less than 1.5 mm and more preferably 1.0 mm or less when the foamed electric wire 5 is used for a high-frequency cable.
 発泡電線5においては、発泡絶縁層2が30~60%の発泡度を有することが好ましい。この場合、伝送ケーブル10のつぶれ(変形)を抑制でき、高周波帯域で使用される伝送ケーブル用の発泡電線として、発泡絶縁層2にプロピレン系樹脂を使用したものを用いても発泡セルが粗大化するのを抑制でき、微細且つ均一な発泡セルを有する発泡状態の発泡絶縁層2を得ることができる。また発泡電線5を使用した伝送ケーブル10は、外径変動が小さく、発泡絶縁層2を薄くしても潰れの問題が少なく、減衰量の劣化等のバラツキが十分に抑制される。 In the foamed electric wire 5, the foamed insulating layer 2 preferably has a foaming degree of 30 to 60%. In this case, crushing (deformation) of the transmission cable 10 can be suppressed, and even if a foamed electric wire for a transmission cable used in a high frequency band is made of a foamed insulating layer 2 using a propylene resin, the foamed cell becomes coarse. The foamed insulating layer 2 in a foamed state having fine and uniform foamed cells can be obtained. Moreover, the transmission cable 10 using the foamed electric wire 5 has a small outer diameter variation, and even if the foamed insulating layer 2 is thin, there is little problem of crushing, and variations such as deterioration of attenuation are sufficiently suppressed.
 また発泡絶縁層2と内部導体1との間に、未発泡樹脂からなる薄層、いわゆる内層を介在させることが好ましい。これにより発泡絶縁層2と内部導体1との密着性を向上させることができる。特に未発泡樹脂がポリエチレンからなる場合、さらに発泡絶縁層2と内部導体1との密着性を向上させることができる。また上記内層は、内部導体1中の銅による発泡絶縁層2の劣化(脆化)を防止することもできる。なお、薄層の厚さは例えば0.01~0.1mmとすればよい。 Further, it is preferable to interpose a thin layer made of unfoamed resin, so-called inner layer, between the foamed insulating layer 2 and the inner conductor 1. Thereby, the adhesiveness of the foam insulation layer 2 and the internal conductor 1 can be improved. In particular, when the unfoamed resin is made of polyethylene, the adhesion between the foamed insulating layer 2 and the internal conductor 1 can be further improved. The inner layer can also prevent deterioration (embrittlement) of the foamed insulating layer 2 due to copper in the inner conductor 1. Note that the thickness of the thin layer may be, for example, 0.01 to 0.1 mm.
 さらに発泡絶縁層2と外部導体3との間に、未発泡樹脂からなる薄層、いわゆる外層を介在させることが好ましい。これにより発泡絶縁層2と外部導体3との密着性を向上させることができる。特に未発泡樹脂がポリエチレンからなる場合、さらに発泡絶縁層2と外部導体3との密着性を向上させることができる。加えて、外層が発泡絶縁層2と外部導体3との間に介在することによって外径変動が小さくなり、スキューやVSWRが向上する。また、耐つぶれ性が向上し、発泡電線5の外径を小さくこともできる。なお、薄層の厚さは例えば0.02~0.05mmとすればよい。 Further, it is preferable to interpose a thin layer made of unfoamed resin, so-called outer layer, between the foamed insulating layer 2 and the outer conductor 3. Thereby, the adhesiveness of the foam insulation layer 2 and the external conductor 3 can be improved. In particular, when the unfoamed resin is made of polyethylene, the adhesion between the foamed insulating layer 2 and the outer conductor 3 can be further improved. In addition, since the outer layer is interposed between the foamed insulating layer 2 and the outer conductor 3, the outer diameter fluctuation is reduced, and the skew and VSWR are improved. Moreover, crush resistance improves and the outer diameter of the foamed electric wire 5 can also be made small. Note that the thickness of the thin layer may be set to 0.02 to 0.05 mm, for example.
 <外部導体>
 次に、上記のようにして得られた発泡電線5を包囲するように外部導体3を形成する。外部導体3としては、従来より使用されている公知のものを使用することができる。例えば外部導体3は、導線や、導電シートを樹脂シートの間に挟んで構成したテープなどを絶縁層2の外周に沿って巻くことなどによって形成することができる。また、外部導体3は、コルゲート加工、即ち波形成形した金属管で構成することもできる。この場合には、発泡電線5の屈曲性を向上させることができる。
<External conductor>
Next, the outer conductor 3 is formed so as to surround the foamed electric wire 5 obtained as described above. As the external conductor 3, a known one that has been conventionally used can be used. For example, the external conductor 3 can be formed by winding a conductive wire or a tape formed by sandwiching a conductive sheet between resin sheets along the outer periphery of the insulating layer 2. Further, the outer conductor 3 can be constituted by a corrugated metal tube, that is, a corrugated metal tube. In this case, the flexibility of the foamed electric wire 5 can be improved.
 <シース>
 最後にシース4を形成する。シース4は、外部導体3を物理的又は化学的な損傷から保護するものであり、シース4を構成する材料としては、例えばフッ素樹脂、ポリエチレン、ポリ塩化ビニル等の樹脂が挙げられるが、環境性等の観点からポリエチレン樹脂等のハロゲンフリー材料が好ましく用いられる。
<Sheath>
