WO2011048726A1 - Solid state image capture element, solid state image capture device and method of driving solid state image capture element, and camera device - Google Patents

Solid state image capture element, solid state image capture device and method of driving solid state image capture element, and camera device Download PDF

Info

Publication number
WO2011048726A1
WO2011048726A1 PCT/JP2010/004223 JP2010004223W WO2011048726A1 WO 2011048726 A1 WO2011048726 A1 WO 2011048726A1 JP 2010004223 W JP2010004223 W JP 2010004223W WO 2011048726 A1 WO2011048726 A1 WO 2011048726A1
Authority
WO
WIPO (PCT)
Prior art keywords
structure electrode
horizontal
solid
unit
vertical
Prior art date
Application number
PCT/JP2010/004223
Other languages
French (fr)
Japanese (ja)
Inventor
羽原紀史
三宅智治
山田哲生
松尾卓也
徳本順士
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011048726A1 publication Critical patent/WO2011048726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/445Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by skipping some contiguous pixels within the read portion of the array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/447Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by preserving the colour pattern with or without loss of information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14843Interline transfer

Definitions

  • the present invention relates to a solid-state imaging device for area imaging in which photoelectric conversion elements are arranged in a matrix, a driving method thereof, a solid-state imaging device, and a camera device equipped with the solid-state imaging device.
  • solid-state imaging devices using CCDs (Charge Coupled Devices) are often used as imaging devices for camera devices such as digital still cameras and digital video cameras.
  • CCDs Charge Coupled Devices
  • FIG. 50 is a schematic plan view showing a general configuration of a conventional solid-state imaging device 500.
  • the solid-state imaging device 500 includes a plurality of photodiodes 511, a plurality of vertical transfer units (hereinafter referred to as “VCCD”) 512, and a single horizontal transfer unit (hereinafter referred to as “HCCD”). ) 530 and an output portion 540 are formed on a semiconductor substrate.
  • VCCD vertical transfer units
  • HCCD horizontal transfer unit
  • the photodiodes 511 are arranged in a matrix to form the imaging unit 510.
  • Each photodiode 511 constitutes a unit pixel having a photoelectric conversion function and a charge accumulation function, and accumulates signal charges corresponding to the amount of received light.
  • the VCCD 512 is arranged along each column of the photodiodes 511, and transfers the signal charges read from the individual photodiodes 511 in one direction in the vertical direction (in the direction of arrow v in the figure).
  • the HCCD 530 is provided in the horizontal direction adjacent to the final transfer stage of the VCCD 512, and transfers the signal charges transferred by each VCCD 512 in the horizontal direction (arrow h direction).
  • the output unit 540 converts the signal charge transferred by the HCCD 530 into a voltage and outputs it as a pixel signal, and includes a floating diffusion (FD) unit and an amplifier.
  • FD floating diffusion
  • a Bayer-arranged RGB color filter is disposed above the light receiving surface of each photodiode 511 in the imaging unit 510, and the portion other than the light receiving surface is covered with a light shielding film. Incidence of light to regions other than the light receiving surface is blocked.
  • both the still image mode and the moving image mode are switched and used.
  • output pixel reduction processing When imaging in still image mode, it is not necessary to read out signal charges from all pixels of the imaging unit 510 in an interlaced manner and reduce the number of output pixels. However, when imaging in moving image mode, a certain frame or more is required. In order to secure the rate (30 fps (frame / second) or 60 fps), the number of output pixel signals is reduced (hereinafter referred to as “output pixel reduction processing”).
  • Patent Document 1 discloses a solid-state imaging device having an imaging unit 510 as shown in FIG.
  • this solid-state imaging device has three drive electrodes (first electrode 521, second electrode 522A (522A ′, 522B, 522B ′) (one hatched line in the figure) for one pixel in the VCCD 512.
  • the electrodes are collectively referred to as “second electrode group 522”.
  • a third electrode 523) is disposed.
  • the second electrode group 522 also serves as an electrode (reading electrode) for transferring the signal charge accumulated in each photodiode 511 to the adjacent VCCD 512, and a drive pulse can be applied independently. It is configured as follows.
  • the second electrodes 522A and 522A ′ are in charge of reading the odd columns, and the second electrodes 522B and 422B ′ are in charge of reading the even columns. It is bridge-connected by a wiring 524 to another readout electrode separated by one pixel in the direction.
  • a read voltage (read voltage) is applied to all of the second electrode group 522, the signal charges of all the pixels can be read, and the read voltage is applied only to some of the second electrodes. Only the signal charges of the pixels adjacent to the corresponding electrode are read out, and the output pixel reduction process is performed.
  • two bridge connection wirings are arranged in parallel in a vertical four-pixel period, but if the output pixel reduction rate is to be reduced to one third in the vertical direction, the vertical direction Therefore, it is necessary to perform bridge connection with pixels separated by three pixels for each column, and accordingly, three bridge connection wirings must be arranged in parallel within a vertical nine-pixel period. Further, in order to improve the output pixel reduction rate, the number of bridge connection wirings in the vertical direction on the VCCD must be four or more.
  • the distance between the pixels becomes smaller (for example, about 1.5 ⁇ m), and it is practically difficult to arrange a large number of bridge connection wirings on the VCCD of such fine pixels. is there.
  • a solid-state imaging device capable of easily improving the output pixel reduction rate even when the number of pixels is increased, a driving method thereof, a solid-state imaging device, and a camera using the solid-state imaging device
  • An object is to provide an apparatus.
  • a solid-state imaging device is a solid-state imaging device in which a plurality of photoelectric conversion elements are arranged in a matrix, and is arranged along each row of photoelectric conversion elements.
  • a plurality of drive pulses to the plurality of vertical drive electrodes, a plurality of vertical transfer units for reading out signal charges of the photoelectric conversion elements and transferring them in the vertical direction, and a plurality of arranged along each row of the photoelectric conversion elements
  • a horizontal transfer unit that transfers signal charges transferred from the plurality of vertical transfer units in the horizontal direction, and the vertical drive electrodes are individually provided corresponding to the individual photoelectric conversion elements.
  • the horizontal wiring parts include first and second wirings extending in the horizontal direction, and the vertical driving electrodes are arranged in the same row as the vertical driving electrodes. Selective to one of the wiring When a vertical drive electrode group for one column connected to the first or second wiring of each horizontal wiring portion is defined as a structural electrode column, a predetermined first structural electrode column, One structure electrode column is characterized in that second structure electrode columns having different connection states with the first and second wirings of the horizontal wiring portion in each row are arranged in combination in the horizontal direction.
  • the horizontal wiring portion is arranged along each row of the photoelectric conversion elements, and the plurality of drive electrodes arranged in the same row direction are connected to either the first wiring or the second wiring of the horizontal wiring portion. Since the first structure electrode row and the second structure electrode row are configured and these structure electrode rows are combined and arranged in the horizontal direction, different driving is performed for some of the drive electrodes arranged in the same row. A pulse can be applied. Accordingly, it is possible to perform horizontal thinning-out reading according to whether or not a read pulse is applied with respect to reading of signal charges of pixels having the same vertical address in the first structure electrode row and the second structure electrode row.
  • driving pulses can be applied independently to the first and second wirings in the horizontal wiring portion of each row, it is not necessary to arrange many bridge connection wirings on the VCCD in parallel, and vertical transfer is possible.
  • the number of drive phases in the part can be easily increased.
  • the degree of freedom of the combination of pixels for reading signal charges is increased, and the output pixel reduction rate is significantly improved.
  • it is not necessary to provide wiring for connecting the drive electrodes separated in the vertical direction to each other it is possible to sufficiently cope with pixel miniaturization by increasing the number of pixels.
  • the solid-state imaging device is configured in the horizontal direction with a structural electrode array group in which the first structural electrode array and the second structural electrode array are combined to be a total of P arrays (P ⁇ 3) as an arrangement unit. It is characterized by being repeatedly arranged.
  • This configuration allows the number of output columns after horizontal thinning to be 1 / P of the number of horizontal pixels.
  • the solid-state imaging device is characterized in that the number of vertical drive phases of the first structure electrode array is different from the number of vertical drive phases of the second structure electrode array.
  • the horizontal transfer unit is connected to each vertical transfer unit via the selection output unit, and the signal of the vertical transfer unit of the column selected by the selection output unit The charge is transferred to the horizontal transfer unit at a predetermined timing.
  • the selection output unit includes a first sub-selection output unit, a second sub-selection output unit, and a third sub-selection output unit to which drive pulses are applied independently, and the first, second, and third sub-selection output units.
  • the selection output unit may be disposed between each vertical transfer unit and horizontal transfer unit.
  • the timing of charge transfer from each vertical transfer unit to the horizontal transfer unit is determined by the drive pulse applied to each sub-selection output unit.
  • the horizontal transfer unit is arranged at a first sub-horizontal transfer unit arranged at one end of the vertical transfer unit and at the other end of the vertical transfer unit.
  • the signal charge transferred from the first structure electrode array is transferred to the first horizontal transfer section, and the signal charge transferred from the second structure electrode array is transferred to the second horizontal transfer section.
  • the signal charge transfer directions of the first and second structure electrode arrays are opposite to each other.
  • the first sub-horizontal transfer unit is connected to a vertical transfer unit in which the first structure electrode array is arranged via a first selection output unit, and the second sub-horizontal transfer is performed. Is connected to the vertical transfer unit in which the second structure electrode column is arranged via the second selection output unit, and the signal charge of the vertical transfer unit of the column selected by the first and second selection output units is , The data is transferred to the corresponding first and second horizontal transfer units at a predetermined timing.
  • a plurality of vertical transfers are performed by controlling the timing at which the signal charges vertically transferred by the first and second structure electrode arrays are transferred to the first and second horizontal transfer units by the first and second selection output units. Since the signal charges in the unit can be stored in the same signal storage area of the corresponding first and second horizontal transfer units, horizontal addition can be easily performed.
  • each of the first and second selection output units includes a first sub-selection output unit, a second sub-selection output unit, and a third sub-selection output unit to which drive pulses are applied independently,
  • the first, second, and third sub-selection output units are respectively disposed between each vertical transfer unit and the first or second horizontal transfer unit that is the transfer destination.
  • the timing of charge transfer from each vertical transfer unit to the first and second horizontal transfer units can be determined by the drive pulse applied to each sub-selection output unit.
  • the first selection output unit includes first and second sub selection output units
  • the second selection output unit includes a third sub selection output unit, and the first and second sub selection output units.
  • the driving pulses are independently applied to the second and third sub-selection output units, and each of the first and second sub-selection output units includes a vertical transfer unit and a first sub-horizontal transfer unit in which the first structure electrode array is arranged.
  • the third sub-selection output unit may be disposed between the vertical transfer unit and the second sub-horizontal transfer unit in which the second structure electrode array is arranged.
  • the sub-selection output unit of the non-signal readout column can be kept out of operation, and the charge of the non-signal readout column that becomes a noise component is mixed into the output signal. Get the effect to prevent.
  • the solid-state imaging device is characterized in that a charge discharging unit to which a predetermined DC bias is applied is connected to an end of the vertical transfer unit on the side where the horizontal transfer unit is not connected.
  • a solid-state imaging device includes the above-described solid-state imaging device, a first drive pulse for driving the first structure electrode row of the solid-state imaging device, and a second drive for driving the second structure electrode row.
  • Drive means for generating drive pulses and applying the drive pulses to the first and second structured electrode arrays, respectively.
  • different drive pulses are applied to the first structure electrode array and the second structure electrode array, and for example, only the signal charges of the photoelectric conversion element array corresponding to the first structure electrode array can be read out. Thinning can be performed easily. Further, vertical thinning can be easily performed by increasing the number of vertical drives in each column.
  • the driving unit drives either one of the first or second structure electrode rows and reads the signal charges from the corresponding photoelectric conversion element rows and vertically transfers them.
  • the vertical transfer operation in the other structure electrode row that does not read out the signal charge is stopped, or the vertical transfer operation is executed in the direction opposite to the direction in which the signal charge is read out and transferred vertically.
  • the drive pulse is generated.
  • the driving unit drives the first structure electrode array in the first mode, drives the second structure electrode array in the second mode, and performs these modes.
  • the first and second drive pulses are generated so as to be executed in parallel.
  • the frame rate of the first mode in which the driving unit drives the first structure electrode row is K of the frame rate of the second mode in which the second structure electrode row is driven.
  • the first and second drive pulses are generated so as to be double (K is an integer of 2 or more).
  • the driving unit is configured so that the horizontal line output period of one mode of the first mode and the second mode is followed by the horizontal line output period of the other mode.
  • the first and second drive pulses are generated.
  • the signal charge in the first mode is
  • the substrate potential of the solid-state imaging device at the time of reading is set to be the first potential, and the substrate potential of the solid-state imaging device at the time of reading the signal charge in the second mode is higher than the first potential.
  • the substrate potential is set so that the substrate potential is maintained at a third potential that is equal to or lower than the first potential and the second potential during the exposure time by the photoelectric conversion element. It is characterized by controlling.
  • the driving unit reads out the signal charges of the pixels in the Mth row of the (N ⁇ 2) th column and the (N + 2) th column by the first structure electrode column,
  • the signal charges of the pixels in the (M-2) th and (M + 2) th rows of the eye are read out by the second structure electrode column and vertically added, and the (N-2) th, Nth, and (N + 2) th columns are added.
  • the first and second drive pulses are generated so that the signal charges of the columns are horizontally added to perform addition output for four pixels (N and M are integers of 3 or more).
  • the driving unit may obtain the signal charges of the pixels in the (M ⁇ 2) th and (M + 2) th rows of the (N ⁇ 2) th column and the (N + 2) th column. Read out by the first structure electrode column and vertically add, and read out signal charges of the pixels in the Mth row of the Nth column to the second structure electrode column, and read the (N ⁇ 2) th, Nth and (N + 2) th columns. ) The first and second drive pulses are generated so that the signal charges in the columns are horizontally added and an addition output for five pixels is performed (N and M are integers of 3 or more).
  • the driving unit reads out the signal charges of the pixels in the Mth column of the Nth row by setting the substrate potential of the solid-state imaging device to the first potential
  • the substrate potential is set to a second potential higher than the first potential, and the (M ⁇ 2) -th and (M + 2) -th rows of pixels in the (N ⁇ 2) th column and the (N + 2) th column are set.
  • the substrate potential is reset to the first potential, and the signal charges in the (N ⁇ 2) th, Nth, and (N + 2) th columns are horizontally added and output for exposure.
  • the substrate potential is maintained at a third potential equal to or lower than the first potential.
  • the present invention may be a camera device equipped with the solid-state imaging device.
  • FIG. 2 It is a schematic plan view which shows the structure of the solid-state image sensor which concerns on Embodiment 1 of this invention. It is a top view which shows the pixel structure in the imaging part of the said solid-state image sensor.
  • (A) and (b) are schematic diagrams for explaining the connection state between each drive electrode, the first wiring, and the second wiring in the AA ′ arrow cross-section and the BB ′ arrow cross-section of FIG. 2, respectively.
  • (C) is a view in which a light-shielding film is further added in (b). It is a figure which shows the arrangement pattern (Bayer arrangement) of the color filter arrange
  • FIG. 3 is an electrode arrangement diagram in the solid-state imaging element according to Embodiment 1.
  • FIGS. 7A and 7B are diagrams (pixel addition diagrams) illustrating the arrangement of target pixels to be subjected to pixel addition processing in the driving of the solid-state imaging element according to the first embodiment and the pixel barycentric position after the addition.
  • FIG. In the electrode arrangement diagram of FIG. 5, FIG. 6 is a diagram (read pixel arrangement diagram) in which numbers are added to readout target pixels when the pixel addition process according to FIG.
  • FIG. 8 is a diagram (address allocation diagram) in which information on signal charges stored in the HCCD is added when an address is assigned to a pixel to be read in FIG. 7 and horizontal pixel addition processing is performed for only one horizontal line.
  • FIG. 7 is a timing chart showing drive timings at the time of signal charge readout when performing pixel addition processing according to FIG.
  • FIG. 7 is a timing chart showing drive timings in a horizontal blanking period when performing pixel addition processing according to FIG. 6 is a readout pixel arrangement diagram in which numbers are added to readout target pixels when the pixel addition processing according to FIG. 6B is performed in the electrode arrangement diagram of FIG. 5.
  • FIG. 12 is an address assignment diagram in which an address is assigned to a pixel to be read in FIG. 11 and signal charge information stored in the HCCD is added when horizontal pixel addition driving is performed for only one horizontal line.
  • 7 is a timing chart showing drive timing of a signal charge readout operation when performing pixel addition processing according to FIG.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a camera device equipped with a solid-state imaging device according to Embodiment 1.
  • FIG. It is an electrode arrangement
  • FIG. 6 is a pixel addition diagram when pixel addition processing is performed by the solid-state imaging device according to the second embodiment.
  • FIG. 17 is a read pixel arrangement diagram in which numbers are added to the read target pixels in the electrode arrangement diagram of FIG. 16.
  • FIG. 19 is an address assignment diagram in which an address is assigned to a pixel to be read in FIG. 18 and signal charge information stored in the HCCD is added when horizontal pixel addition driving is performed for only one horizontal line.
  • FIG. 20 is a diagram in which information on signal charges stored in the HCCD when the horizontal pixel addition driving is performed for three horizontal lines in FIG. 19 is added.
  • 10 is a timing chart showing drive timing of signal charge read operation in the second embodiment.
  • 6 is a timing chart showing drive timing in a horizontal blanking period in the second embodiment.
  • it is an electric charge transfer figure which shows the mode of transfer from VCCD to HCCD in the 1st structure electrode row
  • FIG. 10 is a diagram illustrating a pixel to be read in Embodiment 3.
  • FIG. 10 is a pixel addition diagram when pixel addition driving is performed using only the first structure electrode row in the solid-state imaging device according to the third embodiment.
  • FIG. 10 is a pixel addition diagram when pixel addition driving is performed using only the second structure electrode row in the solid-state imaging device according to the third embodiment.
  • FIG. 26 is a readout pixel layout diagram in which numbers are added to readout target pixels in the electrode layout diagram of FIG. 25.
  • FIG. 26 is an address assignment diagram in which an address is assigned to a pixel to be read in FIG. 25 and signal charge information stored in the HCCD is added when horizontal pixel addition driving is performed for one horizontal line.
  • 10 is a timing chart showing drive timing of signal charge read operation in the third embodiment. 10 is a timing chart showing drive timings in a horizontal blanking period in the third embodiment.
  • FIG. 6 is a block diagram illustrating an example of a configuration of a camera device on which a solid-state imaging device according to a third embodiment is mounted.
  • FIG. 10 is a timing chart showing a modification of the drive timing of the signal charge read operation when the substrate potential is changed in the third embodiment. It is an electrode arrangement
  • FIG. 36 is a read pixel arrangement diagram in which numbers are added to the read target pixels in the schematic diagram of FIG. 35.
  • FIG. 37 is an address assignment diagram in which an address is assigned to a readout target pixel in FIG. 36.
  • 6 is a timing chart showing the drive timing of a signal charge read operation when the solid-state imaging device according to the fourth embodiment is driven in mode A.
  • 10 is a timing chart showing drive timings in a horizontal blanking period when the solid-state imaging device is driven in mode A in the fourth embodiment.
  • 10 is a timing chart showing the drive timing of a signal charge read operation when the solid-state imaging device is driven in mode B in the fourth embodiment.
  • 10 is a timing chart showing drive timings in a horizontal blanking period when the solid-state imaging device is driven in mode B in the fourth embodiment.
  • FIG. 10 is a diagram illustrating signal output switching timing in one frame time when driving in modes A and B is performed in parallel in the fourth embodiment.
  • 10 is a timing chart showing drive timings related to a read drive pattern ChAB in a signal charge read operation by mode A and mode B parallel drive according to the fourth embodiment.
  • 12 is a timing chart showing drive timings related to a read drive pattern ChB in a signal charge read operation in the mode A and mode B parallel drive according to the fourth embodiment.
  • 14 is a timing chart showing drive timings related to the vertical drive pattern P1 in the horizontal blanking period in the mode A and mode B parallel drive according to the fourth embodiment.
  • 10 is a timing chart showing drive timings related to a vertical drive pattern P2 in a horizontal blanking period in the mode A and mode B parallel drive according to the fourth embodiment.
  • It is a pixel structure figure which shows the modification of the connection pattern with the 1st wiring of the horizontal wiring part of a 1st, 2nd structure electrode row
  • FIG. (A) and (b) explain the state of contact between each drive electrode and the first wiring and the second wiring in each of the cross sections taken along the line EE ′ and the line FF ′ in FIG.
  • (C) is a diagram in which a light shielding film is further added in (b). It is a schematic plan view which shows the structure of the conventional general solid-state image sensor. It is a figure which shows the structural example of the imaging part of the conventional solid-state imaging device.
  • FIG. 1 is a schematic plan view showing the structure of the solid-state image sensor 100 according to Embodiment 1 of the present invention.
  • the solid-state imaging device 100 includes an imaging unit 10, a selection output unit 20, an HCCD 30, and an output unit 40.
  • the imaging unit 10 includes photodiodes 11 as photoelectric conversion elements arranged in a matrix, and a VCCD 12 that transfers signal charges read therefrom in the vertical direction along each photodiode column. .
  • the selection output unit 20 is arranged at the junction between the end of each VCCD 12 and the HCCD 30, and temporarily accumulates the signal charges transferred by the VCCD 12 and outputs them to the HCCD 30 at a predetermined timing. is there.
  • the HCCD 30 conveys the signal charge output from the selection output unit 20 in the horizontal direction and outputs it to the output unit 40.
  • the output unit 40 includes a floating diffusion unit that converts the signal charge transferred by the HCCD 30 into a voltage, and an amplifier that amplifies the converted voltage to a predetermined level.
  • FIG. 2 is an enlarged view showing an area of 5 ⁇ 5 pixels in order to explain the arrangement of the drive electrodes and the wiring structure thereof in the image pickup unit 10.
  • VCCDs 12 are arranged in parallel adjacent to each column of photodiodes 11 arranged in a matrix, and signal charges read from the corresponding photodiode columns are transferred vertically. .
  • a drive electrode 16 is disposed on the upper surface of each VCCD 12, and a horizontal wiring portion 15 is disposed for each row of the photodiodes 11 in order to supply a drive pulse to the drive electrode 16.
  • Only one drive electrode 16 is provided on the VCCD 12 adjacent to one photodiode 11.
  • the drive electrode 16 has a shape that does not contact the adjacent drive electrode 16 in both the column direction and the row direction, and is formed of one layer.
  • Each horizontal wiring portion 15 includes two wirings of a first wiring 13 and a second wiring 14 extending horizontally so as to sandwich the photodiodes 11 in the corresponding rows from above and below, and electrically connecting any one of these wirings and the drive electrode 16 to each other.
  • a contact 17 is formed for connection.
  • all the driving electrodes 16 in the first column are connected to the first wiring 13 of the horizontal wiring portion 15 in each row, and all the driving electrodes 16 in the second column are connected to the horizontal wiring portion 15 in each row. It is connected to the second wiring 14.
  • the drive electrode 16 for one column connected only to the first wiring 13 as described above is hereinafter referred to as a “first structure electrode row 161”, and the drive electrode 16 for one row connected only to the second wiring 14.
  • first structure electrode row 161 and the drive electrode 16 for one row connected only to the second wiring 14.
  • second structure electrode column 162 the first and second structure electrode columns 161 and 162 are different from each other in the first wiring 13 and the second wiring 14 of the horizontal wiring portion 15 in each row.
  • a read pulse is applied only to the first wiring 13 of each horizontal wiring section 15, the photodiode array adjacent to the VCCD 12 on which the first structure electrode array 161 is formed is applied.
  • the signal charges are read out selectively, and horizontal thinning out can be easily performed.
  • FIG. 3A shows a cross-sectional view taken along the line AA ′ of the VCCD 12 in the first row (first structure electrode row 161) in FIG. 2, and FIG. 3B shows the second row in FIG.
  • FIG. 8 shows a cross-sectional view taken along line BB ′ of the column (second structure electrode column 162).
  • the VCCD 12 is formed in the semiconductor substrate 50, the driving electrode 16 made of polysilicon is formed thereon, and an insulating layer (oxide film) (not shown) is formed on the surface thereof.
  • a hole is formed at a predetermined position of the insulating layer by a mask process or an etching process, and a contact 17 is formed by filling this part with a metal such as tungsten.
  • first wiring 13 and a second wiring 14 that are electrically separated are formed corresponding to one drive electrode 16.
  • the first and second wirings 13 and 14 are made of, for example, tungsten.
  • Each of the above layers is formed by vapor deposition, sputtering, or the like, but the manufacturing method itself is a known thin film manufacturing technique, and thus the description thereof is omitted.
  • a light shielding film 19 is provided on the upper layer of the first wiring 13 and the second wiring 14 so as to cover the VCCD 12 portion.
  • the light shielding film 7 is also provided between the rows of the photodiodes 11 (the vertical separation part of the pixels) so as to shield light from being directly incident on portions other than the light receiving surface of the photodiodes 11. The sex is secured.
  • the combination of the first structure electrode row 161 and the second structure electrode row 162 is arranged so as to be periodically repeated in the row direction.
  • “the first structure electrode row 161, the second structure electrode row 162, and the first structure electrode row 161” are repeatedly arranged in a three-row cycle.
  • a power supply bus line 18 connected to a drive unit 420 (see FIG. 15) is arranged around the imaging unit 10.
  • the bus line 18 and the first wiring 13 and the second wiring 14 in each horizontal wiring unit 15. Are connected, and a predetermined drive pulse is applied to each drive electrode 16 via the contact 17.
  • drive pulses V1 to V10 having different phases are sequentially applied from the top to the five sets of the first wiring 13 and the second wiring 14 in each horizontal wiring section 15 in the first to fifth columns.
  • the first structure electrode row 161 has drive pulses V1, V3, V5, V7, and V9
  • the second structure electrode row 162 has drive pulses V2, V4, V6, V8, and V10.
  • Each VCCD 12 is configured to be driven in five phases by applying a pulse.
  • a read pulse is applied to the drive electrode 16 via the horizontal wiring portion 15 to change the internal potential of the VCCD 12 to form a potential well, and the signal charge of the adjacent photodiode 11 is transferred to the VCCD 12.
  • a potential well hereinafter simply referred to as “reading signal charges”
  • the potential well is moved by sequentially changing the five-phase drive pulses applied to the drive electrodes 16 to thereby transfer the signal in the VCCD 12. Charge is transferred in the vertical direction (vertical transfer).
  • Selection output unit 20 and HCCD 30 Returning to FIG. 1, a selection output unit 20 is formed in the horizontal direction at the connection between the VCCD 12 and the HCCD 30.
  • the selection output unit 20 temporarily accumulates signal charges transferred vertically by the five-phase drive of the drive electrodes 16 of each VCCD 12 and transfers them to the HCCD 30 at a predetermined timing. Is formed for the purpose of adding.
  • the selection output unit 20 includes a storage unit 21 and a barrier unit 22, and is formed by forming a storage electrode 23 and a barrier electrode 24 on the upper surface of the end portion of the VCCD 12.
  • the main purpose of the storage unit 21 is to store the signal charge that has been vertically transferred from the VCCD 12 until the signal is selectively output to the HCCD 30.
  • the storage unit 21 is designed so that its charge storage capacity is larger than that of the VCCD 12 in the imaging region by making the horizontal width (channel width) of the VCCD 12 directly below the storage electrode 23 larger than the channel width in the imaging region.
  • the signal charge obtained by adding the pixels in the vertical direction can be sufficiently accumulated.
  • the capacity of charge that can be stored in the VCCD 12 in the barrier unit 22, that is, in the VCCD 12 immediately below the barrier electrode 24, does not need to be particularly large.
  • the main purpose is to form a barrier.
  • Wirings 231 to 233 are formed in the horizontal direction on the upper surface of the storage electrode 23 via an insulating layer (not shown), and each storage electrode 23, any of the wirings 231 to 233 and the contacts 25 are periodically connected. Connected with sex.
  • wirings 241 to 243 are horizontally formed on the upper surface of the barrier electrode 24 via an insulating layer (not shown), and each barrier electrode 24 has one of the wirings 241 to 243 and the contact 25 connected thereto. Are connected with periodicity.
  • connection between the storage electrode 23 and each wiring of the barrier electrode 24 has the same period in the horizontal direction, and in FIG.
  • the column period is designed.
  • the storage electrode 23 is supplied with driving pulses S1, S2, and S3 via wirings 231, 232, and 233, respectively, and the barrier electrode 24 is supplied with driving pulses B1, B2, B3 is supplied respectively.
  • the drive pulses S1 to S3 and B1 to B3 are independent signals separate from the drive electrodes 16 of the imaging unit 10 (hereinafter referred to as “selective output pulses”), and the timing of application thereof is from the VCCD 12 to the HCCD 30. Depends on how the output is controlled to perform pixel addition in the horizontal direction.
  • three sets of six types of selection output pulses of selection output pulses S 1 and B 1, S 2 and B 2, S 3 and B 3 are provided, and the output selection unit 20 outputs signal charges from the VCCD 12 to the HCCD 30.
  • Charge transfer control can be arbitrarily performed by three types of VCCD 12 each having three types of configurations.
  • the storage electrode 23 and the barrier electrode 24 are intended to selectively control the output of the signal charges transferred vertically from the VCCD 12 to the HCCD 30 for each column.
  • the electrodes having the respective roles for storage and barrier are formed as a set, and hereinafter, the unit is formed by forming the storage electrode 23 and the barrier electrode 24 as a set.
  • the unit is formed by forming the storage electrode 23 and the barrier electrode 24 as a set.
  • it is referred to as “selective output electrode group” (in the claims of the present application, the portion of the VCCD in which each selective output electrode group is arranged is described as “sub-selection output unit”).
  • the electrode groups to which the selective output pulses S1 and B1, S2 and B2, and S3 and B3 are applied are referred to as first, second, and third selective output electrode groups 251, 252, and 253, respectively (see FIG. 5). .
  • the HCCD 30 has a plurality of horizontal drive electrodes (not shown), and sequentially transfers signal charges by applying a predetermined horizontal drive pulse to the horizontal drive electrodes. For this reason, detailed description of the electrode configuration is omitted here, and an area for storing one signal (hereinafter referred to as “horizontal transfer packet”) is simply described by adding a partition.
  • the HCCD structure has a horizontal transfer packet for storing one signal for the three VCCD columns.
  • each photodiode 11 of the imaging unit 10 is covered with one of three color filters (not shown), an R (red) filter, a G (green) filter, and a B (green) filter. More specifically, the R, G, and B color filters are arranged in a Bayer arrangement as shown in FIG. 4, and rows in which G filters and B filters are alternately arranged in the horizontal direction, R filters, and G filters. Rows in which filters are alternately arranged in the horizontal direction are alternately arranged in the vertical direction (column direction).
  • the above is the basic configuration of the solid-state imaging device 100 according to the first embodiment.
  • each VCCD 12 is formed between each VCCD 12 and the photodiode row on the opposite side to the photodiode row from which the signal is to be read, and the portions other than the light receiving surface of each photodiode 11 are covered with a light shielding film.
  • these are all well-known configurations in the solid-state imaging device, and are not characteristic configurations of the present invention, so illustration and description are omitted (the same applies to all the following embodiments).
  • FIG. 5 shows information on the color filter above the photodiode 11 in FIG. 1, information on the drive pulse applied to each drive electrode 16, information on the drive pulse applied to each selective output electrode, and one signal in the HCCD 30.
  • FIG. I is an abbreviated notation of an area (horizontal transfer packet) for storing, and is hereinafter referred to as an “electrode layout diagram”.
  • Vn electrode for example, in the first structure electrode row 161
  • V3 means an electrode to which the drive pulse V3 is applied among the drive electrodes 16, and is referred to as a V3 electrode
  • R for example, means the photodiode 11 to which the “R” color filter is attached.
  • a desired output pixel reduction process can be executed by controlling the timing of the drive pulse applied to the drive electrode 16.
  • FIGS. 6A and 6B are diagrams showing the arrangement of pixels to be subjected to addition processing and the pixel centroid position after addition in the output pixel reduction processing according to the present embodiment. (Hereinafter, referred to as “pixel addition diagram”), which respectively show first and second pixel addition examples executed by the solid-state imaging device 100 of the first embodiment.
  • the first pixel addition example shown in FIG. 6A is 4-pixel addition, and the readout target pixel is set at a distance of 2 pixels above, below, left, and right from the barycentric position (+ notation) after pixel addition. ing.
  • the signal charges of the pixels in the Mth row of the (N-2) th column and the (N + 2) th column are read out by the first structure electrode column 161, and the (M-2) th row and the (M + 2) th row of the Nth column are read out.
  • Each signal charge of the pixels in the row is read out by the second structure electrode column 162 and pixel addition in the vertical direction (hereinafter referred to as “vertical addition”) is executed, and the (N ⁇ 2) th column, the Nth column, and the The signal charges in the (N + 2) columns are added in the horizontal direction (hereinafter referred to as “horizontal addition”), and an addition output for four pixels is performed (N and M are integers of 3 or more).
  • the distance between the pixel centroids after pixel addition has a distance of 3 pixels in the horizontal direction and 5 pixels in the vertical direction, and signals that are adjacent to each other in the horizontal direction after pixel addition are displayed in the horizontal direction.
  • the overlapping arrangement is set (for example, R1 and G1).
  • signals that are adjacent to each other in the vertical direction after pixel addition are set so that the pixels to be read are adjacent to each other without overlapping in the vertical direction (for example, R2 and G2).
  • the second pixel addition example shown in FIG. 6B is five-pixel addition, one pixel at the centroid position (+ notation) after pixel addition, and two pixels in the oblique four directions from the centroid position. The four pixels at the distance are set as readout target pixels.
  • the signal charges of the pixels in the (M ⁇ 2) th row and the (M + 2) th row in the (N ⁇ 2) th column and the (N + 2) th column are read out by the first structure electrode column 161 and vertically added.
  • the signal charges of the pixels in the Mth row of the Nth column are read out to the second structure electrode column 162, and the signal charges in the (N ⁇ 2) th column, the Nth column and the (N + 2) th column are horizontally added to obtain 5 pixels.
  • Minute addition output N and M are integers of 3 or more).
  • the distance between the pixel centroids after pixel addition has a distance of 3 pixels in the horizontal direction and 5 pixels in the vertical direction, and signals that are adjacent to each other in the horizontal direction after pixel addition exceed each other in the horizontal direction.
  • the wrapping arrangement is set (for example, R3 and G3).
  • Signals that are adjacent to each other in the vertical direction after pixel addition are set so that the pixels to be read are adjacent to each other without overlapping in the vertical direction (for example, R4 and G4).
  • the center of gravity after pixel addition in both the horizontal and vertical directions has a completely equal distance (for three pixels).
  • the distribution can be good.
  • FIG. 7 shows columns corresponding to the first and second structure electrode columns 161 and 162 for the pixels read out during the execution of the first pixel addition example.
  • the signal charge of PD1 separated by 5 pixels in the vertical direction is read out.
  • the signal charges of PD2 and PD3 separated by 4 pixels in the vertical direction are combined into the same vertical transfer packet (VCCD12) by combining read control and vertical transfer control, respectively. And a vertical addition is carried out in (a potential well unit for transferring one charge signal).
  • each drive pulse is such that PD1 reads signal charges with a read pulse to the V5 electrode, PD2 reads signal charges with a read pulse to the V2 electrode, and PD3 reads signal charges with a read pulse to the V10 electrode. Is set.
  • FIG. 8 shows information of vertical addresses (1, 2,... N,... 2n) and horizontal addresses (A, B,...) For pixels to be read when performing pixel addition driving according to this example.
  • address allocation diagram Is a diagram (hereinafter referred to as “address allocation diagram”) in which an example of a pixel addition signal stored in the HCCD 30 is described in the HCCD unit.
  • signal charges of (C2 + E3 + E4 + G2) and (F2 + H3 + H4 + J2) are stored in each signal storage area as the addition pixel of the horizontal line output signal (the pixel of J2 is not shown).
  • FIG. 9 is a timing chart showing drive timings at the time of signal charge reading executed in the vertical blanking period in order to execute the above pixel addition example.
  • VH high level
  • VL driving pulse having a voltage
  • VM is a voltage level for forming a potential well in the VCCD 20 under the drive electrode 16 so that signal charge can be accumulated, and VL cannot accumulate the signal charge in the VCCD 20 under the drive electrode 16 (barrier state). This is the voltage level for
  • the VH level is about 13V
  • the VM level is about 0V
  • the VL level is about -6V
  • the VH level and the VL level have a width of about several V depending on the design.
  • VH, VM, and VL are simply abbreviated as “H”, “M”, and “L” (the same applies to the following timing charts).
  • the V5 electrode is in the VH state at time t3, and the signal charge of the PD1 is read out.
  • V1 to V7 electrodes are sequentially changed from VM ⁇ VL and VL ⁇ VM to be transferred in the vertical direction by 5 pixels, and the signal charge is held in the vertical transfer packet formed immediately below the V3, V5, and V7 electrodes. To do.
  • the V2 electrode is in the VH state at time t2, and the signal charge of the PD2 is read, and then the V2 electrode, the V4 electrode, As the V6 electrode sequentially changes from VM to VL, it is transferred to a position immediately below the V6 electrode at time t4.
  • the signal charge of the corresponding PD3 is read and transferred to the VCCD 12, so that the signal charges of PD2 and PD3 are mixed in the same vertical transfer packet here. Thus, one signal is obtained, and thereby vertical addition is executed.
  • the charge storage electrodes S1 to S3 of the first to third selection output electrode groups 251 to 253 are both in the VL state, but the barrier electrodes B1 to B3 are sequentially in the VL ⁇ VM state. ⁇ Changes to VL.
  • the signal charge read at the position closest to the HCCD 30 is transferred to the HCCD 30 without being added and output as an image signal.
  • the memory management described later is performed on the image signal. Control may be performed so that data is not written in the memory unit 470 by the unit 460 (FIG. 15).
  • FIG. 10 is a diagram showing the timing of vertical transfer executed in the horizontal blanking period after the signal charge reading operation, and is read out by the VCCD 12 in each column. After the signal charge is vertically transferred in the VCCD 12, the horizontal charge is output by outputting it to the HCCD 30 for one horizontal line.
  • the signal charges read out to each VCCD 12 column are transferred by 5 pixels toward the HCCD 30 by vertical driving by the first structure electrode column 161 and the second structure electrode column 162 between times t1 and t12.
  • the signal charge in the vertical transfer packet closest to the HCCD 30 is selectively transferred to the HCCD 30 via the storage unit 21 and the barrier unit 22 of the selection output unit 20.
  • the electrodes S1 to S3 of the storage unit 21 and the electrodes B1 to B3 of the barrier unit 22 are in the VL state. Further, in the first structure electrode row 161 and the second structure electrode row 162, the drive electrodes (V9 electrode, V10 electrode) adjacent to the S1 to S3 electrodes are also in the VL state in the initial state.
  • a VM level pulse is applied to the S1 to S3 electrodes, but the V9 and V10 electrodes remain in the VL state and the barrier is still formed, so that the signal charge held in the latest vertical transfer packet is accumulated as it is It cannot flow into the part 21.
  • the V9 electrode and the V10 electrode are in the VM state and the barrier disappears, so that the signal charge flows into the storage unit 21 of the corresponding column.
  • the barrier electrodes B1 to B3 remain in the VL state, And is not output to the HCCD 30. Thereafter, the movement of the signal charge to the storage unit 21 is completed by returning the V9 and V10 electrodes to the VL state at time t10.
  • the electrode B1 is first brought into the VM state, the barrier is released, and the signal charge of the storage unit 21 in the same row starts to flow into the HCCD 30, and at times t12 and t13, the S1 electrode and the B1 electrode are sequentially changed to the VL state.
  • the transfer of the signal charge to the HCCD 30 is completed (refer to the displacement of the drive state of the V9 electrode, the S1 electrode, and the B1 electrode at times t1 to t13 in the leftmost column in the charge transfer diagram of FIG. 23 described later).
  • the other B3 and B2 electrodes are also in the VM state, and the transfer of signal charges to the HCCD 30 is completed by the same procedure as described above.
  • the channel width of the VCCD of the accumulation unit 21 in the selection output unit 20 is made wider than the channel width of the VCCD width in the imaging region. Therefore, the narrow channel effect is weakened in this portion and the potential level is deepened, and the difference from the potential level with the portion where the channel width is not widened is increased.
  • Such a situation is a phenomenon that generally occurs at the boundary between the narrow channel width portion and the wide channel width portion of the VCCD.
  • the S1 to S3 electrodes and the B1 to B3 electrodes There are cases where the potential level in the VL state is V9 and the potential state of the V10 electrode relative to the potential level in the VM state cannot be secured sufficiently, and signal charges are generated at the barriers under the S1 to S3 electrodes and the B1 to B3 electrodes. There is a possibility that a part of the electric charge may get over to the HCCD 30 without being stopped.
  • the S1 to S3 electrodes are in the VM state and the B1 to B3 electrodes are in the VL state, the S1 to S3 electrodes are obtained so that a sufficient potential barrier can be obtained between the S1 to S3 electrodes and the B1 to B3 electrodes.
  • the VCCD 12 directly below the B1 to B3 electrodes is designed to have a small potential difference (that is, to have substantially the same VCCD width), and when the V9 electrode or the V10 electrode is brought into the VM state, the corresponding columns S1 to S3 By setting the electrodes in the VM state and the B1 to B3 electrodes in the VL state, overflow of signal charges is prevented.
  • the V9 (V10) electrode When the V9 (V10) electrode is brought into the VM state and the barrier is released, the signal charge flows into the VCCD 12 immediately below the S1 to S3 electrodes in the VM state, but between the S1 to S3 in the VM state and the B1 to B3 in the VL state. Has a sufficiently high potential difference, the potential barrier formed by the B1 to B3 electrodes in the VL state can be surely blocked and leakage to the HCCD 30 can be prevented.
  • the HCCD 30 is driven to horizontally transfer all signal charges for one horizontal line and output from the output unit 40.
  • FIG. 11 is a read pixel arrangement diagram in which numbers are assigned to the pixels read out during execution of the second pixel addition example.
  • PD1 and PD2 are read control and vertical transfer, respectively.
  • the vertical addition is performed so as to read out a plurality of signal charges in the vertical transfer packet by combining the controls.
  • the signal charge of the PD 3 separated by 5 pixels in the vertical direction is read out.
  • PD1 reads the signal charge with a read pulse to the V1 electrode of the first structure electrode row 161
  • PD2 reads the signal charge with a read pulse to the V9 electrode of the same electrode row
  • PD3 reads the second structure electrode row 162.
  • the timing of each drive pulse is set so that the signal charge is read by the read pulse to the V6 electrode.
  • FIG. 12 is an address assignment diagram in which vertical address and horizontal address information is assigned to the readout target pixel when executing this pixel addition example.
  • FIG. 13 is a diagram showing signal charge reading timing executed in the vertical blanking period in order to execute the second pixel addition example. , “H” is attached only to the VH state, and other portions change between the VM state and the VL state.
  • the signal charge read out when the V1 electrode is in the VH state at time t5 is PD1 in FIG. 11, that is, the A, C, D, F, G, and I rows in FIG.
  • the signal charges corresponding to the readout target pixels of the even-numbered addresses and the V9 electrode in the VH state at time t6 are read out in the PD2 of FIG. 11, that is, the columns A, C, D, F, G, and I in FIG.
  • the signal charges read when the V6 electrode is in the VH state at time t2 correspond to the PD3 in FIG. 11, that is, the readout target pixels in the B, E, and H rows in FIG. .
  • modulation control of the substrate potential VSUB level is performed in the period from time t4 to time t7. This is because the saturation output of the vertical transfer packet is within a certain range regardless of whether or not the pixel is added. The purpose is to be. Details of this substrate potential modulation control will be described later.
  • the pixel addition as shown in FIG. 6B can be executed by the driving method as described above.
  • the target readout pixel at the V6 electrode becomes a pixel located at the centroid of the addition target pixel, and weighting is possible for the saturation output of the pixel located at the signal centroid after the addition.
  • FIG. 14 is a diagram showing the relationship between the substrate potential of a general photodiode and the potential distribution.
  • the horizontal axis in the distribution diagram indicates the position in the thickness direction in the solid-state imaging device, P indicates the light receiving surface side of the photodiode, and P ′ indicates the substrate side.
  • the vertical axis indicates the substrate potential VSUB with the downward direction as a positive direction.
  • a potential structure called a vertical overflow drain (VOFD) exists at a position deeper than the layer where the photodiode is formed.
  • VOFD vertical overflow drain
  • the substrate potential VSUB By setting the substrate potential VSUB to the low level Va, the height of the potential barrier between the photodiode and VOFD can be increased to increase the capacitance of the photodiode.
  • the substrate potential VSUB is increased to the intermediate level Vb, The capacity of the diode can be reduced.
  • the substrate potential VSUB is raised to the high level Vc, the potential barrier between the photodiode and VOFD disappears, and all the charges of the photodiode can be discharged to the substrate side, so that it is used as an electronic shutter described later.
  • the capacity of each pixel to be read is controlled so as not to overflow the charge capacity of the vertical transfer packet in the VCCD 12.
  • the substrate potential VSUB is increased by a predetermined voltage so that charge overflow does not occur in the column having the largest number of vertical added pixels (columns A, C, D, F, G, and I in FIG. 12). If they are set uniformly, the column with the smallest number of vertical addition pixels (columns B, E, and H in FIG. 12) is in a state where only a small amount of signal charge is accumulated with respect to the charge capacity of the vertical transfer packet. As a result, the charge capacity of the vertical transfer packet is not fully utilized.
  • the substrate potential (third potential) during the exposure time of the photodiode 11 is the same as or equal to the substrate potential (first potential) when the number of added pixels is the smallest.
  • the signal charge read operation at time t3 in FIG. 9 is performed at times t2 and t4.
  • the VSUB level is set to a low level so that the saturation capacity of the target pixel is increased, the readout pulse is applied to the V5 electrode, and the subsequent vertical addition is performed.
  • the timing of modulation of the substrate potential is set so as to set VSUB to a higher level, and the readout at times t2 and t4 is performed. After the completion, the VSUB level may be reset to a low level.
  • the actual substrate potential value is basically set in advance according to the characteristics indicating the relationship between the potential distribution and the substrate potential in the solid-state imaging device to be used, the number of added pixels, and the like.
  • FIG. 15 is a block diagram showing a structural example of a camera device 400 equipped with the solid-state imaging device 100 according to the present embodiment.
  • the camera device 400 includes a lens unit 410, a solid-state imaging device 100, a drive unit 420, a timing generation unit 430, a control unit 440, a signal processing unit 450, a memory management unit 460, a memory unit 470, and an analog front.
  • the lens unit 410 includes a condensing lens 401 and a lens driving unit 402 that moves the condensing lens 401 in the optical axis direction during focusing, and an image to be imaged is solid through the condensing lens 401.
  • An image is formed on the imaging unit 10 (FIG. 1) of the imaging device 100.
  • the photoelectric conversion is performed by each photodiode 11 in the imaging unit 10, and a charge corresponding to the received light amount is accumulated as a signal charge.
  • Each signal charge is read by the drive pulse supplied from the drive unit 420, converted into a voltage by the output unit 40 (see FIG. 1), and then output to the analog front end 480.
  • the analog front end 480 includes a correlated double sampling unit (CDS) 481 and an AD conversion unit 482, and the signal output from the solid-state imaging device 400 is correlated according to the set timing supplied from the timing generation unit 430. AD conversion is performed while double sampling is performed, and a digitalized image signal is output to the memory management unit 460.
  • CDS correlated double sampling unit
  • AD conversion is performed while double sampling is performed, and a digitalized image signal is output to the memory management unit 460.
  • the memory management unit 460 writes the image signals received from the analog front end 480 according to the control signal from the control unit 440 into the memory unit 470 according to the driving mode, rearranged in the correct address order as necessary, and An operation of transmitting an image signal from the memory unit 470 to the signal processing unit 450, an operation of writing a signal after image processing by the signal processing unit 450 to the memory unit 470, or an output signal from the analog front end 480 directly to the signal processing unit The operation sent to 450 is controlled.
  • control unit 440 Based on a user instruction received from the operation unit 495, the control unit 440 sets a signal transfer path to the memory management unit 460, the signal processing unit 450, and the timing generation unit 430 in order to execute a desired mode. Send instructions such as signal processing setting and drive timing setting.
  • the timing generation unit 430 outputs a predetermined drive pulse from the drive unit 420 to the solid-state imaging device 100 at a predetermined timing based on an instruction related to the drive timing setting received from the control unit 440, and the analog front end 480 Issue CDS control and AD conversion drive timing.
  • the drive unit 420 generates a predetermined drive pulse in accordance with the signal supplied from the timing generation unit 430 and supplies the drive pulse to the solid-state imaging device 100.
  • the substrate potential The electronic shutter that once discharges the charge in the photodiode is operated by setting VSUB to a high level. Further, the modulation of the substrate potential in the signal charge readout drive (FIG. 13) in the second pixel addition example is executed (Note that the “drive means” in the claims of this application is the drive unit 420, the timing in FIG.
  • the concept is a combination of the generation unit 430 and the control unit 440, and the combination of the generation unit 430 and the control unit 440 is referred to as a “solid-state imaging device”.
  • control unit 440 transmits the image data subjected to the output pixel reduction process to the display unit 490 including a liquid crystal display panel and displays the image data at a predetermined frame rate.
  • a driving electrode 16 is provided for each photodiode 11, a horizontal wiring portion 15 is arranged along each row of the photodiode 11, and a plurality of driving electrodes 16 arranged in the row direction of the same vertical address are arranged in the horizontal wiring portion 15.
  • the first structure electrode row 161 and the second structure electrode row 162 are connected to either the first wiring 13 or the second wiring 14 so that their connection states are different, and the drive electrodes 16 arranged in the same row are connected to each other. It is possible to apply different drive pulses for each column. This makes it possible to increase the degree of freedom of the combination for reading out signal charges and to easily improve the output pixel reduction rate, though it is an extremely simple configuration, and it is not necessary to provide a wiring for bridge connection.
  • a single layer drive electrode with a simple configuration controls horizontal readout output by controlling signal readout from the photodiode to the VCCD, charge transfer from the VCCD to the HCCD, and charge transfer of the VCCD for each column. Since the structure electrode rows are arranged to enable different driving for each VCCD, various horizontal thinning readouts can be realized by combining the horizontal arrangement cycle, the HCCD arrangement, and the number of driving phases for each row. Can do. In addition, the number of vertical drive phases in each structure electrode array can be easily increased, and the vertical thinning rate can be improved.
  • the thinning process and the pixel addition process are appropriately used in combination to enable a high output pixel reduction rate, while maintaining a good balance in which deterioration in image quality and linear characteristics are suppressed as much as possible.
  • a compressed image can be obtained.
  • the saturation capacity of the photodiode is adjusted according to the number of pixels to be vertically added, so that the signal output level of each mode can be optimized.
  • the solid-state imaging device 101 according to the second embodiment has the same basic structure as the solid-state imaging device 100 of the first embodiment, such as the first structure electrode row 161, the second structure electrode row 162, and the horizontal wiring portion 15. However, the first and second structure electrode rows 161 and 162 are arranged in the horizontal direction, and the HCCD is divided into two channels.
  • FIG. 16 is an electrode arrangement diagram for illustrating the overall configuration of the solid-state imaging device 101 according to the present embodiment.
  • the solid-state imaging device 101 includes a first and second structural electrode rows 161 and 162 arranged adjacent to the photodiodes 11 arranged in a matrix in the imaging unit 10. They are arranged so that they are switched for each column.
  • the first to third selective output electrode groups 251 to 243 have a three-row cycle, and the arrangement positions for the first and second structure electrode rows 161 and 162 are different from each other. It arrange
  • the horizontal transfer unit has a two-channel configuration, and the first HCCD 31 is arranged at the lower part of the imaging unit 10 and the second HCCD 32 is arranged at the upper part.
  • the first and second output units 41 and 42 are arranged at the output side end portions of the first and second HCCDs 31 and 32, and the signal charges transferred by the first HCCD 31 are output from the first output unit 41.
  • the signal charges converted into voltage values and transferred by the second HCCD 32 are converted into voltages by the output unit 42 and output as pixel signals, respectively.
  • the drive pulses applied to the drive electrodes 16 of the first structure electrode row 161 are V1, V3, V5, V7, and V9, and are applied to the drive electrodes 16 of the second structure electrode row 162.
  • the drive pulses are connected to the bus line 18 via the horizontal wiring portion 15 so as to be V2, V4, V6, V8, and V10.
  • each VCCD 12 is 5-phase drive with a period of 5 vertical pixels, and the first structure electrode rows 161 and the second structure electrode rows 162 are alternately arranged for each row in the horizontal direction. This is a period of two horizontal pixels, and the vertical 5 pixels ⁇ horizontal 2 pixels are arranged in the area of the imaging unit 10 as an arrangement unit.
  • Each of the HCCDs 31 and 32 turned upside down of the imaging unit 10 has the number of drive phases and the timing of the drive pulses so as to provide a signal storage area (horizontal transfer packet) for storing one signal with respect to the width of two VCCD columns. It has been decided.
  • a first selection output unit 210 and a second selection output unit 220 are formed at the connecting portion between the first HCCD 31 and the second HCCD 32 and the first structure electrode row 161 and the second structure electrode row 162, and are transported from the VCCD 12.
  • the received signal charges are selectively output to the first HCCD 31 or the second HCCD 32.
  • the first selection output unit 210 includes a storage unit 211 and a barrier unit 212
  • the second selection output unit 220 includes a storage unit 221 and a barrier unit 222.
  • first to third selective output electrode groups 251 to 253 are formed by forming first to third selective output electrode groups 251 to 253 on the upper surface of the end portion of the VCCD 12, and are independent of the drive pulses V1 to V10 in the imaging region, respectively.
  • a selective output pulse can be applied.
  • the first structure electrode row 161 can transfer charges only to the first HCCD 31 via the first to third selection output electrode groups 251 to 253, and the second structure electrode row 162 has the first to third selection electrode groups. Charges can be transferred only to the second HCCD 32 via the selective output electrode groups 251 to 253.
  • the first to third selection output electrode groups 251 to 253 have a structure assuming pixel addition for three columns in the horizontal direction (see FIG. 17), and the first and second structure electrode columns 161, The arrangement period is different from 162.
  • FIG. 17 is a pixel addition diagram showing the contents of the pixel addition process executed in the second embodiment.
  • pixel addition results of pixels having the same shape are added to obtain a pixel addition result of 2 vertical pixels ⁇ 3 horizontal pixels, and the signal centroid (+ position) distribution after the addition is evenly 3 in the horizontal direction.
  • the distribution has a distance equivalent to 5 pixels in the vertical direction.
  • PD1 and PD2 and PD3 and PD4 separated by two pixels in the vertical direction are combined with read control and vertical transfer control, respectively, and read in the same vertical transfer packet to execute vertical addition.
  • the horizontal addition is executed by controlling the timing of transfer from each VCCD 12 to the first and second HCCDs 31 and 32 and the timing of horizontal transfer in each of the first and second HCCDs 31 and 32.
  • FIG. 19 shows an example of the pixel addition signal stored in the first HCCD 31 and the second HCCD 32 in each HCCD unit, with the information of the vertical address and the horizontal address assigned to the pixel to be read when performing pixel addition driving in FIG. It is an address allocation diagram.
  • the vertical addresses are assigned to the readout target pixels in the order of transfer to the first HCCD 31 and the second HCCD 32, the vertical address of the first structure electrode row 161 and the second structure electrode row 162 is assigned. The order is reversed.
  • FIG. 19 discloses an example in which (F3 + F4 + D3 + D4 + B3 + B4) is stored for the second structure electrode row 162 and (I3 + I4 + G3 + G4 + E3 + E4) is stored for the first structure electrode row 161 as the addition pixel of the horizontal line output signal. (I and G columns are not shown. The same applies to FIG. 20).
  • a VH level drive pulse is applied to the V3 electrode to read the signal charge of the PD1.
  • time t3 when the signal charge of PD1 is transferred directly below the V7 electrode by performing vertical transfer by changing the drive pulse applied to each electrode of V1, V3, V5, V7, and V9 in the VM and VL states.
  • a VH level drive pulse is applied to the V7 electrode to read out the signal charge of PD2, thereby reading out and vertically adding to the same vertical transfer packet as the signal charge of PD1 read out at time t2.
  • the V4, V6, and V8 electrodes are set to the VM state at the time t1, and the V2 and V10 electrodes are set to the VL state at the time t2.
  • a VH level driving pulse is applied to read the signal charge of PD3.
  • the drive pulses applied to the electrodes V2, V6, V8, and V10 are changed in the VM and VL states so that the signal charge in the VCCD is perpendicular to the direction opposite to the first structure electrode row 161 (direction toward the second HCCD 32).
  • a drive pulse of VH level is applied to the V4 electrode to read the PD4 signal charge into the same vertical transfer packet that output the PD3 signal charge, and execute vertical addition. .
  • the vertical transfer is performed until the storage unit 221 and the barrier unit 222 become the same as the initial state at time t1, and the charge transfer is stopped at time t6.
  • each of the HCCDs 31 and 32 may be either stopped or transferred, but the HCCDs 31 and 32 are emptied in preparation for the output of a valid signal from the VCCD 12.
  • the HCCDs 31 and 32 perform the transfer operation in the state at time t6 when the vertical transfer is finished, and the output units 41 and 42 are used. Thus, the charge is wiped out (section tc).
  • FIG. 22 shows the drive timing at the time of vertical transfer of the signal charge in the VCCD during the horizontal blanking period after reading out the signal charge.
  • FIG. 23 shows the inside of the VCCD 12 in the I, G, and E columns corresponding to the first to third selection output electrode groups 251 to 253, in which the first structure electrode row 161 at the time t1 to t21 in FIG. 2 is a diagram schematically showing the potential of HCCD 31 and the state of signal charges (hereinafter referred to as “charge transfer diagram”).
  • charge transfer diagram the state of signal charges
  • FIG. 24 the VCCD 12 in the F, D, and B columns corresponding to the first to third selection output electrode groups 251 to 253 are arranged, and the second structure electrode row 162 at time t1 to t21 in FIG. 6 is a charge transfer diagram in the inner and HCCD 32.
  • FIG. 24 the VCCD 12 in the F, D, and B columns corresponding to the first to third selection output electrode groups 251 to 253 are arranged, and the second structure electrode row 162 at time t1 to t21 in FIG. 6 is a charge transfer diagram in the inner and HCCD 32.
  • the signal charges read and vertically added in the signal charge reading process of FIG. 21 are accumulated in the vertical transfer packets formed immediately below the electrodes V3 to V5 (each of FIG. 23).
  • the drive pulses applied to the electrodes V1, V3, V5, VV7, and 9 are sequentially changed in the VM and VL states and vertically transferred.
  • the signal charge in the vertical transfer packet that is closest to the first selection output unit 210 is accumulated in the accumulation unit 211 at time t10 (the electrodes S1 to S3 at time t10 in each column in FIG. 23). (See section).
  • the first selective output electrode group 251 is driven to transfer the accumulated charge in the I-column accumulation unit 211 into the horizontal transfer packet of the first HCCD 31 (TR11).
  • the horizontal transfer packet is horizontally shifted leftward by two columns of the VCCD 12 toward the output unit 41 (TR12), and the first selection electrode group 252 is driven between times t15 and t17, whereby the G column
  • the accumulated charge in the accumulation unit 211 of the VCCD 12 is transferred to the horizontal transfer packet and added (TR13).
  • the horizontal transfer packet is further horizontally shifted to the left by two columns of the VCCD 12 (TR14), and the first selection electrode group 252 of the E column is driven between the times t19 and t21, so that the storage unit 211 of the VCCD 12
  • the accumulated charge is transferred to the horizontal transfer packet and added (TR15).
  • the addition processing in the horizontal direction is performed on the VCCDs 12 for the other odd-numbered columns in the same manner as described above.
  • the control is performed by replacing V1 of the first structure electrode array with V10, V3 with V8, V5 with V6, V7 with V4, and V9 with V2. By doing so, horizontal addition of signal charges can be realized.
  • the vertical drive of FIG. 22 is further performed twice while appropriately moving the horizontal transfer packet, so that the state of each of the first HCCD 31 and the second HCCD 32 is as shown in FIG.
  • a signal charge having a predetermined horizontal line number can be transferred to all.
  • the horizontal line numbers stored in each signal storage area are given in the order of transfer to the first HCCD 31 and the second HCCD 32 in the transfer direction of each VCCD 12.
  • signals (B1, B2, D1, D2, F1, F2) corresponding to the first horizontal line of the second structure electrode row 162 and the first horizontal line of the first structure electrode row 161 are shown.
  • (A1, A2, C1, C2, E1, E2) are discharged to the second HCCD 32 and the first HCCD 31 at the end of the signal charge reading control in FIG. 21, and are obtained as effective output signals.
  • this can be obtained as an effective output signal by appropriately adjusting the drive timing of FIG. 21 at the time of reading.
  • a camera device equipped with the solid-state imaging device 101 according to the present embodiment also has a configuration that is substantially the same as that shown in FIG. However, since the solid-state imaging device 101 has two output units 41 and 42, two CDSs 481 and two AD conversion units 482 in the analog front end 480 are required in the camera device (see FIG. 33 described later). reference).
  • the horizontal line output order of the image signals in the HCCD structure of the upper and lower two channels sandwiching the imaging unit 10 is, for example, the first structure electrode row 161 from the lower part of the imaging unit, the second structure electrode row 162 from the upper part of the imaging unit, Since the output address of the imaging signal differs depending on the structure electrode array, the memory unit 470 needs to have a memory area for storing image signals for at least one screen, and the memory management unit 460 has an analog front end 480. Is written to the memory unit 470 at a correct address. Signal processing such as color adjustment is performed on the image signal written in the memory unit 470.
  • the charge transfer direction is designed in a different direction above and below the imaging region, and at each end.
  • the upper and lower 2-channel HCCD can be adapted to vertical multi-phase driving (5 or more phases), and the speed of outputting one frame is improved, so that the frame rate can be increased.
  • the first structure electrode rows 161 and the second structure electrode rows 162 are alternately arranged, and both of them are driven in five phases.
  • the arrangement period is different, and the number of phases for vertical driving is different between the first structure electrode row 161 and the second structure electrode row 162.
  • first structure electrode row 161 and the second structure electrode row 162 are driven in different modes and can be output independently from the first HCCD 31 and the second HCCD 32, respectively.
  • FIG. 25 is an electrode arrangement diagram of the solid-state imaging device 102 according to the third embodiment.
  • the first HCCD 31 disposed below is used as a signal charge transfer destination in the VCCD 12, and the second HCCD 32 disposed above is disposed in the VCCD.
  • the second structure electrode row 162 as a signal charge transfer destination is an arrangement unit in which one cycle is composed of three rows each composed of two first structure electrode rows 161 and one second structure electrode row 162. Arranged in the imaging area.
  • Each of the first HCCD 31 and the second HCCD 32 has a signal storage area (horizontal transfer packet) having a length corresponding to three columns of the VCCD, and a first selective output electrode group between the first HCCD 31 and the first structure electrode row 161. 251 or the second selection output electrode group 252 is arranged, and the third selection output electrode group 253 is arranged between the second HCCD 32 and the second structure electrode row 162.
  • the drive pulse signals applied to the drive electrodes 16 in the imaging region of the first structure electrode row 161 are V1, V3, V5, V7, and V9, and in the imaging region of the second structure electrode row 162.
  • the drive pulse signals applied to the drive electrodes 16 are V2, V4, V6, V8, V10, V12, V14, V16, and V18.
  • the first structure electrode row 161 is the vertical five-phase drive and the second structure electrode row 162. Has a configuration of vertical nine-phase driving. For this reason, the number of bus lines 18 (see FIG. 2) is also added to the extent that the drive pulses V12, V14, V16, and V18 are supplied.
  • the electrodes of 45 pixels vertical ⁇ 3 pixels horizontal are arranged in the imaging region as an arrangement unit.
  • FIG. 26 shows the arrangement of all the reading target pixels that do not distinguish the transfer destination HCCD.
  • FIG. 27 shows the position of the pixel to be read out during execution of mode A output through the first HCCD 31 and an example of pixel addition thereof, and
  • FIG. 28 shows the position of the pixel to be read out during execution of mode B via the second HCCD 32. And a pixel addition example thereof.
  • the distribution of signal centroids (positions of +) after pixel addition is equivalent to 3 pixels in the horizontal direction and in the vertical direction.
  • the distribution has a uniform distance of 5 pixels.
  • the distribution has a distance corresponding to pixels.
  • FIG. 29 is a read pixel arrangement diagram in the present embodiment.
  • the vertical direction In the photodiode column adjacent to the second structure electrode column 162 PD1 and PD2 separated by two pixels in the same direction can be obtained by combining PD3 and PD4 separated by four pixels in the vertical direction by combining read control and vertical transfer control, respectively. Read in the vertical transfer packet and execute vertical addition.
  • PD1 reads the signal charge by the read pulse to the V3 electrode, and PD2 receives the signal charge by the read pulse to the V7 electrode. Read out.
  • PD3 reads the signal charge with a read pulse to the V12 electrode
  • PD4 reads the signal charge with a read pulse to the V4 electrode.
  • FIG. 30 assigns the information of the vertical address and the horizontal address to the readout target pixel of FIG. 29, and the information of the pixel addition signal as the first horizontal line output stored in each of the first HCCD 31 and the second HCCD 32.
  • the vertical addresses of the respective columns are assigned numbers in the vertical direction from the output first and second HCCDs 31 and 32, but the number of horizontal lines differs depending on the transfer destination.
  • the number of horizontal lines output from the second HCCD 32 is (n / 2) lines, the first HCCD 31.
  • the number of horizontal lines to be output is (x / 2) lines.
  • the first HCCD 31 has a first horizontal line output signal (A1 + A2 + C1 + C2) when the readout pixels of the A column and the C column, and the D column and the F column where the first structure electrode column 161 is arranged are added.
  • FIG. 31 shows a timing chart of each drive pulse at the time of signal charge read in the present embodiment.
  • VH level drive pulses are applied to the V3 electrode and V7 electrode at time t3 and time t4, respectively, and the signal charges of PD1 and PD2 are read out.
  • the signal charges of PD1 and PD2 are read out so that the signal charges are mixed by the vertical transfer packet in the VCCD 12.
  • the V3 electrode is set to the VH state
  • the signal charge of PD1 is read into the vertical transfer packet immediately below V3, and then the V1 to V9 electrodes are driven to bring the vertical transfer packet immediately below the V7 electrode.
  • the V7 electrode is set to the VH state, and the signal charge of PD2 is read and mixed in the same vertical transfer packet to execute the process of adding the signal charges of PD1 and PD2.
  • a VH level driving pulse is applied to the V4 electrode and the V12 electrode at time t2 and time t4, respectively, and the signal charges of PD3 and PD4 are read and vertically added.
  • the V12 electrode is set to the VH state
  • the signal charge of PD3 is read into the vertical transfer packet of the VCCD 12 immediately below the V12 electrode, and then the V2 to V18 electrodes are driven to transfer the vertical transfer packet to the V4 electrode.
  • a process of vertically adding the signal charges of PD3 and PD4 is executed by moving to just below, setting the V4 electrode to the VH state at time t4, and reading and mixing the signal charges of PD4 in the same transfer packet.
  • FIG. 32 is a timing chart showing the state of each drive pulse during vertical transfer executed in the horizontal blanking period after the vertical addition.
  • V1, V3, V5, V7, and V9 drive pulses are applied to the respective electrodes to vertically transfer signal charges, and the first selection output electrode group 251 and the second selection output.
  • the electrode group 252 is driven to transfer charges from the VCCD 12 under the first structure electrode array to the first HCCD 31.
  • the signal charge transferred to the first HCCD 31 is the same as the signal charge output through the first selection output electrode 251 and the signal charge output through the second selection output electrode 252 in the same horizontal transfer packet of the first HCCD 31. Therefore, the signal charge output to the first HCCD 31 and the horizontal addition are executed simultaneously.
  • the signal charges output to the first HCCD 31 are transferred in the horizontal direction and output via the first output unit 41.
  • the image data output from the first output unit 41 is output as a signal that has been subjected to 1/5 compression in the vertical direction and 1/3 compression in the horizontal direction as compared with the number of pixels of the element.
  • the signal charges vertically added by the vertical addition drive of FIG. 31 are applied with drive pulses of V2, V4, V6, V8, V10, V12, V14, V16, and V18 to each electrode. Then, vertical transfer in the VCCD is performed, the third selective output electrode group 253 is driven, and charge transfer from the VCCD 12 under the second structure electrode row 162 to the second HCCD 32 is performed.
  • the signal charges output to the second HCCD 32 are transferred in the horizontal direction and output via the second output unit 42.
  • the image data output from the second output unit 42 is output as a signal that has been subjected to 1/9 compression in the vertical direction and 1/3 compression in the horizontal direction as compared with the number of pixels of the element.
  • pixels are output from the first HCCD 31 at the output pixel reduction rate of 1/15 as the mode A, and the output pixels are reduced by 1/27 from the second HCCD 32 as the mode B. Pixels are output at a rate.
  • the mode A and the mode B can be executed simultaneously.
  • FIG. 33 shows a configuration example of the camera device 401 on which the solid-state imaging device 102 according to this embodiment is mounted.
  • the timing generation unit 430 generates the timings related to a plurality of modes at the same time, so the first timing generation unit 431 and the second timing are the same.
  • the generation unit 432 is included.
  • control unit 440 controls the vertical synchronization period, the horizontal synchronization period, and the drive timing for a plurality of modes in accordance with the drive contents of each mode. For example, when the 30 fps mode and the 60 fps mode are operated simultaneously, the effective signal output period of the 30 fps mode and the signal read operation of the 60 fps mode may overlap, but at this time, noise caused by the read operation of the 60 fps mode may occur. In order to suppress the jumping in, it is desirable to temporarily stop the output of the effective signal in the 30 fps mode, or to perform control such as performing a read operation during a period in which the effective signal is not output to the outside.
  • the number of pixels of the output signal is in a ratio of 9: 5. This is, for example, from the first output unit 41. It is possible to simultaneously control the mode A for driving the output image data to be output at a speed of 33 fps and the mode B for driving the image data output from the second output unit 42 at a speed of 60 fps. To do.
  • the frame rate can be set to 30 fps, and 30 fps imaging output and 60 fps image data output can be obtained simultaneously.
  • the current digital still camera is generally equipped with a moving image recording function in order to increase its added value.
  • the control unit 440 records, for example, high pixel image data while outputting at 30 fps, and uses low pixel image data at 60 fps for autofocus (AF) operation and exposure control (AE) operation.
  • AF autofocus
  • AE exposure control
  • a known AF / AE process is performed to automatically control the focus and imaging conditions. This makes it possible to obtain an optimal moving image sequentially for a subject that changes every moment.
  • the number of pixel additions constituting the output signal of mode A is 4 pixels
  • the number of pixel additions constituting the output signal of mode B is 2 pixels.
  • the signal output level in mode B is about half that in mode A, so the dynamic range in mode B may be narrowed. This is illustrated in FIG. This can be dealt with by modulating the substrate potential VSUB in the same manner as described.
  • the substrate potential VSUB is set to a high level after the readout target pixel in the mode with a small number of pixel additions is read first. Reading in a mode with a large number of pixel additions is performed.
  • the substrate potential VSUB is set low
  • the mode B readout target pixel is read with the V12 electrode and the V4 electrode set to the VH state at times t2 and t4
  • the substrate potential VSUB is set after time t7.
  • the pixel to be read in mode A is read with the V3 and V7 electrodes in the VH state at times t5 and t6, respectively.
  • VSUB is set low again at time t9.
  • the signal output level in each mode can be optimized.
  • the first HCCD 31, the second HCCD 32, the first output unit 41, and the second output unit 42 may share these driving periods, or either It is desirable to perform drive control so that one horizontal output period and one of the VCCD transfer operations do not overlap.
  • the timing design is less wasted.
  • the corresponding first and second structure electrode rows 161 and 162 are determined one-to-one. Even when the number of drive phases differs between the first and second structure electrode arrays, charge transfer is possible without any problem.
  • the first to third selection output electrode groups 251 to 253 and the first and second structure electrode rows 161 and 162 are different from the above structure, for example, the specific selection output electrode group is the first and second structure electrodes. Even if it is used for both columns, devise such as setting a waiting time at one drive timing to absorb the difference in charge transfer method due to the difference in the number of VCCD drive phases of each structure electrode column It is possible to cope with.
  • the number of vertical drive phases in the first structure electrode row 161 is five phases, and that in the second structure electrode row 162 is nine phases, but this is another combination. But it ’s okay.
  • the resolution of the signal read by the first structure electrode row 161 of the present embodiment is 1/5 in the vertical direction
  • the resolution of the signal read by the second structure electrode row 162 is 1/9 in the vertical direction.
  • the resolution of the signal read out by the first structure electrode row 161 is a signal obtained by compressing 1/7 in the vertical direction.
  • the number of vertical drive phases of the first structure electrode row 161 and the second structure electrode row 162 may be determined so as to satisfy the number.
  • the fourth embodiment is characterized in that the HCCD is one channel in the third embodiment.
  • FIG. 35 is an electrode arrangement diagram in the solid-state imaging device 103 according to the fourth embodiment.
  • a unit in which one row is composed of three rows each having two first structure electrode rows 161 and one second structure electrode row 162 is arranged in the imaging region.
  • a single HCCD 33 is arranged below them.
  • the HCCD 33 has a signal storage region (horizontal transfer packet) having a length corresponding to three columns, and a first selection output electrode group 251 and a second selection output electrode are disposed between the first structure electrode column 161 and the HCCD 33.
  • a group 252 is arranged, and a third selective output electrode group 253 is arranged between the second structural electrode row 162.
  • drive pulses are independently applied to S1 / S2 / S3 and B1 / B2 / B3 constituting each selective output electrode group.
  • the drive pulses applied to the drive electrodes 16 in the imaging region of the first structure electrode row 161 are V1, V3, V5, V7, and V9, and are applied to the drive electrodes 16 in the imaging region of the second structure electrode row 162.
  • the drive pulse signals to be applied are V2, V4, V6, V8, V10, V12, V14, V16, and V18.
  • the first structure electrode row 161 is driven by vertical five phases, and the second structure electrode row 162 is driven by vertical nine phases. In this configuration, electrodes of vertical 45 pixels ⁇ horizontal 3 pixels are arranged in the imaging region as an arrangement unit.
  • a drain portion 45 for discharging excess charge of the VCCD 12 is provided at the end of the VCCD 12 opposite to the side connected to the HCCD 33, and a predetermined DC bias VDD is applied.
  • the drain part 45 forms a region in which ions are implanted on the semiconductor substrate so as to be in contact with all VCCD ends, and forms a contact with a wiring for supplying a DC bias VDD at the end of the implanted region.
  • the level of the DC bias VDD applied to this is a voltage of about several tens of volts, and the drive electrode (V1 or V2 electrode in FIG. 35) at the boundary between the VCCD 12 and the drain 45 is in the VM state.
  • the potential level of the drain portion 45 is set to be deeper than the potential level, and noise charges are discharged to the drain portion 45 when noise charges are discharged by reverse VCCD transfer described later.
  • FIG. 36 is a read pixel arrangement diagram in which numbers are assigned for each electrode to the pixels read when the solid-state image sensor 103 is subjected to pixel addition driving.
  • Vertical addition is performed by transferring PD1 and PD2 separated by pixels and PD3 and PD4 separated by 4 pixels in the vertical direction in the same vertical transfer packet by combining signal charge readout control and vertical transfer control, respectively.
  • PD1 reads a signal charge with a read pulse to the V3 electrode
  • PD2 reads a signal charge with a read pulse to the V7 electrode
  • PD3 reads a signal charge with a read pulse to the V4 electrode
  • PD4 The signal charge is read by a read pulse to the V12 electrode.
  • FIG. 37 is an address assignment diagram in which vertical address and horizontal address information is assigned to the readout target pixel in FIG.
  • each column a number in the vertical direction is assigned from the HCCD 33 side.
  • (B1 + B2) and (E1 + E2) are the respective signals as the first horizontal line output in each horizontal transfer packet.
  • each horizontal transfer packet has (A1 + A2 + C1 + C2) as the first horizontal line output. ) And (D1 + D2 + F1 + F2) are respectively stored.
  • FIGS. 38 and 39 show output pixels of 1/5 in the vertical direction and 1/3 in the horizontal direction in the solid-state image sensor 103.
  • FIG. 28 is a timing chart showing drive timings when executing mode A (refer to the pixel addition diagram of FIG. 27) for performing reduction.
  • FIG. 38 shows the drive timing at the time of signal charge reading in the vertical blanking period
  • FIG. 39 shows the drive timing of the vertical transfer of charges in the VCCD during the horizontal blanking period.
  • the first structure electrode row 161 performs signal readout and addition processing to execute mode A, and the second structure electrode row 162 carries the empty vertical transfer packet immediately below it toward the drain portion 45.
  • a drive pulse is applied as described above.
  • the drive timing in the first structure electrode row 161 is exactly the same as the drive timing in the first structure electrode row 161 described in FIG.
  • a VH level drive pulse is applied to the V3 and V7 electrodes at time t3 and time t4, respectively, and the signal charges of PD1 and PD2 are transferred to the bottom of the first structure electrode row 161. Reading to VCCD.
  • the signal charges of PD1 and PD2 are read at a timing such that they are transferred and added to the same vertical transfer packet in the VCCD, and after reading, V1, V3, V5 are read according to the timing chart of FIG. , V7 and V9 are applied with drive pulses to perform vertical transfer in the VCCD to drive the first selection output electrode group 251 and the second selection output electrode group 252 respectively, and below the first structure electrode row 161.
  • the charge transfer from the VCCD 12 to the HCCD 33 is performed. Accordingly, the signal charge output to the HCCD 33 and the horizontal addition are simultaneously performed on the signal charge output through the first selection output electrode group 251 and the signal charge output through the second selection output electrode group 252. .
  • the readout pulse is not applied to each of the V2 to V18 electrodes, and the charge in the VCCD is not read out without executing the readout of the signal charge. Is controlled so as to move toward the drain portion 45.
  • the VCCD 12 under the second structure electrode row 162 does not have a signal charge associated with signal charge reading and there is no need for charge transfer control, but the VCCD 12 is not operated for a long time transfer. In this case, since the vertical transfer packet overflows due to the dark current component generated in the VCCD 12, reverse charge sweeping in the VCCD is performed to prevent the dark current component from affecting the subsequent output image. .
  • reverse transfer is performed for a distance corresponding to nine electrodes for each horizontal blanking period, but it is not always necessary to perform for each horizontal blanking period.
  • the drive pulse applied to the second structure electrode row 162 may be in the VL state, and for example, one screen may be transferred in reverse for each of a plurality of vertical blanking periods. In this way, it is possible to save power for sweeping out charges.
  • FIGS. 40 and 41 show images obtained by reducing the output pixels by 1/9 in the vertical direction and 1/3 in the horizontal direction in the solid-state imaging device 103 (pixel addition in FIG. FIG. 6 shows a timing chart when executing the mode B that outputs (see the figure).
  • FIG. 40 shows the drive timing at the time of signal charge reading in the vertical blanking period
  • FIG. 41 shows the drive timing of vertical transfer in the horizontal blanking period.
  • signal readout and addition processing are performed only by the second structure electrode row 162, and the first structure electrode row 161 directs the empty transfer packet immediately below it to the drain unit 45.
  • a driving pulse is applied so as to be conveyed.
  • the drive timing of the second structure electrode row 162 is exactly the same as the drive timing of the second structure electrode row 162 in FIG.
  • the signal charges of PD3 and PD4 are transferred in the same vertical transfer packet and the vertical addition is executed.
  • drive pulses are applied to V2, V4, V6, V8, V10, V12, V14, V16, V18 to perform vertical transfer in the VCCD 12, and the third selection output electrode group 253
  • the second structure electrode row 162 is transferred to the second HCCD 32 at the upper end, but in this example, the transfer is made to the HCCD 33 at the lower end, so the drive timing of the second structure electrode row 162 is as shown in FIG. The operation is opposite to the drive timing of the second structure electrode row 162 in FIG.
  • the VH level drive pulse is not applied to the first structure electrode row 161 to read out the signal charge, and the first structure electrode row is not read.
  • the movement of the signal charge by the vertical transfer packet in the VCCD 12 according to 161 is directed toward the drain part 45, and the charge of the dark current component generated in the VCCD 12 is swept out.
  • reverse transfer is performed for a distance corresponding to five electrodes for each horizontal blanking period.
  • a method may be used in which one screen is collectively transferred in reverse every a plurality of vertical blanking periods.
  • FIG. 42 to 46 show timing charts when the mode A and the mode B are simultaneously operated in the solid-state imaging device 103.
  • FIG. 42 to 46 show timing charts when the mode A and the mode B are simultaneously operated in the solid-state imaging device 103.
  • the number of added pixels in mode A is 4 pixels in total, 2 pixels in the vertical direction and 2 pixels in the horizontal direction, and the number of added pixels in mode B is 2 pixels only in the vertical direction.
  • a high-resolution image output at a specific frame rate is performed in mode A while a low-resolution image at a high frame rate is output in mode B.
  • the operation will be described on the assumption that data is output at a double frame rate.
  • FIG. 42 shows the timing of switching the drive pattern at the frame time level.
  • the vertical sync signal VSYNCA in mode A and the vertical sync signal VSYNCB in mode B are shown.
  • Horizontal synchronization signal HSYNC common to modes A and B signal charge reading drive pattern of the solid-state imaging device 103 (hereinafter referred to as “reading drive pattern”) ChAB and ChB, vertical transfer drive pattern (hereinafter referred to as “vertical driving”).
  • Pattern " is a diagram describing the relationship between P1 and P2 and the horizontal line output in which mode the signal output in the interval between the vertical synchronizations.
  • the vertical drive pattern P1 is applied to output the 1st horizontal signal of mode A
  • the vertical drive pattern P2 is applied to output the 2nd horizontal signal of mode B. Yes.
  • each vertical synchronization signal need only be such that the synchronization pulse interval between VSYNCAs and between VSYNCBs has a uniform period.
  • mode B has a frame rate twice that of mode A. Therefore, the VSYNCB issuance period is exactly twice as long as the VSYNCA issuance period.
  • the output signals Bn and Ax at times T6 and T11 that is, the nth horizontal line in mode B and the xth horizontal line in mode A correspond to FIG. 37, and the final horizontal line output in each of mode A and mode B It shows that there is.
  • the present embodiment enables the parallel execution of different modes by executing the horizontal line output period of the other mode following the horizontal line output period of one mode.
  • the number of output horizontal lines x in mode A and the number n of output horizontal lines in mode B are in a relationship of x> n.
  • mode A is thinned vertically by 1/5
  • mode B is vertically 1/9. Since it is thinning out, the ratio of each value is close to x: n ⁇ 9: 5.