Finally, the sheath 4 is formed. The sheath 4 protects the outer conductor 3 from physical or chemical damage. Examples of the material constituting the sheath 4 include resins such as fluororesin, polyethylene, and polyvinyl chloride. From the viewpoint of the above, a halogen-free material such as polyethylene resin is preferably used.
 以上のようにして伝送ケーブル10が得られる。 The transmission cable 10 is obtained as described above.
 図3は、上記発泡電線5を有するTwinaxタイプの伝送ケーブルを示す端面図である。図3に示すように、Twinaxタイプの伝送ケーブル20は、2本の発泡電線5と、ドレンワイヤ6と、ラミネートテープ7と、2本の電力線8と、アルミテープ層及び編組層からなる積層体層9と、シース4とを備えている。ここで、2本の発泡電線5は互いに平行に配置されており、これらは信号線として使用される。またラミネートテープ7は発泡電線5及びドレンワイヤ6を巻回しており、シース4は積層体層9を包囲するように積層体層9上に形成されている。ラミネートテープ7は例えばアルミニウム箔とポリエチレンテレフタレートフィルムとの積層体で構成され、シース4は、例えばリケンテクノス社製のANA9897N等のオレフィン系ノンハロ材などで構成される。なお、発泡電線5及び発泡絶縁層2は上記実施形態と同様のものである。 FIG. 3 is an end view showing a Twinax type transmission cable having the foamed electric wire 5. As shown in FIG. 3, the Twinax type transmission cable 20 is a laminate layer composed of two foamed electric wires 5, a drain wire 6, a laminate tape 7, two power lines 8, an aluminum tape layer and a braided layer. 9 and a sheath 4. Here, the two foamed electric wires 5 are arranged in parallel to each other, and these are used as signal lines. The laminate tape 7 is wound around the foamed electric wire 5 and the drain wire 6, and the sheath 4 is formed on the laminate layer 9 so as to surround the laminate layer 9. The laminate tape 7 is composed of a laminate of, for example, an aluminum foil and a polyethylene terephthalate film, and the sheath 4 is composed of, for example, an olefin-based non-halo material such as ANA 9897N manufactured by Riken Technos. The foamed electric wire 5 and the foamed insulating layer 2 are the same as those in the above embodiment.
 本発明は上記実施形態に限定されるものではない。例えば上記実施形態では、発泡電線5が、伝送ケーブルとしての同軸ケーブルやTwinaxタイプの伝送ケーブルに適用された例が示されているが、発泡電線5は、USB3.0ケーブル、HDMIケーブル、インフィニバンドケーブル、マイクロUSBケーブルなどの高速伝送ケーブルなどにも適用可能である。 The present invention is not limited to the above embodiment. For example, in the above embodiment, an example in which the foamed electric wire 5 is applied to a coaxial cable or a Twinax type transmission cable as a transmission cable is shown. The foamed electric wire 5 is a USB 3.0 cable, an HDMI cable, Infiniband. It can also be applied to high-speed transmission cables such as cables and micro USB cables.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 まずベース樹脂として、エチレン-プロピレンブロック共重合体であるFB3312(商品名、日本ポリプロ株式会社製。以下、「EP1」と呼ぶ)を用意した。
Example 1
First, FB3312 (trade name, manufactured by Nippon Polypro Co., Ltd., hereinafter referred to as “EP1”), which is an ethylene-propylene block copolymer, was prepared as a base resin.
 そして、押出機(製品名:ラボプラストミルD2020、スクリュー径(D):φ20mm、有効スクリュー長(L):400mm、東洋精機製作所社製)にEP1、表1に示す銅害防止剤及び化学発泡剤を投入し、溶融混練して押出成形を行った。このとき、100質量部のEP1に対して銅害防止剤及び化学発泡剤を、表1に示す配合量で添加した。なお、表1において、配合量の単位は質量部である。このとき、押出機の温度を200~220℃に設定することにより、ベース樹脂を溶融させながらADCAを熱分解させるようにした。 Then, EP1 in an extruder (product name: Laboplast Mill D2020, screw diameter (D): φ20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho Co., Ltd.), copper damage inhibitor and chemical foaming shown in Table 1 The agent was added and melt-kneaded to perform extrusion molding. At this time, a copper damage inhibitor and a chemical foaming agent were added in amounts shown in Table 1 to 100 parts by mass of EP1. In Table 1, the unit of blending amount is parts by mass. At this time, the temperature of the extruder was set to 200 to 220 ° C., so that ADCA was thermally decomposed while melting the base resin.
 そして、押出機から押出物をチューブ状に押し出し、このチューブ状の押出物で、直径0.127mmの銅線を7本撚りした撚線導体を被覆した。こうして、撚線導体と、撚線導体を被覆する発泡絶縁層とからなる発泡電線を作製した。このとき、押出物は、発泡絶縁層の外径が0.92mm、厚さが0.3mmとなるように押し出した。 Then, the extrudate was extruded from the extruder into a tube shape, and the twisted wire conductor in which seven copper wires having a diameter of 0.127 mm were twisted was covered with the tube-like extrudate. Thus, a foamed electric wire composed of a stranded wire conductor and a foamed insulating layer covering the stranded wire conductor was produced. At this time, the extrudate was extruded so that the foamed insulating layer had an outer diameter of 0.92 mm and a thickness of 0.3 mm.