  • FIG. 42 shows an example in which the vertical drive pattern P1 is executed at T13 between T11 and T14, and the dummy output D of mode A is executed only once. In practice, the difference between x and 2n is shown.
  • the vertical drive patterns P1 and P2 are basically exchanged in the same manner as in the other output portions. I will do it.
  • FIG. 43 shows an example of the read drive pattern ChAB executed at times T1 and T14 in FIG.
  • the signal charge readout in mode A is executed by the first structure electrode row 161, and the signal charge read out by applying a read pulse to the V3 electrode at time t6 and the signal read out by applying the read pulse to the V7 electrode at time t7.
  • Control for vertically adding charges and signal charge reading in mode B are executed by the second structure electrode row 162, and the signal charges read by applying a read pulse to the V4 electrode at time t2 and applied to the V12 electrode at time t3. Control is performed to vertically add signal charges read by applying a read pulse.
  • the level control of the substrate potential VSUB of the solid-state image sensor 103 is the same as that described with reference to FIG. 34 of the third embodiment, and the mode B signal charge in which the number of added pixels is small and the saturation capacitance per pixel is set high.
  • the readout is performed prior to the readout in mode A, and then the VSUB level is raised after time t5 to lower the saturation capacity of one pixel, thereby lowering the saturation capacity per pixel when the number of added pixels is large.
  • Mode A signal charge readout is performed.
  • the VSUB level is reset again at time t8 and maintained at VSUB during the exposure of the next frame to increase the dynamic range of the photodiode 11.
  • FIG. 44 shows an example of the read drive pattern ChB of the solid-state image sensor 103 executed at time T8 in FIG.
  • the patterns of the electrodes related to mode A are electrodes related to mode A in the vertical drive pattern P2 described later. This is the same as the drive pattern (see FIG. 46).
  • the electrode drive pattern related to mode A in the read drive pattern ChB is the vertical drive pattern P1.
  • the electrode drive pattern related to mode A is applied (see FIG. 45). Since only mode B is driven, the VSUB level is kept low.
  • FIG. 45 is a diagram of the vertical drive pattern P1 driven in the horizontal blanking period.
  • the first structure electrode row 161 related to mode A does not transfer the signal charge in the imaging region, and drives the first selection output electrode group 251 and the second selection output electrode group 252. Then, the stored charge in the corresponding storage unit is transferred to the HCCD 48.
  • the signal charges stored in the VCCD 12 immediately below the electrodes V10, V12, and V14 are transferred by a distance corresponding to nine electrodes from time t2 to t19, and are in front of the third selection output electrode group 253 at time t1.
  • the signal charges are maintained in a state where charges are accumulated under the S3 electrode of the third selective output electrode group 253.
  • FIG. 46 is a diagram showing the vertical drive pattern P2 in the horizontal blanking period.
  • the signal charges accumulated in the VCCD 12 immediately below the V3, V5, and V7 electrodes of the first structure electrode row 161 are transferred by a distance corresponding to five electrodes from time t3 to t14, and the first,
  • the signal charges existing before the second selection output electrode groups 251 and 252 are stored immediately below the storage electrodes S1 and S2 of the first and second selection output electrode groups 251 and 252, respectively.
  • the signal charge in the imaging region is not transferred, and the charge stored immediately below the third selective output electrode group 253 is transferred from the VCCD 12 to the HCCD 33.
  • the cycle of the vertical sync signal VSYNCB in mode B is set to twice the cycle of the vertical sync signal VSYNCA in mode A, and at the timing when the vertical sync signal VSYNCA and the vertical sync signal VSYNCB are generated simultaneously,
  • the read drive pattern ChAB (FIG. 43) for simultaneously executing the B read drive is executed, and at the timing when only the vertical synchronization signal VSYNCB is generated, the read drive pattern ChB (FIG. 44) is executed to execute only the mode B read drive. Execute.
  • the signal charge related to mode A is output to the HCCD 33 and the signal charge related to mode B is transferred vertically in the image area.
  • P1 (FIG. 45) and the signal charge related to the mode B are output to the HCCD 33, and the vertical drive pattern P2 (FIG. 46) for performing the vertical transfer of the signal charge related to the mode A within the image area is alternately executed. By doing so, the two modes are executed in parallel.
  • a camera device equipped with the solid-state imaging device 103 according to the present embodiment is almost the same as the configuration shown in FIG. 33 except that the configuration of the front end unit 480 is the same as that shown in FIG.
  • the memory management unit 460 (FIG. 33) stores the output signal from the solid-state imaging device 103 in the memory unit 470 in accordance with the output timings of the mode A and the mode B in a distinguished manner. By controlling, image data of modes A and B can be obtained.
  • the generation amount of VCCD dark current increases at a high temperature, and noise charges mainly including smear increase in the presence of a subject with high illuminance.
  • the number of transfer stages is increased or What is necessary is just to discharge
  • the amount of generation of VCCD dark current decreases at low temperatures, and the noise charge when imaging under low illuminance conditions is dominated by VCCD dark current over the smear component.
  • the reverse transfer may be performed only during a partial period within the frame time such as the vertical blanking period.
  • Embodiment 4 Effects of Embodiment 4 According to the invention according to Embodiment 4, a plurality of different readout controls and a plurality of vertical charge transfer controls can be performed on each structure electrode array in the solid-state imaging device 103. Is possible.
  • a good image in which both horizontal thinning and pixel addition are compatible can be obtained by reversely transferring the noise component in the non-signal readout column VCCD and discharging it to the drain side.
  • the color filter is a primary color Bayer array, but is not particularly limited.
  • the first structure electrode row 161 and the second structure electrode row 162 are not limited to the connection state as shown in FIG. 2.
  • the first structure electrode row 163 and the second structure electrode row as shown in FIG. A connection state such as 164 may be used. That is, the first and second structural electrode columns control the application of the driving pulse if the connection state between the driving electrode 16 and the first wiring 13 and the second wiring 14 of the horizontal wiring portion 15 is different in each row. As a result, horizontal thinning readout control and vertical transfer control are possible, and various other connection patterns can be considered.
  • FIGS. 49 (a) and 49 (b) are views taken along lines EE ′ and FF ′ of FIG. 47, respectively.
  • a cross-sectional schematic diagram is shown.
  • the first wiring 13 ′ and the second wiring 14 ′ are asymmetrical in the vertical direction.
  • the wiring on the side connected by the drive electrode 16 and the contact 17 has a large width, and the other wiring does not have a large width.
  • FIG. 49 (c) shows a cross-sectional view in the case where a light shielding film is further formed in the example of FIG. 49 (b).
  • a step may occur in the shape of the light shielding film provided on the upper part of the VCCD and the wiring, and it may be difficult to ensure the flatness important for the image sensor.
  • the structure may be selected according to the purpose, for example, if the wiring width is expanded and the capacitance between the wirings is reduced in consideration of power consumption, the wiring width is not expanded.
  • the first structure electrode row 161 and the second structure electrode row 162 are alternately arranged or combined as a group of structure electrode rows combined in a total of 3 rows, and this is repeated in the horizontal direction.
  • more columns may be used as the arrangement unit. In this case, further diversification of drive modes becomes possible, and for example, a total of five structure electrode array groups each composed of one first structure electrode array 161 and four second structure electrode arrays 162 are provided.
  • the horizontal thinning rate can be reduced to 1/5, which contributes to the improvement of the output pixel reduction rate.
  • the selection output electrode group (sub-selection output unit) to which the independent drive pulse is applied is divided into three types of first selection output electrode group 251 to third selection output electrode group 253. However, four or more types may be used.
  • timing chart showing the drive timing shown in each embodiment is appropriately changed according to the number of the structured electrode row groups, the number of the selective output electrode groups, and the target drive mode (pixel addition example). .
  • the horizontal wiring portion 15 of each row can be arranged with only the first wiring 13 and the second wiring 14, the arrangement of the first structure electrode row 161 and the second structure electrode row 162, and the selection output portion 20. By combining the two, a sufficient output pixel reduction effect can be obtained and a variety of drive modes can be ensured.
  • the horizontal wiring portion 15 may include three or more wirings.
  • a third structure electrode row, a fourth structure electrode row, and the like are formed, and these are arranged at a constant period, whereby the drive mode Can be further diversified.
  • driving of any number of three or more phases is possible.
  • the optimum number of drive phases may be selected in consideration of the number of horizontal lines to be output and the saturation capacity of the VCCD.
  • the pitch of the HCCD signal storage area (horizontal transfer packet) is set to 2 or 3 columns of VCCD, but the selection output electrode group is appropriately handled according to the pixel addition example and the type of drive mode. Therefore, other pitches can be handled.
  • the saturation capacity of a pixel in a solid-state image sensor generally varies from product to product, and an internal bias value management circuit is provided to adjust the saturation capacity of each pixel to a target level. It is possible to set an internal bias value according to.
  • This internal bias value management circuit has a plurality of series resistors and a plurality of fuse wirings connected in parallel to these resistors, and burns out the fuse wiring connected in parallel to the resistors according to the saturation characteristics of the solid-state imaging device,
  • the optimum internal bias can be set for each product by controlling the voltage level generated by the internal bias value management circuit.
  • the actual substrate potential VSUB is defined as the above-mentioned internal bias added with the potential of the substrate potential adjustment signal ⁇ SUB applied from the drive unit 420 (see FIG. 15).
  • a substrate addition information management unit for pixel addition (hereinafter referred to as “potential information management unit”) is provided on the substrate of the solid-state imaging device.
  • the potential information management unit stores a plurality of pieces of substrate potential information indicating the substrate potential optimized in advance for each product corresponding to the number of added pixels in each drive mode, and the control unit 440 (see FIG. 15).
  • the addition pixel substrate potential information switching signal (MSEL) indicating the addition pixel number switching is received, the substrate potential information (MO) corresponding to the addition pixel number is output from the solid-state imaging device to the drive unit 420.
  • the drive unit 420 determines the substrate potential adjustment signal ⁇ SUB based on the substrate potential information (MO) received from the potential information management unit and the values of the electronic shutter level and the non-electronic shutter level commonly set for all products. .
  • the substrate potential adjustment signal ⁇ SUB is set to a preset electronic shutter level regardless of the driving mode of the solid-state imaging device when the electronic shutter is executed.
  • the non-electronic shutter level or a level obtained by adding a level defined by the substrate potential information (MO) to the non-electronic shutter level is set. Whether or not the level based on the substrate potential information (MO) is added to the non-electronic shutter level depends on the presence or absence of the substrate potential switching control signal (SUBC).
  • the control unit 440 transmits a substrate potential information switching signal (MSEL) for addition pixels to the potential information management unit of the solid-state image sensor 100, and the substrate potential information (MO) corresponding to the number of added pixels is solid.
  • the substrate potential switching control signal (SUBC) is transmitted to the driving unit 420 when switching the substrate potential VSUB, and the substrate electric information (MO) is transferred to the non-electronic shutter level.
  • the substrate potential adjustment signal ⁇ SUB added with the level added by (1) is applied to the semiconductor substrate to be changed to a predetermined substrate potential VSUB.
  • the substrate potential VSUB corresponding to the number of added pixels is set, and an optimum saturation output can be obtained.
  • the drive pulse applied to the V1, V3, V5, V7, and V9 electrodes of the first structure electrode row 161 in the imaging region is the second structure. Since it is the same pattern as the V10, V8, V6, V4, and V2 electrodes in the electrode array 162, the number of drive pulse input terminals can be reduced by connecting the V1 and V10, V3 and V8, V5 and V6, and V9 and V2 electrodes. Can be reduced.
  • the first output unit 41, the second output unit 42, and the like can be further reduced in size and cost by connecting the same operation timing and connecting the input terminals.
  • the present invention can efficiently reduce the number of output pixels while suppressing deterioration in image quality in a solid-state image sensor, and is particularly applicable to a solid-state image sensor having a large number of pixels and a camera device using the same.
  • Imaging unit 11 Photodiode 12 VCCD 13, 13 '1st wiring 14, 14' 2nd wiring 15 Horizontal wiring part 16 Drive electrode 17 Contact 18 Power supply bus line 20, 210, 220 Selection output part 21 Storage part 22 Barrier part 30, 33 HCCD 31 1st HCCD 32 Second HCCD 40 output unit 41 first output unit 42 second output unit 50 semiconductor substrates 161 and 163 first structure electrode row 162 and 164 second structure electrode row 251 first selection output electrode group 252 second selection output electrode group 253 second 3 selection output electrode group 400, 401 camera device 410 lens unit 420 drive unit 430 timing generation unit 440 control unit 450 signal processing unit 460 memory management unit 470 memory unit 480 analog front end 490 display unit 495 operation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Disclosed is a solid state image capture element (100), having a plurality of vertical driving electrodes (16), wherein each respective vertical driving electrode (16) is isolated from the vertical driving electrodes (16) in adjacent columns and rows, and is formed upon a VCCD (12) that is adjacent to each respective photodiode (11), a horizontal wiring part (15), which is disposed upon each row of the photodiodes (11), comprises a first and a second wiring part (13, 14) that are arranged horizontally, and each column of the vertical driving electrodes (16) has a first structure electrode column (161) and a second structure electrode column (162), which are connected to either the first or the second wiring part (13, 14) via a contact (17), wherein the pattern of the connections thereof differs therebetween.

Description

固体撮像素子、固体撮像装置及び固体撮像素子の駆動方法並びにカメラ装置Solid-state imaging device, solid-state imaging device, driving method of solid-state imaging device, and camera device
 本発明は、光電変換素子をマトリックス状に配置したエリア撮像用の固体撮像素子とその駆動方法、固体撮像装置及び当該固体撮像装置を搭載したカメラ装置に関する。 The present invention relates to a solid-state imaging device for area imaging in which photoelectric conversion elements are arranged in a matrix, a driving method thereof, a solid-state imaging device, and a camera device equipped with the solid-state imaging device.
 デジタルスチルカメラやデジタルビデオカメラなどのカメラ装置の撮像素子として、CCD(Charge Coupled Device)を用いたエリア撮像用固体撮像素子(以下、単に「固体撮像素子」という。)が多く用いられている。 2. Description of the Related Art Area imaging solid-state imaging devices (hereinafter simply referred to as “solid-state imaging devices”) using CCDs (Charge Coupled Devices) are often used as imaging devices for camera devices such as digital still cameras and digital video cameras.
 図50は、従来の固体撮像素子500の一般的な構成を示す概略平面図である。 FIG. 50 is a schematic plan view showing a general configuration of a conventional solid-state imaging device 500.
 同図に示すように固体撮像素子500は、複数のフォトダイオード511と、複数の垂直転送部(以下、「VCCD」という。)512と、1個の水平転送部(以下、「HCCD」という。)530と、出力部540とを半導体基板上に形成してなる。 As shown in the figure, the solid-state imaging device 500 includes a plurality of photodiodes 511, a plurality of vertical transfer units (hereinafter referred to as “VCCD”) 512, and a single horizontal transfer unit (hereinafter referred to as “HCCD”). ) 530 and an output portion 540 are formed on a semiconductor substrate.
 フォトダイオード511は、マトリックス状に配列されて撮像部510を形成する。各フォトダイオード511は、それぞれ光電変換機能と電荷蓄積機能を有する単位画素を構成するものであり、受光量に応じた信号電荷が蓄積される。 The photodiodes 511 are arranged in a matrix to form the imaging unit 510. Each photodiode 511 constitutes a unit pixel having a photoelectric conversion function and a charge accumulation function, and accumulates signal charges corresponding to the amount of received light.
 VCCD512は、フォトダイオード511の各列に沿って配置され、個々のフォトダイオード511から読み出した信号電荷を垂直方向の一方向へ向けて(図の矢印v方向)に転送するものである。 The VCCD 512 is arranged along each column of the photodiodes 511, and transfers the signal charges read from the individual photodiodes 511 in one direction in the vertical direction (in the direction of arrow v in the figure).
 HCCD530は、VCCD512の最終転送段に隣接して水平方向に設けられ、各VCCD512によって転送された信号電荷を水平方向(矢印h方向)に転送する。 The HCCD 530 is provided in the horizontal direction adjacent to the final transfer stage of the VCCD 512, and transfers the signal charges transferred by each VCCD 512 in the horizontal direction (arrow h direction).
 出力部540は、HCCD530によって転送された信号電荷を電圧に変換して画素信号として出力するものであり、フローティングデフュージョン(FD)部およびアンプ等によって構成されている。 The output unit 540 converts the signal charge transferred by the HCCD 530 into a voltage and outputs it as a pixel signal, and includes a floating diffusion (FD) unit and an amplifier.
 なお、図示していないが、撮像部510における各フォトダイオード511の受光面上部には、ベイヤー配列されたRGBの色フィルタが配設され、また、受光面以外の部分は遮光膜で覆われ、当該受光面以外の領域への光の入射が遮断されている。 Although not shown, a Bayer-arranged RGB color filter is disposed above the light receiving surface of each photodiode 511 in the imaging unit 510, and the portion other than the light receiving surface is covered with a light shielding film. Incidence of light to regions other than the light receiving surface is blocked.
 このような固体撮像素子500においては、静止画モードおよび動画モードの両方の撮像モードを切り替えて使用することがなされている。 In such a solid-state imaging device 500, both the still image mode and the moving image mode are switched and used.
 静止画モードで撮像を行う場合には、撮像部510の全画素から信号電荷をインタレースで読み出し、出力画素数を減らす必要はないが、動画モードで撮像を行う場合には、一定以上のフレームレート(30fps(フレーム/秒)、もしくは60fps)を確保するため、出力する画素信号の数を減らすようにしている((以下、「出力画素低減処理」という。)。 When imaging in still image mode, it is not necessary to read out signal charges from all pixels of the imaging unit 510 in an interlaced manner and reduce the number of output pixels. However, when imaging in moving image mode, a certain frame or more is required. In order to secure the rate (30 fps (frame / second) or 60 fps), the number of output pixel signals is reduced (hereinafter referred to as “output pixel reduction processing”).
 例えば、特許文献1には、図51に示すような撮像部510を有する固体撮像素子が開示されている。 For example, Patent Document 1 discloses a solid-state imaging device having an imaging unit 510 as shown in FIG.
 同図に示すように、この固体撮像素子は、VCCD512において、1画素に対し3個の駆動電極(第1電極521、第2電極522A(522A‘、522B、522B’)(図の斜線を付した部分の電極。以下、「第2電極群522」と総称する。)、第3電極523)が配置された垂直3相駆動の構造を有している。 As shown in the figure, this solid-state imaging device has three drive electrodes (first electrode 521, second electrode 522A (522A ′, 522B, 522B ′) (one hatched line in the figure) for one pixel in the VCCD 512. In the following description, the electrodes are collectively referred to as “second electrode group 522”.) And a third electrode 523) is disposed.
 このうち、第2電極群522は、各フォトダイオード511に蓄積された信号電荷を隣接するVCCD512に転送するための電極(読出し電極)を兼ねており、それぞれ独立して駆動パルスの印加が可能なように構成されている。 Among these, the second electrode group 522 also serves as an electrode (reading electrode) for transferring the signal charge accumulated in each photodiode 511 to the adjacent VCCD 512, and a drive pulse can be applied independently. It is configured as follows.
 第2電極群522のうち、第2電極522A、522A‘は、奇数列の読み出しを担当し、第2電極522B、422B’は、偶数列の読み出しを担当するようになっており、それぞれが垂直方向に1画素離れた別の読出し電極に配線524によりブリッジ接続されている。 In the second electrode group 522, the second electrodes 522A and 522A ′ are in charge of reading the odd columns, and the second electrodes 522B and 422B ′ are in charge of reading the even columns. It is bridge-connected by a wiring 524 to another readout electrode separated by one pixel in the direction.
 したがって、第2電極群522の全てに読み出し用の電圧(読出し電圧)を印加すれば、全ての画素の信号電荷を読み出すことができ、一部の第2電極のみに読出し電圧を印加することにより、該当する電極に隣接する画素の信号電荷のみが読み出されて出力画素低減処理が行われる。 Therefore, if a read voltage (read voltage) is applied to all of the second electrode group 522, the signal charges of all the pixels can be read, and the read voltage is applied only to some of the second electrodes. Only the signal charges of the pixels adjacent to the corresponding electrode are read out, and the output pixel reduction process is performed.
 この構成によれば、例えば、第2電極522Aのみに読出し電圧を印加すれば、図の二重丸(◎)を付したフォトダイオード511の信号電荷のみが読み出されて、出力画素数を4分の1に低減することができる。 According to this configuration, for example, if a read voltage is applied only to the second electrode 522A, only the signal charge of the photodiode 511 marked with a double circle (◎) in the figure is read, and the number of output pixels is 4 It can be reduced by a factor.
特開2000-152093号公報JP 2000-152093 A
 しかしながら、上記特許文献1に示されている構成によれば、出力画素低減率が4分の1に過ぎなく、さらなる高低減率を得ることが難しいという問題がある。 However, according to the configuration shown in Patent Document 1, the output pixel reduction rate is only a quarter, and it is difficult to obtain a further high reduction rate.
 すなわち、上記従来技術において、出力画素低減率を向上しようとすれば、独立して駆動できる第2駆動電極の数を増やして垂直駆動相数を増加させる必要があるが、それに伴い垂直方向に離れた画素に対してブリッジ接続する配線の本数を多くしなければならない。 That is, in the above prior art, if it is intended to improve the output pixel reduction rate, it is necessary to increase the number of second drive electrodes that can be driven independently to increase the number of vertical drive phases, but with the increase in the number of vertical drive phases, it is necessary to move away in the vertical direction. It is necessary to increase the number of wirings to be bridge-connected to the pixels.
 例えば、図51の例では、垂直4画素周期内に2本のブリッジ接続用配線が並行に配されているが、垂直方向に出力画素低減率を3分の1にしようとすれば、垂直方向に3画素離れた画素とのブリッジ接続を各列について行う必要があり、これにより垂直9画素周期内に3本のブリッジ接続用配線を並行配置しなければならない。さらに、出力画素低減率を向上させるためには、VCCD上に垂直方向におけるブリッジ接続用配線の本数を4本以上にしなければならない。 For example, in the example of FIG. 51, two bridge connection wirings are arranged in parallel in a vertical four-pixel period, but if the output pixel reduction rate is to be reduced to one third in the vertical direction, the vertical direction Therefore, it is necessary to perform bridge connection with pixels separated by three pixels for each column, and accordingly, three bridge connection wirings must be arranged in parallel within a vertical nine-pixel period. Further, in order to improve the output pixel reduction rate, the number of bridge connection wirings in the vertical direction on the VCCD must be four or more.
 多画素化すれば、その画素間距離はますます細くなり(例えば、1.5μm程度)、このような微細画素のVCCD上に多数のブリッジ接続用配線を配設することは、事実上困難である。 If the number of pixels is increased, the distance between the pixels becomes smaller (for example, about 1.5 μm), and it is practically difficult to arrange a large number of bridge connection wirings on the VCCD of such fine pixels. is there.
 本発明は、上記課題を解決するもので、多画素化されても出力画素低減率を容易に向上することができる固体撮像素子及びその駆動方法、固体撮像装置並び当該固体撮像装置を用いたカメラ装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-described problem. A solid-state imaging device capable of easily improving the output pixel reduction rate even when the number of pixels is increased, a driving method thereof, a solid-state imaging device, and a camera using the solid-state imaging device An object is to provide an apparatus.
 上記の目的を達成するために、本発明に係る固体撮像素子は、複数の光電変換素子が、マトリックス状に配置されてなる固体撮像素子であって、光電変換素子の各列に沿って配された複数の垂直駆動電極に複数の駆動パルスを印加することにより、光電変換素子の信号電荷を読み出して垂直方向に転送する複数の垂直転送部と、光電変換素子の各行に沿って配された複数の水平配線部と、前記複数の垂直転送部から転送された信号電荷を水平方向に転送する水平転送部と備え、前記垂直駆動電極は、個々の光電変換素子に対応して個別に設けられると共に、前記各水平配線部は、水平方向に伸びる第1と第2の配線を含んでおり、各垂直駆動電極が、当該垂直駆動電極と同じ行に配された水平配線部の第1と第2の配線のいずれかに選択的に接続されてなり、各水平配線部の第1もしくは第2の配線に接続された1列分の垂直駆動電極群を、構造電極列と定義するとき、所定の第1構造電極列と、当該第1構造電極列とは各行における水平配線部の第1、第2の配線との接続状態が異なる第2構造電極列とが、水平方向に組み合わせて配列されてなることを特徴とする。 In order to achieve the above object, a solid-state imaging device according to the present invention is a solid-state imaging device in which a plurality of photoelectric conversion elements are arranged in a matrix, and is arranged along each row of photoelectric conversion elements. By applying a plurality of drive pulses to the plurality of vertical drive electrodes, a plurality of vertical transfer units for reading out signal charges of the photoelectric conversion elements and transferring them in the vertical direction, and a plurality of arranged along each row of the photoelectric conversion elements And a horizontal transfer unit that transfers signal charges transferred from the plurality of vertical transfer units in the horizontal direction, and the vertical drive electrodes are individually provided corresponding to the individual photoelectric conversion elements. The horizontal wiring parts include first and second wirings extending in the horizontal direction, and the vertical driving electrodes are arranged in the same row as the vertical driving electrodes. Selective to one of the wiring When a vertical drive electrode group for one column connected to the first or second wiring of each horizontal wiring portion is defined as a structural electrode column, a predetermined first structural electrode column, One structure electrode column is characterized in that second structure electrode columns having different connection states with the first and second wirings of the horizontal wiring portion in each row are arranged in combination in the horizontal direction.
 この構成によれば、光電変換素子の各行に沿って水平配線部が配されており、同一の行方向に並ぶ複数の駆動電極は、水平配線部の第1もしくは第2の配線のいずれかと接続されて第1構造電極列、第2構造電極列を構成し、かつ、これらの構造電極列が組み合わされて水平方向に配列されているので、同行に並ぶ一部の駆動電極に対し、異なる駆動パルスを印加することができる。これにより第一構造電極列及び第二構造電極列における同一の垂直アドレスの画素の信号電荷の読出しに関して読出しパルスの印加有無の区分による水平間引き読出しが可能となる。また、各行の水平配線部の第1、第2配線に対して独立して駆動パルスを印加することができるのでVCCD上に多数のブリッジ接続用配線を並行配設する構成は必要なく、垂直転送部の駆動相数の増加が容易になる。これにより信号電荷を読み出す画素の組み合わせの自由度が増し、出力画素低減率が格段に向上する。しかも垂直方向に離れた駆動電極同士をブリッジ接続する配線を設ける必要がないので、多画素化による画素の微細化に十分対応できる。 According to this configuration, the horizontal wiring portion is arranged along each row of the photoelectric conversion elements, and the plurality of drive electrodes arranged in the same row direction are connected to either the first wiring or the second wiring of the horizontal wiring portion. Since the first structure electrode row and the second structure electrode row are configured and these structure electrode rows are combined and arranged in the horizontal direction, different driving is performed for some of the drive electrodes arranged in the same row. A pulse can be applied. Accordingly, it is possible to perform horizontal thinning-out reading according to whether or not a read pulse is applied with respect to reading of signal charges of pixels having the same vertical address in the first structure electrode row and the second structure electrode row. In addition, since driving pulses can be applied independently to the first and second wirings in the horizontal wiring portion of each row, it is not necessary to arrange many bridge connection wirings on the VCCD in parallel, and vertical transfer is possible. The number of drive phases in the part can be easily increased. As a result, the degree of freedom of the combination of pixels for reading signal charges is increased, and the output pixel reduction rate is significantly improved. In addition, since it is not necessary to provide wiring for connecting the drive electrodes separated in the vertical direction to each other, it is possible to sufficiently cope with pixel miniaturization by increasing the number of pixels.
 また、本発明に係る固体撮像素子は、前記第1構造電極列と第2構造電極列を合計でP列(P≧3)になるよう組み合わせた構造電極列群を配置単位として、水平方向に繰り返して配列してなることを特徴とする。 Further, the solid-state imaging device according to the present invention is configured in the horizontal direction with a structural electrode array group in which the first structural electrode array and the second structural electrode array are combined to be a total of P arrays (P ≧ 3) as an arrangement unit. It is characterized by being repeatedly arranged.
 この構成により、水平間引き後の出力列数を水平画素数の1/Pとすることができる。 This configuration allows the number of output columns after horizontal thinning to be 1 / P of the number of horizontal pixels.
 さらに、本発明に係る固体撮像素子は、第1構造電極列の垂直駆動相数は、第2構造電極列の垂直駆動相数と異なることを特徴とする。 Furthermore, the solid-state imaging device according to the present invention is characterized in that the number of vertical drive phases of the first structure electrode array is different from the number of vertical drive phases of the second structure electrode array.
 この構成により、水平間引き読出しを実現する効果に加え、垂直間引き率の異なる2種類の読出しを第一構造電極列と第二構造電極列のそれぞれで行い、一方の構造電極列の信号の出力を採用することで用途の異なる複数種類の垂直間引きを自由に設定できる。 With this configuration, in addition to the effect of realizing horizontal thinning readout, two types of readout with different vertical thinning rates are performed in each of the first structure electrode row and the second structure electrode row, and the signal output of one structure electrode row is output. By adopting, multiple types of vertical thinning for different purposes can be set freely.
 さらに、また、本発明に係る固体撮像素子は、前記水平転送部が、選択出力部を介して各垂直転送部と接続されており、前記選択出力部により選択された列の垂直転送部の信号電荷が、所定のタイミングで前記水平転送部に転送されることを特徴とする。 Furthermore, in the solid-state imaging device according to the present invention, the horizontal transfer unit is connected to each vertical transfer unit via the selection output unit, and the signal of the vertical transfer unit of the column selected by the selection output unit The charge is transferred to the horizontal transfer unit at a predetermined timing.
 このように選択出力部によって各垂直転送部から水平転送部への電荷転送のタイミングを制御することにより、複数の垂直転送部における信号電荷を、水平転送部の同じ信号格納領域内に格納することができるので、容易に水平加算が行える。 In this way, by controlling the timing of charge transfer from each vertical transfer unit to the horizontal transfer unit by the selection output unit, the signal charges in the plurality of vertical transfer units are stored in the same signal storage area of the horizontal transfer unit. Therefore, horizontal addition can be performed easily.
 ここで、前記選択出力部は、独立して駆動パルスが印加される第1副選択出力部、第2副選択出力部、第3副選択出力部を備え、第1、第2、第3副選択出力部は、それぞれ各垂直転送部と水平転送部との間に配設されるとしてもよい。 The selection output unit includes a first sub-selection output unit, a second sub-selection output unit, and a third sub-selection output unit to which drive pulses are applied independently, and the first, second, and third sub-selection output units. The selection output unit may be disposed between each vertical transfer unit and horizontal transfer unit.
 これにより、各垂直転送部から水平転送部への電荷転送のタイミングは、各副選択出力部へ印加する駆動パルスによって決定される。 Thereby, the timing of charge transfer from each vertical transfer unit to the horizontal transfer unit is determined by the drive pulse applied to each sub-selection output unit.
 さらに、本発明に係る固体撮像素子は、前記水平転送部が、前記垂直転送部の一方の端部に配された第1副水平転送部と、垂直転送部の他方の端部に配された第2副水平転送部とからなり、第1構造電極列より転送される信号電荷は、第1水平転送部に転送され、第2構造電極列より転送される信号電荷は、第2水平転送部に転送され、第1及び第2構造電極列の信号電荷転送方向が互いに逆方向であることを特徴とする。 Further, in the solid-state imaging device according to the present invention, the horizontal transfer unit is arranged at a first sub-horizontal transfer unit arranged at one end of the vertical transfer unit and at the other end of the vertical transfer unit. The signal charge transferred from the first structure electrode array is transferred to the first horizontal transfer section, and the signal charge transferred from the second structure electrode array is transferred to the second horizontal transfer section. The signal charge transfer directions of the first and second structure electrode arrays are opposite to each other.
 これにより、第1構造電極列、第2構造電極列ごとに転送される水平転送部が異なるので、構造電極列ごとに異なる駆動相数を設定して、対応する水平転送部に同時に出力することが可能となる。また、水平転送部を2つ有するため、1つの水平転送部で処理するよりも出力を速くすることができる。 Thereby, since the horizontal transfer unit transferred for each of the first structure electrode row and the second structure electrode row is different, a different number of drive phases is set for each structure electrode row and simultaneously output to the corresponding horizontal transfer unit. Is possible. In addition, since two horizontal transfer units are provided, output can be made faster than processing by one horizontal transfer unit.
 さらに、本発明に係る固体撮像素子は、前記第1副水平転送部が、第1選択出力部を介して第1構造電極列が配された垂直転送部と接続され、前記第2副水平転送部は、第2選択出力部を介して第2構造電極列が配された垂直転送部と接続され、前記第1、第2の選択出力部により選択された列の垂直転送部の信号電荷が、対応する第1、第2の水平転送部にそれぞれ所定のタイミングで転送されることを特徴とする。 Furthermore, in the solid-state imaging device according to the present invention, the first sub-horizontal transfer unit is connected to a vertical transfer unit in which the first structure electrode array is arranged via a first selection output unit, and the second sub-horizontal transfer is performed. Is connected to the vertical transfer unit in which the second structure electrode column is arranged via the second selection output unit, and the signal charge of the vertical transfer unit of the column selected by the first and second selection output units is , The data is transferred to the corresponding first and second horizontal transfer units at a predetermined timing.
 この構成により、第1、第2選択出力部によって第1、第2構造電極列により垂直転送された信号電荷の第1、第2水平転送部に転送するタイミングを制御して、複数の垂直転送部における信号電荷を対応する第1、第2水平転送部の同じ信号格納領域内に格納することができるので容易に水平加算が行える。 With this configuration, a plurality of vertical transfers are performed by controlling the timing at which the signal charges vertically transferred by the first and second structure electrode arrays are transferred to the first and second horizontal transfer units by the first and second selection output units. Since the signal charges in the unit can be stored in the same signal storage area of the corresponding first and second horizontal transfer units, horizontal addition can be easily performed.
 ここで、前記各第1と第2の選択出力部は、それぞれ独立して駆動パルスが印加される第1副選択出力部、第2副選択出力部、第3副選択出力部を備え、前記第1、第2、第3副選択出力部は、それぞれ各垂直転送部とその転送先の第1もしくは第2の水平転送部との間に配設されることを特徴とする。 Here, each of the first and second selection output units includes a first sub-selection output unit, a second sub-selection output unit, and a third sub-selection output unit to which drive pulses are applied independently, The first, second, and third sub-selection output units are respectively disposed between each vertical transfer unit and the first or second horizontal transfer unit that is the transfer destination.
 これにより、各垂直転送部から第1、第2水平転送部への電荷転送のタイミングは、各副選択出力部へ印加する駆動パルスによって決定することができる。 Thereby, the timing of charge transfer from each vertical transfer unit to the first and second horizontal transfer units can be determined by the drive pulse applied to each sub-selection output unit.
 また、ここで前記第1の選択出力部は、第1および第2副選択出力部を備えると共に、前記第2の選択出力部は、第3副選択出力部を備え、かつ、第1、第2、第3副選択出力部は独立して駆動パルスが印加され、前記各第1、第2副選択出力部は、第1構造電極列の配された垂直転送部と第1副水平転送部との間に配され、前記第3副選択出力部は、第2構造電極列の配された垂直転送部と第2副水平転送部との間に配設されるとしてもよい。 In addition, the first selection output unit includes first and second sub selection output units, and the second selection output unit includes a third sub selection output unit, and the first and second sub selection output units. The driving pulses are independently applied to the second and third sub-selection output units, and each of the first and second sub-selection output units includes a vertical transfer unit and a first sub-horizontal transfer unit in which the first structure electrode array is arranged. The third sub-selection output unit may be disposed between the vertical transfer unit and the second sub-horizontal transfer unit in which the second structure electrode array is arranged.
 この構成により、第1、第2水平転送部へ転送する共通な副選択出力部がなくなるので、第1と第2構造電極列の一方の構造電極列で画素の信号電荷を読み出しがなされ、他方の構造電極列を非信号読出し列とした場合でも、非信号読み出し列の副選択出力部を動作させずにおくことができ、ノイズ成分となる非信号読出し列の電荷が出力信号に混入することを防ぐ効果を得る。 With this configuration, since there is no common sub-selection output unit for transferring to the first and second horizontal transfer units, the signal charge of the pixel is read out by one of the first and second structure electrode columns, and the other Even when the non-signal readout column is used as the structure electrode column, the sub-selection output unit of the non-signal readout column can be kept out of operation, and the charge of the non-signal readout column that becomes a noise component is mixed into the output signal. Get the effect to prevent.
 さらに、本発明に係る固体撮像素子は、水平転送部が接続されていない側の垂直転送部の端部に所定の直流バイアスが印加される電荷排出部が接続されてなることを特徴とする。 Furthermore, the solid-state imaging device according to the present invention is characterized in that a charge discharging unit to which a predetermined DC bias is applied is connected to an end of the vertical transfer unit on the side where the horizontal transfer unit is not connected.
 この構成により、非読出し列に残存する電荷を、電荷排出部に廃棄し、ノイズが出力信号に混入する事を防ぐことができる。 With this configuration, it is possible to prevent the charge remaining in the non-readout column from being discarded in the charge discharging unit and to mix noise into the output signal.
 さらに、本発明に係る固体撮像装置は、上記の固体撮像素子と、当該固体撮像素子の第1構造電極列を駆動する第1の駆動パルスと、前記第2構造電極列を駆動する第2の駆動パルスとを生成し、それぞれ第1と第2の構造電極列に印加する駆動手段とを備えることを特徴とする。 Furthermore, a solid-state imaging device according to the present invention includes the above-described solid-state imaging device, a first drive pulse for driving the first structure electrode row of the solid-state imaging device, and a second drive for driving the second structure electrode row. Drive means for generating drive pulses and applying the drive pulses to the first and second structured electrode arrays, respectively.
 これにより、第1構造電極列と第2構造電極列に異なる駆動パルスを印加して、例えば、 第1構造電極列に対応する光電変換素子列の信号電荷のみを読出することができるので、水平間引きが容易に行える。また、各列の垂直駆動数を多くすることにより垂直間引きも容易に行うことができる。 Accordingly, different drive pulses are applied to the first structure electrode array and the second structure electrode array, and for example, only the signal charges of the photoelectric conversion element array corresponding to the first structure electrode array can be read out. Thinning can be performed easily. Further, vertical thinning can be easily performed by increasing the number of vertical drives in each column.
 また、本発明に係る固体撮像装置は、前記駆動手段が、第1もしくは第2構造電極列のいずれか一方を駆動させて、対応する光電変換素子列から信号電荷を読み出して垂直転送する際に、信号電荷を読出さない他方の構造電極列における垂直転送動作を停止、あるいは前記信号電荷を読み出して垂直転送する方向と逆方向に垂直転送動作を実行させるように前記第1および/もしくは第2の駆動パルスを生成することを特徴とする。 In the solid-state imaging device according to the present invention, when the driving unit drives either one of the first or second structure electrode rows and reads the signal charges from the corresponding photoelectric conversion element rows and vertically transfers them. The vertical transfer operation in the other structure electrode row that does not read out the signal charge is stopped, or the vertical transfer operation is executed in the direction opposite to the direction in which the signal charge is read out and transferred vertically. The drive pulse is generated.
 これにより、ノイズ成分として非読出し列に発生する電荷が少ない場合は無用な電力消費を抑え、電荷が多い場合は非信号読み出し列の電荷を逆方向に排出することが可能となり、出力信号に混入することを防ぐことができる。 This makes it possible to suppress unnecessary power consumption when the charge generated as a noise component in the non-read column is small, and to discharge the charge from the non-signal read column in the reverse direction when there is a large amount of charge, which is mixed into the output signal. Can be prevented.
 また、本発明に係る固体撮像装置は、前記駆動手段が、第1構造電極列を第1のモードで駆動し、第2構造電極列を第2のモードで駆動し、かつ、これらのモードを並行して実行させるよう前記第1と第2の駆動パルスを生成することを特徴とする。 In the solid-state imaging device according to the present invention, the driving unit drives the first structure electrode array in the first mode, drives the second structure electrode array in the second mode, and performs these modes. The first and second drive pulses are generated so as to be executed in parallel.
 これにより、異なる2種類の駆動モードによる撮像信号を同時に出力することが可能となる。 This makes it possible to simultaneously output imaging signals in two different drive modes.
 また、本発明に係る固体撮像装置は、前記駆動手段が、第1構造電極列を駆動する第1のモードのフレームレートが、第2構造電極列を駆動する第2のモードのフレームレートのK倍(Kは2以上の整数)となるように第1と第2の駆動パルスを生成することを特徴とする。 Further, in the solid-state imaging device according to the present invention, the frame rate of the first mode in which the driving unit drives the first structure electrode row is K of the frame rate of the second mode in which the second structure electrode row is driven. The first and second drive pulses are generated so as to be double (K is an integer of 2 or more).
 これにより、フレームレートの異なる2種類の駆動モードを並行して実施する際において、各駆動モードの読出し及び信号電荷転送の駆動パルスの印加パターンを容易にすることができる。 Thus, when two types of drive modes having different frame rates are executed in parallel, it is possible to facilitate the application pattern of drive pulses for reading of each drive mode and signal charge transfer.
 また、本発明に係る固体撮像装置は、前記駆動手段が、前記第1と第2のモードの一方のモードの水平ライン出力期間の後に、他方のモードの水平ライン出力期間が続くように前記第1と第2の駆動パルスを生成することを特徴とする。 Further, in the solid-state imaging device according to the present invention, the driving unit is configured so that the horizontal line output period of one mode of the first mode and the second mode is followed by the horizontal line output period of the other mode. The first and second drive pulses are generated.
 これにより、水平転送部が1チャンネルであっても、二種類の駆動モードを並行して駆動することができる。 Thus, even if the horizontal transfer unit has one channel, two types of drive modes can be driven in parallel.
 また、本発明に係る固体撮像装置は、前記駆動手段が、第1のモードでの画素加算数が、第2のモードでの画素加算数よりも少ない場合に、第1のモードでの信号電荷読み出し時における固体撮像素子の基板電位を第1の電位になるように設定すると共に、第2のモードでの信号電荷読み出し時の固体撮像素子の基板電位を前記第1の電位より高い第2の電位になるように設定し、かつ、光電変換素子による露光時間中は、基板電位を第1の電位及び第2の電位以下である第3の電位に設定した状態で維持するように基板電位を制御することを特徴とする。 In the solid-state imaging device according to the present invention, when the driving unit has a smaller pixel addition number in the first mode than the pixel addition number in the second mode, the signal charge in the first mode is The substrate potential of the solid-state imaging device at the time of reading is set to be the first potential, and the substrate potential of the solid-state imaging device at the time of reading the signal charge in the second mode is higher than the first potential. The substrate potential is set so that the substrate potential is maintained at a third potential that is equal to or lower than the first potential and the second potential during the exposure time by the photoelectric conversion element. It is characterized by controlling.
 これにより、2種類の駆動モードを同時駆動させる際に両モードで画素加算数が異なる場合でも双方の読出し対象画素に対して最適な飽和容量を設定できる。 This makes it possible to set an optimum saturation capacity for both pixels to be read even when the two types of drive modes are driven simultaneously, even if the number of pixel additions differs between the two modes.
 また、本発明に係る固体撮像装置は、前記駆動手段が、第(N-2)列および第(N+2)列の第M行の画素の信号電荷を第1構造電極列により読み出し、第N列目の第(M-2)行および第(M+2)行の画素の各信号電荷を第2構造電極列により読み出して垂直加算し、第(N-2)列、第N列及び第(N+2)列の信号電荷を水平加算して4画素分の加算出力を行う(N、Mは、3以上の整数)ように前記第1と第2の駆動パルスを生成することを特徴とする。 In the solid-state imaging device according to the present invention, the driving unit reads out the signal charges of the pixels in the Mth row of the (N−2) th column and the (N + 2) th column by the first structure electrode column, The signal charges of the pixels in the (M-2) th and (M + 2) th rows of the eye are read out by the second structure electrode column and vertically added, and the (N-2) th, Nth, and (N + 2) th columns are added. The first and second drive pulses are generated so that the signal charges of the columns are horizontally added to perform addition output for four pixels (N and M are integers of 3 or more).
 また、本発明に係る固体撮像装置は、前記駆動手段が、第(N-2)列および第(N+2)列の第(M-2)行及び第(M+2)行の画素の各信号電荷を第1構造電極列により読み出して垂直加算し、第N列の第M行の画素の信号電荷を第2構造電極列に読み出して、第(N-2)列、第N列目及び第(N+2)列の信号電荷を水平加算して5画素分の加算出力を行う(N、Mは、3以上の整数)ように前記第1と第2の駆動パルスを生成することを特徴とする。 Further, in the solid-state imaging device according to the present invention, the driving unit may obtain the signal charges of the pixels in the (M−2) th and (M + 2) th rows of the (N−2) th column and the (N + 2) th column. Read out by the first structure electrode column and vertically add, and read out signal charges of the pixels in the Mth row of the Nth column to the second structure electrode column, and read the (N−2) th, Nth and (N + 2) th columns. ) The first and second drive pulses are generated so that the signal charges in the columns are horizontally added and an addition output for five pixels is performed (N and M are integers of 3 or more).
 これによって、水平間引き読出し出力の効果に加え、複雑な加算対象画素の設定が可能となる。 This makes it possible to set complex addition target pixels in addition to the effect of horizontal thinning readout output.
 また、本発明に係る固体撮像装置は、前記駆動手段が、前記第N行の第M列の画素の信号電荷を、固体撮像素子の基板電位を第1の電位に設定して読み出した後に、基板電位を前記第1の電位よりも高い第2の電位に設定し、前記第(N-2)列および第(N+2)列の第(M-2)行及び第(M+2)行の画素の各信号電荷を読み出した後に基板電位を第1の電位に再設定し、第(N-2)列、第N列目及び第(N+2)列の信号電荷を水平加算して出力を行い、露光時間中は基板電位を第1の電位以下の第3の電位に維持することを特徴とする。 In the solid-state imaging device according to the present invention, after the driving unit reads out the signal charges of the pixels in the Mth column of the Nth row by setting the substrate potential of the solid-state imaging device to the first potential, The substrate potential is set to a second potential higher than the first potential, and the (M−2) -th and (M + 2) -th rows of pixels in the (N−2) th column and the (N + 2) th column are set. After reading each signal charge, the substrate potential is reset to the first potential, and the signal charges in the (N−2) th, Nth, and (N + 2) th columns are horizontally added and output for exposure. During the time, the substrate potential is maintained at a third potential equal to or lower than the first potential.
 これにより、水平間引き読出し出力の効果に加え、複雑な加算対象画素の設定が可能となり、かつ加算後の画素重心に位置する画素に対し飽和の重み付けを行った画素加算画像の出力が可能となる。 Thereby, in addition to the effect of the horizontal thinning readout output, it is possible to set a complicated pixel to be added, and to output a pixel addition image in which saturation weighting is performed on the pixel located at the pixel centroid after the addition. .
 また、本発明は、上記固体撮像装置を搭載したカメラ装置としてもよい。 Further, the present invention may be a camera device equipped with the solid-state imaging device.
本発明の実施の形態1に係る固体撮像素子の構造を示す概略平面図である。It is a schematic plan view which shows the structure of the solid-state image sensor which concerns on Embodiment 1 of this invention. 上記固体撮像素子の撮像部における画素構造を示す平面図である。It is a top view which shows the pixel structure in the imaging part of the said solid-state image sensor. (a)(b)は、それぞれ図2のA-A’矢視断面、B-B‘矢視断面における各駆動電極と第1配線、第2配線との接続状態を説明するための模式図であり、(c)は、(b)においてさらに遮光膜を加えた図である。(A) and (b) are schematic diagrams for explaining the connection state between each drive electrode, the first wiring, and the second wiring in the AA ′ arrow cross-section and the BB ′ arrow cross-section of FIG. 2, respectively. (C) is a view in which a light-shielding film is further added in (b). フォトダイオードの受光面に配される色フィルタの配置パターン(ベイヤー配置)を示す図である。It is a figure which shows the arrangement pattern (Bayer arrangement) of the color filter arrange | positioned at the light-receiving surface of a photodiode. 実施の形態1に係る固体撮像素子における電極配置図である。3 is an electrode arrangement diagram in the solid-state imaging element according to Embodiment 1. FIG. (a)(b)は、それぞれ実施の形態1に係る固体撮像素子の駆動において画素加算処理の対象となる対象画素の配置と加算後の画素重心位置を示す図(画素加算図)である。FIGS. 7A and 7B are diagrams (pixel addition diagrams) illustrating the arrangement of target pixels to be subjected to pixel addition processing in the driving of the solid-state imaging element according to the first embodiment and the pixel barycentric position after the addition. FIG. 図5の電極配置図において、図6(a)に係る画素加算処理を行う場合の読み出し対象画素に番号を付記した図(読出画素配置図)である。In the electrode arrangement diagram of FIG. 5, FIG. 6 is a diagram (read pixel arrangement diagram) in which numbers are added to readout target pixels when the pixel addition process according to FIG. 図7において読み出し対象画素にアドレスを付すと共に、水平画素加算処理を1水平ラインだけ実施した際にHCCDに格納される信号電荷の情報を付記した図(アドレス割当図)である。FIG. 8 is a diagram (address allocation diagram) in which information on signal charges stored in the HCCD is added when an address is assigned to a pixel to be read in FIG. 7 and horizontal pixel addition processing is performed for only one horizontal line. 図6(a)に係る画素加算処理を行う場合における信号電荷読み出し時の駆動タイミングを示すタイミングチャートである。FIG. 7 is a timing chart showing drive timings at the time of signal charge readout when performing pixel addition processing according to FIG. 図6(a)に係る画素加算処理を行う場合における水平ブランキング期間における駆動タイミングを示すタイミングチャートである。FIG. 7 is a timing chart showing drive timings in a horizontal blanking period when performing pixel addition processing according to FIG. 図5の電極配置図において、図6(b)に係る画素加算処理を行う場合の読み出し対象画素に番号を付記した読出画素配置図である。6 is a readout pixel arrangement diagram in which numbers are added to readout target pixels when the pixel addition processing according to FIG. 6B is performed in the electrode arrangement diagram of FIG. 5. 図11において読み出し対象画素にアドレスを付すと共に、水平画素加算駆動を1水平ラインだけ実施した際にHCCDに格納される信号電荷の情報を付記したアドレス割当図である。FIG. 12 is an address assignment diagram in which an address is assigned to a pixel to be read in FIG. 11 and signal charge information stored in the HCCD is added when horizontal pixel addition driving is performed for only one horizontal line. 図6(b)に係る画素加算処理を行う場合における信号電荷読み出し動作の駆動タイミングを示すタイミングチャートである。7 is a timing chart showing drive timing of a signal charge readout operation when performing pixel addition processing according to FIG. 固体撮像素子のフォトダイオードの基板の厚み方向における、電位分布と基板電位との関係を示す図である。It is a figure which shows the relationship between electric potential distribution and a board | substrate potential in the thickness direction of the board | substrate of the photodiode of a solid-state image sensor. 実施の形態1に係る固体撮像素子を搭載したカメラ装置の構成の一例を示すブロック図である。1 is a block diagram illustrating an example of a configuration of a camera device equipped with a solid-state imaging device according to Embodiment 1. FIG. 本発明の実施の形態2に係る固体撮像素子の構成を示す電極配置図である。It is an electrode arrangement | positioning figure which shows the structure of the solid-state image sensor which concerns on Embodiment 2 of this invention. 実施の形態2にかかる固体撮像素子により画素加算処理を行う場合の画素加算図である。FIG. 6 is a pixel addition diagram when pixel addition processing is performed by the solid-state imaging device according to the second embodiment. 図16の電極配置図において読み出し対象画素に番号を付記した読出画素配置図である。FIG. 17 is a read pixel arrangement diagram in which numbers are added to the read target pixels in the electrode arrangement diagram of FIG. 16. 図18において読み出し対象画素にアドレスを付すと共に、水平画素加算駆動を1水平ラインだけ実施した際にHCCDに格納される信号電荷の情報を付記したアドレス割当図である。FIG. 19 is an address assignment diagram in which an address is assigned to a pixel to be read in FIG. 18 and signal charge information stored in the HCCD is added when horizontal pixel addition driving is performed for only one horizontal line. 図19において水平画素加算駆動を3水平ライン分実施した際にHCCDに格納される信号電荷の情報を付記した図である。FIG. 20 is a diagram in which information on signal charges stored in the HCCD when the horizontal pixel addition driving is performed for three horizontal lines in FIG. 19 is added. 実施の形態2における信号電荷読み出し動作の駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timing of signal charge read operation in the second embodiment. 実施の形態2における水平ブランキング期間における駆動タイミングを示すタイミングチャートである。6 is a timing chart showing drive timing in a horizontal blanking period in the second embodiment. 実施の形態2において、第1構造電極列におけるVCCDからHCCDへの転送の様子を示す電荷転送図である。In Embodiment 2, it is an electric charge transfer figure which shows the mode of transfer from VCCD to HCCD in the 1st structure electrode row | line | column. 実施の形態2において、第2構造電極列におけるVCCDからHCCDへの転送の様子を示す電荷転送図である。In Embodiment 2, it is an electric charge transfer figure which shows the mode of transfer from VCCD to HCCD in the 2nd structure electrode row | line | column. 本発明の実施の形態3に係る固体撮像素子の構造を示す電極配置図である。It is an electrode arrangement | positioning figure which shows the structure of the solid-state image sensor which concerns on Embodiment 3 of this invention. 実施の形態3における読み出し対象となる画素を示す図である。FIG. 10 is a diagram illustrating a pixel to be read in Embodiment 3. 実施の形態3に係る固体撮像素子において、第1構造電極列のみを使用して画素加算駆動を行う場合の画素加算図である。FIG. 10 is a pixel addition diagram when pixel addition driving is performed using only the first structure electrode row in the solid-state imaging device according to the third embodiment. 実施の形態3に係る固体撮像素子において、第2構造電極列のみを使用して画素加算駆動を行う場合の画素加算図である。FIG. 10 is a pixel addition diagram when pixel addition driving is performed using only the second structure electrode row in the solid-state imaging device according to the third embodiment. 図25の電極配置図において読み出し対象画素に番号を付記した読出画素配置図である。FIG. 26 is a readout pixel layout diagram in which numbers are added to readout target pixels in the electrode layout diagram of FIG. 25. 図25において読み出し対象画素にアドレスを付すと共に、水平画素加算駆動を1水平ライン実施した際にHCCDに格納される信号電荷の情報を付記したアドレス割当図である。FIG. 26 is an address assignment diagram in which an address is assigned to a pixel to be read in FIG. 25 and signal charge information stored in the HCCD is added when horizontal pixel addition driving is performed for one horizontal line. 実施の形態3における信号電荷読み出し動作の駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timing of signal charge read operation in the third embodiment. 実施の形態3における水平ブランキング期間における駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timings in a horizontal blanking period in the third embodiment. 実施の形態3に係る固体撮像素子を搭載したカメラ装置の構成の一例を示すブロック図である。FIG. 6 is a block diagram illustrating an example of a configuration of a camera device on which a solid-state imaging device according to a third embodiment is mounted. 実施の形態3において、基板電位を変化させる場合の信号電荷読み出し動作の駆動タイミングの変形例を示すタイミングチャートである。FIG. 10 is a timing chart showing a modification of the drive timing of the signal charge read operation when the substrate potential is changed in the third embodiment. 本発明の実施の形態4に係る固体撮像素子の構成を示す電極配置図である。It is an electrode arrangement | positioning figure which shows the structure of the solid-state image sensor which concerns on Embodiment 4 of this invention. 図35の模式図において読み出し対象画素に番号を付記した読出画素配置図である。FIG. 36 is a read pixel arrangement diagram in which numbers are added to the read target pixels in the schematic diagram of FIG. 35. 図36において読み出し対象画素にアドレスを付したアドレス割当図である。FIG. 37 is an address assignment diagram in which an address is assigned to a readout target pixel in FIG. 36. 実施の形態4に係る固体撮像素子をモードAで駆動する場合における信号電荷読み出し動作の駆動タイミングを示すタイミングチャートである。6 is a timing chart showing the drive timing of a signal charge read operation when the solid-state imaging device according to the fourth embodiment is driven in mode A. 実施の形態4において固体撮像素子をモードAで駆動する場合における水平ブランキング期間における駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timings in a horizontal blanking period when the solid-state imaging device is driven in mode A in the fourth embodiment. 実施の形態4において固体撮像素子をモードBで駆動する場合における信号電荷読み出し動作の駆動タイミングを示すタイミングチャートである。10 is a timing chart showing the drive timing of a signal charge read operation when the solid-state imaging device is driven in mode B in the fourth embodiment. 実施の形態4において固体撮像素子をモードBで駆動する場合における水平ブランキング期間における駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timings in a horizontal blanking period when the solid-state imaging device is driven in mode B in the fourth embodiment. 実施の形態4においてモードA、モードBの駆動を並行して実施する場合における1フレーム時間における信号の出力切り替えのタイミングを示す図である。FIG. 10 is a diagram illustrating signal output switching timing in one frame time when driving in modes A and B is performed in parallel in the fourth embodiment. 実施の形態4のモードA及びモードB並行駆動による信号電荷読み出し動作における読出駆動パターンChABに関する駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timings related to a read drive pattern ChAB in a signal charge read operation by mode A and mode B parallel drive according to the fourth embodiment. 実施の形態4のモードA及びモードB並行駆動における信号電荷読み出し動作における読出駆動パターンChBに関する駆動タイミングを示すタイミングチャートである。12 is a timing chart showing drive timings related to a read drive pattern ChB in a signal charge read operation in the mode A and mode B parallel drive according to the fourth embodiment. 実施の形態4のモードA及びモードB並行駆動における水平ブランキング期間の垂直駆動パターンP1に関する駆動タイミングを示すタイミングチャートである。14 is a timing chart showing drive timings related to the vertical drive pattern P1 in the horizontal blanking period in the mode A and mode B parallel drive according to the fourth embodiment. 実施の形態4のモードA及びモードB並行駆動における水平ブランキング期間の垂直駆動パターンP2に関する駆動タイミングを示すタイミングチャートである。10 is a timing chart showing drive timings related to a vertical drive pattern P2 in a horizontal blanking period in the mode A and mode B parallel drive according to the fourth embodiment. 第1、第2構造電極列の水平配線部の第1配線、第2配線との接続パターンの変形例を示す画素構造図である。It is a pixel structure figure which shows the modification of the connection pattern with the 1st wiring of the horizontal wiring part of a 1st, 2nd structure electrode row | line, and a 2nd wiring. 水平配線部の形状の変形例を示す画素構造図である。It is a pixel structure figure which shows the modification of the shape of a horizontal wiring part. (a)(b)は、図47のE-E’線矢視断面、F-F’線矢視断面のそれぞれにおける各駆動電極と第1配線、第2配線とのコンタクトの状態を説明するための模式図であり、(c)は、(b)においてさらに遮光膜を加えた図である。(A) and (b) explain the state of contact between each drive electrode and the first wiring and the second wiring in each of the cross sections taken along the line EE ′ and the line FF ′ in FIG. (C) is a diagram in which a light shielding film is further added in (b). 従来の一般的な固体撮像素子の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the conventional general solid-state image sensor. 従来の固体撮像装置の撮像部の構成例を示す図である。It is a figure which shows the structural example of the imaging part of the conventional solid-state imaging device.
 以下、本発明に係る固体撮像素子100の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the solid-state imaging device 100 according to the present invention will be described with reference to the drawings.
 <実施の形態1>
 (1)固体撮像素子100の全体構成
 図1は、本発明の実施の形態1に係る固体撮像素子100の構造を示す概略平面図である。同図に示すように固体撮像素子100は、撮像部10と選択出力部20とHCCD30と、出力部40とからなる。
<Embodiment 1>
(1) Overall Configuration of Solid-State Image Sensor 100 FIG. 1 is a schematic plan view showing the structure of the solid-state image sensor 100 according to Embodiment 1 of the present invention. As shown in the figure, the solid-state imaging device 100 includes an imaging unit 10, a selection output unit 20, an HCCD 30, and an output unit 40.
 撮像部10は、光電変換素子としてのフォトダイオード11が、マトリックス状に配されると共に、各フォトダイオードの列に沿って、それらから読み出した信号電荷を垂直方向に転送するVCCD12が配されてなる。 The imaging unit 10 includes photodiodes 11 as photoelectric conversion elements arranged in a matrix, and a VCCD 12 that transfers signal charges read therefrom in the vertical direction along each photodiode column. .
 選択出力部20は、各VCCD12の端部と、HCCD30との接合部に配されるものであり、VCCD12により転送されてきた信号電荷を、一旦蓄積して所定のタイミングでHCCD30に出力するものである。 The selection output unit 20 is arranged at the junction between the end of each VCCD 12 and the HCCD 30, and temporarily accumulates the signal charges transferred by the VCCD 12 and outputs them to the HCCD 30 at a predetermined timing. is there.
 HCCD30は、選択出力部20から出力された信号電荷を、水平方向に搬送して出力部40に出力する。 The HCCD 30 conveys the signal charge output from the selection output unit 20 in the horizontal direction and outputs it to the output unit 40.
 出力部40は、上記HCCD30によって転送された信号電荷を電圧に変換するフローティングデフュージョン部および変換された電圧を所定範囲のレベルになるように増幅するアンプ等によって構成されている。 The output unit 40 includes a floating diffusion unit that converts the signal charge transferred by the HCCD 30 into a voltage, and an amplifier that amplifies the converted voltage to a predetermined level.
 (2)撮像部10の構成
 図2は、上記撮像部10における駆動電極の配置とその配線の構造を説明するため、その5×5画素分の領域を拡大して示す図である。
(2) Configuration of Image Pickup Unit 10 FIG. 2 is an enlarged view showing an area of 5 × 5 pixels in order to explain the arrangement of the drive electrodes and the wiring structure thereof in the image pickup unit 10.
 この拡大図に示すように、マトリックス状に配されたフォトダイオード11の各列に隣接してVCCD12が並行に配設されており、それぞれ対応するフォトダイオード列から読み出した信号電荷を垂直に転送する。 As shown in this enlarged view, VCCDs 12 are arranged in parallel adjacent to each column of photodiodes 11 arranged in a matrix, and signal charges read from the corresponding photodiode columns are transferred vertically. .
 各VCCD12の上面には、駆動電極16が配設されると共に、駆動電極16に駆動パルスを供給するため、各フォトダイオード11の行毎に、水平配線部15が配設される。 A drive electrode 16 is disposed on the upper surface of each VCCD 12, and a horizontal wiring portion 15 is disposed for each row of the photodiodes 11 in order to supply a drive pulse to the drive electrode 16.
 駆動電極16は、1個のフォトダイオード11に隣接してVCCD12上に1個だけ設けられる。駆動電極16は、列方向、行方向ともに隣接の駆動電極16と接触しない形状で、かつ1層で形成されている。 Only one drive electrode 16 is provided on the VCCD 12 adjacent to one photodiode 11. The drive electrode 16 has a shape that does not contact the adjacent drive electrode 16 in both the column direction and the row direction, and is formed of one layer.
 各水平配線部15は、それぞれ対応する行におけるフォトダイオード11を上下から挟むようにして水平に伸びる第1配線13、第2配線14の2つの配線を含み、このいずれかの配線と駆動電極16を電気的に接続するためのコンタクト17が形成される。 Each horizontal wiring portion 15 includes two wirings of a first wiring 13 and a second wiring 14 extending horizontally so as to sandwich the photodiodes 11 in the corresponding rows from above and below, and electrically connecting any one of these wirings and the drive electrode 16 to each other. A contact 17 is formed for connection.
 本実施の形態では、第1列目の駆動電極16は、全て各行における水平配線部15の第1配線13に接続され、第2列目の駆動電極16は、全て各行における水平配線部15の第2配線14に接続されている。 In the present embodiment, all the driving electrodes 16 in the first column are connected to the first wiring 13 of the horizontal wiring portion 15 in each row, and all the driving electrodes 16 in the second column are connected to the horizontal wiring portion 15 in each row. It is connected to the second wiring 14.
 上記のように第1配線13とのみ接続された1列分の駆動電極16を以下、「第1構造電極列161」といい、第2配線14とのみ接続された1列分の駆動電極16を以下、「第2構造電極列162」というとすると、当該第1と第2の構造電極列161、162は、各行において水平配線部15の第1配線13、第2配線14のうち異なるものに接続するように構成されているため、例えば、各水平配線部15の第1配線13のみに読み出しパルスを印加すれば、第1構造電極列161が形成されたVCCD12に隣接したフォトダイオード列からの信号電荷の読み出しが選択的に実行されることになり、水平間引き読出しが容易に行える。 The drive electrode 16 for one column connected only to the first wiring 13 as described above is hereinafter referred to as a “first structure electrode row 161”, and the drive electrode 16 for one row connected only to the second wiring 14. Hereinafter referred to as “second structure electrode column 162”, the first and second structure electrode columns 161 and 162 are different from each other in the first wiring 13 and the second wiring 14 of the horizontal wiring portion 15 in each row. For example, if a read pulse is applied only to the first wiring 13 of each horizontal wiring section 15, the photodiode array adjacent to the VCCD 12 on which the first structure electrode array 161 is formed is applied. The signal charges are read out selectively, and horizontal thinning out can be easily performed.
 図3(a)は、図2における第1列目(第1構造電極列161)のVCCD12のA-A‘線における矢視断面図を示し、図3(b)は、図2における第2列目(第2構造電極列162)のB-B’線における矢視断面図を示す。 3A shows a cross-sectional view taken along the line AA ′ of the VCCD 12 in the first row (first structure electrode row 161) in FIG. 2, and FIG. 3B shows the second row in FIG. FIG. 8 shows a cross-sectional view taken along line BB ′ of the column (second structure electrode column 162).
 両図に示すように半導体基板50の内部にVCCD12が形成され、その上にポリシリコンからなる駆動電極16が形成され、さらに、その表面に不図示の絶縁層(酸化膜)が形成される。絶縁層の所定位置には、マスク処理やエッチング処理などにより穴が形成され、この部分にタングステンなどの金属が充填されてコンタクト17が形成される。 As shown in both figures, the VCCD 12 is formed in the semiconductor substrate 50, the driving electrode 16 made of polysilicon is formed thereon, and an insulating layer (oxide film) (not shown) is formed on the surface thereof. A hole is formed at a predetermined position of the insulating layer by a mask process or an etching process, and a contact 17 is formed by filling this part with a metal such as tungsten.
 絶縁層の上に、1つの駆動電極16に対応して、電気的に分離された第1配線13、第2配線14が形成される。この第1、第2配線13、14は、例えばタングステンからなる。なお、上記の各層は、蒸着もしくはスパッタリングなどにより形成されるが、その製法自体は公知の薄膜製造技術であるので、説明は省略する。 On the insulating layer, a first wiring 13 and a second wiring 14 that are electrically separated are formed corresponding to one drive electrode 16. The first and second wirings 13 and 14 are made of, for example, tungsten. Each of the above layers is formed by vapor deposition, sputtering, or the like, but the manufacturing method itself is a known thin film manufacturing technique, and thus the description thereof is omitted.
 また、図3(c)に示すように、これらの第1配線13、第2配線14の上層には、VCCD12部分を覆い隠すように遮光膜19が設けられている。この遮光膜7は、VCCD12の上部のほか、フォトダイオード11の各行の間(画素の垂直分離部)にも設けられており、フォトダイオード11の受光面以外の箇所に直接光が入射しないよう遮光性を確保している。 Further, as shown in FIG. 3C, a light shielding film 19 is provided on the upper layer of the first wiring 13 and the second wiring 14 so as to cover the VCCD 12 portion. In addition to the upper part of the VCCD 12, the light shielding film 7 is also provided between the rows of the photodiodes 11 (the vertical separation part of the pixels) so as to shield light from being directly incident on portions other than the light receiving surface of the photodiodes 11. The sex is secured.
 図2に戻り、撮像部10において、上記第1構造電極列161、第2構造電極列162の組み合わせが行方向に周期的に繰り返されるように配列される。本例では、3列周期で「第1構造電極列161、第2構造電極列162、第1構造電極列161」が繰り返し配列される。 Referring back to FIG. 2, in the imaging unit 10, the combination of the first structure electrode row 161 and the second structure electrode row 162 is arranged so as to be periodically repeated in the row direction. In this example, “the first structure electrode row 161, the second structure electrode row 162, and the first structure electrode row 161” are repeatedly arranged in a three-row cycle.
 撮像部10の周囲には、駆動部420(図15参照)に接続された給電用のバスライン18が配置され、このバスライン18と各水平配線部15における第1配線13、第2配線14が接続されており、コンタクト17を介して、各駆動電極16に所定の駆動パルスが印加される。 A power supply bus line 18 connected to a drive unit 420 (see FIG. 15) is arranged around the imaging unit 10. The bus line 18 and the first wiring 13 and the second wiring 14 in each horizontal wiring unit 15. Are connected, and a predetermined drive pulse is applied to each drive electrode 16 via the contact 17.
 本実施の形態においては、第1列から第5列の各水平配線部15における5組の第1配線13、第2配線14に、上から順に異なる位相の駆動パルスV1~V10が印加されるように接続されており、第1構造電極列161には、V1、V3、V5、V7、V9の駆動パルスが、第2構造電極列162には、V2、V4、V6、V8、V10の駆動パルスがそれぞれ印加されることにより、各VCCD12が5相駆動されるように構成されている。 In the present embodiment, drive pulses V1 to V10 having different phases are sequentially applied from the top to the five sets of the first wiring 13 and the second wiring 14 in each horizontal wiring section 15 in the first to fifth columns. The first structure electrode row 161 has drive pulses V1, V3, V5, V7, and V9, and the second structure electrode row 162 has drive pulses V2, V4, V6, V8, and V10. Each VCCD 12 is configured to be driven in five phases by applying a pulse.
 このような配線構造において、駆動電極16に水平配線部15を介して読み出しパルスを印加することでVCCD12の内部ポテンシャルを変化させて電位井戸を形成して、隣接するフォトダイオード11の信号電荷をVCCD12の電位井戸に転送し(以下、単に「信号電荷を読み出す」という。)、その後各駆動電極16へ印加する5相の駆動パルスを順次変化させて電位井戸を移動させることにより、VCCD12内の信号電荷を垂直方向に転送させる(垂直転送)。 In such a wiring structure, a read pulse is applied to the drive electrode 16 via the horizontal wiring portion 15 to change the internal potential of the VCCD 12 to form a potential well, and the signal charge of the adjacent photodiode 11 is transferred to the VCCD 12. Are transferred to the potential well (hereinafter simply referred to as “reading signal charges”), and then the potential well is moved by sequentially changing the five-phase drive pulses applied to the drive electrodes 16 to thereby transfer the signal in the VCCD 12. Charge is transferred in the vertical direction (vertical transfer).
 (3)選択出力部20とHCCD30
 図1に戻り、VCCD12のHCCD30との接続部には、水平方向に選択出力部20が形成される。
(3) Selection output unit 20 and HCCD 30
Returning to FIG. 1, a selection output unit 20 is formed in the horizontal direction at the connection between the VCCD 12 and the HCCD 30.
 この選択出力部20は、各VCCD12の駆動電極16の5相駆動により垂直転送されてきた信号電荷を一旦蓄積し、所定のタイミングでHCCD30へ転送するものであって、特に、水平方向において信号電荷を加算処理することを目的として形成されている。 The selection output unit 20 temporarily accumulates signal charges transferred vertically by the five-phase drive of the drive electrodes 16 of each VCCD 12 and transfers them to the HCCD 30 at a predetermined timing. Is formed for the purpose of adding.
 選択出力部20は、蓄積部21とバリア部22とからなり、それぞれ、VCCD12の末端部の上面に蓄積用電極23、バリア用電極24を形成してなる。 The selection output unit 20 includes a storage unit 21 and a barrier unit 22, and is formed by forming a storage electrode 23 and a barrier electrode 24 on the upper surface of the end portion of the VCCD 12.
 蓄積部21は、VCCD12を垂直転送されてきた信号電荷を、HCCD30へ選択的に信号出力するまでの間に電荷蓄積することを主目的としている。 The main purpose of the storage unit 21 is to store the signal charge that has been vertically transferred from the VCCD 12 until the signal is selectively output to the HCCD 30.
 この蓄積部21は、蓄積用電極23直下のVCCD12の横幅(チャネル幅)を撮像領域におけるチャネル幅よりも大きくすることにより、その電荷蓄積容量が撮像領域内におけるVCCD12よりも大きくなるよう設計されており、これにより垂直方向に画素加算された信号電荷を十分蓄積できるように構成される。 The storage unit 21 is designed so that its charge storage capacity is larger than that of the VCCD 12 in the imaging region by making the horizontal width (channel width) of the VCCD 12 directly below the storage electrode 23 larger than the channel width in the imaging region. Thus, the signal charge obtained by adding the pixels in the vertical direction can be sufficiently accumulated.
 一方、バリア部22におけるVCCD12、すなわちバリア用電極24の直下のVCCD12における蓄積可能電荷の容量は特に大きくする必要はなく、蓄積部21に電荷蓄積する際にHCCD30方向への電荷漏れを阻止するためのバリア形成を主目的とする。 On the other hand, the capacity of charge that can be stored in the VCCD 12 in the barrier unit 22, that is, in the VCCD 12 immediately below the barrier electrode 24, does not need to be particularly large. The main purpose is to form a barrier.
 蓄積用電極23の上面には、不図示の絶縁層を介して配線231~233が水平方向に形成されており、各蓄積用電極23といずれかの配線231~233とコンタクト25を介して周期性をもって接続されている。 Wirings 231 to 233 are formed in the horizontal direction on the upper surface of the storage electrode 23 via an insulating layer (not shown), and each storage electrode 23, any of the wirings 231 to 233 and the contacts 25 are periodically connected. Connected with sex.
 同様にバリア用電極24の上面には、不図示の絶縁層を介して配線241~243が水平方向に形成されており、各バリア用電極24は、いずれかの配線241~243とコンタクト25を介して周期性をもって接続されている。 Similarly, wirings 241 to 243 are horizontally formed on the upper surface of the barrier electrode 24 via an insulating layer (not shown), and each barrier electrode 24 has one of the wirings 241 to 243 and the contact 25 connected thereto. Are connected with periodicity.
 蓄積用電極23とバリア用電極24の各配線との接続は、水平方向に同一周期であり、図1では、配線231と241、232と242、233と243をそれぞれ一組とした水平方向3列周期の設計としている。 The connection between the storage electrode 23 and each wiring of the barrier electrode 24 has the same period in the horizontal direction, and in FIG. The column period is designed.
 蓄積用電極23には、配線231、232、233を介して駆動パルスS1、S2、S3がそれぞれ供給され、バリア用電極24には、配線241、242、243を介して駆動パルスB1、B2、B3がそれぞれ供給される。 The storage electrode 23 is supplied with driving pulses S1, S2, and S3 via wirings 231, 232, and 233, respectively, and the barrier electrode 24 is supplied with driving pulses B1, B2, B3 is supplied respectively.
 駆動パルスS1~S3、B1~B3は、撮像部10の駆動電極16とは別個の独立信号であり(以下、「選択出力用パルス」という。)、その印加のタイミングなどは、VCCD12からHCCD30への出力をどのように制御して水平方向における画素加算を行うかに依存する。 The drive pulses S1 to S3 and B1 to B3 are independent signals separate from the drive electrodes 16 of the imaging unit 10 (hereinafter referred to as “selective output pulses”), and the timing of application thereof is from the VCCD 12 to the HCCD 30. Depends on how the output is controlled to perform pixel addition in the horizontal direction.
 本実施の形態では、選択出力パルスS1とB1、S2とB2、S3とB3の3組6種類の選択出力用パルスを備えており、VCCD12からHCCD30への信号電荷の出力に関して出力選択部20の3種類の構成をそれぞれ備えた3種類のVCCD12より任意に電荷転送制御ができるように構成されている。 In the present embodiment, three sets of six types of selection output pulses of selection output pulses S 1 and B 1, S 2 and B 2, S 3 and B 3 are provided, and the output selection unit 20 outputs signal charges from the VCCD 12 to the HCCD 30. Charge transfer control can be arbitrarily performed by three types of VCCD 12 each having three types of configurations.
 このように蓄積用電極23とバリア用電極24は、VCCD12を垂直転送されてきた信号電荷のHCCD30への出力制御を列毎に選択的に行うことを目的としている。 As described above, the storage electrode 23 and the barrier electrode 24 are intended to selectively control the output of the signal charges transferred vertically from the VCCD 12 to the HCCD 30 for each column.
 ここで各列においては蓄積用及びバリア用のそれぞれの役割を持つ各電極を一組として形成しており、以下、蓄積用電極23、バリア用電極24を1組として形成している単位を指す場合に「選択出力用電極群」と表記する(なお、本願の特許請求の範囲では、各選択出力用電極群が配されたVCCDの部分を「副選択出力部」として記載している。)。 Here, in each row, the electrodes having the respective roles for storage and barrier are formed as a set, and hereinafter, the unit is formed by forming the storage electrode 23 and the barrier electrode 24 as a set. In this case, it is referred to as “selective output electrode group” (in the claims of the present application, the portion of the VCCD in which each selective output electrode group is arranged is described as “sub-selection output unit”). .
 そして、選択出力用パルスS1とB1、S2とB2、S3とB3が印加される電極群をそれぞれ第1、第2、第3選択出力用電極群251、252、253と呼ぶ(図5参照)。 The electrode groups to which the selective output pulses S1 and B1, S2 and B2, and S3 and B3 are applied are referred to as first, second, and third selective output electrode groups 251, 252, and 253, respectively (see FIG. 5). .
 なお、バスラインなどの信号線を削減するため、各組の選択出力用パルスを、撮像部10の駆動パルスと一部共用させることも可能であるが、本例では理解を容易にするために全ての列の蓄積用電極23、バリア用電極24にそれぞれ独立の選択出力用パルスを印加できる構造で説明を行う。 In addition, in order to reduce signal lines such as bus lines, it is possible to partially share the selection output pulses of each set with the drive pulses of the imaging unit 10, but in this example, for easy understanding. A description will be given of a structure in which independent selective output pulses can be applied to the storage electrodes 23 and barrier electrodes 24 of all columns.
 また、HCCD30は、複数の水平駆動電極(不図示)を有し、当該水平駆動電極に所定の水平駆動パルスを印加することにより信号電荷を順次水平転送するものであるが、公知の構成であるため、ここでは電極構成の詳細な記載は省略し、1信号を格納する領域(以下、「水平転送パケット」という。)に区切りを付すことで簡略に表記している。 The HCCD 30 has a plurality of horizontal drive electrodes (not shown), and sequentially transfers signal charges by applying a predetermined horizontal drive pulse to the horizontal drive electrodes. For this reason, detailed description of the electrode configuration is omitted here, and an area for storing one signal (hereinafter referred to as “horizontal transfer packet”) is simply described by adding a partition.
 本実施の形態では、図1に示すようにVCCD3列に対して1信号を格納する水平転送パケットを有するHCCD構造であることを示している。 In the present embodiment, as shown in FIG. 1, it is shown that the HCCD structure has a horizontal transfer packet for storing one signal for the three VCCD columns.
 撮像部10の各フォトダイオード11の受光面は、不図示のR(赤色)フィルタ、G(緑色)フィルタ、B(緑色)フィルタの3種の色フィルタのいずれかで覆われている。より具体的には、R、G、Bの各色フィルタは図4に示すようなベイヤー配置になっており、GフィルタとBフィルタとが水平方向に交互に配置された行と、RフィルタとGフィルタとが水平方向に交互に配置された行とが、垂直方向(列方向)に交互に配列されている。 The light receiving surface of each photodiode 11 of the imaging unit 10 is covered with one of three color filters (not shown), an R (red) filter, a G (green) filter, and a B (green) filter. More specifically, the R, G, and B color filters are arranged in a Bayer arrangement as shown in FIG. 4, and rows in which G filters and B filters are alternately arranged in the horizontal direction, R filters, and G filters. Rows in which filters are alternately arranged in the horizontal direction are alternately arranged in the vertical direction (column direction).
 以上が、実施の形態1に係る固体撮像素子100の基本的な構成である。 The above is the basic configuration of the solid-state imaging device 100 according to the first embodiment.
 実際には、各VCCD12と、その信号読み出し対象となるフォトダイオード列と反対側のフォトダイオード列との間にはチャネルストップが形成され、また、各フォトダイオード11の受光面以外は遮光膜で覆われるが、これらは、固体撮像素子において全て公知の構成であり、本発明の特徴的な構成ではないので、図示および説明を省略する(以下の全ての実施の形態において同じ。)。 Actually, a channel stop is formed between each VCCD 12 and the photodiode row on the opposite side to the photodiode row from which the signal is to be read, and the portions other than the light receiving surface of each photodiode 11 are covered with a light shielding film. However, these are all well-known configurations in the solid-state imaging device, and are not characteristic configurations of the present invention, so illustration and description are omitted (the same applies to all the following embodiments).
 (4)駆動方法
 (4-1)電極配置図
 以下、本実施の形態1に係る固体撮像素子100の駆動方法について説明するが、当該説明を容易にするため、図1の固体撮像素子100の構成をさらに簡略化して図示する。
(4) Driving Method (4-1) Electrode Arrangement Diagram Hereinafter, a driving method of the solid-state imaging device 100 according to the first embodiment will be described. To facilitate the description, the solid-state imaging device 100 of FIG. The configuration is further simplified and illustrated.
 図5は、図1におけるフォトダイオード11上部の色フィルタの情報と、各駆動電極16へ印加される駆動パルスの情報、各選択出力用電極へ印加される駆動パルスの情報、及びHCCD30で1信号を格納する領域(水平転送パケット)を簡略表記したものであり、以下では、「電極配置図」と呼ぶ。 5 shows information on the color filter above the photodiode 11 in FIG. 1, information on the drive pulse applied to each drive electrode 16, information on the drive pulse applied to each selective output electrode, and one signal in the HCCD 30. FIG. Is an abbreviated notation of an area (horizontal transfer packet) for storing, and is hereinafter referred to as an “electrode layout diagram”.
 この電極配置図において、駆動パルスVn(n=1、2、3、・・・、10)が印加される駆動電極16を単に「Vn電極」と表す(例えば、 第1構造電極列161において「V3」と表示されているのは、駆動電極16の内、駆動パルスV3が印加される電極を意味し、V3電極と呼ぶ。)。また、フォトダイオード11の列において、例えば「R」とあるのは、「R」の色フィルタが装着されたフォトダイオード11を意味する。 In this electrode arrangement diagram, the drive electrode 16 to which the drive pulse Vn (n = 1, 2, 3,..., 10) is applied is simply expressed as “Vn electrode” (for example, in the first structure electrode row 161, “ "V3" means an electrode to which the drive pulse V3 is applied among the drive electrodes 16, and is referred to as a V3 electrode). In the row of photodiodes 11, “R”, for example, means the photodiode 11 to which the “R” color filter is attached.