 こうして得られた発泡電線を2本平行に配列させ、これらをドレインワイヤとともに、アルミニウム層とポリエチレンテレフタレート層との積層体からなる厚さ22μmのラミネートテープで巻回した。次に、これを、外径0.8mmの2本の電力線とともに、厚さ25μmのアルミニウムテープ層で巻回した後、編組層で覆い、さらにオレフィン系ノンハロ材ANA9897N(商品名、リケンテクノス社製)からなるシースで被覆した。こ
うしてTwinaxタイプの伝送ケーブルを作製した。
Two foamed electric wires thus obtained were arranged in parallel, and these were wound together with a drain wire and a laminate tape having a thickness of 22 μm made of a laminate of an aluminum layer and a polyethylene terephthalate layer. Next, this was wound with an aluminum tape layer having a thickness of 25 μm together with two power lines having an outer diameter of 0.8 mm, and then covered with a braided layer, and further olefin-based non-halo material ANA9897N (trade name, manufactured by Riken Technos) Covered with a sheath consisting of In this way, a Twinax type transmission cable was produced.
 (実施例2~52及び比較例1~11)
 ベース樹脂の種類、銅害防止剤の種類及びその配合量、シリカ配合量、化学発泡剤の種
類及びその配合量、ベース樹脂の破断時における溶融張力及び引取速度、伝送ケーブルのインピーダンス、発泡絶縁層の外径、並びに、発泡絶縁層における発泡度を表1,3,5に示す通りとしたこと以外は実施例1と同様にしてTwinaxタイプの伝送ケーブルを作製した。なお、表1,3,5において、配合量の単位は質量部である。
(Examples 2 to 52 and Comparative Examples 1 to 11)
Type of base resin, type and amount of copper damage preventive agent, silica content, type of chemical foaming agent and amount thereof, melt tension and take-off speed when base resin breaks, transmission cable impedance, foam insulation layer A twinax type transmission cable was prepared in the same manner as in Example 1 except that the outer diameter of each and the foaming degree in the foamed insulating layer were as shown in Tables 1, 3 and 5. In Tables 1, 3, and 5, the unit of the blending amount is parts by mass.
 表1,3,5に示されているベース樹脂、銅害防止剤、化学発泡剤及びシリカとしては、具体的には以下のものを用いた。
(1)ベース樹脂
(1-1)EP1
  FB3312:日本ポリプロ社製エチレン・プロピレン共重合体
(1-2)EP2
  FB5100:日本ポリプロ社製エチレン・プロピレン共重合体
(1-3)EP3
  FB3312(40質量部)とJ703W(60質量部)の混合物
  J703W:三井化学社製エチレン・プロピレン共重合体
(1-4)EP4
  FB3312(30質量部)とB101WAT(60質量部)の混合物
  B101WAT:三井化学社製エチレン・プロピレン共重合体
(1-5)EP5
  FB3312(45質量部)とJ703W(55質量部)の混合物
(1-6)EP6
  FB3312(40質量部)とB101WAT(60質量部)の混合物
(1-7)EP8
  FB3312(70質量部)とB101WAT(30質量部)の混合物
(1-8)PP1
  J105G(70質量部)とVP103(30質量部)の混合物
  J105G,VP103:三井化学社製ホモポリプロピレン
(1-9)PP2
  J105G(80質量部)とVP103(20質量部)の混合物
(1-10)PP3
  J105G(40質量部)とVP103(60質量部)の混合物
(1-11)[EP+PE]
  FB3312(80質量部)とウルトゼックス4020L(20質量部)の混合物
  ウルトゼックス4020L:プライムポリマー社製ポリエチレン
(2)銅害防止剤
(2-1)CDA1
  アデカスタブCDA-1(アデカ社製銅害防止剤、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール)
(2-2)CDA6
  アデカスタブCDA-6(アデカ社製銅害防止剤、デカメチレンジカルボン酸ジサリチロイルヒドラジド)
(2-3)MD1024
  イルガノックスMD1024(チバスペシャルティケミカル社製銅害防止剤、2’,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド)
(3)化学発泡剤
(3-1)ADCA
  アゾジカルボンアミド
(3-2)重曹
  FE-507(永和化成工業社製発泡剤セルボンシリーズ)
(4)シリカ
  カープレックス#80(シオノギ製薬社製シリカ)
Specific examples of the base resin, copper damage inhibitor, chemical foaming agent, and silica shown in Tables 1, 3, and 5 were as follows.
(1) Base resin (1-1) EP1
FB3312: Nippon Polypro Co., Ltd. ethylene / propylene copolymer (1-2) EP2
FB5100: Nippon Polypro Co., Ltd. ethylene / propylene copolymer (1-3) EP3
Mixture of FB3312 (40 parts by mass) and J703W (60 parts by mass) J703W: Mitsui Chemicals ethylene / propylene copolymer (1-4) EP4
Mixture of FB3312 (30 parts by mass) and B101WAT (60 parts by mass) B101WAT: Ethylene / propylene copolymer (1-5) EP5 manufactured by Mitsui Chemicals, Inc.
Mixture of FB3312 (45 parts by mass) and J703W (55 parts by mass) (1-6) EP6
Mixture of FB3312 (40 parts by mass) and B101WAT (60 parts by mass) (1-7) EP8
FB3312 (70 parts by mass) and B101WAT (30 parts by mass) mixture (1-8) PP1
Mixture of J105G (70 parts by mass) and VP103 (30 parts by mass) J105G, VP103: Homopolypropylene (1-9) PP2 manufactured by Mitsui Chemicals, Inc.
A mixture of J105G (80 parts by mass) and VP103 (20 parts by mass) (1-10) PP3
Mixture of J105G (40 parts by mass) and VP103 (60 parts by mass) (1-11) [EP + PE]
Mixture of FB3312 (80 parts by mass) and Ultozex 4020L (20 parts by mass) Ultozex 4020L: Polyethylene (2) copper damage inhibitor (2-1) CDA1 manufactured by Prime Polymer Co., Ltd.
ADK STAB CDA-1 (Adeka Co., Ltd. copper damage inhibitor, 3- (N-salicyloyl) amino-1,2,4-triazole)
(2-2) CDA6
ADK STAB CDA-6 (Adeka Co., Ltd. copper damage inhibitor, decamethylenedicarboxylic acid disalicyloyl hydrazide)