 このような基本的な電極配置を有する固体撮像素子において、駆動電極16に印加する駆動パルスのタイミングを制御することにより、所望の出力画素低減処理を実行することができる。 In the solid-state imaging device having such a basic electrode arrangement, a desired output pixel reduction process can be executed by controlling the timing of the drive pulse applied to the drive electrode 16.
 (4-2)画素加算例
 図6(a)、(b)は、本実施の形態に係る出力画素低減処理に際して、加算処理の対象となる画素の配置と加算後の画素重心位置を示す図(以下、「画素加算図」という。)であって、それぞれ本実施の形態1の固体撮像素子100で実行される第1と第2の画素加算例を示す。
(4-2) Pixel addition example FIGS. 6A and 6B are diagrams showing the arrangement of pixels to be subjected to addition processing and the pixel centroid position after addition in the output pixel reduction processing according to the present embodiment. (Hereinafter, referred to as “pixel addition diagram”), which respectively show first and second pixel addition examples executed by the solid-state imaging device 100 of the first embodiment.
 まず、図6(a)に示す第1の画素加算例は、4画素加算であり、画素加算後の重心位置(+表記)より上下左右にそれぞれ2画素分の距離に読み出し対象画素を設定している。 First, the first pixel addition example shown in FIG. 6A is 4-pixel addition, and the readout target pixel is set at a distance of 2 pixels above, below, left, and right from the barycentric position (+ notation) after pixel addition. ing.
 すなわち、第(N-2)列および第(N+2)列の第M行の画素の信号電荷を第1構造電極列161により読み出し、第N列目の第(M-2)行および第(M+2)行の画素の各信号電荷を第2構造電極列162により読み出して垂直方向における画素加算(以下、「垂直加算」という。)を実行し、第(N-2)列、第N列及び第(N+2)列の信号電荷を水平方向に加算(以下、「水平加算」という。)して4画素分の加算出力を行う(N、Mは、3以上の整数)ものである。 That is, the signal charges of the pixels in the Mth row of the (N-2) th column and the (N + 2) th column are read out by the first structure electrode column 161, and the (M-2) th row and the (M + 2) th row of the Nth column are read out. ) Each signal charge of the pixels in the row is read out by the second structure electrode column 162 and pixel addition in the vertical direction (hereinafter referred to as “vertical addition”) is executed, and the (N−2) th column, the Nth column, and the The signal charges in the (N + 2) columns are added in the horizontal direction (hereinafter referred to as “horizontal addition”), and an addition output for four pixels is performed (N and M are integers of 3 or more).
 そして、画素加算後の画素重心間の距離は水平方向に3画素、垂直方向に5画素の距離を持ち、画素加算後に水平方向に隣接関係になる信号は、互いの読み出し対象画素が水平方向にオーバーラップする配置に設定している(例えば、R1とG1)。また、画素加算後に垂直方向に隣接関係になる信号は、互いの読み出し対象画素が垂直方向にオーバーラップせずに隣接する配置に設定している(例えば、R2とG2)。 The distance between the pixel centroids after pixel addition has a distance of 3 pixels in the horizontal direction and 5 pixels in the vertical direction, and signals that are adjacent to each other in the horizontal direction after pixel addition are displayed in the horizontal direction. The overlapping arrangement is set (for example, R1 and G1). In addition, signals that are adjacent to each other in the vertical direction after pixel addition are set so that the pixels to be read are adjacent to each other without overlapping in the vertical direction (for example, R2 and G2).
 また、図6(b)に示す第2の画素加算例は、5画素加算であり、画素加算後の重心位置(+表記)に1画素と、重心位置より斜方4方向にそれぞれ2画素分の距離にある4画素とを読み出し対象画素に設定している。 In addition, the second pixel addition example shown in FIG. 6B is five-pixel addition, one pixel at the centroid position (+ notation) after pixel addition, and two pixels in the oblique four directions from the centroid position. The four pixels at the distance are set as readout target pixels.
 すなわち、第(N-2)列および第(N+2)列の第(M-2)行及び第(M+2)行の画素の各信号電荷を第1構造電極列161により読み出して垂直加算し、第N列の第M行の画素の信号電荷を第2構造電極列162に読み出して、第(N-2)列、第N列目及び第(N+2)列の信号電荷を水平加算して5画素分の加算出力を行うものである(N、Mは、3以上の整数)。 That is, the signal charges of the pixels in the (M−2) th row and the (M + 2) th row in the (N−2) th column and the (N + 2) th column are read out by the first structure electrode column 161 and vertically added. The signal charges of the pixels in the Mth row of the Nth column are read out to the second structure electrode column 162, and the signal charges in the (N−2) th column, the Nth column and the (N + 2) th column are horizontally added to obtain 5 pixels. Minute addition output (N and M are integers of 3 or more).
 そして、画素加算後の画素重心間の距離は水平方向に3画素、垂直方向に5画素の距離を持ち、画素加算後に水平方向に隣接関係になる信号は互いの読み出し対象画素が水平方向にオーバーラップする配置に設定している(例えば、R3とG3)。 The distance between the pixel centroids after pixel addition has a distance of 3 pixels in the horizontal direction and 5 pixels in the vertical direction, and signals that are adjacent to each other in the horizontal direction after pixel addition exceed each other in the horizontal direction. The wrapping arrangement is set (for example, R3 and G3).
 画素加算後に垂直方向に隣接関係になる信号は互いの読み出し対象画素が垂直方向にオーバーラップせずに隣接する配置に設定している(例えば、R4とG4)。 Signals that are adjacent to each other in the vertical direction after pixel addition are set so that the pixels to be read are adjacent to each other without overlapping in the vertical direction (for example, R4 and G4).
 なお、これらの画素加算例において、垂直3画素分を電極の配置単位とするような構造にすると、水平方向・垂直方向ともに画素加算後の重心が完全に均等距離(3画素分)持つ、バランスのよい分布とすることができる。 In these pixel addition examples, when the structure is such that three vertical pixels are used as the electrode arrangement unit, the center of gravity after pixel addition in both the horizontal and vertical directions has a completely equal distance (for three pixels). The distribution can be good.
 (4-3)第1の画素加算例における駆動方法
 まず、図6(a)に示す第1の画素加算例を実行するための駆動方法について説明する。
(4-3) Driving Method in First Pixel Addition Example First, a driving method for executing the first pixel addition example shown in FIG. 6A will be described.
 (4-3-1)読出画素配置図とアドレス割当図
 図7は、第1の画素加算例の実行時に読み出される画素に対して 、第1、第2構造電極列161、162に対応する列ごとに番号PDn(n=1,2,3)を割り当てた図であり、同位相の駆動パルスが印加される駆動電極16により読み出される画素については、同じ番号を付している(以下、「読出画素配置図」という。)。
(4-3-1) Read Pixel Arrangement Diagram and Address Allocation Diagram FIG. 7 shows columns corresponding to the first and second structure electrode columns 161 and 162 for the pixels read out during the execution of the first pixel addition example. The numbers PDn (n = 1, 2, 3) are assigned to the respective pixels, and the pixels read out by the drive electrodes 16 to which the drive pulses of the same phase are applied are assigned the same numbers (hereinafter, “ Read pixel arrangement diagram ”).
 第1構造電極列161に対応するフォトダイオード列においては、垂直方向に5画素離れたPD1の信号電荷が読み出される。 In the photodiode row corresponding to the first structure electrode row 161, the signal charge of PD1 separated by 5 pixels in the vertical direction is read out.
 第2構造電極列162に対応するフォトダイオード列においては、垂直方向に4画素分離れたPD2とPD3の信号電荷が、それぞれ読出し制御と垂直転送制御を組み合わせることにより、同一の垂直転送パケット(VCCD12において1個の電荷信号を転送するための電位井戸の単位)に読み出されて垂直加算が行われる。 In the photodiode row corresponding to the second structure electrode row 162, the signal charges of PD2 and PD3 separated by 4 pixels in the vertical direction are combined into the same vertical transfer packet (VCCD12) by combining read control and vertical transfer control, respectively. And a vertical addition is carried out in (a potential well unit for transferring one charge signal).
 上記PD1は、V5電極への読み出しパルスで信号電荷を読み出し、PD2はV2電極への読み出しパルスで信号電荷を読み出し、PD3はV10電極への読み出しパルスで信号電荷を読み出すように各駆動パルスのタイミングが設定される。 The timing of each drive pulse is such that PD1 reads signal charges with a read pulse to the V5 electrode, PD2 reads signal charges with a read pulse to the V2 electrode, and PD3 reads signal charges with a read pulse to the V10 electrode. Is set.
 図8は、本例による画素加算駆動を行う際の読み出し対象画素に垂直アドレス(1、2、・・・n、・・・2n)及び水平アドレス(A、B、・・・・)の情報を割り当て、HCCD30に格納される画素加算信号の例をHCCD部に記載した図(以下、「アドレス割当図」という。)である。ここでは水平ライン出力信号の加算画素として、(C2+E3+E4+G2)、(F2+H3+H4+J2)の信号電荷が各信号格納領域に格納されている例が開示されている(J2の画素は図外)。 FIG. 8 shows information of vertical addresses (1, 2,... N,... 2n) and horizontal addresses (A, B,...) For pixels to be read when performing pixel addition driving according to this example. Is a diagram (hereinafter referred to as “address allocation diagram”) in which an example of a pixel addition signal stored in the HCCD 30 is described in the HCCD unit. Here, an example is disclosed in which signal charges of (C2 + E3 + E4 + G2) and (F2 + H3 + H4 + J2) are stored in each signal storage area as the addition pixel of the horizontal line output signal (the pixel of J2 is not shown).
 (4-3-2)信号電荷読出タイミング
 図9は、上記画素加算例を実行するため、垂直ブランキング期間に実行される信号電荷読出時における駆動タイミングを示すタイミングチャートである。
(4-3-2) Signal Charge Reading Timing FIG. 9 is a timing chart showing drive timings at the time of signal charge reading executed in the vertical blanking period in order to execute the above pixel addition example.
 信号電荷読出時において各駆動電極16に印加される駆動パルスの電圧レベルは3種類設定されている。 Three types of voltage levels of drive pulses applied to each drive electrode 16 at the time of signal charge reading are set.
 フォトダイオード11からVCCD12へ信号電荷を読出す際には、高レベル(以下、「VH」)の電圧が印加され、VCCD12内の垂直電荷転送に関しては中レベル(以下、「VM」)及び低レベル(以下、「VL」)の電圧の駆動パルスが印加される。 When signal charges are read from the photodiode 11 to the VCCD 12, a high level (hereinafter “VH”) voltage is applied, and the vertical charge transfer in the VCCD 12 is at a medium level (hereinafter “VM”) and low level. A driving pulse having a voltage (hereinafter, “VL”) is applied.
 VMは、駆動電極16下のVCCD20に電位井戸を形成して信号電荷蓄積が可能な状態にする為の電圧レベルであり、VLは、駆動電極16下のVCCD20を信号電荷蓄積が不能(バリア状態)にする為の電圧レベルである。 VM is a voltage level for forming a potential well in the VCCD 20 under the drive electrode 16 so that signal charge can be accumulated, and VL cannot accumulate the signal charge in the VCCD 20 under the drive electrode 16 (barrier state). This is the voltage level for
 一般的に、VHレベルは13V程度、VMレベルは0V程度、VLレベルは-6V程度であるが、VHレベルやVLレベルは設計により数V程度の幅を持つ。 Generally, the VH level is about 13V, the VM level is about 0V, and the VL level is about -6V, but the VH level and the VL level have a width of about several V depending on the design.
 なお、図9中では、VH、VM、VLを単に「H」、「M」、「L」と簡略表記している(以下のタイミングチャートにおいても同様。)。 In FIG. 9, VH, VM, and VL are simply abbreviated as “H”, “M”, and “L” (the same applies to the following timing charts).
 まず、第1構造電極列161が配されたA、C、D、F、G、I列においては、時刻t3でV5電極がVH状態となり、PD1の信号電荷が読み出される。 First, in the A, C, D, F, G, and I rows where the first structure electrode row 161 is arranged, the V5 electrode is in the VH state at time t3, and the signal charge of the PD1 is read out.
 その後、V1~V7電極を、VM→VL、VL→VMと順次変化させて5画素分垂直方向に転送させて、V3、V5、V7電極直下に形成された垂直転送パケット内に信号電荷を保持する。 After that, the V1 to V7 electrodes are sequentially changed from VM → VL and VL → VM to be transferred in the vertical direction by 5 pixels, and the signal charge is held in the vertical transfer packet formed immediately below the V3, V5, and V7 electrodes. To do.
 また、第2構造電極列162が配されたB、E,H列においては、時刻t2にV2電極がVH状態となって、PD2の信号電荷が読み出され、その後、V2電極、V4電極、V6電極が順次VM→VLと変化することにより、時刻t4においてV6電極直下の位置まで転送される。 In the B, E, and H rows in which the second structure electrode row 162 is arranged, the V2 electrode is in the VH state at time t2, and the signal charge of the PD2 is read, and then the V2 electrode, the V4 electrode, As the V6 electrode sequentially changes from VM to VL, it is transferred to a position immediately below the V6 electrode at time t4.
 この時刻t4においてV10電極がVH状態に転じているので、対応するPD3の信号電荷が読み出されてVCCD12に転送されるため、ここでPD2とPD3の信号電荷が同一の垂直転送パケット内に混合されて1信号となり、これにより垂直加算が実行される。 Since the V10 electrode changes to the VH state at this time t4, the signal charge of the corresponding PD3 is read and transferred to the VCCD 12, so that the signal charges of PD2 and PD3 are mixed in the same vertical transfer packet here. Thus, one signal is obtained, and thereby vertical addition is executed.
 一方、時刻t1の初期状態において、第1~第3選択出力用電極群251~253の電荷蓄積用電極S1~S3は、バリア用電極B1~B3は共にVL状態であるが、順次VL→VM→VLに変化する。この際、一番HCCD30に近い位置で読み出された信号電荷は、加算されないままHCCD30に転送されて画像信号として出力されてしまうことになるが、この画像信号については、例えば、後述のメモリ管理部460(図15)により、メモリ部470には書き込まないように制御すればよい。 On the other hand, in the initial state at time t1, the charge storage electrodes S1 to S3 of the first to third selection output electrode groups 251 to 253 are both in the VL state, but the barrier electrodes B1 to B3 are sequentially in the VL → VM state. → Changes to VL. At this time, the signal charge read at the position closest to the HCCD 30 is transferred to the HCCD 30 without being added and output as an image signal. For example, the memory management described later is performed on the image signal. Control may be performed so that data is not written in the memory unit 470 by the unit 460 (FIG. 15).
 (4-3-3)垂直転送タイミング
 図10は、上記信号電荷読出しの動作後、水平ブランキング期間において実行される垂直転送のタイミングを示す図であり、これにより各列のVCCD12に読み出された信号電荷を、VCCD12内で垂直転送した後に、1水平ライン分だけHCCD30に出力して水平加算する処理が実行される。
(4-3-3) Vertical Transfer Timing FIG. 10 is a diagram showing the timing of vertical transfer executed in the horizontal blanking period after the signal charge reading operation, and is read out by the VCCD 12 in each column. After the signal charge is vertically transferred in the VCCD 12, the horizontal charge is output by outputting it to the HCCD 30 for one horizontal line.
 すなわち、各VCCD12列に読み出された信号電荷が、時刻t1~t12間において各第1構造電極列161、第2構造電極列162による垂直駆動によりHCCD30に向けて5画素分転送される。 That is, the signal charges read out to each VCCD 12 column are transferred by 5 pixels toward the HCCD 30 by vertical driving by the first structure electrode column 161 and the second structure electrode column 162 between times t1 and t12.
 この際、HCCD30に一番近い垂直転送パケット内の信号電荷が、選択出力部20の蓄積部21、バリア部22を介して選択的にHCCD30に転送される。 At this time, the signal charge in the vertical transfer packet closest to the HCCD 30 is selectively transferred to the HCCD 30 via the storage unit 21 and the barrier unit 22 of the selection output unit 20.
 まず、時刻t1の初期状態においては、蓄積部21の各電極S1~S3およびバリア部22の各電極B1~B3はVL状態である。また、 第1構造電極列161、第2構造電極列162において、S1~S3電極に隣接する駆動電極(V9電極、V10電極)も初期状態で、VL状態となっている。 First, in the initial state at time t1, the electrodes S1 to S3 of the storage unit 21 and the electrodes B1 to B3 of the barrier unit 22 are in the VL state. Further, in the first structure electrode row 161 and the second structure electrode row 162, the drive electrodes (V9 electrode, V10 electrode) adjacent to the S1 to S3 electrodes are also in the VL state in the initial state.
 時刻t2にS1~S3電極にVMレベルのパルスが印加されるが、V9、V10電極がVL状態のままバリアが形成されたままなので、このままでは直近の垂直転送パケットに保持された信号電荷は蓄積部21に流れ込むことはできない。 At time t2, a VM level pulse is applied to the S1 to S3 electrodes, but the V9 and V10 electrodes remain in the VL state and the barrier is still formed, so that the signal charge held in the latest vertical transfer packet is accumulated as it is It cannot flow into the part 21.
 その後、時刻t3にV9電極、V10電極がVM状態になってバリアがなくなるため、信号電荷が対応する列の蓄積部21に流れ込むが、バリア用電極B1~B3は、VL状態のままなので、ここで堰き止められてHCCD30には出力されない。その後、時刻t10においてV9、V10電極をVL状態に戻すことにより信号電荷の蓄積部21への移動を完了する。 After that, at time t3, the V9 electrode and the V10 electrode are in the VM state and the barrier disappears, so that the signal charge flows into the storage unit 21 of the corresponding column. However, since the barrier electrodes B1 to B3 remain in the VL state, And is not output to the HCCD 30. Thereafter, the movement of the signal charge to the storage unit 21 is completed by returning the V9 and V10 electrodes to the VL state at time t10.
 そして、時刻t11で、まず、電極B1がVM状態となってバリアが解除され、同列の蓄積部21の信号電荷がHCCD30に流れ込み始め、時刻t12、t13でS1電極、B1電極が順にVL状態となって、HCCD30への信号電荷の転送が終了する(後述する図23の電荷転送図における一番左の列の時刻t1~t13におけるV9電極、S1電極、B1電極の駆動状態の変位を参照)。 At time t11, the electrode B1 is first brought into the VM state, the barrier is released, and the signal charge of the storage unit 21 in the same row starts to flow into the HCCD 30, and at times t12 and t13, the S1 electrode and the B1 electrode are sequentially changed to the VL state. Thus, the transfer of the signal charge to the HCCD 30 is completed (refer to the displacement of the drive state of the V9 electrode, the S1 electrode, and the B1 electrode at times t1 to t13 in the leftmost column in the charge transfer diagram of FIG. 23 described later). .
 時刻t15、時刻t19において他のB3、B2電極もVM状態となり上記と同様な手順によりHCCD30への信号電荷の転送を完了する。 At time t15 and time t19, the other B3 and B2 electrodes are also in the VM state, and the transfer of signal charges to the HCCD 30 is completed by the same procedure as described above.
 (4-3-4)選択出力部20の駆動原理
 なお、上記のように選択出力部20の蓄積部21に信号電荷を転送させる際に、まず、S1~S3電極にVMのパルスを印加してから、直前の駆動電極16(本例ではV9、V10電極)をVL→VMに変化させるのは、次のような理由による。
(4-3-4) Driving Principle of Selection Output Unit 20 When transferring the signal charge to the storage unit 21 of the selection output unit 20 as described above, first, a VM pulse is applied to the S1 to S3 electrodes. Then, the reason why the immediately preceding drive electrode 16 (the V9 and V10 electrodes in this example) is changed from VL to VM is as follows.
 既述のように、本実施の形態では、十分な蓄積電荷容量を確保するため選択出力部20における蓄積部21のVCCDのチャネル幅を撮像領域におけるVCCD幅のチャネル幅よりも広くしている。そのため、この部分において狭チャネル効果が弱くなってそのポテンシャルレベルが深くなり、チャネル幅を広げていない部分とのポテンシャルレベルとの差が大きくなる。 As described above, in this embodiment, in order to secure a sufficient accumulated charge capacity, the channel width of the VCCD of the accumulation unit 21 in the selection output unit 20 is made wider than the channel width of the VCCD width in the imaging region. Therefore, the narrow channel effect is weakened in this portion and the potential level is deepened, and the difference from the potential level with the portion where the channel width is not widened is increased.
 このような事態は、VCCDのチャネル幅の狭い部分とチャネル幅を広げている部分の境界部において一般的に生じる現象であるが、本実施の形態では、S1~S3電極及びB1~B3電極のVL状態のポテンシャルレベルがV9、V10電極のVM状態のポテンシャルレベルに対して相対的に充分なポテンシャルバリアを確保できない場合が発生し、信号電荷がS1~S3電極及びB1~B3電極下のバリアで止められず、一部の電荷がこれを乗り越えてHCCD30にまで流れ込むおそれがある。 Such a situation is a phenomenon that generally occurs at the boundary between the narrow channel width portion and the wide channel width portion of the VCCD. In this embodiment, the S1 to S3 electrodes and the B1 to B3 electrodes There are cases where the potential level in the VL state is V9 and the potential state of the V10 electrode relative to the potential level in the VM state cannot be secured sufficiently, and signal charges are generated at the barriers under the S1 to S3 electrodes and the B1 to B3 electrodes. There is a possibility that a part of the electric charge may get over to the HCCD 30 without being stopped.
 本実施の形態においては、S1~S3電極をVM状態、B1~B3電極をVL状態としたとき、S1~S3電極とB1~B3電極間で充分なポテンシャルバリアを得られるようにS1~S3電極およびB1~B3電極直下のVCCD12でポテンシャル差の少ない設計にしておき(すなわち、ほぼ同じVCCD幅にしておく)、V9電極もしくはV10電極をVM状態にする際に、予め対応する列のS1~S3電極をVM状態、B1~B3電極をVL状態としておくことで信号電荷の溢れを防ぐようにしている。 In this embodiment, when the S1 to S3 electrodes are in the VM state and the B1 to B3 electrodes are in the VL state, the S1 to S3 electrodes are obtained so that a sufficient potential barrier can be obtained between the S1 to S3 electrodes and the B1 to B3 electrodes. Also, the VCCD 12 directly below the B1 to B3 electrodes is designed to have a small potential difference (that is, to have substantially the same VCCD width), and when the V9 electrode or the V10 electrode is brought into the VM state, the corresponding columns S1 to S3 By setting the electrodes in the VM state and the B1 to B3 electrodes in the VL state, overflow of signal charges is prevented.
 V9(V10)電極をVM状態にしてそのバリアを解除すると、信号電荷がVM状態のS1~S3電極直下のVCCD12に流れ込むが、VM状態のS1~S3とVL状態のB1~B3との間には十分な高さのポテンシャル差があるため、VL状態のB1~B3電極によって形成されるポテンシャルバリアによって確実に堰き止めることができ、HCCD30への漏出を防止することができる。 When the V9 (V10) electrode is brought into the VM state and the barrier is released, the signal charge flows into the VCCD 12 immediately below the S1 to S3 electrodes in the VM state, but between the S1 to S3 in the VM state and the B1 to B3 in the VL state. Has a sufficiently high potential difference, the potential barrier formed by the B1 to B3 electrodes in the VL state can be surely blocked and leakage to the HCCD 30 can be prevented.
 なお、上記のような順序で選択出力部20におけるS1~S3電極、B1~B3電極を駆動して、VCCD12内の信号電荷をHCCD30に選択的に出力する処理は、他の実施の形態においても同様に実行されるので、説明の簡略化のため、以下、単に「選択出力用電極群を駆動する」と呼ぶ。 The process of selectively driving the signal charges in the VCCD 12 to the HCCD 30 by driving the S1 to S3 electrodes and the B1 to B3 electrodes in the selective output unit 20 in the order as described above also in other embodiments. Since the operations are performed in the same manner, for the sake of simplification of explanation, hereinafter, this will be simply referred to as “driving the selected output electrode group”.
 (4-3-5)水平加算処理
 続けて、水平加算処理について説明する。
(4-3-5) Horizontal Addition Processing Next, horizontal addition processing will be described.
 一例として、図8において信号電荷C2、(E3+E4)、G2を水平加算する場合について説明する。図10の時刻t13にG列の第1選択出力用電極群251の駆動により、信号電荷G2が、HCCD30の対応する水平転送パケットに出力された状態であるので、その後、適当な水平駆動パルス(不図示)によりHCCD30を駆動して、水平転送パケットを図8の左方向に3列分だけ水平シフトさせ(t14)、E列の第3選択出力用電極群253の駆動により、E列で垂直加算されている信号電荷(E3+E4)を同じ水平転送パケットに転送し(t17)、その後HCCD30内での水平転送パケットをさらに左方向に3列分水平シフトさせ(t18)、最後にC列の第2の選択出力用電極群252の駆動により、信号電荷C2を同一の水平転送パケットに転送する(t21)。 As an example, a case where the signal charges C2, (E3 + E4), and G2 are horizontally added in FIG. 8 will be described. Since the signal charge G2 is output to the corresponding horizontal transfer packet of the HCCD 30 by driving the first selection output electrode group 251 of the G column at time t13 in FIG. 10, an appropriate horizontal drive pulse ( The HCCD 30 is driven by (not shown), the horizontal transfer packet is horizontally shifted by three columns in the left direction in FIG. 8 (t14), and the third selective output electrode group 253 of the E column is driven to vertically The added signal charges (E3 + E4) are transferred to the same horizontal transfer packet (t17), then the horizontal transfer packet in the HCCD 30 is further horizontally shifted by three columns to the left (t18), and finally the C-th column By driving the second selection output electrode group 252, the signal charge C2 is transferred to the same horizontal transfer packet (t21).
 同じ加算処理が他の列においても同時に実行され、これにより水平加算が完了する。 The same addition process is simultaneously executed in other columns, thereby completing the horizontal addition.
 その後、HCCD30を駆動して水平1ライン分の信号電荷を全て水平転送して出力部40から出力させる。 Thereafter, the HCCD 30 is driven to horizontally transfer all signal charges for one horizontal line and output from the output unit 40.
 以上の制御を繰り返し行うことにより、図6(a)に示す4画素加算出力信号による出力画素低減処理が1フレーム分について実行される。 By repeatedly performing the above control, the output pixel reduction process by the 4-pixel addition output signal shown in FIG. 6A is executed for one frame.
 (4-4)第2の画素加算例における駆動方法
 次に、図6(b)に示す第2の画素加算例を実行するための駆動方法について説明する。
(4-4) Driving Method in Second Pixel Addition Example Next, a driving method for executing the second pixel addition example shown in FIG. 6B will be described.
 (4-4-1)読出画素配置図とアドレス割当図
 図11は、第2の画素加算例の実行時に読み出される画素に対して番号を割り当てた読出画素配置図である。
(4-4-1) Read Pixel Arrangement Diagram and Address Assignment Diagram FIG. 11 is a read pixel arrangement diagram in which numbers are assigned to the pixels read out during execution of the second pixel addition example.
  同図に示すように、第1構造電極列161に対応するフォトダイオード列A、C、D、F、Gにおいては、垂直方向に4画素分離れたPD1とPD2は、それぞれ読み出し制御と垂直転送制御を組み合わせて垂直転送パケット内に複数の信号電荷を読み出すように垂直加算を行う。 As shown in the figure, in the photodiode rows A, C, D, F, and G corresponding to the first structure electrode row 161, PD1 and PD2 separated by 4 pixels in the vertical direction are read control and vertical transfer, respectively. The vertical addition is performed so as to read out a plurality of signal charges in the vertical transfer packet by combining the controls.
 また、第2構造電極列162に対応するフォトダイオード列B、E、Hにおいては、垂直方向に5画素分はなれたPD3の信号電荷が読み出される。 Further, in the photodiode rows B, E, and H corresponding to the second structure electrode row 162, the signal charge of the PD 3 separated by 5 pixels in the vertical direction is read out.
 PD1は、 第1構造電極列161のV1電極への読み出しパルスで信号電荷を読み出し、PD2は、同電極列のV9電極への読み出しパルスで信号電荷を読み出し、PD3は、第2構造電極列162のV6電極への読み出しパルスで信号電荷を読み出すように各駆動パルスのタイミングが設定される。 PD1 reads the signal charge with a read pulse to the V1 electrode of the first structure electrode row 161, PD2 reads the signal charge with a read pulse to the V9 electrode of the same electrode row, and PD3 reads the second structure electrode row 162. The timing of each drive pulse is set so that the signal charge is read by the read pulse to the V6 electrode.
 図12は、本画素加算例を実行する際の読み出し対象画素に垂直アドレス及び水平アドレスの情報を割り当てたアドレス割当図である。 FIG. 12 is an address assignment diagram in which vertical address and horizontal address information is assigned to the readout target pixel when executing this pixel addition example.
 ここでは水平ライン出力信号の加算画素として(C3+C4+E2+G3+G4)、(F3+F4+H2+J3+J4)が格納されている例が開示されている(J3、J4の画素は図外)。 Here, there is disclosed an example in which (C3 + C4 + E2 + G3 + G4) and (F3 + F4 + H2 + J3 + J4) are stored as the added pixels of the horizontal line output signal (the pixels of J3 and J4 are not shown).
 (4-4-2)信号電荷読出タイミングおよび垂直転送タイミング
 図13は、第2の画素加算例を実行するため垂直ブランキング期間に実行される信号電荷読出タイミングを示す図であり、本図では、VH状態のみ「H」を付しており、それ以外の箇所は、VM状態とVL状態で変化する。
(4-4-2) Signal Charge Reading Timing and Vertical Transfer Timing FIG. 13 is a diagram showing signal charge reading timing executed in the vertical blanking period in order to execute the second pixel addition example. , “H” is attached only to the VH state, and other portions change between the VM state and the VL state.
  第1構造電極列161の駆動においては、時刻t5にV1電極がVH状態になって読み出される信号電荷は、図11におけるPD1、すなわち図12のA,C,D,F,G,I列における偶数番号のアドレスの読み出し対象画素にそれぞれ対応し、時刻t6にV9電極がVH状態になって読み出される信号電荷は、図11のPD2すなわち図12のA,C,D,F,G,I列における奇数番号のアドレスの読み出し対象画素にそれぞれ対応する。 In driving the first structure electrode row 161, the signal charge read out when the V1 electrode is in the VH state at time t5 is PD1 in FIG. 11, that is, the A, C, D, F, G, and I rows in FIG. The signal charges corresponding to the readout target pixels of the even-numbered addresses and the V9 electrode in the VH state at time t6 are read out in the PD2 of FIG. 11, that is, the columns A, C, D, F, G, and I in FIG. Correspond to the readout target pixels of the odd-numbered addresses in FIG.
 PD1及びPD2の読み出しを行う列では、対応するVCCD12内の同一垂直転送パケット(垂直3画素分の長さ)にPD1及びPD2の電荷を混合して読み出すことにより垂直加算がなされる。 In the column from which PD1 and PD2 are read, vertical addition is performed by mixing and reading the charges of PD1 and PD2 into the same vertical transfer packet (length of three vertical pixels) in the corresponding VCCD 12.
 第2構造電極列162の駆動においては、時刻t2にV6電極がVH状態になって読み出される信号電荷は、図11のPD3すなわち図12のB、E、H列の読み出し対象画素にそれぞれ対応する。 In driving the second structure electrode row 162, the signal charges read when the V6 electrode is in the VH state at time t2 correspond to the PD3 in FIG. 11, that is, the readout target pixels in the B, E, and H rows in FIG. .
 なお、本読み出しタイミングにおいては、時刻t4~t7の区間において基板電位VSUBレベルの変調制御を行っているが、これは画素加算の有無にかかわらず、垂直転送パケットの飽和出力が一定の範囲内になるようにすることを目的としているものである。この基板電位変調制御の詳細については、後述する。 In this read timing, modulation control of the substrate potential VSUB level is performed in the period from time t4 to time t7. This is because the saturation output of the vertical transfer packet is within a certain range regardless of whether or not the pixel is added. The purpose is to be. Details of this substrate potential modulation control will be described later.
 上記信号電荷読み出し処理の後、水平ブランキング期間において、各信号電荷の垂直転送駆動が行われ、対応する選択出力部20の蓄積部21に蓄積されたのち、選択出力用電極群251、253、252の駆動と、水平転送パケットの水平シフトを組み合わせて水平加算処理を実行される。この際の駆動は、加算対象となる信号電荷の組み合わせが異なっている以外は、図10に示した垂直転送タイミングと全く同じであるので、説明を省略する。 After the signal charge reading process, vertical transfer driving of each signal charge is performed in the horizontal blanking period, and after being accumulated in the accumulation unit 21 of the corresponding selection output unit 20, the selection output electrode groups 251, 253, The horizontal addition processing is executed by combining the driving of 252 and the horizontal shift of the horizontal transfer packet. Since the driving at this time is exactly the same as the vertical transfer timing shown in FIG. 10 except that the combination of signal charges to be added is different, description thereof will be omitted.
 上記のような駆動方法により、図6(b)に示すような画素加算を実行することができる。この画素加算例によれば、V6電極での対象読み出し画素が加算対象画素の重心に位置する画素となり、加算後の信号重心に位置する画素の飽和出力に対して重み付けが可能となっている。 The pixel addition as shown in FIG. 6B can be executed by the driving method as described above. According to this pixel addition example, the target readout pixel at the V6 electrode becomes a pixel located at the centroid of the addition target pixel, and weighting is possible for the saturation output of the pixel located at the signal centroid after the addition.
 (4-4-3)基板電位変調制御
 図13に示す第2の画素加算例における信号電荷読出タイミングにおいては、時刻t3とt4の間で基板電位VSUBが変調されており、このような基板電位変調制御を実行することにより、画素加算数に応じて対象画素における電荷容量を切り替えるようにしている。
(4-4-3) Substrate Potential Modulation Control At the signal charge readout timing in the second pixel addition example shown in FIG. 13, the substrate potential VSUB is modulated between times t3 and t4. By executing the modulation control, the charge capacity in the target pixel is switched according to the number of added pixels.
 すなわち、信号電荷の加算を行う場合には、垂直転送パケットの容量を考慮して個々のフォトダイオード11の飽和電荷容量を少なくした状態で信号電荷読出しを行うようにしている。 That is, when signal charges are added, signal charges are read in a state where the saturation charge capacity of each photodiode 11 is reduced in consideration of the capacity of the vertical transfer packet.
 図14は、一般的なフォトダイオードの基板電位と電位分布との関係を示す図である。同分布図における横軸は、固体撮像素子内の厚み方向における位置を示しており、Pがフォトダイオードの受光面側、P‘が基板側を示す。また、縦軸は、基板電位VSUBを下方を正の向きとして示している。 FIG. 14 is a diagram showing the relationship between the substrate potential of a general photodiode and the potential distribution. The horizontal axis in the distribution diagram indicates the position in the thickness direction in the solid-state imaging device, P indicates the light receiving surface side of the photodiode, and P ′ indicates the substrate side. The vertical axis indicates the substrate potential VSUB with the downward direction as a positive direction.
 フォトダイオードが形成される層より深い位置には、垂直オーバーフロードレイン(VOFD)と呼ばれるポテンシャル構造が存在する。固体撮像素子100の基板電位VSUBを調整して、フォトダイオードと基板との間にある垂直オーバーフローバリアと呼ばれる電位障壁の高さを制御することにより、フォトダイオード内電荷を全て基板側に排出もしくはフォトダイオードの飽和電荷容量を制御することができる。 A potential structure called a vertical overflow drain (VOFD) exists at a position deeper than the layer where the photodiode is formed. By adjusting the substrate potential VSUB of the solid-state imaging device 100 and controlling the height of a potential barrier called a vertical overflow barrier between the photodiode and the substrate, all charges in the photodiode are discharged to the substrate side or photo The saturation charge capacity of the diode can be controlled.
 基板電位VSUBを低レベルVaとすることにより、フォトダイオード-VOFD間の電位障壁の高さを大きくしてフォトダイオードの容量を大きくすることができ、基板電位VSUBを中レベルVbまで上げると、フォトダイオードの容量を少なくすることができる。 By setting the substrate potential VSUB to the low level Va, the height of the potential barrier between the photodiode and VOFD can be increased to increase the capacitance of the photodiode. When the substrate potential VSUB is increased to the intermediate level Vb, The capacity of the diode can be reduced.
 さらに、基板電位VSUBを高レベルVcまで上げると、フォトダイオード-VOFD間の電位障壁がなくなって、フォトダイオードの電荷を全て基板側に排出することができるので、後述の電子シャッタとして利用される。 Furthermore, when the substrate potential VSUB is raised to the high level Vc, the potential barrier between the photodiode and VOFD disappears, and all the charges of the photodiode can be discharged to the substrate side, so that it is used as an electronic shutter described later.
 図13の信号電荷読出タイミングにおいては、上記のようなフォトダイオードのポテンシャル構造を利用して、時刻t2の垂直方向の画素加算を行わない列の信号読み出し時と、時刻t5及び時刻t6の垂直方向の画素加算を行う列の信号読み出し時とで、基板電位VSUBレベルの変調により読み出し対象画素の電荷容量を切替えるようにしている。 At the signal charge readout timing shown in FIG. 13, by utilizing the photodiode potential structure as described above, at the time of signal readout of the column where pixel addition in the vertical direction is not performed at time t2, and in the vertical direction at time t5 and time t6. The charge capacity of the pixel to be read is switched by modulating the substrate potential VSUB level when reading the signal of the column where the pixel addition is performed.
 すなわち、複数の信号電荷読み出しを行って垂直加算する制御においては、VCCD12内の垂直転送パケットの電荷容量に対し電荷溢れが生じないよう各読み出し対象画素の容量を制御するが、列により垂直方向の加算画素数が異なる場合、垂直加算画素数の最も多い列(図12のA,C,D,F,G,I列)で電荷溢れが生じないように基板電位VSUBを所定電圧だけ高くするように一律に設定すると、垂直加算画素数の最も少ない列(図12のB,E,H列)では、垂直転送パケットの電荷容量に対して信号電荷が少量しか蓄積されていない状態となってしまい、結果的に垂直転送パケットの電荷容量を十分に活用していない事になる。 That is, in the control of performing a vertical addition by reading a plurality of signal charges, the capacity of each pixel to be read is controlled so as not to overflow the charge capacity of the vertical transfer packet in the VCCD 12. When the number of added pixels is different, the substrate potential VSUB is increased by a predetermined voltage so that charge overflow does not occur in the column having the largest number of vertical added pixels (columns A, C, D, F, G, and I in FIG. 12). If they are set uniformly, the column with the smallest number of vertical addition pixels (columns B, E, and H in FIG. 12) is in a state where only a small amount of signal charge is accumulated with respect to the charge capacity of the vertical transfer packet. As a result, the charge capacity of the vertical transfer packet is not fully utilized.
 そこで、時刻t2での読み出し対象画素の飽和出力が、時刻t5及びt6での読み出し対象画素の飽和の約2倍程度になるように基板電位VSUBを下げるように制御することで、各列の垂直転送パケットの電荷容量を充分に活用し、デバイスの保有する性能を生かした飽和出力を確保するようにしている。 Therefore, by controlling the substrate potential VSUB so that the saturation output of the pixel to be read at time t2 is about twice the saturation of the pixel to be read at time t5 and t6, By fully utilizing the charge capacity of the transfer packet, a saturated output is obtained by taking advantage of the performance of the device.
 また、ダイナミックレンジを大きくするため、フォトダイオード11の露光時間中の基板電位(第3の電位)は、画素加算数の一番少ないときの基板電位(第1の電位)と同じか、もしくはそれ以下に設定される。 In order to increase the dynamic range, the substrate potential (third potential) during the exposure time of the photodiode 11 is the same as or equal to the substrate potential (first potential) when the number of added pixels is the smallest. Set to:
 なお、この基板電位変調制御を上述の図6(a)に示した第1の画素加算例のタイミングにも適用するには、図9において、時刻t3の信号電荷読出し動作を時刻t2、t4の信号電荷読み出しよりも先に行うような時間に位置させ、その対象画素の飽和容量を大きくするようVSUBレベルを低レベルにしておき、V5電極に読み出しパルスを印加させ、その後の垂直加算の対象となる信号電荷の時刻t2、t4における読出しに際して、その対象画素の飽和容量を小さくするため、VSUBをより高いレベルに設定するように基板電位の変調のタイミングを設定し、時刻t2、t4の読み出しが終了した後にVSUBレベルを低レベルに再設定すればよい。 In order to apply this substrate potential modulation control also to the timing of the first pixel addition example shown in FIG. 6A, the signal charge read operation at time t3 in FIG. 9 is performed at times t2 and t4. The VSUB level is set to a low level so that the saturation capacity of the target pixel is increased, the readout pulse is applied to the V5 electrode, and the subsequent vertical addition is performed. In order to reduce the saturation capacity of the target pixel when reading out the signal charge at time t2 and t4, the timing of modulation of the substrate potential is set so as to set VSUB to a higher level, and the readout at times t2 and t4 is performed. After the completion, the VSUB level may be reset to a low level.
 また、実際の基板電位の値は、基本的には使用する固体撮像素子におけるポテンシャル分布と基板電位との関係を示す特性と、加算画素数などにより予め設定される。 In addition, the actual substrate potential value is basically set in advance according to the characteristics indicating the relationship between the potential distribution and the substrate potential in the solid-state imaging device to be used, the number of added pixels, and the like.
 (5)カメラ装置
 図15は、本実施の形態に係る固体撮像素子100を搭載したカメラ装置400の構造例を示すブロック図である。
(5) Camera Device FIG. 15 is a block diagram showing a structural example of a camera device 400 equipped with the solid-state imaging device 100 according to the present embodiment.
 同図に示すように、カメラ装置400は、レンズユニット410、固体撮像素子100、駆動部420、タイミング生成部430、制御部440、信号処理部450、メモリ管理部460、メモリ部470およびアナログフロントエンド480、表示部490、操作部495などからなる。 As shown in the figure, the camera device 400 includes a lens unit 410, a solid-state imaging device 100, a drive unit 420, a timing generation unit 430, a control unit 440, a signal processing unit 450, a memory management unit 460, a memory unit 470, and an analog front. An end 480, a display unit 490, an operation unit 495, and the like.
 レンズユニット410は、集光レンズ401と、焦点合わせの際この集光レンズ401を光軸方向に移動させるレンズ駆動部402からなり、当該集光レンズ401を介して、撮像対象となる像が固体撮像素子100の撮像部10(図1)上に結像される。 The lens unit 410 includes a condensing lens 401 and a lens driving unit 402 that moves the condensing lens 401 in the optical axis direction during focusing, and an image to be imaged is solid through the condensing lens 401. An image is formed on the imaging unit 10 (FIG. 1) of the imaging device 100.
 撮像部10における各フォトダイオード11で光電変換が行われ、当該受光した光量に応じた電荷が信号電荷として蓄積される。各信号電荷は、駆動部420から供給された駆動パルスによって読み出されて、出力部40(図1参照)より電圧に変換された後、アナログフロントエンド480に出力される。 The photoelectric conversion is performed by each photodiode 11 in the imaging unit 10, and a charge corresponding to the received light amount is accumulated as a signal charge. Each signal charge is read by the drive pulse supplied from the drive unit 420, converted into a voltage by the output unit 40 (see FIG. 1), and then output to the analog front end 480.
 アナログフロントエンド480は、相関二重サンプリング部(CDS)481とAD変換部482より構成され、固体撮像素子400より出力された信号に対して、タイミング生成部430より供給される設定タイミングに従って、相関二重サンプリングをしながらAD変換を行い、これによりデジタル化された画像信号をメモリ管理部460に出力する。 The analog front end 480 includes a correlated double sampling unit (CDS) 481 and an AD conversion unit 482, and the signal output from the solid-state imaging device 400 is correlated according to the set timing supplied from the timing generation unit 430. AD conversion is performed while double sampling is performed, and a digitalized image signal is output to the memory management unit 460.
 メモリ管理部460は、制御部440からの制御信号に応じて、アナログフロントエンド480から受信した画像信号を、駆動モードに従い、必要に応じて正しいアドレス順に並び替えてメモリ部470へ書き込む動作、およびメモリ部470からの画像信号を信号処理部450に送信する動作、信号処理部450で画像処理を終えた信号をメモリ部470に書き込む動作、あるいはアナログフロントエンド480からの出力信号を直接信号処理部450に送る動作を制御する。 The memory management unit 460 writes the image signals received from the analog front end 480 according to the control signal from the control unit 440 into the memory unit 470 according to the driving mode, rearranged in the correct address order as necessary, and An operation of transmitting an image signal from the memory unit 470 to the signal processing unit 450, an operation of writing a signal after image processing by the signal processing unit 450 to the memory unit 470, or an output signal from the analog front end 480 directly to the signal processing unit The operation sent to 450 is controlled.
 制御部440は、操作部495から受け付けたユーザの指示に基づき、所望のモードを実行すべく、上記メモリ管理部460、信号処理部450、タイミング生成部430に対して、それぞれ信号の転送パス設定、信号処理設定、駆動タイミング設定などの指示を送る。 Based on a user instruction received from the operation unit 495, the control unit 440 sets a signal transfer path to the memory management unit 460, the signal processing unit 450, and the timing generation unit 430 in order to execute a desired mode. Send instructions such as signal processing setting and drive timing setting.
 タイミング生成部430は、制御部440より受けた駆動タイミング設定に関する指示に基づき、所定のタイミングで駆動部420から固体撮像素子100に所定の駆動パルスを出力させると共に、アナログフロントエンド480に対して、CDS制御及びAD変換駆動タイミングを発行する。 The timing generation unit 430 outputs a predetermined drive pulse from the drive unit 420 to the solid-state imaging device 100 at a predetermined timing based on an instruction related to the drive timing setting received from the control unit 440, and the analog front end 480 Issue CDS control and AD conversion drive timing.
 駆動部420は、タイミング生成部430より供給される信号に従って所定の駆動パルスを生成して固体撮像素子100に供給し、上述した信号電荷読み出し、垂直転送、水平転送などの駆動のほか、基板電位VSUBを高レベルにしてフォトダイオード内の電荷を一旦放出させる電子シャッタを動作させる。また、第2の画素加算例における信号電荷読出駆動(図13)における基板電位の変調を実行する(なお、本願の特許請求の範囲における「駆動手段」は、図15では、駆動部420、タイミング生成部430および制御部440を合わせた概念となり、これらと固体撮像素子100の組み合わせを、「固体撮像装置」と呼ぶ。)。 The drive unit 420 generates a predetermined drive pulse in accordance with the signal supplied from the timing generation unit 430 and supplies the drive pulse to the solid-state imaging device 100. In addition to the above-described driving such as signal charge reading, vertical transfer, and horizontal transfer, the substrate potential The electronic shutter that once discharges the charge in the photodiode is operated by setting VSUB to a high level. Further, the modulation of the substrate potential in the signal charge readout drive (FIG. 13) in the second pixel addition example is executed (Note that the “drive means” in the claims of this application is the drive unit 420, the timing in FIG. The concept is a combination of the generation unit 430 and the control unit 440, and the combination of the generation unit 430 and the control unit 440 is referred to as a “solid-state imaging device”.
 また、制御部440は、液晶表示パネルなどからなる表示部490に、出力画素低減処理した画像データを送信して、所定のフレームレートで表示させる。 Further, the control unit 440 transmits the image data subjected to the output pixel reduction process to the display unit 490 including a liquid crystal display panel and displays the image data at a predetermined frame rate.
 (6)実施の形態1の効果
 以上のように、本実施の形態1によれば、次のような効果が得られる。
(6) Effects of First Embodiment As described above, according to the first embodiment, the following effects can be obtained.
 (a)フォトダイオード11ごとに駆動電極16を設け、フォトダイオード11の各行に沿って水平配線部15を配し、同一の垂直アドレスの行方向に並ぶ複数の駆動電極16が、水平配線部15の第1配線13、第2配線14のいずれかと接続され、 第1構造電極列161と第2構造電極列162とでは、その接続状態が異なるようにし、同じ行に並ぶ各駆動電極16に対し、列毎に異なる駆動パルスを印加することが可能となる。これにより、極めて簡単な構成でありながら、ブリッジ接続用の配線を設ける必要もなく、信号電荷を読み出す組み合わせの自由度を増すことができ、出力画素低減率の向上が容易となる。 (A) A driving electrode 16 is provided for each photodiode 11, a horizontal wiring portion 15 is arranged along each row of the photodiode 11, and a plurality of driving electrodes 16 arranged in the row direction of the same vertical address are arranged in the horizontal wiring portion 15. The first structure electrode row 161 and the second structure electrode row 162 are connected to either the first wiring 13 or the second wiring 14 so that their connection states are different, and the drive electrodes 16 arranged in the same row are connected to each other. It is possible to apply different drive pulses for each column. This makes it possible to increase the degree of freedom of the combination for reading out signal charges and to easily improve the output pixel reduction rate, though it is an extremely simple configuration, and it is not necessary to provide a wiring for bridge connection.
 すなわち、構成が簡単な1層の駆動電極により、フォトダイオードからVCCDへの信号読み出し、VCCDからHCCDへの電荷転送、およびVCCDの電荷転送を列毎に制御し水平間引き出力を実現し、また異なる構造電極列が配されVCCD毎に異なる駆動を可能にしたことから、その水平方向の配置周期、HCCDの配置、列毎の駆動相数設定と組み合わせることで、多様な水平間引き読み出しを実現することができる。また、各構造電極列における垂直駆動相数を容易に増加することができ、垂直間引き率を向上させることができる。 That is, a single layer drive electrode with a simple configuration controls horizontal readout output by controlling signal readout from the photodiode to the VCCD, charge transfer from the VCCD to the HCCD, and charge transfer of the VCCD for each column. Since the structure electrode rows are arranged to enable different driving for each VCCD, various horizontal thinning readouts can be realized by combining the horizontal arrangement cycle, the HCCD arrangement, and the number of driving phases for each row. Can do. In addition, the number of vertical drive phases in each structure electrode array can be easily increased, and the vertical thinning rate can be improved.
 (b)各構造電極列の駆動相数の多相化が容易であるため、1つの垂直転送パケット垂直方向に長くして、大きなVCCD飽和容量を得ることができるので、微細画素を持つ固体撮像素子を用いたカメラ装置においてもダイナミックレンジの大きなカメラ装置を実現できる。 (B) Since it is easy to increase the number of drive phases of each structure electrode array, one vertical transfer packet can be lengthened in the vertical direction to obtain a large VCCD saturation capacity. Therefore, solid-state imaging with fine pixels A camera device having a large dynamic range can be realized even in a camera device using an element.
 (c)各構造電極列の垂直駆動相数を等しくし、かつ駆動パルスを異なるものとすることで、水平方向の間引き読み出しを併用した複雑な画素加算のパターンを実現することが可能である。特に、画素加算後の信号重心配置の水平方向分布を均一に保ちつつ、かつ画素の加算数を抑えることで画素の飽和バラつきの影響を抑制しリニア特性が高い出力を得ることが可能である。 (C) By making the number of vertical drive phases of each structural electrode row equal and making the drive pulses different, it is possible to realize a complicated pixel addition pattern using horizontal thinning readout. In particular, while maintaining the horizontal distribution of the signal centroid arrangement after pixel addition to be uniform and suppressing the number of added pixels, it is possible to suppress the influence of pixel saturation variation and obtain an output with high linear characteristics.
 すなわち、画素の間引きのみで高い出力画素低減率を得ようとすると解像度の劣化が目立ちやすく、一方、加算画素数を多くした画素加算処理にのみによって高い出力画素低減率を得ようとすれば、各画素における飽和容量のバラツキも加算されて、リニア特性に欠ける画像が形成される傾向にある。 In other words, when trying to obtain a high output pixel reduction rate only by pixel decimation, resolution degradation tends to be conspicuous. On the other hand, if a high output pixel reduction rate is obtained only by pixel addition processing with an increased number of added pixels, The variation in saturation capacity in each pixel is also added, and an image lacking linear characteristics tends to be formed.
 これは、垂直転送パケットでの電荷溢れを防ぐためには、各画素における飽和容量のバラつきを考慮した上で、垂直転送パケットの電荷容量を上回らない様に読み出し電荷量を調整する必要があるが、垂直転送パケットに読み出し加算する画素数が多くなると垂直転送パケットの電荷容量に対する各画素の飽和容量バラつき考慮分として確保する容量比率が高くなり、リニア特性分に割り当てられる容量が少なくなるためである。 In order to prevent the charge overflow in the vertical transfer packet, it is necessary to adjust the readout charge amount so as not to exceed the charge capacity of the vertical transfer packet in consideration of the variation of the saturation capacity in each pixel. This is because when the number of pixels to be read and added to the vertical transfer packet increases, the capacity ratio secured as a consideration for the variation in saturation capacity of each pixel with respect to the charge capacity of the vertical transfer packet increases, and the capacity allocated to the linear characteristics decreases.
 しかし、本実施の形態によれば、間引き処理と画素加算処理を適度に併用して高い出力画素低減率を可能にしつつ、画質の劣化およびリニア特性の低下を可及的に抑えたバランスのよい圧縮画像を得ることができる。 However, according to the present embodiment, the thinning process and the pixel addition process are appropriately used in combination to enable a high output pixel reduction rate, while maintaining a good balance in which deterioration in image quality and linear characteristics are suppressed as much as possible. A compressed image can be obtained.
 (d)信号電荷読み出し時において基板電位変調制御を実行することで、垂直加算する画素数に応じてフォトダイオードの飽和容量を調整しているので、各モードの信号出力レベルを最適化できる。 (D) By executing the substrate potential modulation control at the time of reading the signal charge, the saturation capacity of the photodiode is adjusted according to the number of pixels to be vertically added, so that the signal output level of each mode can be optimized.
 <実施の形態2>
 本実施の形態2に係る固体撮像素子101は、 第1構造電極列161、第2構造電極列162、水平配線部15などの基本的な構造は、実施の形態1の固体撮像素子100と同じあるが、 第1構造電極列161、第2構造電極列162の水平方向における配列の周期およびHCCDが上下に分かれている2チャンネルとなっている点が大きく異なる。
<Embodiment 2>
The solid-state imaging device 101 according to the second embodiment has the same basic structure as the solid-state imaging device 100 of the first embodiment, such as the first structure electrode row 161, the second structure electrode row 162, and the horizontal wiring portion 15. However, the first and second structure electrode rows 161 and 162 are arranged in the horizontal direction, and the HCCD is divided into two channels.
 (1)電極配置図
 図16は、本実施の形態に係る固体撮像素子101の全体構成を示すための電極配置図である。
(1) Electrode Arrangement Diagram FIG. 16 is an electrode arrangement diagram for illustrating the overall configuration of the solid-state imaging device 101 according to the present embodiment.
 同図に示すようにこの固体撮像素子101は、その撮像部10において、マトリックス状に配置されたフォトダイオード11に隣接して配置される第1及び第2の構造電極列161、162が、1列毎に切り替わるように配置される。 As shown in the figure, the solid-state imaging device 101 includes a first and second structural electrode rows 161 and 162 arranged adjacent to the photodiodes 11 arranged in a matrix in the imaging unit 10. They are arranged so that they are switched for each column.
 また、各VCCD12の端部には第1~第3の選択出力用電極群251~243を3列周期であって、かつ第1及び第2の構造電極列161、162に対する配置箇所が互いに異なる上下の端部に位置するように配置されている。 Further, at the end of each VCCD 12, the first to third selective output electrode groups 251 to 243 have a three-row cycle, and the arrangement positions for the first and second structure electrode rows 161 and 162 are different from each other. It arrange | positions so that it may be located in an up-and-down edge part.
 水平転送部は2チャンネルの構成であって、撮像部10の下部に第1HCCD31が配され、上部に第2HCCD32が配されてなる。 The horizontal transfer unit has a two-channel configuration, and the first HCCD 31 is arranged at the lower part of the imaging unit 10 and the second HCCD 32 is arranged at the upper part.
 各第1及び第2HCCD31、32の出力側の端部には、第1及び第2の出力部41、42が配置されており、 第1HCCD31により転送されてきた信号電荷は第1出力部41において電圧値に変換され、第2HCCD32により転送されてきた信号電荷は、出力部42により電圧に変換され、それぞれ画素信号として出力される。 The first and second output units 41 and 42 are arranged at the output side end portions of the first and second HCCDs 31 and 32, and the signal charges transferred by the first HCCD 31 are output from the first output unit 41. The signal charges converted into voltage values and transferred by the second HCCD 32 are converted into voltages by the output unit 42 and output as pixel signals, respectively.
 実施の形態1と同様、第1構造電極列161の各駆動電極16に印加する駆動パルスはV1、V3、V5、V7,V9であり、第2構造電極列162の各駆動電極16に印加する駆動パルスはV2、V4、V6、V8,V10となるように水平配線部15を介してバスライン18に接続される。 As in the first embodiment, the drive pulses applied to the drive electrodes 16 of the first structure electrode row 161 are V1, V3, V5, V7, and V9, and are applied to the drive electrodes 16 of the second structure electrode row 162. The drive pulses are connected to the bus line 18 via the horizontal wiring portion 15 so as to be V2, V4, V6, V8, and V10.
 したがって、本実施の形態においても、各VCCD12は、垂直5画素周期の5相駆動であり、水平方向には第1構造電極列161と第2構造電極列162を1列毎に交互に配置した水平2画素周期であり、この垂直5画素×水平2画素を配置単位として撮像部10の領域内に敷き詰められている。 Therefore, also in the present embodiment, each VCCD 12 is 5-phase drive with a period of 5 vertical pixels, and the first structure electrode rows 161 and the second structure electrode rows 162 are alternately arranged for each row in the horizontal direction. This is a period of two horizontal pixels, and the vertical 5 pixels × horizontal 2 pixels are arranged in the area of the imaging unit 10 as an arrangement unit.
 撮像部10の上下に反された各HCCD31、32は、VCCD2列分の幅に対して1信号を格納する信号格納領域(水平転送パケット)を設けるようにその駆動相数と駆動パルスのタイミングが決定されている。 Each of the HCCDs 31 and 32 turned upside down of the imaging unit 10 has the number of drive phases and the timing of the drive pulses so as to provide a signal storage area (horizontal transfer packet) for storing one signal with respect to the width of two VCCD columns. It has been decided.
 また、第1HCCD31、第2HCCD32と 第1構造電極列161、第2構造電極列162との繋ぎ部分には、それぞれ第1選択出力部210、第2選択出力部220が形成され、VCCD12から搬送されてきた信号電荷を選択的に、第1HCCD31もしくは第2HCCD32に出力する。 In addition, a first selection output unit 210 and a second selection output unit 220 are formed at the connecting portion between the first HCCD 31 and the second HCCD 32 and the first structure electrode row 161 and the second structure electrode row 162, and are transported from the VCCD 12. The received signal charges are selectively output to the first HCCD 31 or the second HCCD 32.
 第1選択出力部210は、蓄積部211とバリア部212とからなり、第2選択出力部220は、蓄積部221、バリア部222とからなる。 The first selection output unit 210 includes a storage unit 211 and a barrier unit 212, and the second selection output unit 220 includes a storage unit 221 and a barrier unit 222.
 実施の形態1と同様、これらは、VCCD12の端部上面に、第1~第3の選択出力用電極群251~253を形成してなり、それぞれ撮像領域における駆動パルスV1~V10とは独立した選択出力パルスを印加可能となっている。 As in the first embodiment, these are formed by forming first to third selective output electrode groups 251 to 253 on the upper surface of the end portion of the VCCD 12, and are independent of the drive pulses V1 to V10 in the imaging region, respectively. A selective output pulse can be applied.
 そして、第1構造電極列161は、第1~第3の選択出力用電極群251~253を介して第1HCCD31へのみ電荷を転送でき、第2構造電極列162は、第1~第3の選択出力用電極群251~253を介して第2のHCCD32へのみ電荷を転送できる。 The first structure electrode row 161 can transfer charges only to the first HCCD 31 via the first to third selection output electrode groups 251 to 253, and the second structure electrode row 162 has the first to third selection electrode groups. Charges can be transferred only to the second HCCD 32 via the selective output electrode groups 251 to 253.
 また、第1~第3の選択出力用電極群251~253は、水平方向での3列分の画素加算を想定した構造としており(図17参照)、第1及び第2構造電極列161、162とは異なる配置周期となっている。 The first to third selection output electrode groups 251 to 253 have a structure assuming pixel addition for three columns in the horizontal direction (see FIG. 17), and the first and second structure electrode columns 161, The arrangement period is different from 162.
 (2)駆動方法
 (2-1)画素加算例
 図17は、本実施の形態2で実行される画素加算処理の内容を示す画素加算図である。
(2) Driving Method (2-1) Pixel Addition Example FIG. 17 is a pixel addition diagram showing the contents of the pixel addition process executed in the second embodiment.
 同図において同形状の印を記載した画素の信号を加算することで垂直2画素×水平3画素の画素加算結果を得られ、加算後の信号重心(+の位置)分布は水平方向に均等3画素分、垂直方向に均等5画素分の距離を持つ分布としている。 In the same figure, pixel addition results of pixels having the same shape are added to obtain a pixel addition result of 2 vertical pixels × 3 horizontal pixels, and the signal centroid (+ position) distribution after the addition is evenly 3 in the horizontal direction. The distribution has a distance equivalent to 5 pixels in the vertical direction.
 (2-2)読出画素配置図およびアドレス割当図
 図18は、上記画素加算を実行するため、読み出される画素に対して電極別に番号PDn(n=1,2,3,4)を割り当てた読出画素配置図である。
(2-2) Read Pixel Arrangement Diagram and Address Assignment Diagram FIG. 18 is a read in which numbers PDn (n = 1, 2, 3, 4) are assigned to the read pixels for each electrode in order to execute the pixel addition. It is a pixel arrangement diagram.
 垂直方向に2画素分離れたPD1とPD2、およびPD3とPD4はそれぞれ読出制御と垂直転送制御を組み合わせて、同一垂直転送パケット内に読み出されることにより垂直加算が実行される。 PD1 and PD2 and PD3 and PD4 separated by two pixels in the vertical direction are combined with read control and vertical transfer control, respectively, and read in the same vertical transfer packet to execute vertical addition.
 また、水平加算は、各VCCD12から第1、第2HCCD31、32への転送のタイミングと、各第1、第2HCCD31、32における水平転送のタイミングを制御することにより実行される。 The horizontal addition is executed by controlling the timing of transfer from each VCCD 12 to the first and second HCCDs 31 and 32 and the timing of horizontal transfer in each of the first and second HCCDs 31 and 32.
 図19は、図18において、画素加算駆動を行う際の読み出し対象画素に垂直アドレス及び水平アドレスの情報を割り当て、第1HCCD31、第2HCCD32に格納される画素加算信号の例を各HCCD部に記載したアドレス割当図である。 FIG. 19 shows an example of the pixel addition signal stored in the first HCCD 31 and the second HCCD 32 in each HCCD unit, with the information of the vertical address and the horizontal address assigned to the pixel to be read when performing pixel addition driving in FIG. It is an address allocation diagram.
 ここでは、読み出し対象画素に対して、それぞれ第1HCCD31、第2HCCD32に転送される順番に垂直アドレスを付しているため、 第1構造電極列161と第2構造電極列162とでは、垂直アドレスの順番が逆になっている。 Here, since the vertical addresses are assigned to the readout target pixels in the order of transfer to the first HCCD 31 and the second HCCD 32, the vertical address of the first structure electrode row 161 and the second structure electrode row 162 is assigned. The order is reversed.
 なお、図19では、水平ライン出力信号の加算画素として、第2構造電極列162については、(F3+F4+D3+D4+B3+B4)、 第1構造電極列161については、(I3+I4+G3+G4+E3+E4)が格納されている例が開示されている(I、G列は不図示。図20についても同じ。)。 FIG. 19 discloses an example in which (F3 + F4 + D3 + D4 + B3 + B4) is stored for the second structure electrode row 162 and (I3 + I4 + G3 + G4 + E3 + E4) is stored for the first structure electrode row 161 as the addition pixel of the horizontal line output signal. (I and G columns are not shown. The same applies to FIG. 20).
 (2-3)信号電荷読出タイミング
 図21のタイミングチャートは、垂直ブランキング期間中の信号電荷の読み出しにおける動作タイミングを示すものである。
(2-3) Signal Charge Reading Timing The timing chart of FIG. 21 shows the operation timing in reading signal charges during the vertical blanking period.
 第1構造電極列161に関しては、時刻t2において、V3電極にVHレベルの駆動パルスを印加してPD1の信号電荷を読み出している。 Regarding the first structure electrode row 161, at time t2, a VH level drive pulse is applied to the V3 electrode to read the signal charge of the PD1.
 読み出し後に、V1、V3、V5、V7、V9の各電極に印加する駆動パルスをVM、VL状態で変化させて垂直転送を行い、PD1の信号電荷がV7電極の直下に転送されてきた時刻t3に、V7電極に対してVHレベルの駆動パルスを印加してPD2の信号電荷を読み出し、これにより時刻t2に読み出したPD1の信号電荷と同じ垂直転送パケットに読み出して垂直加算させている。 After reading, time t3 when the signal charge of PD1 is transferred directly below the V7 electrode by performing vertical transfer by changing the drive pulse applied to each electrode of V1, V3, V5, V7, and V9 in the VM and VL states. In addition, a VH level drive pulse is applied to the V7 electrode to read out the signal charge of PD2, thereby reading out and vertically adding to the same vertical transfer packet as the signal charge of PD1 read out at time t2.
 PD1とPD2の信号電荷を加算した後は、蓄積部211(図16)とバリア部212が時刻t1の初期状態と同じになるまで垂直転送を行い、時刻t6に転送を停止している。 After adding the signal charges of PD1 and PD2, vertical transfer is performed until the storage unit 211 (FIG. 16) and the barrier unit 212 are the same as the initial state at time t1, and the transfer is stopped at time t6.
 また、第2構造電極列162に関しては、時刻t1にてV4,V6、V8の各電極をVM状態、V2、V10の電極をVL状態とした初期状態より、時刻t2にてV8電極に対してVHレベルの駆動パルスを印加し、PD3の信号電荷を読み出している。その後、V2、V6、V8、V10電極に印加する駆動パルスをVM、VL状態で変化させてVCCD内の信号電荷を、第1構造電極列161とは逆方向(第2HCCD32に向かう方向)に垂直転送し、時刻t3にてV4電極に対してVHレベルの駆動パルスを印加してPD4の信号電荷を、PD3の信号電荷を出力したのと同じ垂直転送パケットに読み出して垂直加算を実行している。 Regarding the second structure electrode row 162, the V4, V6, and V8 electrodes are set to the VM state at the time t1, and the V2 and V10 electrodes are set to the VL state at the time t2. A VH level driving pulse is applied to read the signal charge of PD3. Thereafter, the drive pulses applied to the electrodes V2, V6, V8, and V10 are changed in the VM and VL states so that the signal charge in the VCCD is perpendicular to the direction opposite to the first structure electrode row 161 (direction toward the second HCCD 32). At time t3, a drive pulse of VH level is applied to the V4 electrode to read the PD4 signal charge into the same vertical transfer packet that output the PD3 signal charge, and execute vertical addition. .
 PD3とPD4との信号電荷を加算した後は、蓄積部221とバリア部222が時刻t1の初期状態と同じになるまで、垂直転送を行い、時刻t6に電荷転送を停止している。 After adding the signal charges of PD3 and PD4, the vertical transfer is performed until the storage unit 221 and the barrier unit 222 become the same as the initial state at time t1, and the charge transfer is stopped at time t6.
 なお、上記信号電荷の垂直転送中、各HCCD31、32の動作は、停止していても転送を行っていてもどちらでも構わないが、VCCD12からの有効信号の出力に備えてHCCD31,32を空(電荷が蓄積されていない状態)にしておくことが望ましく、本実施の形態では、垂直転送を終えた時刻t6の状態でHCCD31、32に転送動作を行わせて、出力部41、42を介して電荷を一掃するようにしている(区間tc)。 During the vertical transfer of the signal charges, the operation of each of the HCCDs 31 and 32 may be either stopped or transferred, but the HCCDs 31 and 32 are emptied in preparation for the output of a valid signal from the VCCD 12. In this embodiment, the HCCDs 31 and 32 perform the transfer operation in the state at time t6 when the vertical transfer is finished, and the output units 41 and 42 are used. Thus, the charge is wiped out (section tc).
 (2-4)垂直転送タイミング
 図22のタイミングチャートは、上記信号電荷読み出し後の水平ブランキング期間におけるVCCD内の信号電荷の垂直転送時の駆動タイミングを示すものである。
(2-4) Vertical Transfer Timing The timing chart of FIG. 22 shows the drive timing at the time of vertical transfer of the signal charge in the VCCD during the horizontal blanking period after reading out the signal charge.
 また、図23は、図22のt1~t21時刻における 第1構造電極列161が配され、第1~第3選択出力用電極群251~253に対応したI、G、E列のVCCD12内及びHCCD31のポテンシャルと信号電荷の状態を模式的に示す図(以下、「電荷転送図」という。)である。 Also, FIG. 23 shows the inside of the VCCD 12 in the I, G, and E columns corresponding to the first to third selection output electrode groups 251 to 253, in which the first structure electrode row 161 at the time t1 to t21 in FIG. 2 is a diagram schematically showing the potential of HCCD 31 and the state of signal charges (hereinafter referred to as “charge transfer diagram”). FIG.
 同様に、図24は、図22のt1~t21時刻における 第2構造電極列162が配され、第1~第3の選択出力用電極群251~253に対応したF、D、B列のVCCD12内及びHCCD32における電荷転送図である。 Similarly, in FIG. 24, the VCCD 12 in the F, D, and B columns corresponding to the first to third selection output electrode groups 251 to 253 are arranged, and the second structure electrode row 162 at time t1 to t21 in FIG. 6 is a charge transfer diagram in the inner and HCCD 32. FIG.
 第1構造電極列161においては、図21の信号電荷読出処理において読み出され垂直加算された信号電荷は、V3~V5電極直下に形成された垂直転送パケットに蓄積されており(図23の各列の時刻t1の状態参照)、時刻t1~t10で、V1、V3、V5、VV7、9電極に印加する駆動パルスを順次VM、VL状態で変化させて垂直転送する。 In the first structure electrode row 161, the signal charges read and vertically added in the signal charge reading process of FIG. 21 are accumulated in the vertical transfer packets formed immediately below the electrodes V3 to V5 (each of FIG. 23). At the time t1 to t10), the drive pulses applied to the electrodes V1, V3, V5, VV7, and 9 are sequentially changed in the VM and VL states and vertically transferred.
 これにより、第1選択出力部210に一番近かった垂直転送パケット内の信号電荷は、時刻t10の時点で、蓄積部211に蓄積される(図23の各列の時刻t10のS1~S3電極の箇所参照)。 As a result, the signal charge in the vertical transfer packet that is closest to the first selection output unit 210 is accumulated in the accumulation unit 211 at time t10 (the electrodes S1 to S3 at time t10 in each column in FIG. 23). (See section).
 時刻t11~t13間において、第1選択出力用電極群251を駆動させて、I列の蓄積部211内の蓄積電荷を、第1HCCD31の水平転送パケット内に転送させる(TR11)。 Between time t11 and t13, the first selective output electrode group 251 is driven to transfer the accumulated charge in the I-column accumulation unit 211 into the horizontal transfer packet of the first HCCD 31 (TR11).
 その後、この水平転送パケットを出力部41に向けてVCCD12の2列分だけ左方向に水平シフトさせ(TR12)、時刻t15~t17間に第1選択電極群252を駆動させることにより、G列のVCCD12の蓄積部211内の蓄積電荷を上記水平転送パケットに転送して加算する(TR13)。 Thereafter, the horizontal transfer packet is horizontally shifted leftward by two columns of the VCCD 12 toward the output unit 41 (TR12), and the first selection electrode group 252 is driven between times t15 and t17, whereby the G column The accumulated charge in the accumulation unit 211 of the VCCD 12 is transferred to the horizontal transfer packet and added (TR13).
 その後、さらに水平転送パケットを左側にVCCD12の2列分水平シフトさせ(TR14)、時刻t19~t21の間にE列の第1選択電極群252を駆動させて、当該VCCD12の蓄積部211内の蓄積電荷を上記水平転送パケットに転送して加算する(TR15)。 Thereafter, the horizontal transfer packet is further horizontally shifted to the left by two columns of the VCCD 12 (TR14), and the first selection electrode group 252 of the E column is driven between the times t19 and t21, so that the storage unit 211 of the VCCD 12 The accumulated charge is transferred to the horizontal transfer packet and added (TR15).
 他の奇数列の3列分のVCCD12についても上記と同様に水平方向における加算処理が行われる。 The addition processing in the horizontal direction is performed on the VCCDs 12 for the other odd-numbered columns in the same manner as described above.
 一方、第2構造電極列162に対応するVCCD12の偶数列(図24では、B、D,F列を例示)についても上記と同様の制御を行って水平方向に存在する3つの信号電荷を加算するが、これらの場合には、上端に第2HCCD32が接続されているため、垂直転送方向が上記第1構造電極列161の場合と逆になる。 On the other hand, the same control as described above is performed for the even-numbered columns of the VCCD 12 corresponding to the second structure electrode rows 162 (B, D, and F columns are illustrated in FIG. 24), and three signal charges existing in the horizontal direction are added. However, in these cases, since the second HCCD 32 is connected to the upper end, the vertical transfer direction is opposite to the case of the first structure electrode row 161.
 具体的に、図22に示すように駆動制御に関しては、第1構造電極列のV1をV10に、V3をV8に、V5をV6に、V7をV4に、V9をV2に置き替えた制御を行うことで信号電荷の水平加算を実現できる。 Specifically, as shown in FIG. 22, regarding the drive control, the control is performed by replacing V1 of the first structure electrode array with V10, V3 with V8, V5 with V6, V7 with V4, and V9 with V2. By doing so, horizontal addition of signal charges can be realized.
 なお、上記では図21の信号電荷読み出しと図22の垂直転送を1回行った時点でVCCD12の3列分を水平加算しており、第1、第2HCCD31、32内の信号電荷の状態は、図19に示すように各第1HCCD31、第2HCCD32の信号格納領域のうち1/3だけに信号電荷が格納されており、他の2/3の信号格納領域は空の状態となる。 In the above, when the signal charge reading of FIG. 21 and the vertical transfer of FIG. 22 are performed once, three columns of the VCCD 12 are horizontally added, and the state of the signal charges in the first and second HCCDs 31 and 32 is as follows: As shown in FIG. 19, signal charges are stored in only 1/3 of the signal storage areas of the first HCCD 31 and the second HCCD 32, and the other 2/3 signal storage areas are empty.
 そこで、図19の状態において、水平転送パケットを適宜移動させながら、図22の垂直駆動を更に2回実施することにより、各第1HCCD31、第2HCCD32の状態は図20に示すように信号格納領域の全てに所定の水平ライン番号の信号電荷を転送した状態とすることができる。なお、図20の例では、各信号格納領域に格納されている水平ライン番号は、各VCCD12の転送方向における第1HCCD31、第2HCCD32への転送順に付されている。 Accordingly, in the state of FIG. 19, the vertical drive of FIG. 22 is further performed twice while appropriately moving the horizontal transfer packet, so that the state of each of the first HCCD 31 and the second HCCD 32 is as shown in FIG. A signal charge having a predetermined horizontal line number can be transferred to all. In the example of FIG. 20, the horizontal line numbers stored in each signal storage area are given in the order of transfer to the first HCCD 31 and the second HCCD 32 in the transfer direction of each VCCD 12.
 この状態で、第1HCCD31、第2HCCD32をそれぞれ水平転送して信号出力を行えば、1回の水平転送出力で3水平ライン分の信号出力が得られることとなり処理速度を速くすることができる。 In this state, if the first HCCD 31 and the second HCCD 32 are horizontally transferred to perform signal output, a signal output for three horizontal lines can be obtained by one horizontal transfer output, and the processing speed can be increased.
 なお、図19において、第2構造電極列162の第1番目の水平ラインに相当する信号(B1,B2,D1,D2,F1,F2)及び第1構造電極列161の第1番目の水平ラインに相当する信号(A1,A2、C1,C2,E1,E2)は、図21の信号電荷読出し制御の終了時点で各第2HCCD32、第1HCCD31に排出されており、有効出力信号としては得られていないが、これは読み出し時の図21の駆動タイミングを適宜調整することで有効な出力信号として得ることも可能である。 In FIG. 19, signals (B1, B2, D1, D2, F1, F2) corresponding to the first horizontal line of the second structure electrode row 162 and the first horizontal line of the first structure electrode row 161 are shown. (A1, A2, C1, C2, E1, E2) are discharged to the second HCCD 32 and the first HCCD 31 at the end of the signal charge reading control in FIG. 21, and are obtained as effective output signals. However, this can be obtained as an effective output signal by appropriately adjusting the drive timing of FIG. 21 at the time of reading.
 (3)カメラ装置
 本実施の形態に係る固体撮像素子101を搭載するカメラ装置も、図15に示したものとほぼ同様な構成を有する。但し、固体撮像素子101は、2つの出力部41、42が存在するため、これをカメラ装置においてアナログフロントエンド480におけるCDS481、AD変換部482は、それぞれ2つずつ必要となる(後述の図33参照)。
(3) Camera Device A camera device equipped with the solid-state imaging device 101 according to the present embodiment also has a configuration that is substantially the same as that shown in FIG. However, since the solid-state imaging device 101 has two output units 41 and 42, two CDSs 481 and two AD conversion units 482 in the analog front end 480 are required in the camera device (see FIG. 33 described later). reference).
 また、撮像部10を挟む上下2チャンネルのHCCD構造における画像信号の水平ライン出力順番は、例えば第1構造電極列161は撮像部下部から、第2構造電極列162は撮像部上部からといった具合に、構造電極列に依存して撮像信号の出力のアドレスが異なるので、メモリ部470には少なくとも1画面分の画像信号を蓄えるメモリ領域を有する必要があり、メモリ管理部460は、アナログフロントエンド480から出力される信号について書き込みを制御して、当該メモリ部470に正しいアドレスで書き込む。色調整などの信号処理は、上記メモリ部470に書き込まれた画像信号に対して実行される。 In addition, the horizontal line output order of the image signals in the HCCD structure of the upper and lower two channels sandwiching the imaging unit 10 is, for example, the first structure electrode row 161 from the lower part of the imaging unit, the second structure electrode row 162 from the upper part of the imaging unit, Since the output address of the imaging signal differs depending on the structure electrode array, the memory unit 470 needs to have a memory area for storing image signals for at least one screen, and the memory management unit 460 has an analog front end 480. Is written to the memory unit 470 at a correct address. Signal processing such as color adjustment is performed on the image signal written in the memory unit 470.
 (4)実施の形態2の効果
 本実施の形態2に係る発明によれば、実施の形態1における主な効果に加え、電荷転送方向を撮像領域上下の異方向に設計して各端部にHCCDを設けることで上下2チャンネルHCCDを垂直多相駆動(5相以上)に対応させることが可能となり、1フレームを出力する速度が向上するため、フレームレートをより大きくすることができる。
(4) Effects of Second Embodiment According to the invention according to the second embodiment, in addition to the main effects of the first embodiment, the charge transfer direction is designed in a different direction above and below the imaging region, and at each end. By providing the HCCD, the upper and lower 2-channel HCCD can be adapted to vertical multi-phase driving (5 or more phases), and the speed of outputting one frame is improved, so that the frame rate can be increased.
 <実施の形態3>
 上記実施の形態2では、 2チャンネルのHCCD構造において、第1構造電極列161、第2構造電極列162を交互に配列し、いずれも5相駆動としたが、本実施の形態では、これらを異なる配列周期とすると共に、垂直駆動の相数も第1構造電極列161と第2構造電極列162で異なるようにしている。
<Embodiment 3>
In the second embodiment, in the two-channel HCCD structure, the first structure electrode rows 161 and the second structure electrode rows 162 are alternately arranged, and both of them are driven in five phases. The arrangement period is different, and the number of phases for vertical driving is different between the first structure electrode row 161 and the second structure electrode row 162.
 これにより、 第1構造電極列161と第2構造電極列162とで異なるモードで駆動し、それぞれ第1HCCD31と第2HCCD32から独立して出力できるようにしている点に特徴がある。 This is characterized in that the first structure electrode row 161 and the second structure electrode row 162 are driven in different modes and can be output independently from the first HCCD 31 and the second HCCD 32, respectively.
 (1)電極配置図
 図25は、本実施の形態3に係る固体撮像素子102の電極配置図である。
(1) Electrode Arrangement FIG. 25 is an electrode arrangement diagram of the solid-state imaging device 102 according to the third embodiment.
 同図に示すように、本実施の形態では、下方に配された第1HCCD31をVCCD12内の信号電荷の転送先とする第1構造電極列161と、上方に配された第2HCCD32をVCCD内の信号電荷の転送先とする第2構造電極列162とが、第1構造電極列161が2列と第2構造電極列162が1列とで構成される3列を一周期とした配置単位で撮像領域内に並べられる。 As shown in the figure, in the present embodiment, the first HCCD 31 disposed below is used as a signal charge transfer destination in the VCCD 12, and the second HCCD 32 disposed above is disposed in the VCCD. The second structure electrode row 162 as a signal charge transfer destination is an arrangement unit in which one cycle is composed of three rows each composed of two first structure electrode rows 161 and one second structure electrode row 162. Arranged in the imaging area.
 第1HCCD31、第2HCCD32は、それぞれVCCDの3列分の長さの信号蓄積領域(水平転送パケット)を持ち、第1HCCD31と第1構造電極列161との間には、第1選択出力用電極群251、もしくは第2の選択出力用電極群252が配置されており、第2HCCD32と第2構造電極列162との間には第3の選択出力用電極群253が配置されている。 Each of the first HCCD 31 and the second HCCD 32 has a signal storage area (horizontal transfer packet) having a length corresponding to three columns of the VCCD, and a first selective output electrode group between the first HCCD 31 and the first structure electrode row 161. 251 or the second selection output electrode group 252 is arranged, and the third selection output electrode group 253 is arranged between the second HCCD 32 and the second structure electrode row 162.
 本実施の形態では、第1構造電極列161の撮像領域内の駆動電極16に印加する駆動パルス信号は、V1、V3、V5、V7,V9であり、第2構造電極列162の撮像領域内の駆動電極16に印加する駆動パルス信号は、V2、V4、V6、V8,V10,V12,V14,V16,V18であり、第1構造電極列161は垂直5相駆動、第2構造電極列162は、垂直9相駆動の構成としている。そのため、バスライン18(図2参照)の本数も、駆動パルスV12、V14、V16、V18を供給する分だけ追加される。 In the present embodiment, the drive pulse signals applied to the drive electrodes 16 in the imaging region of the first structure electrode row 161 are V1, V3, V5, V7, and V9, and in the imaging region of the second structure electrode row 162. The drive pulse signals applied to the drive electrodes 16 are V2, V4, V6, V8, V10, V12, V14, V16, and V18. The first structure electrode row 161 is the vertical five-phase drive and the second structure electrode row 162. Has a configuration of vertical nine-phase driving. For this reason, the number of bus lines 18 (see FIG. 2) is also added to the extent that the drive pulses V12, V14, V16, and V18 are supplied.