(2-3) MD1024
Irganox MD1024 (a copper damage inhibitor, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide, manufactured by Ciba Specialty Chemicals)
(3) Chemical foaming agent (3-1) ADCA
Azodicarbonamide (3-2) baking soda FE-507 (Ewa Kasei Kogyo Co., Ltd. foaming agent Cellbon series)
(4) Silica Carplex # 80 (Shionogi Pharmaceutical Silica)
 [特性評価]
 実施例1~52及び比較例1~11で得られた発泡電線について、以下の特性を評価した。
[Characteristic evaluation]
The following characteristics of the foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11 were evaluated.
 (1)破断時における溶融張力及び引取速度
 実施例1~52及び比較例1~11で得られた発泡電線について以下のようにして破断時における溶融張力及び引取速度を測定した。
(1) Melt tension and take-off speed at break The melt tension and take-off speed at break were measured for the foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11 as follows.
 即ち、キャピラリーレオメータ(キャピログラフ 1D、東洋精機製作所株式会社製)を用いて溶融張力及び引取速度を測定した。詳細には溶融張力及び引取速度は以下のようにして測定した。まず内径1.0mm、長さ10mmのフラットキャピラリーにベース樹脂を充填した。その後、キャピラリーレオメータにおいて、ピストンスピードを5mm/分、バレル内径を9.55mm、引取加速度を400m/min、バレル、キャピラリー及びバレル直後の恒温槽それぞれの温度を200℃の条件に設定した。それからバレルにベース樹脂を充填して5分予熱後に上記ピストンスピードでピストン押出を開始した。そして、ベース樹脂を、上記引取加速度で加速して引き取り、破断したときの張力及び引取速度を測定した。この測定を10回行って得られた張力及び引取速度の測定値の平均値を算出した。結果を表1,3,5に示す。 That is, melt tension and take-up speed were measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Specifically, the melt tension and the take-up speed were measured as follows. First, a base resin was filled into a flat capillary having an inner diameter of 1.0 mm and a length of 10 mm. Thereafter, in the capillary rheometer, the piston speed was set to 5 mm / min, the barrel inner diameter was set to 9.55 mm, the take-up acceleration was set to 400 m / min 2 , and the temperatures of the barrel, the capillary, and the thermostat immediately after the barrel were set to 200 ° C. Then, the base resin was filled in the barrel, and after 5 minutes preheating, piston extrusion was started at the above piston speed. And the tension | tensile_strength and take-up speed | velocity | rate when the base resin was accelerated by the said take-up acceleration, and were fractured | ruptured were measured. The average value of the measured values of tension and take-up speed obtained by performing this measurement 10 times was calculated. The results are shown in Tables 1, 3, and 5.
 (2)発泡度
 発泡度は下記式:
Figure JPOXMLDOC01-appb-M000001
に基づいて算出した。結果を表1,3,5に示す。ここで、「発泡前の樹脂」とは、押出機に投入する前のベース樹脂のことを言う。
(2) Degree of foaming The degree of foaming is the following formula:
Figure JPOXMLDOC01-appb-M000001
Calculated based on The results are shown in Tables 1, 3, and 5. Here, “resin before foaming” refers to a base resin before being charged into an extruder.
 (3)平均発泡セル径及び標準偏差
 実施例1~52及び比較例1~11で得られた発泡電線から発泡絶縁層の一部を切り取り、その発泡絶縁層の断面を、走査型電子顕微鏡を用いて観察し、無作為に選択した100個の発泡セルのそれぞれについてセル径を下記式:
Figure JPOXMLDOC01-appb-M000002
に基づいて測定した。そして、100個の発泡セルのセル径の平均値を「平均発泡セル径」として算出するとともに、発泡セルのセル径の標準偏差を算出した。結果を表2,4,6に示す。なお、表2,4,6において、平均発泡セル径が50μm未満で、標準偏差が25μm未満の発泡絶縁層を有する発泡電線を合格とし、それ以外の発泡絶縁層を有する発泡電線を不合格とした。
(3) Average foamed cell diameter and standard deviation A part of the foam insulation layer was cut out from the foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11, and the cross section of the foam insulation layer was measured with a scanning electron microscope. The cell diameter for each of the 100 foam cells that were observed and randomly selected was:
Figure JPOXMLDOC01-appb-M000002
Measured based on And while calculating the average value of the cell diameter of 100 foam cells as "average foam cell diameter", the standard deviation of the cell diameter of the foam cell was computed. The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, a foamed electric wire having a foamed insulating layer having an average foamed cell diameter of less than 50 μm and a standard deviation of less than 25 μm is regarded as acceptable, and a foamed wire having other foamed insulating layers is regarded as rejected. did.
 (4)外径変動幅
 実施例1~52及び比較例1~11で得られた長さ500mの発泡電線について、外径の最大値及び最小値を、外径測定器(キーエンス社製高速高精度デジタル測定器LS-7000シリーズ)を用いて測定し、下記式:
Figure JPOXMLDOC01-appb-M000003
により外径変動幅を算出した。結果を表2,4,6に示す。
(4) Outer diameter fluctuation range For the 500 m long foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11, the maximum and minimum values of the outer diameter were measured using an outer diameter measuring instrument (high speed and high speed manufactured by Keyence Corporation). Using a precision digital measuring instrument LS-7000 series)
Figure JPOXMLDOC01-appb-M000003
Was used to calculate the outer diameter fluctuation range. The results are shown in Tables 2, 4 and 6.
 (5)スキュー
 実施例1~52及び比較例1~11で得られた伝送ケーブルを切断し、2mの伝送ケーブルを10本用意した。そして、これら10本の伝送ケーブルについて、TDR TDS8000(商品名、日本テクトロニクス株式会社製)を用いてスキューを測定し、その平均値を算出した。結果を表2,4,6に示す。
(5) Skew The transmission cables obtained in Examples 1 to 52 and Comparative Examples 1 to 11 were cut, and 10 2 m transmission cables were prepared. And about these 10 transmission cables, the skew was measured using TDR TDS8000 (brand name, Nippon Tektronix Co., Ltd. product), and the average value was computed. The results are shown in Tables 2, 4 and 6.
 (6)減衰量
 実施例1~52及び比較例1~11で得られた伝送ケーブルについて、ネットワークアナライザー(8722ES アジレントテクノロジー社製)を用いて、周波数が1.25GHzの信号及び2.5GHzの信号のそれぞれについて減衰量を測定した。次に、これらの伝送ケーブルを、85℃、90%RHの雰囲気中で1000時間放置した後、放置前と同様にして信号の減衰量を測定した。そして、放置前の信号の減衰量に対する放置後の信号の減衰量の比を下記式:
Figure JPOXMLDOC01-appb-M000004
に基づいて算出した。結果を表2,4,6に示す。
(6) Attenuation amount With respect to the transmission cables obtained in Examples 1 to 52 and Comparative Examples 1 to 11, using a network analyzer (manufactured by 8722ES Agilent Technologies), a frequency signal of 1.25 GHz and a signal of 2.5 GHz The attenuation was measured for each of the above. Next, these transmission cables were left in an atmosphere of 85 ° C. and 90% RH for 1000 hours, and then the signal attenuation was measured in the same manner as before. The ratio of the attenuation amount of the signal after being left to the attenuation amount of the signal before being left is expressed by the following formula:
Figure JPOXMLDOC01-appb-M000004
Calculated based on The results are shown in Tables 2, 4 and 6.
 (7)側圧変形率
 実施例1~52及び比較例1~11で得られた発泡絶縁層を長さ3cmに裁断して試験片を作製した。そして、直径8.5mm、長さ5.0mmの円柱ジグの上に、試験片を置いて30分間予熱した後、この試験片に試験機を用いて荷重をかけ、30分後の外径を測定した。そして、下記式:
Figure JPOXMLDOC01-appb-M000005
に基づいて、側圧変形率を算出した。結果を表2,4,6に示す。なお、発泡絶縁層の外径の測定は、20℃及び100℃のそれぞれの温度下で行い、荷重は20℃のときは2kg、100℃のときは1kgとした。また試験機としては、東洋精機製作所株式会社製の「三個掛加熱変形試験機型番W-3」の加熱変形試験機を用いた。
(7) Side pressure deformation rate The foamed insulating layers obtained in Examples 1 to 52 and Comparative Examples 1 to 11 were cut into a length of 3 cm to prepare test pieces. Then, after placing a test piece on a cylindrical jig having a diameter of 8.5 mm and a length of 5.0 mm and preheating for 30 minutes, a load was applied to the test piece using a testing machine, and the outer diameter after 30 minutes was determined. It was measured. And the following formula:
Figure JPOXMLDOC01-appb-M000005
Based on the above, the lateral pressure deformation rate was calculated. The results are shown in Tables 2, 4 and 6. The outer diameter of the foamed insulating layer was measured at 20 ° C. and 100 ° C., and the load was 2 kg at 20 ° C. and 1 kg at 100 ° C. Further, as a testing machine, a heating deformation testing machine of “three-piece heating deformation testing machine model number W-3” manufactured by Toyo Seiki Seisakusho Co., Ltd. was used.
 (8)熱老化劣化
 実施例1~52及び比較例1~11で得られた発泡電線を恒温槽に投入しておき、1ヶ月毎に取り出した。そして、常温状態で直径3mmのマンドレルに巻き付け、割れが生じるかどうかを調べた。結果を表2,4,6に示す。なお、熱老化劣化は、2.5年以上であれば合格とした。
(8) Thermal aging deterioration The foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11 were put in a thermostatic bath and taken out every month. Then, it was wound around a mandrel having a diameter of 3 mm at room temperature to examine whether or not a crack would occur. The results are shown in Tables 2, 4 and 6. In addition, if heat aging deterioration was 2.5 years or more, it was set as the pass.
 (9)屈曲特性
 屈曲特性は、実施例1~52及び比較例1~11で得られた伝送ケーブルに対して屈曲試験を行うことにより評価した。屈曲試験は、ベンディング試験機を用いて繰り返し屈曲させ、破損するまでの回数を調べることにより行った。具体的には、ベンディング試験機で、伝送ケーブルの一端に200gの錘をつけた。そして、この錘をつけた伝送ケーブルの一端から800mmの箇所を支点として伝送ケーブルを垂直に吊るした。そして、伝送ケーブルの他端を、上記支点を中心に半円弧を描くように往復運動させることにより、支点を中心に左右に90度ずつ屈曲させて屈曲試験を行った。結果を表2,4,6に示す。なお、表2,4,6において、実施例1~52及び比較例1~11の屈曲特性は、以下の基準に基づき、A~Cのいずれかで示した。
 