 つまり、本実施の形態では垂直45画素×水平3画素の電極を配置単位として撮像領域内に敷き詰めている。 That is, in the present embodiment, the electrodes of 45 pixels vertical × 3 pixels horizontal are arranged in the imaging region as an arrangement unit.
 (2)読み出し対象画素及び画素加算例
 図26は、転送先のHCCDを区別しない全ての読み出し対象画素の配置をしている。図27は、そのうち第1HCCD31を経由して出力されるモードA実行時における読み出し対象画素の位置とその画素加算例を、図28は、第2HCCD32を経由するモードB実行時における読み出し対象画素の位置とその画素加算例をそれぞれ示している。
(2) Reading Target Pixel and Pixel Addition Example FIG. 26 shows the arrangement of all the reading target pixels that do not distinguish the transfer destination HCCD. FIG. 27 shows the position of the pixel to be read out during execution of mode A output through the first HCCD 31 and an example of pixel addition thereof, and FIG. 28 shows the position of the pixel to be read out during execution of mode B via the second HCCD 32. And a pixel addition example thereof.
 図27に示すように垂直2画素×水平2画素の画素加算を行うモードAにおいては、画素加算後の信号重心(+の記載位置)の分布は、水平方向に均等3画素分、垂直方向に均等5画素分の距離を持つ分布となり、また、図28に示すように垂直2画素×水平1画素の信号画素加算を行うモードBにおいては、水平方向に均等3画素分、垂直方向に均等9画素分の距離を持つ分布となる。 As shown in FIG. 27, in mode A in which pixel addition of 2 vertical pixels × 2 horizontal pixels is performed, the distribution of signal centroids (positions of +) after pixel addition is equivalent to 3 pixels in the horizontal direction and in the vertical direction. In the mode B in which the signal pixels of 2 vertical pixels × horizontal 1 pixel are added as shown in FIG. 28, the distribution has a uniform distance of 5 pixels. The distribution has a distance corresponding to pixels.
 (3)駆動方法
 (3-1)読出画素配置図、アドレス割当図
 図29は、本実施の形態における読出画素配置図であり、 第1構造電極列161に隣接するフォトダイオード列では、垂直方向に2画素離れたPD1とPD2が、第2構造電極列162に隣接するフォトダイオード列では、垂直方向に4画素離れたPD3とPD4が、それぞれ読み出し制御と垂直転送制御を組み合わせることにより、同一の垂直転送パケット内に読み出されて垂直加算が実行される。
(3) Driving Method (3-1) Read Pixel Arrangement Diagram and Address Allocation Diagram FIG. 29 is a read pixel arrangement diagram in the present embodiment. In the photodiode column adjacent to the first structure electrode column 161, the vertical direction In the photodiode column adjacent to the second structure electrode column 162, PD1 and PD2 separated by two pixels in the same direction can be obtained by combining PD3 and PD4 separated by four pixels in the vertical direction by combining read control and vertical transfer control, respectively. Read in the vertical transfer packet and execute vertical addition.
 図29に示すように、第1構造電極列161に隣接するフォトダイオード列において、PD1は、V3電極への読み出しパルスで信号電荷が読み出され、PD2はV7電極への読み出しパルスで信号電荷が読み出される。 As shown in FIG. 29, in the photodiode row adjacent to the first structure electrode row 161, PD1 reads the signal charge by the read pulse to the V3 electrode, and PD2 receives the signal charge by the read pulse to the V7 electrode. Read out.
 また、第2構造電極列162に隣接するフォトダイオード列において、PD3は、V12電極への読み出しパルスで信号電荷が読み出され、PD4はV4電極への読み出しパルスで信号電荷が読み出される。 In the photodiode row adjacent to the second structure electrode row 162, PD3 reads the signal charge with a read pulse to the V12 electrode, and PD4 reads the signal charge with a read pulse to the V4 electrode.
 図30は、図29の読み出し対象画素に垂直アドレス及び水平アドレスの情報を割り当てると共に、各第1HCCD31、第2HCCD32に格納される第1水平ライン出力としての画素加算信号の情報を、各HCCD31,32に記載したアドレス割当図である。 30 assigns the information of the vertical address and the horizontal address to the readout target pixel of FIG. 29, and the information of the pixel addition signal as the first horizontal line output stored in each of the first HCCD 31 and the second HCCD 32. FIG.
 実施の形態2と同様、各列の垂直アドレスは、出力される第1、第2HCCD31、32側から垂直方向に番号を割り当てているが、水平ライン数は転送先によって異なる。 As in the second embodiment, the vertical addresses of the respective columns are assigned numbers in the vertical direction from the output first and second HCCDs 31 and 32, but the number of horizontal lines differs depending on the transfer destination.
 本例では、第1構造電極列161、第2構造電極列162ともに読み出し画素は、垂直方向に2画素加算するため、第2HCCD32より出力される水平ライン数は(n/2)ライン、第1HCCD31より出力される水平ライン数は(x/2)ラインである。(n、x:整数)
 なお、図30では、第1HCCD31には、第1構造電極列161が配されたA列とC列、及びD列とF列の読み出し画素が加算された際の第1水平ライン出力信号(A1+A2+C1+C2)、(D1+D2+F1+F2)がそれぞれ格納され、第2HCCD32には、第2構造電極列162が配設されたB列及びE列の読み出し画素が加算された際の第1水平ライン出力信号(B1+B2)、(E1+E2)がそれぞれ格納されている例が開示されている。
In this example, since the readout pixels of the first structure electrode row 161 and the second structure electrode row 162 are added in the vertical direction, the number of horizontal lines output from the second HCCD 32 is (n / 2) lines, the first HCCD 31. The number of horizontal lines to be output is (x / 2) lines. (N, x: integer)
In FIG. 30, the first HCCD 31 has a first horizontal line output signal (A1 + A2 + C1 + C2) when the readout pixels of the A column and the C column, and the D column and the F column where the first structure electrode column 161 is arranged are added. ), (D1 + D2 + F1 + F2) are respectively stored, and the first horizontal line output signal (B1 + B2) when the read pixels of the B column and the E column in which the second structure electrode column 162 is arranged are added to the second HCCD 32, An example in which (E1 + E2) is stored is disclosed.
 (3-2)信号電荷読出タイミング
 図31は、本実施の形態における信号電荷読み出し時における各駆動パルスのタイミングチャートを示す。
(3-2) Signal Charge Read Timing FIG. 31 shows a timing chart of each drive pulse at the time of signal charge read in the present embodiment.
 まず、 第1構造電極列161における駆動パルスのタイミングチャートでは、V3電極、V7電極にそれぞれ時刻t3、時刻t4でVHレベルの駆動パルスが印加され、PD1、PD2の信号電荷を読み出している。 First, in the drive pulse timing chart in the first structure electrode row 161, VH level drive pulses are applied to the V3 electrode and V7 electrode at time t3 and time t4, respectively, and the signal charges of PD1 and PD2 are read out.
 この時PD1,PD2の信号電荷は、VCCD12内の垂直転送パケットで各信号電荷を混合するように読み出している。具体的には、時刻t3でV3電極をVH状態にして、PD1の信号電荷をV3直下の垂直転送パケットに読み出した後、V1~V9電極を駆動して当該垂直転送パケットをV7電極の直下に移動させ、時刻t4でV7電極をVH状態にしてPD2の信号電荷を同じ垂直転送パケット内に読み出して混合することによりPD1、PD2の信号電荷を加算する処理を実行する。 At this time, the signal charges of PD1 and PD2 are read out so that the signal charges are mixed by the vertical transfer packet in the VCCD 12. Specifically, at time t3, the V3 electrode is set to the VH state, the signal charge of PD1 is read into the vertical transfer packet immediately below V3, and then the V1 to V9 electrodes are driven to bring the vertical transfer packet immediately below the V7 electrode. At time t4, the V7 electrode is set to the VH state, and the signal charge of PD2 is read and mixed in the same vertical transfer packet to execute the process of adding the signal charges of PD1 and PD2.
 一方、第2構造電極列162における駆動動作は、V4電極、V12電極に対してそれぞれ時刻t2、時刻t4でVHレベルの駆動パルスを印加して、PD3、PD4の信号電荷を読み出して垂直加算する。 On the other hand, in the driving operation in the second structure electrode row 162, a VH level driving pulse is applied to the V4 electrode and the V12 electrode at time t2 and time t4, respectively, and the signal charges of PD3 and PD4 are read and vertically added. .
 具体的に、時刻t2でV12電極をVH状態にして、PD3の信号電荷をV12電極直下のVCCD12の垂直転送パケットに読み出した後、V2~V18電極を駆動して当該垂直転送パケットをV4電極の直下まで移動させ、t4時刻でV4電極をVH状態にしてPD4の信号電荷を同じ転送パケット内に読み出して混合することによりPD3、PD4の信号電荷を垂直加算する処理を実行する。 Specifically, at time t2, the V12 electrode is set to the VH state, the signal charge of PD3 is read into the vertical transfer packet of the VCCD 12 immediately below the V12 electrode, and then the V2 to V18 electrodes are driven to transfer the vertical transfer packet to the V4 electrode. A process of vertically adding the signal charges of PD3 and PD4 is executed by moving to just below, setting the V4 electrode to the VH state at time t4, and reading and mixing the signal charges of PD4 in the same transfer packet.
 (3-3)垂直転送タイミング
 図32は、上記垂直加算の後、水平ブランキング期間で実行される垂直転送する際における各駆動パルスの状態を示すタイミングチャートである。
(3-3) Vertical Transfer Timing FIG. 32 is a timing chart showing the state of each drive pulse during vertical transfer executed in the horizontal blanking period after the vertical addition.
 まず、第1構造電極列161においては、各電極にV1、V3、V5、V7、V9の駆動パルスを印加して信号電荷を垂直転送し、第1選択出力用電極群251、第2選択出力用電極群252を駆動して、第1構造電極列下のVCCD12から第1HCCD31への電荷転送を行う。 First, in the first structure electrode array 161, V1, V3, V5, V7, and V9 drive pulses are applied to the respective electrodes to vertically transfer signal charges, and the first selection output electrode group 251 and the second selection output. The electrode group 252 is driven to transfer charges from the VCCD 12 under the first structure electrode array to the first HCCD 31.
 このとき第1HCCD31に転送される信号電荷は、第1選択出力用電極251を通じて出力される信号電荷と第2選択出力用電極252を通じて出力される信号電荷が同時に第1HCCD31の同一水平転送パケット内に出力されることになるので、第1HCCD31への信号電荷の出力と水平加算が同時に実行されることになる。 At this time, the signal charge transferred to the first HCCD 31 is the same as the signal charge output through the first selection output electrode 251 and the signal charge output through the second selection output electrode 252 in the same horizontal transfer packet of the first HCCD 31. Therefore, the signal charge output to the first HCCD 31 and the horizontal addition are executed simultaneously.
 第1HCCD31に出力された信号電荷は水平方向に転送され、第1出力部41を介して出力される。これにより第1出力部41より出力される画像データは、素子の画素数と比較すると垂直方向に1/5の圧縮、水平方向に1/3の圧縮が行われた信号として出力される。 The signal charges output to the first HCCD 31 are transferred in the horizontal direction and output via the first output unit 41. As a result, the image data output from the first output unit 41 is output as a signal that has been subjected to 1/5 compression in the vertical direction and 1/3 compression in the horizontal direction as compared with the number of pixels of the element.
 一方、第2構造電極列162において、図31の垂直加算駆動で垂直加算された信号電荷は、各電極にV2、V4、V6、V8、V10、V12、V14、V16、V18の駆動パルスを印加してVCCD内での垂直転送を行い、第3選択出力用電極群253を駆動させて、第2構造電極列162下のVCCD12から第2HCCD32への電荷転送を行う。 On the other hand, in the second structure electrode row 162, the signal charges vertically added by the vertical addition drive of FIG. 31 are applied with drive pulses of V2, V4, V6, V8, V10, V12, V14, V16, and V18 to each electrode. Then, vertical transfer in the VCCD is performed, the third selective output electrode group 253 is driven, and charge transfer from the VCCD 12 under the second structure electrode row 162 to the second HCCD 32 is performed.
 第2HCCD32に出力された信号電荷は、水平方向に転送され、第2出力部42を介して出力される。これにより第2出力部42より出力される画像データは、素子の画素数と比較すると垂直方向に1/9の圧縮、水平方向に1/3の圧縮が行われた信号として出力される。 The signal charges output to the second HCCD 32 are transferred in the horizontal direction and output via the second output unit 42. As a result, the image data output from the second output unit 42 is output as a signal that has been subjected to 1/9 compression in the vertical direction and 1/3 compression in the horizontal direction as compared with the number of pixels of the element.
 したがって、本実施の形態においては、第1HCCD31からは、モードAとして、15分の1の出力画素低減率で画素が出力され、第2HCCD32からは、モードBとして、27分の1の出力画素低減率で画素が出力されることになる。しかも、第1HCCD31、第2HCCD32が独立に駆動可能なので、モードA、モードBを同時に実行することができる。 Therefore, in the present embodiment, pixels are output from the first HCCD 31 at the output pixel reduction rate of 1/15 as the mode A, and the output pixels are reduced by 1/27 from the second HCCD 32 as the mode B. Pixels are output at a rate. In addition, since the first HCCD 31 and the second HCCD 32 can be driven independently, the mode A and the mode B can be executed simultaneously.
 (4)カメラ装置
 本実施の形態に係る固体撮像素子102が搭載されるカメラ装置401の構成例を図33に示す。基本構成は、実施の形態1、2のカメラ装置とほぼ同じになるが、タイミング生成部430は、複数のモードに係るタイミングを同時に生成するため、第1のタイミング生成部431と第2のタイミング生成部432を含む構造としている。
(4) Camera Device FIG. 33 shows a configuration example of the camera device 401 on which the solid-state imaging device 102 according to this embodiment is mounted. Although the basic configuration is almost the same as that of the camera device of Embodiments 1 and 2, the timing generation unit 430 generates the timings related to a plurality of modes at the same time, so the first timing generation unit 431 and the second timing are the same. The generation unit 432 is included.
 これにより複数の異なるモードを同時に動かす場合に、制御部440からのタイミング設定データの転送を簡略化することが可能であり、また一方のモードを実行しながら他方のモードを停止するもしくは別の駆動方法に切り替えるといった柔軟性を持たせることもできる。 As a result, when a plurality of different modes are operated simultaneously, it is possible to simplify the transfer of timing setting data from the control unit 440, and the other mode is stopped while another mode is being executed or another drive is performed. It is possible to give flexibility to switch to a method.
 また、制御部440は、複数のモードに対して垂直同期期間及び水平同期期間、及び駆動タイミングを各モードの駆動内容に応じて制御する。例えば、30fpsのモードと60fpsのモードを同時に動かす場合は、30fpsモードの有効信号出力期間と60fpsモードの信号読み出し動作が重複する可能性があるが、この際に60fpsモードの読み出し動作に伴うノイズの飛び込みを抑制するために、30fpsモードの有効信号出力を一時的に停止するか、もしくは有効信号を外部出力していない期間中に読み出し動作を行うなどの制御をすることが望ましい。 Further, the control unit 440 controls the vertical synchronization period, the horizontal synchronization period, and the drive timing for a plurality of modes in accordance with the drive contents of each mode. For example, when the 30 fps mode and the 60 fps mode are operated simultaneously, the effective signal output period of the 30 fps mode and the signal read operation of the 60 fps mode may overlap, but at this time, noise caused by the read operation of the 60 fps mode may occur. In order to suppress the jumping in, it is desirable to temporarily stop the output of the effective signal in the 30 fps mode, or to perform control such as performing a read operation during a period in which the effective signal is not output to the outside.
 このように、第1出力部41から出力する画像信号と、第2出力部42から出力する画像データでは出力信号の画素数が9:5の比率にあり、これは例えば第1出力部41から出力される画像データを33fpsの速度で出力されるように駆動するモードAと、第2出力部42から出力される画像データを60fpsの速度で駆動するモードBとを同時に制御することを可能とするものである。 Thus, in the image signal output from the first output unit 41 and the image data output from the second output unit 42, the number of pixels of the output signal is in a ratio of 9: 5. This is, for example, from the first output unit 41. It is possible to simultaneously control the mode A for driving the output image data to be output at a speed of 33 fps and the mode B for driving the image data output from the second output unit 42 at a speed of 60 fps. To do.
 更に、33fpsの速度で駆動するタイミングに対して垂直ブランキング期間を適当に調整すれば、フレームレートを30fpsにすることもでき、30fpsの撮像出力と60fpsの画像データの出力を同時に得ることができる。 Furthermore, if the vertical blanking period is appropriately adjusted with respect to the timing of driving at a speed of 33 fps, the frame rate can be set to 30 fps, and 30 fps imaging output and 60 fps image data output can be obtained simultaneously. .
 現在のデジタルスティルカメラ(DSC)は、その付加価値を増すため、動画記録の機能を備えるものが一般的である。制御部440は、例えば、高画素の画像データを30fpsで出力しながら記録しつつ、オートフォーカス(AF)動作や露光制御(AE)動作に関しては低画素の画像データを60fpsでの出力を用いながら公知のAF/AE処理を行って自動的にフォーカスや撮像条件を制御する。これにより、刻々と変化する被写体に対して逐次最適な動画像を得ることが可能とする。 The current digital still camera (DSC) is generally equipped with a moving image recording function in order to increase its added value. The control unit 440 records, for example, high pixel image data while outputting at 30 fps, and uses low pixel image data at 60 fps for autofocus (AF) operation and exposure control (AE) operation. A known AF / AE process is performed to automatically control the focus and imaging conditions. This makes it possible to obtain an optimal moving image sequentially for a subject that changes every moment.
 (5)実施の形態3の効果
 上述のように、本実施の形態によれば、実施の形態1、2で述べた主な効果のほかに、固体撮像素子内の各構造電極列においては複数の異なる読み出し制御と複数の垂直電荷転送制御を実施することが可能であって、出力画素低減率の異なる複数のモードを同時駆動することができるので、特にこれを用いたカメラ装置において機能面での自由度を向上させることができる。
(5) Effects of Embodiment 3 As described above, according to this embodiment, in addition to the main effects described in Embodiments 1 and 2, there are a plurality of structural electrode arrays in the solid-state imaging device. Read control and a plurality of vertical charge transfer controls, and a plurality of modes with different output pixel reduction rates can be driven simultaneously. The degree of freedom can be improved.
 (6)補足事項
  (6-1) 本実施の形態ではモードAの出力信号を構成する画素加算数は4画素であり、モードBの出力信号を構成する画素加算数は2画素となっている。これにより、モードBの信号出力レベルがモードAと比較して半分程度になるためモードBにおけるダイナミックレンジが狭くなることが考えられるが、これに関しては信号電荷読み出し時の駆動時において、図13で説明したのと同様にして基板電位VSUBを変調制御することにより対処することができる。
(6) Supplementary items (6-1) In this embodiment, the number of pixel additions constituting the output signal of mode A is 4 pixels, and the number of pixel additions constituting the output signal of mode B is 2 pixels. . As a result, the signal output level in mode B is about half that in mode A, so the dynamic range in mode B may be narrowed. This is illustrated in FIG. This can be dealt with by modulating the substrate potential VSUB in the same manner as described.
 すなわち、図34に示すように画素加算数が少ないモードと画素加算数が多いモードに関して、画素加算数が少ないモードの読み出し対象画素を先に読み出した後に基板電位VSUBを高いレベルに設定し、その後画素加算数が多いモードの読み出しを行うものである。 That is, as shown in FIG. 34, regarding the mode with a small number of pixel additions and the mode with a large number of pixel additions, the substrate potential VSUB is set to a high level after the readout target pixel in the mode with a small number of pixel additions is read first. Reading in a mode with a large number of pixel additions is performed.
 具体的に、まず、基板電位VSUBを低く設定しておきモードBの読み出し対象画素を時刻t2、t4時刻にそれぞれV12電極、V4電極をVH状態にして読み出した後、時刻t7後に基板電位VSUBを高く設定し、その後モードAの読み出し対象画素を時刻t5、t6にそれぞれV3、V7電極をVH状態にして読み出している。読み出した後は時刻t9にて再度VSUBを低く設定する。 Specifically, first, the substrate potential VSUB is set low, the mode B readout target pixel is read with the V12 electrode and the V4 electrode set to the VH state at times t2 and t4, and then the substrate potential VSUB is set after time t7. After that, the pixel to be read in mode A is read with the V3 and V7 electrodes in the VH state at times t5 and t6, respectively. After reading, VSUB is set low again at time t9.
 このように垂直加算数に応じて基板電位VSUBを制御することにより、各モードにおける信号出力レベルを最適化できる。 Thus, by controlling the substrate potential VSUB according to the number of vertical additions, the signal output level in each mode can be optimized.
 (6-2)複数モードの同時制御を行う駆動方法に関しては、第1HCCD31、第2HCCD32、及び第1出力部41、第2出力部42において、これらの駆動期間をそれぞれ共通させるか、もしくはいずれか一方の水平出力期間といずれか一方のVCCD転送動作とが重複しないような駆動制御を行う事が望ましい。 (6-2) Regarding a driving method for performing simultaneous control in a plurality of modes, the first HCCD 31, the second HCCD 32, the first output unit 41, and the second output unit 42 may share these driving periods, or either It is desirable to perform drive control so that one horizontal output period and one of the VCCD transfer operations do not overlap.
 これは第1HCCD31、第2HCCD32から第1出力部41、第2出力部42を介して信号を出力する際にVCCD12の駆動用の信号が変化すると、出力信号がその影響を受ける事によりシェーディングが発生しやすいためである。 This is because shading occurs when the signal for driving the VCCD 12 changes when a signal is output from the first HCCD 31 and the second HCCD 32 via the first output unit 41 and the second output unit 42. It is because it is easy to do.
 このような観点より、同時に複数のモードを駆動する際には、第1HCCD31、第2HCCD32から第1出力部41、第2出力部42を介して外部信号出力する期間をそれぞれ共通とするのが望ましい。 From this point of view, when driving a plurality of modes at the same time, it is desirable to share a period for outputting an external signal from the first HCCD 31 and the second HCCD 32 via the first output unit 41 and the second output unit 42, respectively. .
 構造的には、本実施の形態のように第一及び第二のHCCD31、32における格納可能な信号数がほぼ同一になるように設計することにより、各HCCD31、32から信号出力する期間が揃えられるので、タイミング設計面での無駄が少なくなる。 Structurally, by designing the number of signals that can be stored in the first and second HCCDs 31 and 32 to be substantially the same as in the present embodiment, the periods for outputting signals from the HCCDs 31 and 32 are aligned. As a result, the timing design is less wasted.
 (6-3)本実施の形態における第1~第3の選択出力用電極群251~253は、対応する第1及び第2構造電極列161、162が1対1で決まっているため、第1及び第2構造電極列で駆動相数が異なる場合でも問題なく電荷転送が可能である。 (6-3) In the first to third selection output electrode groups 251 to 253 in the present embodiment, the corresponding first and second structure electrode rows 161 and 162 are determined one-to-one. Even when the number of drive phases differs between the first and second structure electrode arrays, charge transfer is possible without any problem.
 しかし、第1~第3の選択出力用電極群251~253と第1及び第2構造電極列161,162が上記と異なる構造、例えば特定の選択出力用電極群が第1及び第2構造電極列の両方に用いられる様な場合であっても、各構造電極列のVCCD駆動相数の違いによる電荷転送方法の違いを吸収させるよう一方の駆動タイミングで待ち時刻を入れるなどの工夫をすることで対応することは可能である。 However, the first to third selection output electrode groups 251 to 253 and the first and second structure electrode rows 161 and 162 are different from the above structure, for example, the specific selection output electrode group is the first and second structure electrodes. Even if it is used for both columns, devise such as setting a waiting time at one drive timing to absorb the difference in charge transfer method due to the difference in the number of VCCD drive phases of each structure electrode column It is possible to cope with.
 (6-4)本実施の形態では、 第1構造電極列161における垂直駆動相数は、5相であり、第2構造電極列162においては9相であるとしているが、これは他の組み合わせでも良い。 (6-4) In this embodiment, the number of vertical drive phases in the first structure electrode row 161 is five phases, and that in the second structure electrode row 162 is nine phases, but this is another combination. But it ’s okay.
 すなわち、本実施の形態の第1構造電極列161で読み出す信号の解像度は垂直方向に1/5の圧縮、第2構造電極列162で読み出す信号の解像度は垂直方向に1/9の圧縮を行っているが、例えば第1構造電極列161の構成を5相駆動でなく7相駆動とすれば、第1構造電極列161で読み出す信号の解像度は垂直方向に1/7の圧縮を行った信号として出力することができる。 That is, the resolution of the signal read by the first structure electrode row 161 of the present embodiment is 1/5 in the vertical direction, and the resolution of the signal read by the second structure electrode row 162 is 1/9 in the vertical direction. However, for example, if the configuration of the first structure electrode row 161 is set to 7-phase drive instead of 5-phase drive, the resolution of the signal read out by the first structure electrode row 161 is a signal obtained by compressing 1/7 in the vertical direction. Can be output as
 これは、第1構造電極列161と第2構造電極列162を構成する垂直駆動電極の駆動がお互いに独立しているため実現可能なことであり、商品の要望や仕様に合わせて出力水平ライン数を決定し、それを満たすように第1構造電極列161及び第2構造電極列162の垂直駆動相数を決定すればよい。 This is feasible because the driving of the vertical drive electrodes constituting the first structure electrode row 161 and the second structure electrode row 162 is independent of each other, and the output horizontal line is adapted to the demands and specifications of the product. The number of vertical drive phases of the first structure electrode row 161 and the second structure electrode row 162 may be determined so as to satisfy the number.
 <実施の形態4>
 本実施の形態4では、実施の形態3において、HCCDを1チャンネルとした点に特徴がある。
<Embodiment 4>
The fourth embodiment is characterized in that the HCCD is one channel in the third embodiment.
 (1)電極配置図
 図35は、本実施の形態4に係る固体撮像素子103における電極配置図である。
(1) Electrode Arrangement Diagram FIG. 35 is an electrode arrangement diagram in the solid-state imaging device 103 according to the fourth embodiment.
 同図に示すように本実施の形態では、 第1構造電極列161が2列と第2構造電極列162が1列とで構成される3列を一周期とした単位が撮像領域内にならべられ、それらの下方にHCCD33が1本だけ配される。 As shown in the figure, in the present embodiment, a unit in which one row is composed of three rows each having two first structure electrode rows 161 and one second structure electrode row 162 is arranged in the imaging region. A single HCCD 33 is arranged below them.
 HCCD33は、3列分の長さの信号蓄積領域(水平転送パケット)を持ち、第1構造電極列161との間には、第1の選択出力用電極群251、第2の選択出力用電極群252が配置されており、第2構造電極列162との間には第3の選択出力用電極群253が配置されている。 The HCCD 33 has a signal storage region (horizontal transfer packet) having a length corresponding to three columns, and a first selection output electrode group 251 and a second selection output electrode are disposed between the first structure electrode column 161 and the HCCD 33. A group 252 is arranged, and a third selective output electrode group 253 is arranged between the second structural electrode row 162.
 本実施の形態でも各選択出力用電極群を構成するS1/S2/S3、B1/B2/B3はそれぞれ独立に駆動パルスが印加される。 Also in this embodiment, drive pulses are independently applied to S1 / S2 / S3 and B1 / B2 / B3 constituting each selective output electrode group.
 第1構造電極列161の撮像領域内の各駆動電極16に印加する駆動パルスは、V1、V3、V5、V7,V9であり、第2構造電極列162の撮像領域内の各駆動電極16に印加する駆動パルス信号は、V2、V4、V6、V8,V10,V12,V14,V16,V18であり、第1構造電極列161は垂直5相駆動、第2構造電極列162は垂直9相駆動の構成であり、垂直45画素×水平3画素の電極を配置単位として撮像領域内に敷き詰めている。 The drive pulses applied to the drive electrodes 16 in the imaging region of the first structure electrode row 161 are V1, V3, V5, V7, and V9, and are applied to the drive electrodes 16 in the imaging region of the second structure electrode row 162. The drive pulse signals to be applied are V2, V4, V6, V8, V10, V12, V14, V16, and V18. The first structure electrode row 161 is driven by vertical five phases, and the second structure electrode row 162 is driven by vertical nine phases. In this configuration, electrodes of vertical 45 pixels × horizontal 3 pixels are arranged in the imaging region as an arrangement unit.
 また、VCCD12の、HCCD33と接続される側と反対側の端部には、当該VCCD12の過剰電荷を排出するためのドレイン部45が設けられ、所定の直流バイアスVDDが印加されている。 Also, a drain portion 45 for discharging excess charge of the VCCD 12 is provided at the end of the VCCD 12 opposite to the side connected to the HCCD 33, and a predetermined DC bias VDD is applied.
 このドレイン部45は、半導体基板上に全VCCD端部に接するようにイオン注入を行った領域を水平方向に形成し、注入領域端部では直流バイアスVDDを供給する配線とのコンタクトを形成する。 The drain part 45 forms a region in which ions are implanted on the semiconductor substrate so as to be in contact with all VCCD ends, and forms a contact with a wiring for supplying a DC bias VDD at the end of the implanted region.
 これに印加される直流バイアスVDDのレベルは約10数Vの電圧であり、VCCD12とドレイン部45との境界部分にある駆動電極(図35においてV1、又はV2電極)をVM状態にしたときのポテンシャルレベルよりドレイン部45のポテンシャルレベルが深くなるように設定されており、後述のVCCD逆転送によるノイズ電荷排出を行った際にノイズ電荷がドレイン部45に排出されるようにしている。 The level of the DC bias VDD applied to this is a voltage of about several tens of volts, and the drive electrode (V1 or V2 electrode in FIG. 35) at the boundary between the VCCD 12 and the drain 45 is in the VM state. The potential level of the drain portion 45 is set to be deeper than the potential level, and noise charges are discharged to the drain portion 45 when noise charges are discharged by reverse VCCD transfer described later.
 (2)読出画素配置図およびアドレス割当図
 図36は、固体撮像素子103について画素加算駆動を行う際に読み出される画素に対して電極別に番号を割り当てた読出画素配置図であり、垂直方向に2画素離れたPD1とPD2、および垂直方向に4画素離れたPD3とPD4を、それぞれ信号電荷読み出し制御と垂直転送制御を組み合わせて同一の垂直転送パケット内に転送させて垂直加算を行う。
(2) Read Pixel Arrangement Diagram and Address Assignment Diagram FIG. 36 is a read pixel arrangement diagram in which numbers are assigned for each electrode to the pixels read when the solid-state image sensor 103 is subjected to pixel addition driving. Vertical addition is performed by transferring PD1 and PD2 separated by pixels and PD3 and PD4 separated by 4 pixels in the vertical direction in the same vertical transfer packet by combining signal charge readout control and vertical transfer control, respectively.
 PD1は、V3電極への読み出しパルスで信号電荷が読み出され、PD2はV7電極への読み出しパルスで信号電荷が読み出され、PD3はV4電極への読み出しパルスで信号電荷が読み出され、PD4はV12電極への読み出しパルスで信号電荷が読み出される。 PD1 reads a signal charge with a read pulse to the V3 electrode, PD2 reads a signal charge with a read pulse to the V7 electrode, PD3 reads a signal charge with a read pulse to the V4 electrode, and PD4 The signal charge is read by a read pulse to the V12 electrode.
 図37は、図36における読み出し対象画素に垂直アドレス及び水平アドレスの情報を割り当てたアドレス割当図である。 FIG. 37 is an address assignment diagram in which vertical address and horizontal address information is assigned to the readout target pixel in FIG.
 各列において、HCCD33側から垂直方向の番号を割り当てている。HCCD33には、第2構造電極列162であるB列及びE列の読み出し画素を加算出力した場合には、各水平転送パケットに第1水平ライン出力として(B1+B2)、(E1+E2)がそれぞれの信号格納領域に格納され、第1構造電極列161であるA列とC列、及びD列とF列の読み出し画素を加算出力した場合には、各水平転送パケットに第1水平ライン出力として(A1+A2+C1+C2)、(D1+D2+F1+F2)がそれぞれ格納されることになる。 In each column, a number in the vertical direction is assigned from the HCCD 33 side. When the readout pixels of the B column and the E column which are the second structure electrode column 162 are added and output to the HCCD 33, (B1 + B2) and (E1 + E2) are the respective signals as the first horizontal line output in each horizontal transfer packet. When the readout pixels of the A column and the C column, and the D column and the F column, which are the first structure electrode columns 161, are added and output in the storage area, each horizontal transfer packet has (A1 + A2 + C1 + C2) as the first horizontal line output. ) And (D1 + D2 + F1 + F2) are respectively stored.
 (3)駆動方法
 本実施の形態4は、撮像領域における電極配置は実施の形態3と同じであるため、上記モードA、Bと同じ駆動は可能であるが、HCCDが1チャンネルであるため、基本的に、各モードは、別個に実行される。ただし、モードBのフレームレートをモードAのK倍(Kは、2以上の整数)として、時分割的に制御することにより両モードを並行して実行することも可能である。
(3) Driving method In the fourth embodiment, since the electrode arrangement in the imaging region is the same as that in the third embodiment, the same driving as in the modes A and B is possible, but the HCCD has one channel. Basically, each mode is executed separately. However, both modes can be executed in parallel by controlling the mode B frame rate K times that of mode A (K is an integer of 2 or more) in a time-sharing manner.
 以下、両モードを別個に実行する場合と、並行して実行する場合に分けて説明する。 Hereafter, the explanation will be divided into the case where both modes are executed separately and the case where they are executed in parallel.
 (3-1)別個に駆動する場合
 (3-1-1)モードAの駆動
 図38、図39は、固体撮像素子103において、垂直方向に1/5、水平方向に1/3の出力画素低減を行うモードA(図27の画素加算図参照)を実行する場合における駆動タイミングを示すタイミングチャートである。
(3-1) When Driving Separately (3-1-1) Driving in Mode A FIGS. 38 and 39 show output pixels of 1/5 in the vertical direction and 1/3 in the horizontal direction in the solid-state image sensor 103. FIG. 28 is a timing chart showing drive timings when executing mode A (refer to the pixel addition diagram of FIG. 27) for performing reduction.
 図38は、垂直ブランキング期間における信号電荷読み出し時の駆動タイミング、図39は、水平ブランキング期間におけるVCCD内における電荷の垂直転送の駆動タイミングを示す。 FIG. 38 shows the drive timing at the time of signal charge reading in the vertical blanking period, and FIG. 39 shows the drive timing of the vertical transfer of charges in the VCCD during the horizontal blanking period.
 ここでは、 第1構造電極列161のみにより信号読み出しおよび加算処理を行ってモードAを実行させ、第2構造電極列162は、その直下の空の垂直転送パケットをドレイン部45に向けて搬送するように駆動パルスが印加される。 Here, only the first structure electrode row 161 performs signal readout and addition processing to execute mode A, and the second structure electrode row 162 carries the empty vertical transfer packet immediately below it toward the drain portion 45. A drive pulse is applied as described above.
 したがって、 第1構造電極列161における駆動タイミングは、図31で説明した 第1構造電極列161における駆動タイミングと全く同じである。 Therefore, the drive timing in the first structure electrode row 161 is exactly the same as the drive timing in the first structure electrode row 161 described in FIG.
 すなわち、第1構造電極列161の動作に関しては、V3、V7電極に対しそれぞれ時刻t3、時刻t4でVHレベルの駆動パルスを印加し、PD1、PD2の信号電荷を第1構造電極列161下のVCCDに読み出している。 That is, regarding the operation of the first structure electrode row 161, a VH level drive pulse is applied to the V3 and V7 electrodes at time t3 and time t4, respectively, and the signal charges of PD1 and PD2 are transferred to the bottom of the first structure electrode row 161. Reading to VCCD.
 このとき、PD1,PD2の信号電荷は、VCCD内の同一垂直転送パケットに転送されて加算されるようなタイミングで読み出されており、読み出し後は、図39のタイミングチャートに従ってV1、V3、V5、V7、V9電極に駆動パルスを印加してVCCD内での垂直転送を行い、第1選択出力用電極群251、第2選択出力用電極群252をそれぞれ駆動させ、第1構造電極列161下のVCCD12からHCCD33への電荷転送を行う。これにより、第1選択出力用電極群251を通じて出力される信号電荷と第2選択出力用電極群252を通じて出力される信号電荷について、HCCD33への信号電荷の出力と水平加算が同時に実施されている。 At this time, the signal charges of PD1 and PD2 are read at a timing such that they are transferred and added to the same vertical transfer packet in the VCCD, and after reading, V1, V3, V5 are read according to the timing chart of FIG. , V7 and V9 are applied with drive pulses to perform vertical transfer in the VCCD to drive the first selection output electrode group 251 and the second selection output electrode group 252 respectively, and below the first structure electrode row 161. The charge transfer from the VCCD 12 to the HCCD 33 is performed. Accordingly, the signal charge output to the HCCD 33 and the horizontal addition are simultaneously performed on the signal charge output through the first selection output electrode group 251 and the signal charge output through the second selection output electrode group 252. .
 次に、第2構造電極列162の駆動タイミングに関して説明する。 Next, the drive timing of the second structure electrode row 162 will be described.
 図38の第2構造電極列162に対応するタイミングチャートに示すように、各V2~V18電極に対して読出しパルスが印加されておらず、信号電荷の読み出しを実行せずに、VCCD内の電荷をドレイン部45へ向けて移動するように転送制御を実施している。 As shown in the timing chart corresponding to the second structure electrode row 162 in FIG. 38, the readout pulse is not applied to each of the V2 to V18 electrodes, and the charge in the VCCD is not read out without executing the readout of the signal charge. Is controlled so as to move toward the drain portion 45.
 第2構造電極列162下のVCCD12には、信号電荷読み出しに伴う信号電荷が存在しておらず、本来電荷の転送制御の必要性はない筈であるが、当該VCCD12を長時刻転送動作させずにおくと、VCCD12内に発生する暗電流成分により垂直転送パケットが溢れてくるため、暗電流成分が以後の出力画像に影響を与えることを防ぐ為にVCCD内の逆方向電荷掃出しを行っている。 The VCCD 12 under the second structure electrode row 162 does not have a signal charge associated with signal charge reading and there is no need for charge transfer control, but the VCCD 12 is not operated for a long time transfer. In this case, since the vertical transfer packet overflows due to the dark current component generated in the VCCD 12, reverse charge sweeping in the VCCD is performed to prevent the dark current component from affecting the subsequent output image. .
 また、図39のタイミングチャートにおいても、水平ブランキング期間毎に逆転送を9電極分の距離だけ実施しているが、必ずしも水平ブランキング期間毎に実施する必要はなく、当該水平ブランキング期間内は、第2構造電極列162に印加する駆動パルスはいずれもVL状態しておき、例えば複数の垂直ブランキング期間毎に1画面分をまとめて逆転送するような方法でも構わない。このようにすれば、電荷掃出しのための電力を節約することができる。 Also, in the timing chart of FIG. 39, reverse transfer is performed for a distance corresponding to nine electrodes for each horizontal blanking period, but it is not always necessary to perform for each horizontal blanking period. The drive pulse applied to the second structure electrode row 162 may be in the VL state, and for example, one screen may be transferred in reverse for each of a plurality of vertical blanking periods. In this way, it is possible to save power for sweeping out charges.
 ただし、高輝度撮像下でのスミアによる電荷発生量が暗電流よりも顕著であることを考慮すると、水平ブランキング期間毎に一定の逆転送を行い電荷掃出しする方が様々な撮像状況に対応可能である。 However, taking into account that the amount of charge generated by smear under high-intensity imaging is more significant than dark current, it is possible to cope with various imaging situations by performing a constant reverse transfer every horizontal blanking period. It is.
 (3-1-2)モードBの駆動
 図40、41は、固体撮像素子103において、垂直方向に1/9、水平方向に1/3の出力画素低減を行った画像(図28の画素加算図参照)を出力するモードBを実行する際のタイミングチャートを示している。
(3-1-2) Driving in Mode B FIGS. 40 and 41 show images obtained by reducing the output pixels by 1/9 in the vertical direction and 1/3 in the horizontal direction in the solid-state imaging device 103 (pixel addition in FIG. FIG. 6 shows a timing chart when executing the mode B that outputs (see the figure).
 図40は、垂直ブランキング期間における信号電荷読み出し時の駆動タイミング、図41は、水平ブランキング期間における垂直転送の駆動タイミングである。 FIG. 40 shows the drive timing at the time of signal charge reading in the vertical blanking period, and FIG. 41 shows the drive timing of vertical transfer in the horizontal blanking period.
 同図に示すように、このモードBにおいては、 第2構造電極列162のみで信号読み出しおよび加算処理を行い、 第1構造電極列161は、その直下の空の転送パケットをドレイン部45に向けて搬送するように駆動パルスが印加されている。 As shown in the figure, in this mode B, signal readout and addition processing are performed only by the second structure electrode row 162, and the first structure electrode row 161 directs the empty transfer packet immediately below it to the drain unit 45. A driving pulse is applied so as to be conveyed.
 したがって、第2構造電極列162の駆動タイミングは、図31における第2構造電極列162の駆動タイミングと全く同じである。 Therefore, the drive timing of the second structure electrode row 162 is exactly the same as the drive timing of the second structure electrode row 162 in FIG.