A・・・屈曲回数が10000回以上で破損した場合
B・・・屈曲回数が5000回以上10000回未満で破損した場合
C・・・屈曲回数が5000回未満で破損した場合
 
(9) Bending characteristics The bending characteristics were evaluated by conducting a bending test on the transmission cables obtained in Examples 1 to 52 and Comparative Examples 1 to 11. The bending test was carried out by repeatedly bending using a bending tester and examining the number of times until breakage. Specifically, a 200 g weight was attached to one end of the transmission cable using a bending tester. And the transmission cable was hung perpendicularly | vertically using the location of 800 mm from the end of the transmission cable which attached this weight. Then, the other end of the transmission cable was reciprocated so as to draw a semicircular arc around the fulcrum, and the bending test was performed by bending 90 degrees left and right around the fulcrum. The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, the bending characteristics of Examples 1 to 52 and Comparative Examples 1 to 11 are indicated by any one of A to C based on the following criteria.

A: When damaged when the number of bending is 10,000 times or more B: When damaged when the number of bending times is 5000 or more and less than 10,000 C C: When damaged when the number of bending times is less than 5000
 (10)内部導体に対する発泡絶縁層の密着性
 実施例1~52及び比較例1~11で得られた発泡電線における内部導体に対する発泡絶縁層の密着性は以下の試験の結果によって評価した。即ちまず実施例1~52及び比較例1~11で得られた発泡電線を長さ10cmに切断し、真ん中に5cm残るように内部導体の両端を口出しした。そして、東洋精機製作所株式会社製のストログラフを用いて、内部導体の一端を片方のチャックで固定し、発泡絶縁層をもう片方のチャックで固定し、引取スピード100mm/分で引っ張った。そして、発泡絶縁層が動き始めたときの力を測定した。結果を表2,4,6に示す。なお、表2,4,6において、実施例1~52及び比較例1~11の内部導体に対する発泡絶縁層の密着性は、以下の基準に基づき、A~Cのいずれかで示した。
 
A・・・発泡絶縁層が動き始めたときの力が1.5kg重以上
B・・・発泡絶縁層が動き始めたときの力が0.5kg重以上1.5kg重未満
C・・・発泡絶縁層が動き始めたときの力が0.5kg重未満
 
(10) Adhesiveness of Foamed Insulating Layer to Internal Conductor The adhesiveness of the foamed insulating layer to the internal conductor in the foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11 was evaluated based on the results of the following tests. That is, first, the foamed electric wires obtained in Examples 1 to 52 and Comparative Examples 1 to 11 were cut to a length of 10 cm, and both ends of the inner conductor were pierced so that 5 cm remained in the middle. Then, using a strograph made by Toyo Seiki Seisakusho Co., Ltd., one end of the inner conductor was fixed with one chuck, the foamed insulating layer was fixed with the other chuck, and pulled at a take-up speed of 100 mm / min. And the force when a foaming insulating layer began to move was measured. The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, the adhesion of the foamed insulating layer to the inner conductors of Examples 1 to 52 and Comparative Examples 1 to 11 is indicated by any one of A to C based on the following criteria.

A: The force when the foamed insulating layer starts to move is 1.5 kg weight or more. B ... The force when the foamed insulating layer starts to move is 0.5 kg weight or more and less than 1.5 kg weight. The force when the insulation layer starts to move is less than 0.5kg weight
 (11)吐出量減少率
 樹脂組成物を押出機(製品名:ラボプラストミルD2020、スクリュー径(D):φ20mm、有効スクリュー長(L):400mm、東洋精機製作所社製)に投入して連続して押出成形を続け、押出機への投入後の10時間経過後の押出物の吐出量(以下、「初期吐出量」と呼ぶ)と、そこからさらに1時間経過後の押出物の吐出量とから、押出物の吐出量の減少率を下記式:
Figure JPOXMLDOC01-appb-M000006
に基づいて算出した。結果を表2,4,6に示す。なお、表2,4,6において、実施例1~52及び比較例1~11の吐出量減少率は、以下の基準に基づき、A~Dのいずれかで示した。
 
A・・・減少率が0.2%未満
B・・・減少率が0.2%以上0.5%未満
C・・・減少率が0.5%以上1.0%未満
D・・・減少率が1.0%以上
 

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(11) Discharge rate reduction rate The resin composition was continuously fed into an extruder (product name: Laboplast mill D2020, screw diameter (D): φ20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho). Then, the extrusion molding is continued, and the discharge amount of the extrudate after 10 hours has elapsed after being charged into the extruder (hereinafter referred to as “initial discharge amount”), and the discharge amount of the extrudate after another one hour has passed. From the following formula, the rate of decrease in the discharge amount of the extrudate is:
Figure JPOXMLDOC01-appb-M000006
Calculated based on The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, the discharge rate reduction rates of Examples 1 to 52 and Comparative Examples 1 to 11 are indicated by any one of A to D based on the following criteria.

A ... Reduction rate is less than 0.2% B ... Reduction rate is 0.2% or more and less than 0.5% C ... Reduction rate is 0.5% or more and less than 1.0% D ... Reduction rate is 1.0% or more

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1~6に示す結果より、熱老化劣化については実施例1~52も比較例1~11も2.5年以上であり、合格基準に達していた。また実施例1~52の発泡電線は、平均発泡セル径が50μm未満で、標準偏差が25μm未満の発泡絶縁層を有しており、いずれも合格基準に達していた。これに対し、比較例1~11の発泡電線は、平均セル径が50μmで、標準偏差が25μmの発泡絶縁層を有しており、平均発泡セル径及び標準偏差のいずれも合格基準に達していなかった。 From the results shown in Tables 1 to 6, Examples 1 to 52 and Comparative Examples 1 to 11 were over 2.5 years in terms of heat aging deterioration, and passed the acceptance criteria. The foamed electric wires of Examples 1 to 52 had a foamed insulating layer having an average foamed cell diameter of less than 50 μm and a standard deviation of less than 25 μm, and all of them reached the acceptance standard. In contrast, the foamed electric wires of Comparative Examples 1 to 11 have a foam insulation layer with an average cell diameter of 50 μm and a standard deviation of 25 μm, and both the average foam cell diameter and the standard deviation have reached the acceptance criteria. There wasn't.
 よって、本発明の発泡電線によれば、十分微細な発泡セルを得ることができ、且つ高温環境下でも長期間にわたって継続使用可能となることが確認された。 Therefore, according to the foamed electric wire of the present invention, it was confirmed that a sufficiently fine foamed cell can be obtained and can be continuously used for a long time even in a high temperature environment.
 1…内部導体(導体)、2…発泡絶縁層、5…発泡電線、10,20…伝送ケーブル。

 
DESCRIPTION OF SYMBOLS 1 ... Internal conductor (conductor), 2 ... Foam insulation layer, 5 ... Foam electric wire, 10, 20 ... Transmission cable.

Claims (7)

  1.  導体と、
     前記導体を被覆する発泡絶縁層とを備える発泡電線であって、
     前記発泡絶縁層が、
     プロピレン系樹脂を含み、破断時における溶融張力が20~55mNで且つ引取速度が50m/分以上であるベース樹脂と、
     化学発泡剤と、
     銅害防止剤とを含む樹脂組成物を溶融混練することにより得られ、
     前記化学発泡剤がアゾジカルボンアミドであり、
     前記銅害防止剤が、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2’,3-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド及びデカメチレンジカルボン酸ジサリチロイルヒドラジドからなる群より選ばれる少なくとも1種であること、
    を特徴とする発泡電線。
    Conductors,
    A foamed electric wire comprising a foamed insulating layer covering the conductor,
    The foam insulation layer is
    A base resin containing a propylene-based resin, having a melt tension at break of 20 to 55 mN and a take-up speed of 50 m / min or more;
    Chemical foaming agents,
    Obtained by melt-kneading a resin composition containing a copper damage inhibitor,
    The chemical blowing agent is azodicarbonamide;
    The copper damage inhibitor is 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl. ] At least one selected from the group consisting of propionohydrazide and decamethylenedicarboxylic acid disalicyloyl hydrazide;
    Foamed wire characterized by
  2.  前記樹脂組成物がシリカ粒子を更に含む請求項1に記載の発泡電線。 The foamed electric wire according to claim 1, wherein the resin composition further contains silica particles.
  3.  前記ベース樹脂の破断時における溶融張力が20~48mNである請求項1又は2に記載の発泡電線。 3. The foamed electric wire according to claim 1 or 2, wherein the base resin has a melt tension of 20 to 48 mN at break.
  4.  前記発泡絶縁層が、30~60%の発泡度を有する請求項1~3のいずれか一項に記載の発泡電線。 The foamed electric wire according to any one of claims 1 to 3, wherein the foamed insulating layer has a foaming degree of 30 to 60%.
  5.  前記発泡絶縁層と前記導体との間に未発泡樹脂からなる内層が設けられている請求項1~4のいずれか一項に記載の発泡電線。 The foamed electric wire according to any one of claims 1 to 4, wherein an inner layer made of an unfoamed resin is provided between the foamed insulating layer and the conductor.
  6.  前記発泡絶縁層の外径が1.5mm未満である請求項1~5のいずれか一項に記載の発泡電線。 The foamed electric wire according to any one of claims 1 to 5, wherein an outer diameter of the foamed insulating layer is less than 1.5 mm.
  7.  請求項1~6のいずれか一項に記載の発泡電線を有する伝送ケーブル。 A transmission cable having the foamed electric wire according to any one of claims 1 to 6.
PCT/JP2010/067847 2009-10-23 2010-10-12 Foamed electric wire and transmission cable comprising same WO2011048974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537208A JPWO2011048974A1 (en) 2009-10-23 2010-10-12 Foamed electric wire and transmission cable having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009244134 2009-10-23
JP2009-244134 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011048974A1 true WO2011048974A1 (en) 2011-04-28

Family

ID=43900201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067847 WO2011048974A1 (en) 2009-10-23 2010-10-12 Foamed electric wire and transmission cable comprising same

Country Status (2)

Country Link
JP (1) JPWO2011048974A1 (en)
WO (1) WO2011048974A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554652A (en) * 2013-09-11 2014-02-05 浙江世博新材料有限公司 Amino carboxylic acid type organic and inorganic compounded copper inhibitor-containing polypropylene composite material and preparation method thereof
JP2019110021A (en) * 2017-12-18 2019-07-04 日立金属株式会社 Insulated wire and cable
JP2021012773A (en) * 2019-07-04 2021-02-04 矢崎エナジーシステム株式会社 Wire or cable
JP2021106131A (en) * 2019-12-26 2021-07-26 住友電気工業株式会社 Electrical insulation cable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467832A (en) * 1987-09-09 1989-03-14 Hitachi Cable Manufacture of foaming plastic-insulated electric wire
JP2001312925A (en) * 2000-02-22 2001-11-09 Kyowa Chem Ind Co Ltd Insulated electrical wire and cable having resistance to heat deterioration, properties for water resistance and insulation, and fire retardance
JP2003105179A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Flame-retardant resin composition and electric wire
JP2003208823A (en) * 2002-01-10 2003-07-25 Fujikura Ltd High frequency coaxial cable
JP2006286619A (en) * 2005-03-08 2006-10-19 Fujikura Ltd Small-diameter foamed coaxial cable
JP2007237645A (en) * 2006-03-10 2007-09-20 Fujikura Ltd Foam molding method, foamed coaxial cable, and manufacturing method therefor
JP2008500702A (en) * 2004-05-26 2008-01-10 ダウ グローバル テクノロジーズ インコーポレイティド Coaxial cable with foam insulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467832A (en) * 1987-09-09 1989-03-14 Hitachi Cable Manufacture of foaming plastic-insulated electric wire
JP2001312925A (en) * 2000-02-22 2001-11-09 Kyowa Chem Ind Co Ltd Insulated electrical wire and cable having resistance to heat deterioration, properties for water resistance and insulation, and fire retardance
JP2003105179A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Flame-retardant resin composition and electric wire
JP2003208823A (en) * 2002-01-10 2003-07-25 Fujikura Ltd High frequency coaxial cable
JP2008500702A (en) * 2004-05-26 2008-01-10 ダウ グローバル テクノロジーズ インコーポレイティド Coaxial cable with foam insulation
JP2006286619A (en) * 2005-03-08 2006-10-19 Fujikura Ltd Small-diameter foamed coaxial cable
JP2007237645A (en) * 2006-03-10 2007-09-20 Fujikura Ltd Foam molding method, foamed coaxial cable, and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554652A (en) * 2013-09-11 2014-02-05 浙江世博新材料有限公司 Amino carboxylic acid type organic and inorganic compounded copper inhibitor-containing polypropylene composite material and preparation method thereof
CN103554652B (en) * 2013-09-11 2015-08-12 浙江世博新材料有限公司 A kind of aminocarboxylic acid type organic and inorganic compound that contains joins anti copper agent polypropylene composite material and preparation method thereof
JP2019110021A (en) * 2017-12-18 2019-07-04 日立金属株式会社 Insulated wire and cable
JP7045638B2 (en) 2017-12-18 2022-04-01 日立金属株式会社 Insulated wires and cables
JP2021012773A (en) * 2019-07-04 2021-02-04 矢崎エナジーシステム株式会社 Wire or cable
JP2021106131A (en) * 2019-12-26 2021-07-26 住友電気工業株式会社 Electrical insulation cable
JP7443766B2 (en) 2019-12-26 2024-03-06 住友電気工業株式会社 electrical insulated cable

Also Published As

Publication number Publication date
JPWO2011048974A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP4916590B1 (en) Insulated wires for transmission cables and transmission cables
EP2648191B1 (en) Insulated wire and cable
JP5552293B2 (en) Foamed electric wire and transmission cable having the same
WO2011048974A1 (en) Foamed electric wire and transmission cable comprising same
JP2008019379A (en) Masterbatch for foaming resin composition, foamed coaxial cable and method for producing the same
JP2008021585A (en) Foamed coaxial cable
JP4916574B1 (en) Insulated wires for transmission cables and transmission cables
JP6113823B2 (en) Insulating resin composition for insulated wires, insulated wires and cables for transmitting signals of frequencies in the GHz band
JP5687024B2 (en) Insulating resin composition for insulated wires, insulated wires and cables
JP2006022276A (en) Composition for insulator and high-foaming insulator and coaxial cable for high frequency using the composition
JP3962421B1 (en) Foam molding method, foamed coaxial cable, and foamed coaxial cable manufacturing method
JP5426948B2 (en) Foamed electric wire and transmission cable having the same
JP5303639B2 (en) Manufacturing method of foamed wire
JP2012087184A (en) Resin composition, and electric wire and cable
JP5298148B2 (en) Foamed coaxial cable
JP5420662B2 (en) Foamed electric wire and transmission cable having the same
JP5420663B2 (en) Foamed electric wire and transmission cable having the same
JP4951704B1 (en) Insulated wires for transmission cables and transmission cables
JP2007242589A (en) Foamed coaxial cable
JP3926827B1 (en) Foaming resin composition, foam molding method, foamed coaxial cable and foamed coaxial cable manufacturing method
JP5926827B2 (en) Insulating resin composition for insulated wires, insulated wires and cables
JP2006252820A (en) Foam coaxial cable
JP4916575B1 (en) Insulated wires for transmission cables and transmission cables
JP2023141855A (en) Communication electric wire
JP5298147B2 (en) Foamed coaxial cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537208

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824823

Country of ref document: EP

Kind code of ref document: A1