 すなわち、読出し制御と垂直転送制御を組み合わせて、PD3,PD4の信号電荷を同一の垂直転送パケット内に転送して垂直加算を実行する。 That is, by combining the read control and the vertical transfer control, the signal charges of PD3 and PD4 are transferred in the same vertical transfer packet and the vertical addition is executed.
 その後、図41のタイミングチャートに従って、V2、V4、V6、V8、V10、V12、V14、V16、V18に駆動パルスを印加してVCCD12内での垂直転送を行い、第3選択出力用電極群253を駆動して、第2構造電極列162下のVCCD12からHCCD33への電荷転送を行う。実施の形態3では、第2構造電極列162においては上端部の第2HCCD32に転送したが、本例では下端部のHCCD33への転送となるため、第2構造電極列162の駆動タイミングが図32における第2構造電極列162の駆動タイミングとは逆の動作となっている。 Thereafter, according to the timing chart of FIG. 41, drive pulses are applied to V2, V4, V6, V8, V10, V12, V14, V16, V18 to perform vertical transfer in the VCCD 12, and the third selection output electrode group 253 To transfer charges from the VCCD 12 under the second structure electrode row 162 to the HCCD 33. In the third embodiment, the second structure electrode row 162 is transferred to the second HCCD 32 at the upper end, but in this example, the transfer is made to the HCCD 33 at the lower end, so the drive timing of the second structure electrode row 162 is as shown in FIG. The operation is opposite to the drive timing of the second structure electrode row 162 in FIG.
 なお、図40に示すようにモードBの実行時においては、 第1構造電極列161に対してはVHレベルの駆動パルスを印加して信号電荷の読み出しをすることはなく、 第1構造電極列161に係るVCCD12内の垂直転送パケットによる信号電荷の移動は、ドレイン部45へ向けてなされ、当該VCCD12内に発生した暗電流成分の電荷掃出しを行っている。 As shown in FIG. 40, when the mode B is executed, the VH level drive pulse is not applied to the first structure electrode row 161 to read out the signal charge, and the first structure electrode row is not read. The movement of the signal charge by the vertical transfer packet in the VCCD 12 according to 161 is directed toward the drain part 45, and the charge of the dark current component generated in the VCCD 12 is swept out.
 また、図41のタイミングチャートにおいても、水平ブランキング期間毎に逆転送を5電極分の距離だけ実施しているが、モードAの場合と同様、必ずしも水平ブランキング期間毎に実施する必要はなく、例えば複数の垂直ブランキング期間毎に1画面分をまとめて逆転送するような方法でも構わない。 Also, in the timing chart of FIG. 41, reverse transfer is performed for a distance corresponding to five electrodes for each horizontal blanking period. However, as in the case of mode A, it is not always necessary to perform it for each horizontal blanking period. For example, a method may be used in which one screen is collectively transferred in reverse every a plurality of vertical blanking periods.
 (3-2)モードA、Bの並行駆動の場合
 上記では、モードA,Bを別個に動作させる場合の駆動タイミングについて説明したが、HCCDが一つであっても、駆動タイミングを工夫することにより、2つのモードを並行して動作させることも可能である。
(3-2) In the case of parallel drive in modes A and B In the above description, the drive timing in the case of operating modes A and B separately has been described, but the drive timing should be devised even if there is only one HCCD. Thus, the two modes can be operated in parallel.
 図42~図46は、固体撮像素子103において、モードAとモードBを同時に動作させる場合のタイミングチャートを示している。 42 to 46 show timing charts when the mode A and the mode B are simultaneously operated in the solid-state imaging device 103. FIG.
 上述の通り、モードAの画素加算数は、垂直方向2画素、水平方向2画素の計4画素であり、モードBの画素加算数は、垂直方向のみ2画素である。ここではモードAで特定フレームレートの高解像の画像出力を行いながら、モードBで高フレームレートの低解像の画像を出力することを想定しており、モードBはモードAに対して2倍のフレームレートで出力するものとして動作を説明する。 As described above, the number of added pixels in mode A is 4 pixels in total, 2 pixels in the vertical direction and 2 pixels in the horizontal direction, and the number of added pixels in mode B is 2 pixels only in the vertical direction. Here, it is assumed that a high-resolution image output at a specific frame rate is performed in mode A while a low-resolution image at a high frame rate is output in mode B. The operation will be described on the assumption that data is output at a double frame rate.
 (3-2-1)駆動パターンの切替えのタイミング
 まず、図42は、フレーム時刻レベルで駆動パターンの切替えのタイミングを示すものであり、モードAの垂直同期信号VSYNCA、モードBの垂直同期信号VSYNCB、モードA、Bに共通する水平同期信号HSYNC、固体撮像素子103の信号電荷読出用の駆動パターン(以下「読出駆動パターン」という。)ChAB及びChB,垂直転送用駆動パターン(以下、「垂直駆動パターン」)P1及びP2の関係と、それぞれの垂直同期同士の区間で出力する信号がどちらのモードの何番目の水平ライン出力であるかを記載した図である。
(3-2-1) Timing of Switching Drive Pattern First, FIG. 42 shows the timing of switching the drive pattern at the frame time level. The vertical sync signal VSYNCA in mode A and the vertical sync signal VSYNCB in mode B are shown. , Horizontal synchronization signal HSYNC common to modes A and B, signal charge reading drive pattern of the solid-state imaging device 103 (hereinafter referred to as “reading drive pattern”) ChAB and ChB, vertical transfer drive pattern (hereinafter referred to as “vertical driving”). Pattern ") is a diagram describing the relationship between P1 and P2 and the horizontal line output in which mode the signal output in the interval between the vertical synchronizations.
 例えば、時刻T2においては、垂直駆動パターンP1を適用して、モードAの1st水平信号を出力し、時刻T5においては垂直駆動パターンP2を適用しモードBの2nd水平信号を出力することを示している。 For example, at time T2, the vertical drive pattern P1 is applied to output the 1st horizontal signal of mode A, and at time T5, the vertical drive pattern P2 is applied to output the 2nd horizontal signal of mode B. Yes.
 なお、垂直方向に公知のオプティカルブラック領域を設けて、その信号(垂直OB信号)も出力するような構成の場合には、これを水平ライン出力に含めてもよいが、ここでは説明の簡略化のため、1st水平信号から出力開始するように記載している。 In the case of a configuration in which a known optical black area is provided in the vertical direction and the signal (vertical OB signal) is also output, this may be included in the horizontal line output, but here the description is simplified. Therefore, it is described that the output starts from the 1st horizontal signal.
 また、各垂直同期信号のパルス位置や幅は、VSYNCA同士及びVSYNCB同士の同期パルス間隔が均一な周期を保っていればよく、先に述べたようにモードBはモードAの2倍のフレームレートを持つので、VSYNCBの発行周期はVSYNCAの発行周期のちょうど2倍の周期になる。 Further, the pulse position and width of each vertical synchronization signal need only be such that the synchronization pulse interval between VSYNCAs and between VSYNCBs has a uniform period. As described above, mode B has a frame rate twice that of mode A. Therefore, the VSYNCB issuance period is exactly twice as long as the VSYNCA issuance period.
 時刻T6、T11の出力信号Bn、AxすなわちモードBのn番目水平ライン、モードAのx番目水平ライン表記に関しては図37と対応しており、モードA,モードBそれぞれの最終の水平ライン出力であることを示している。このように本実施の形態は、一方のモードでの水平ライン出力期間に続けて他方のモードの水平ライン出力期間を実行することにより、異なるモードの並行実施を可能にするものである。 The output signals Bn and Ax at times T6 and T11, that is, the nth horizontal line in mode B and the xth horizontal line in mode A correspond to FIG. 37, and the final horizontal line output in each of mode A and mode B It shows that there is. As described above, the present embodiment enables the parallel execution of different modes by executing the horizontal line output period of the other mode following the horizontal line output period of one mode.
 なお、モードAの出力水平ライン数xとモードBの出力水平ライン数nは、x>nの関係であり、本実施の形態ではモードAが垂直1/5間引き、モードBが垂直1/9間引きであるため、それぞれの値の比率は x:n≒9:5に近いものである。 Note that the number of output horizontal lines x in mode A and the number n of output horizontal lines in mode B are in a relationship of x> n. In the present embodiment, mode A is thinned vertically by 1/5, and mode B is vertically 1/9. Since it is thinning out, the ratio of each value is close to x: n≈9: 5.
 出力水平ライン数比x:n≒9:5に対して各モードのフレームレート比が1:2に設定されているので、1フレームにおけるモードAの最後の出力(Ax)がなされた後、次に垂直同期信号VSYNCA、垂直同期信号VSYNCBが発生するまでの間に,何回かモードAのダミー出力を挿入してフレームレートの調整を行う必要がある。図42では、T11とT14との間のT13に垂直駆動パターンP1を実行して1回だけモードAのダミー出力Dを実行する例が示されているが、実際には、xと2nの差はもっと大きいので、複数回のダミー出力が実行されるが、本実施の形態では、このダミー出力区間においても、基本的にその他の出力部分と同じように垂直駆動パターンP1、P2を入れ替えながら挿入していく。 Since the frame rate ratio of each mode is set to 1: 2 with respect to the output horizontal line number ratio x: n≈9: 5, after the final output (Ax) of mode A in one frame is made, Before the vertical synchronization signal VSYNCA and the vertical synchronization signal VSYNCB are generated, it is necessary to adjust the frame rate by inserting a mode A dummy output several times. FIG. 42 shows an example in which the vertical drive pattern P1 is executed at T13 between T11 and T14, and the dummy output D of mode A is executed only once. In practice, the difference between x and 2n is shown. In this embodiment, in the dummy output section, the vertical drive patterns P1 and P2 are basically exchanged in the same manner as in the other output portions. I will do it.
 (3-2-2)読出駆動パターンChAB
 図43には、図42の時刻T1、T14に実行される読出駆動パターンChABの例が記載されている。
(3-2-2) Read drive pattern ChAB
FIG. 43 shows an example of the read drive pattern ChAB executed at times T1 and T14 in FIG.
 モードAの信号電荷読み出しは、 第1構造電極列161により実行され、時刻t6でV3電極に読出しパルスを印加して読み出した信号電荷と時刻t7でV7電極に読み出しパルスを印加して読み出した信号電荷を垂直加算する制御と、モードBの信号電荷読み出しは、第2構造電極列162により実行され、時刻t2でV4電極に読出しパルスを印加して読み出した信号電荷と、時刻t3でV12電極に読出しパルスを印加して読み出した信号電荷を垂直加算する制御を行っている。 The signal charge readout in mode A is executed by the first structure electrode row 161, and the signal charge read out by applying a read pulse to the V3 electrode at time t6 and the signal read out by applying the read pulse to the V7 electrode at time t7. Control for vertically adding charges and signal charge reading in mode B are executed by the second structure electrode row 162, and the signal charges read by applying a read pulse to the V4 electrode at time t2 and applied to the V12 electrode at time t3. Control is performed to vertically add signal charges read by applying a read pulse.
 固体撮像素子103の基板電位VSUBのレベル制御に関しては、実施の形態3の図34で説明したものと同様であり、加算画素数が少なく1画素あたりの飽和容量を高く設定するモードBの信号電荷読み出しをモードAの読み出しよりも先に行い、その後時刻t5後にVSUBレベルを上げて1画素の飽和容量を低くさせることにより、加算画素数が多い場合に1画素あたりの飽和容量を低く設定して、モードAの信号電荷読み出しを行っている。 The level control of the substrate potential VSUB of the solid-state image sensor 103 is the same as that described with reference to FIG. 34 of the third embodiment, and the mode B signal charge in which the number of added pixels is small and the saturation capacitance per pixel is set high. The readout is performed prior to the readout in mode A, and then the VSUB level is raised after time t5 to lower the saturation capacity of one pixel, thereby lowering the saturation capacity per pixel when the number of added pixels is large. Mode A signal charge readout is performed.
 モードAの読み出しを行った後は、時刻t8にてVSUBレベルを低く再設定し、次のフレームの露光中は、VSUBに維持して、フォトダイオード11のダイナミックレンジを大きくさせる。 After reading out of mode A, the VSUB level is reset again at time t8 and maintained at VSUB during the exposure of the next frame to increase the dynamic range of the photodiode 11.
 (3-2-3)読出駆動パターンChB
 図44は、図42の時刻T8に実行される固体撮像素子103の読出駆動パターンChBの例を記載している。
(3-2-3) Read drive pattern ChB
FIG. 44 shows an example of the read drive pattern ChB of the solid-state image sensor 103 executed at time T8 in FIG.
 ここでは、1フレーム分の信号出力を完了したモードBの次フレームの信号電荷読み出しのみを第2構造電極列162を駆動することにより行っている。なお、当該読出駆動パターンChBのうち、モードAに関わる電極(V1,V3,V5,V7,V9,S1,S2,B1及びB2)のパターンは、後述する垂直駆動パターンP2におけるモードAに関わる電極の駆動パターンと同じである(図46参照)。 Here, only the signal charge readout in the next frame of mode B in which the signal output for one frame has been completed is performed by driving the second structure electrode row 162. Of the read drive pattern ChB, the patterns of the electrodes related to mode A (V1, V3, V5, V7, V9, S1, S2, B1, and B2) are electrodes related to mode A in the vertical drive pattern P2 described later. This is the same as the drive pattern (see FIG. 46).
 これは、図42に示すように垂直駆動パターンP1、P2が交互に実行されていることと、時刻T8の読出駆動パターンChBを挟む時刻T7及びT9の垂直駆動パターンがP1パターンであることより、モードAに関する垂直駆動パターンの連続性を維持させるためである。 This is because the vertical drive patterns P1 and P2 are alternately executed as shown in FIG. 42, and the vertical drive patterns at times T7 and T9 sandwiching the read drive pattern ChB at time T8 are P1 patterns. This is to maintain the continuity of the vertical drive pattern related to mode A.
 反対に、仮に図42の時刻T8の読出駆動パターンChBの前後が、垂直駆動パターンP2であるような場合は、読出駆動パターンChB内でのモードAに関る電極の駆動パターンは垂直駆動パターンP1におけるモードAに関る電極の駆動パターンが適用される(図45参照)。なお、モードBのみの駆動なので、VSUBレベルは低い設定のままを維持される。 On the other hand, if the vertical drive pattern P2 is before and after the read drive pattern ChB at time T8 in FIG. 42, the electrode drive pattern related to mode A in the read drive pattern ChB is the vertical drive pattern P1. The electrode drive pattern related to mode A is applied (see FIG. 45). Since only mode B is driven, the VSUB level is kept low.
 (3-2-4)垂直駆動パターンP1
 図45は、水平ブランキング期間に駆動される垂直駆動パターンP1の図である。
(3-2-4) Vertical drive pattern P1
FIG. 45 is a diagram of the vertical drive pattern P1 driven in the horizontal blanking period.
 この垂直駆動パターンP1では、モードAに関わる第1構造電極列161では撮像領域内の信号電荷の転送は行わず、第1選択出力用電極群251及び第2選択出力用電極群252を駆動させて対応する蓄積部内の蓄積電荷をHCCD48への転送を行う。 In the vertical drive pattern P1, the first structure electrode row 161 related to mode A does not transfer the signal charge in the imaging region, and drives the first selection output electrode group 251 and the second selection output electrode group 252. Then, the stored charge in the corresponding storage unit is transferred to the HCCD 48.
 つまりV1,V3,V5,V7,V9電極の駆動パターンは変化させることなく、S1,S2,B1及びB2電極の駆動パターンのみ変化させ、時刻t1においてS1,S2電極の直下に蓄積されている信号電荷を時刻t2~t4でHCCD33に転送する。 That is, without changing the drive patterns of the V1, V3, V5, V7, and V9 electrodes, only the drive patterns of the S1, S2, B1, and B2 electrodes are changed, and the signal accumulated immediately below the S1, S2 electrodes at time t1. The charge is transferred to the HCCD 33 at times t2 to t4.
 モードBに関しては、第2構造電極列162の駆動による撮像領域内の信号電荷の垂直転送と、第3選択出力用電極群253直下への信号電荷蓄積を行うが、VCCD12からHCCD33への転送は行わない(B3電極がVL状態のまま。)。 With respect to mode B, vertical transfer of signal charges in the imaging region by driving the second structure electrode row 162 and signal charge accumulation immediately below the third selection output electrode group 253 are performed, but transfer from the VCCD 12 to the HCCD 33 is performed. Not performed (B3 electrode remains in VL state).
 つまりV10,V12,V14電極直下のVCCD12に蓄積されている信号電荷は、時刻t2~t19で9電極分の距離だけ転送が行われ、時刻t1で第3選択出力用電極群253の手前にあった信号電荷は、第3選択出力用電極群253のS3電極下に電荷蓄積された状態で維持される。 That is, the signal charges stored in the VCCD 12 immediately below the electrodes V10, V12, and V14 are transferred by a distance corresponding to nine electrodes from time t2 to t19, and are in front of the third selection output electrode group 253 at time t1. The signal charges are maintained in a state where charges are accumulated under the S3 electrode of the third selective output electrode group 253.
 (3-2-5)垂直駆動パターンP2
 図46は、水平ブランキング期間における垂直駆動パターンP2を示す図である。
(3-2-5) Vertical drive pattern P2
FIG. 46 is a diagram showing the vertical drive pattern P2 in the horizontal blanking period.
 この垂直駆動パターンP2では、図45の場合とは反対に、モードAに関して、 撮像領域内の信号電荷の転送と信号電荷蓄積を行い、VCCD12からHCCD33への転送は行わない。 In this vertical drive pattern P2, in contrast to the case of FIG. 45, with respect to mode A, signal charges are transferred and signal charges are stored in the imaging region, and no transfer is performed from VCCD 12 to HCCD 33.
 つまり、 第1構造電極列161のV3,V5,V7電極直下のVCCD12に蓄積されている信号電荷は、時刻t3~t14で5電極分の距離だけ電荷転送が行われ、時刻t1で第1、第2選択出力用電極群251、252の手前にあった信号電荷は、当該第1、第2選択出力用電極群251、252の蓄積用電極S1及びS2の直下に電荷蓄積される。 That is, the signal charges accumulated in the VCCD 12 immediately below the V3, V5, and V7 electrodes of the first structure electrode row 161 are transferred by a distance corresponding to five electrodes from time t3 to t14, and the first, The signal charges existing before the second selection output electrode groups 251 and 252 are stored immediately below the storage electrodes S1 and S2 of the first and second selection output electrode groups 251 and 252, respectively.
 モードBに関わる電極では、撮像領域内の信号電荷の転送は行わず、第3選択出力用電極群253直下に蓄積されている電荷を、VCCD12からHCCD33へ転送する。 In the electrode related to mode B, the signal charge in the imaging region is not transferred, and the charge stored immediately below the third selective output electrode group 253 is transferred from the VCCD 12 to the HCCD 33.
 つまり、V2,V4,V6,V8,V10,V12,V14,V16,V18電極の駆動パターンは変化させることなく、第3選択出力用電極群253のS3及びB3電極の駆動パターンのみを変化させ、時刻t1においてS3電極直下に蓄積されている信号電荷を時刻t2~t4でHCCD33に転送する。 That is, without changing the drive patterns of the electrodes V2, V4, V6, V8, V10, V12, V14, V16, and V18, only the drive patterns of the S3 and B3 electrodes of the third selection output electrode group 253 are changed. The signal charge stored immediately below the S3 electrode at time t1 is transferred to the HCCD 33 at times t2 to t4.
 以上のようにモードBの垂直同期信号VSYNCBの周期を、モードAの垂直同期信号VSYNCAの周期の2倍に設定し、垂直同期信号VSYNCAと垂直同期信号VSYNCBが同時に発生するタイミングでは、モードA,Bの読出駆動を同時に行う読出駆動パターンChAB(図43)を実行し、垂直同期信号VSYNCBのみが発生するタイミングでは、モードBの読出駆動のみを実行すべく、読出駆動パターンChB(図44)を実行する。 As described above, the cycle of the vertical sync signal VSYNCB in mode B is set to twice the cycle of the vertical sync signal VSYNCA in mode A, and at the timing when the vertical sync signal VSYNCA and the vertical sync signal VSYNCB are generated simultaneously, The read drive pattern ChAB (FIG. 43) for simultaneously executing the B read drive is executed, and at the timing when only the vertical synchronization signal VSYNCB is generated, the read drive pattern ChB (FIG. 44) is executed to execute only the mode B read drive. Execute.
 そして、一の垂直同期信号から次の垂直同期信号の間において、モードAに係る信号電荷をHCCD33へ出力すると共に、モードBに係る信号電荷を画像領域内で垂直転送を行うための垂直駆動パターンP1(図45)と、 モードBに係る信号電荷をHCCD33へ出力すると共に、モードAに係る信号電荷を画像領域内で垂直転送を行うための垂直駆動パターンP2(図46)とを交互に実行することにより、2つのモードを並行して実施するものである。 Then, between one vertical synchronizing signal and the next vertical synchronizing signal, the signal charge related to mode A is output to the HCCD 33 and the signal charge related to mode B is transferred vertically in the image area. P1 (FIG. 45) and the signal charge related to the mode B are output to the HCCD 33, and the vertical drive pattern P2 (FIG. 46) for performing the vertical transfer of the signal charge related to the mode A within the image area is alternately executed. By doing so, the two modes are executed in parallel.
 (4)カメラ装置
 本実施の形態に係る固体撮像素子103を搭載したカメラ装置は、フロントエンド部480の構成が図15と同じである以外は、図33に示した構成とほぼ同じであるので、特に図示しないが、メモリ管理部460(図33)により、固体撮像素子103からの出力信号を、モードAとモードBの出力のタイミングに合わせて、両者を区別してメモリ部470に格納するよう制御することにより、モードA、Bの画像データがそれぞれ得られる。
(4) Camera Device A camera device equipped with the solid-state imaging device 103 according to the present embodiment is almost the same as the configuration shown in FIG. 33 except that the configuration of the front end unit 480 is the same as that shown in FIG. Although not particularly illustrated, the memory management unit 460 (FIG. 33) stores the output signal from the solid-state imaging device 103 in the memory unit 470 in accordance with the output timings of the mode A and the mode B in a distinguished manner. By controlling, image data of modes A and B can be obtained.
 (5)補足
 なお、上記モードA、モードBを別個に駆動する場合に、図39、図40に示す水平ブランキング期間における垂直駆動の動作タイミングにおいて、逆方向転送で駆動相数一段分(図39では9電極分、図40では5電極分)の垂直逆転送を実施するように記載しているが、これは温度状態や撮像状態により制御することが可能である。
(5) Supplement Note that when driving the mode A and the mode B separately, at the operation timing of the vertical drive in the horizontal blanking period shown in FIGS. In FIG. 39, it is described that vertical reverse transfer of 9 electrodes (for 5 electrodes in FIG. 40) is performed, but this can be controlled by the temperature state and the imaging state.
 すなわち、高温時ではVCCD暗電流の発生量が多くなり、また、高照度の被写体が存在する状態ではスミアを主体とするノイズ電荷の発生が多くなる為、これらの場合には転送段数を増やすもしくは頻繁に逆転送を行うことでノイズ電荷の逆転送による排出を行なえばよい。 That is, the generation amount of VCCD dark current increases at a high temperature, and noise charges mainly including smear increase in the presence of a subject with high illuminance. In these cases, the number of transfer stages is increased or What is necessary is just to discharge | emit by reverse transfer of a noise charge by performing reverse transfer frequently.
 また、低温時ではVCCD暗電流の発生量が少なくなり、低照度条件下で撮像する場合のノイズ電荷はスミア成分よりもVCCD暗電流が支配的になる為、この場合には転送段数を減らすもしくは垂直ブランキング期間などのフレーム時刻内の部分的な期間に逆転送を行うだけでもよい。 Also, the amount of generation of VCCD dark current decreases at low temperatures, and the noise charge when imaging under low illuminance conditions is dominated by VCCD dark current over the smear component. The reverse transfer may be performed only during a partial period within the frame time such as the vertical blanking period.
 (6)実施の形態4の効果
 本実施の形態4に係る発明によれば、固体撮像素子103内の各構造電極列においては複数の異なる読み出し制御と複数の垂直電荷転送制御を実施することが可能である。
(6) Effects of Embodiment 4 According to the invention according to Embodiment 4, a plurality of different readout controls and a plurality of vertical charge transfer controls can be performed on each structure electrode array in the solid-state imaging device 103. Is possible.
 また、各構造電極列における垂直駆動相数を変えることにより、垂直間引き率の異なる複数の画像を同時出力することが可能であり、さらに基板電位レベルの制御を併用することで各モードでの飽和出力の最適化も併せて実現できる。 In addition, it is possible to simultaneously output multiple images with different vertical thinning rates by changing the number of vertical drive phases in each structure electrode array, and further, saturation in each mode by controlling the substrate potential level in combination. Output optimization can also be realized.
 さらに、一方のモードの画像を使用しない場合では非信号読み出し列のVCCDにおいて雑音成分を逆転送しドレイン側に排出することで水平間引きと画素加算を両立した良好な画像を得られる。 Furthermore, when the image in one mode is not used, a good image in which both horizontal thinning and pixel addition are compatible can be obtained by reversely transferring the noise component in the non-signal readout column VCCD and discharging it to the drain side.
 <その他の補足事項>
 (1)色フィルタは、原色系ベイヤー配列としたが、特に制約するものではない。
<Other supplementary matters>
(1) The color filter is a primary color Bayer array, but is not particularly limited.
 上記実施の形態では、ベイヤー配列を前提として水平2画素周期で配置する一こと例を挙げているが、使用用途や色フィルタの配置周期に併せて第1、第2構造電極列を配置すればよい。 In the above embodiment, an example is given in which a horizontal two-pixel period is arranged on the premise of the Bayer arrangement. However, if the first and second structure electrode arrays are arranged in accordance with the usage application and the arrangement period of the color filters, Good.
 (2)第1構造電極列161、第2構造電極列162は、図2のような接続状態に限定されず、例えば、図47に示すような 第1構造電極列163、第2構造電極列164のような接続状態にしてもよい。すなわち、第1と第2の構造電極列は、各行において駆動電極16と水平配線部15の第1配線13、第2配線14との接続状態が異なっていれば、駆動パルスの印加を制御することにより水平間引き読出し制御ならびに垂直転送の制御が可能なのであり、他にも様々な接続パターンを考えることができる。 (2) The first structure electrode row 161 and the second structure electrode row 162 are not limited to the connection state as shown in FIG. 2. For example, the first structure electrode row 163 and the second structure electrode row as shown in FIG. A connection state such as 164 may be used. That is, the first and second structural electrode columns control the application of the driving pulse if the connection state between the driving electrode 16 and the first wiring 13 and the second wiring 14 of the horizontal wiring portion 15 is different in each row. As a result, horizontal thinning readout control and vertical transfer control are possible, and various other connection patterns can be considered.
 (3)また、各行の水平配線部15における第1配線13と第2配線14の形状は、図2では上下対称な形状にしているが、必ずしもその必然性はなく、非対称であってもよい。 (3) In addition, although the shapes of the first wiring 13 and the second wiring 14 in the horizontal wiring portion 15 of each row are vertically symmetric in FIG. 2, they are not necessarily required and may be asymmetric.
 図48は、この場合における固体撮像素子の撮像部の構成を示す平面図であり、図49(a)(b)は、それぞれ図47のE-E‘線およびF-F’線における矢視断面略図を示すものである。 48 is a plan view showing the configuration of the imaging unit of the solid-state imaging device in this case, and FIGS. 49 (a) and 49 (b) are views taken along lines EE ′ and FF ′ of FIG. 47, respectively. A cross-sectional schematic diagram is shown.
 図48に示すように、第1配線13‘と第2配線14’は上下非対称になっており、図49(a)(b)の断面略図に示すように、駆動電極16と重なる部分において、駆動電極16とコンタクト17により接続される側の配線については幅が太くなっており、他方の配線は幅が太くなっていない。 As shown in FIG. 48, the first wiring 13 ′ and the second wiring 14 ′ are asymmetrical in the vertical direction. As shown in the schematic cross-sectional views of FIGS. The wiring on the side connected by the drive electrode 16 and the contact 17 has a large width, and the other wiring does not have a large width.
 図49(c)は、このような図49(b)の例において、さらに遮光膜を形成した場合の断面図を示す。同図に示すようにVCCDと配線の上部に設けられる遮光膜の形状に段差が発生し、撮像素子で重要な平坦性の確保が困難になる可能性も考えられる。 FIG. 49 (c) shows a cross-sectional view in the case where a light shielding film is further formed in the example of FIG. 49 (b). As shown in the figure, a step may occur in the shape of the light shielding film provided on the upper part of the VCCD and the wiring, and it may be difficult to ensure the flatness important for the image sensor.
 これらの第1配線13、第2配線14の形状の選択に関しては、平坦性に関連するデバイス形成の一様性を重視するならば、図2、図3のように第1配線13と第2配線14の双方とも配線幅を拡張を行い、消費電力を考慮した上で配線間の容量低減を図るのであれば配線幅拡張を行わないという具合に、目的に応じて構造を選択すればよい。 Regarding the selection of the shapes of the first wiring 13 and the second wiring 14, if importance is attached to the uniformity of device formation related to flatness, the first wiring 13 and the second wiring 14 as shown in FIGS. For both of the wirings 14, the structure may be selected according to the purpose, for example, if the wiring width is expanded and the capacitance between the wirings is reduced in consideration of power consumption, the wiring width is not expanded.
 (4)上記実施の形態では、 第1構造電極列161と第2構造電極列162交互もしくは合計で3列となるように組み合わせた構造電極列群を配置単位として、これを水平方向に繰り返して配列したが、さらに多くの列を配置単位としても構わない。この場合にはさらなる駆動モードの多様化が可能になると共に、例えば、1列の第1構造電極列161と、4列の第2構造電極列162とからなる計5列の構造電極列群を配置単位とした場合、水平間引き率を5分の1とすることができ、出力画素低減率の向上に資する。 (4) In the above embodiment, the first structure electrode row 161 and the second structure electrode row 162 are alternately arranged or combined as a group of structure electrode rows combined in a total of 3 rows, and this is repeated in the horizontal direction. Although arranged, more columns may be used as the arrangement unit. In this case, further diversification of drive modes becomes possible, and for example, a total of five structure electrode array groups each composed of one first structure electrode array 161 and four second structure electrode arrays 162 are provided. When the arrangement unit is used, the horizontal thinning rate can be reduced to 1/5, which contributes to the improvement of the output pixel reduction rate.
 また、上記実施の形態では、独立した駆動パルスが印加される選択出力用電極群(副選択出力部)を、第1選択出力用電極群251~第3選択出力用電極群253の3種類にしたが、4種類以上としても構わない。 In the above embodiment, the selection output electrode group (sub-selection output unit) to which the independent drive pulse is applied is divided into three types of first selection output electrode group 251 to third selection output electrode group 253. However, four or more types may be used.
 また、各実施の形態で示した駆動タイミングを示すタイミングチャートは、上記構造電極列群の列数、選択出力用電極群の数、および目的とする駆動モード(画素加算例)により適宜変更される。 Further, the timing chart showing the drive timing shown in each embodiment is appropriately changed according to the number of the structured electrode row groups, the number of the selective output electrode groups, and the target drive mode (pixel addition example). .
 (5)上述したように各行の水平配線部15は、第1配線13と第2配線14の2本だけでも第1構造電極列161、第2構造電極列162の配列や選択出力部20との組み合わせにより、十分に出力画素低減の効果を得られ、また、駆動モードの多様性も確保することができるが、水平配線部15に3本以上の配線が含まれていても構わない。これに合わせて第1構造電極列161、第2構造電極列162に加えて第3構造電極列、第4構造電極列などを形成して、これらを一定周期で配列することにより、その駆動モードをより多様化することができる。 (5) As described above, the horizontal wiring portion 15 of each row can be arranged with only the first wiring 13 and the second wiring 14, the arrangement of the first structure electrode row 161 and the second structure electrode row 162, and the selection output portion 20. By combining the two, a sufficient output pixel reduction effect can be obtained and a variety of drive modes can be ensured. However, the horizontal wiring portion 15 may include three or more wirings. In accordance with this, in addition to the first structure electrode row 161 and the second structure electrode row 162, a third structure electrode row, a fourth structure electrode row, and the like are formed, and these are arranged at a constant period, whereby the drive mode Can be further diversified.
 なお、このような場合、必ずしも各構造電極列の全ての駆動電極について、同じ行の他の構造電極列の駆動電極の、水平配線部との接続状態と異ならせなくても、一部の行について、例えば同じ第1配線13に接続されていても、撮像部全体として見たときに全体として周期的に接続状態が異なっていれば、ある程度の出力画素低減率を得られると共に、多種の駆動モードの実行も可能とすることができる。 In such a case, not all of the drive electrodes in each structural electrode column need to be partially connected to the drive electrodes of other structural electrode columns in the same row even if they are not different from the connection state with the horizontal wiring portion. For example, even if connected to the same first wiring 13, if the connection state is periodically different as a whole when viewed as the entire imaging unit, a certain output pixel reduction rate can be obtained and various types of driving can be performed. Mode execution may also be possible.
 (6)また、上記実施の形態では、VCCDは5相駆動もしくは9相駆動のものについて説明したが、本発明によれば、3相以上の何相の駆動でも可能であり、垂直間引き読み出しで出力する水平ライン数やVCCDの飽和容量などを考慮して最適な駆動相数を選択すればよい。 (6) In the above embodiment, the description has been given of the VCCD having five-phase driving or nine-phase driving. However, according to the present invention, driving of any number of three or more phases is possible. The optimum number of drive phases may be selected in consideration of the number of horizontal lines to be output and the saturation capacity of the VCCD.
 但し、VCCD内の電荷転送における飽和容量やバリア形成のことを考慮すると3相ではメリットが少なく、転送時に必要なバリア領域形成に要する相が駆動相数の半分以下になるような5相以上が適当と考えられる。 However, considering the saturation capacity and barrier formation in the charge transfer in the VCCD, there are few merits in the three phases, and there are five or more phases in which the number of phases required for barrier region formation required for the transfer is less than half of the number of driving phases. It is considered appropriate.
 また、HCCDの信号格納領域(水平転送パケット)のピッチは、VCCDの2列分もしくは3列分としたが、画素加算例や駆動モードの種類に応じて、選択出力用電極群を適当に対応させることにより、他のピッチでも対応可能である。 Also, the pitch of the HCCD signal storage area (horizontal transfer packet) is set to 2 or 3 columns of VCCD, but the selection output electrode group is appropriately handled according to the pixel addition example and the type of drive mode. Therefore, other pitches can be handled.
 (7)基板電位変調制御についての補足
 実施の形態1、3,4で説明したように、画素加算数に応じて基板電位VSUBを変調させることにより、駆動モードに応じた適正な飽和出力を得ることができるが、以下のように基板電位VSUBを決定することにより、より最適な飽和出力を得ることができる。
(7) Supplement on substrate potential modulation control As described in the first, third, and fourth embodiments, by modulating the substrate potential VSUB according to the number of added pixels, an appropriate saturated output corresponding to the drive mode is obtained. However, a more optimal saturation output can be obtained by determining the substrate potential VSUB as follows.
 すなわち、一般的に固体撮像素子の画素が持つ飽和容量は製品毎にバラつきを持ち、各画素の飽和容量を目標のレベルに調整するため内部バイアス値管理回路を設けて製品毎の飽和容量の特性に応じた内部バイアス値を設定することができるようになっている。 In other words, the saturation capacity of a pixel in a solid-state image sensor generally varies from product to product, and an internal bias value management circuit is provided to adjust the saturation capacity of each pixel to a target level. It is possible to set an internal bias value according to.
 この内部バイアス値管理回路は、複数の直列抵抗とこれら抵抗にそれぞれ並列に繋がれている複数のヒューズ配線を持ち、抵抗に並列に繋がるヒューズ配線を当該固体撮像素子の飽和特性に応じて焼き切り、これにより内部バイアス値管理回路で発生する電圧レベルを制御することで製品毎に最適な内部バイアスが設定できるよう設計されているものである。 This internal bias value management circuit has a plurality of series resistors and a plurality of fuse wirings connected in parallel to these resistors, and burns out the fuse wiring connected in parallel to the resistors according to the saturation characteristics of the solid-state imaging device, Thus, the optimum internal bias can be set for each product by controlling the voltage level generated by the internal bias value management circuit.
 実際の基板電位VSUBは、上記内部バイアスに、駆動部420(図15参照)より印加される基板電位調整信号φSUBの電位を上乗せしたものとして定義される。 The actual substrate potential VSUB is defined as the above-mentioned internal bias added with the potential of the substrate potential adjustment signal φSUB applied from the drive unit 420 (see FIG. 15).
 そして、固体撮像素子の基板には、画素加算用基板電位情報管理部(以下、「電位情報管理部」という。)が設けられている。この電位情報管理部には、各駆動モードにおける加算画素数に対応して、予め製品単位で最適化された基板電位を示す基板電位情報が複数格納されており、制御部440(図15参照)から、加算画素数の切替を示す加算画素用基板電位情報切替信号(MSEL)を受信すると、当該加算画素数に対応した基板電位情報(MO)を固体撮像素子から駆動部420に出力する。 A substrate addition information management unit for pixel addition (hereinafter referred to as “potential information management unit”) is provided on the substrate of the solid-state imaging device. The potential information management unit stores a plurality of pieces of substrate potential information indicating the substrate potential optimized in advance for each product corresponding to the number of added pixels in each drive mode, and the control unit 440 (see FIG. 15). When the addition pixel substrate potential information switching signal (MSEL) indicating the addition pixel number switching is received, the substrate potential information (MO) corresponding to the addition pixel number is output from the solid-state imaging device to the drive unit 420.
 駆動部420では、当該電位情報管理部から受けた基板電位情報(MO)と、全製品に共通に設定されている電子シャッタレベル、非電子シャッタレベルの値により、基板電位調整信号φSUBを決定する。 The drive unit 420 determines the substrate potential adjustment signal φSUB based on the substrate potential information (MO) received from the potential information management unit and the values of the electronic shutter level and the non-electronic shutter level commonly set for all products. .
 すなわち、基板電位調整信号φSUBは、電子シャッタを実行する場合は固体撮像素子の駆動モードに関らず予め設定されている電子シャッタレベルに設定される。電子シャッタを印加しない期間では、非電子シャッタレベル、もしくは非電子シャッタレベルに基板電位情報(MO)により規定されるレベルを上乗せしたレベルに設定される。そして、非電子シャッタレベルに基板電位情報(MO)によるレベルを上乗せするか否かは、基板電位切替制御信号(SUBC)の有無による。 That is, the substrate potential adjustment signal φSUB is set to a preset electronic shutter level regardless of the driving mode of the solid-state imaging device when the electronic shutter is executed. In a period in which the electronic shutter is not applied, the non-electronic shutter level or a level obtained by adding a level defined by the substrate potential information (MO) to the non-electronic shutter level is set. Whether or not the level based on the substrate potential information (MO) is added to the non-electronic shutter level depends on the presence or absence of the substrate potential switching control signal (SUBC).
 したがって、まず、制御部440は、加算画素用基板電位情報切替信号(MSEL)を固体撮像素子100の電位情報管理部に送信して、当該加算画素数に応じた基板電位情報(MO)を固体撮像素子から駆動部420に出力させ、画素加算の駆動に際して、基板電位VSUBを切り替える際に駆動部420に基板電位切替制御信号(SUBC)を送信して、非電子シャッタレベルに基板電情報(MO)によるレベル上乗せをした基板電位調整信号φSUBを半導体基板に印加して所定の基板電位VSUBに変更するように構成される。 Therefore, first, the control unit 440 transmits a substrate potential information switching signal (MSEL) for addition pixels to the potential information management unit of the solid-state image sensor 100, and the substrate potential information (MO) corresponding to the number of added pixels is solid. When driving the pixel addition, the substrate potential switching control signal (SUBC) is transmitted to the driving unit 420 when switching the substrate potential VSUB, and the substrate electric information (MO) is transferred to the non-electronic shutter level. The substrate potential adjustment signal φSUB added with the level added by (1) is applied to the semiconductor substrate to be changed to a predetermined substrate potential VSUB.
 これにより、カメラ装置において、加算画素数に応じた基板電位VSUBが設定され、最適な飽和出力を得ることができる。 Thereby, in the camera device, the substrate potential VSUB corresponding to the number of added pixels is set, and an optimum saturation output can be obtained.
 (8)なお、上記の各実施の形態では、各駆動電極や選択出力用電極群などへ印加する駆動パルスは独立であることを前提として説明したが、制御内容が同じような場合には、共通化してもよい。 (8) In each of the above embodiments, the drive pulses applied to each drive electrode, the selective output electrode group, and the like have been described on the premise that they are independent. It may be shared.
 例えば、実施の形態2の動作タイミングを示す図21、図22において、撮像領域内において、第1構造電極列161のV1、V3、V5、V7、V9電極に印加する駆動パルスは、第2構造電極列162におけるV10、V8、V6、V4、V2電極と同じパターンなので、V1とV10、V3とV8、V5とV6、V9とV2の各電極を結線することにより駆動パルスの入力端子の数を少なくすることができる。 For example, in FIG. 21 and FIG. 22 showing the operation timing of the second embodiment, the drive pulse applied to the V1, V3, V5, V7, and V9 electrodes of the first structure electrode row 161 in the imaging region is the second structure. Since it is the same pattern as the V10, V8, V6, V4, and V2 electrodes in the electrode array 162, the number of drive pulse input terminals can be reduced by connecting the V1 and V10, V3 and V8, V5 and V6, and V9 and V2 electrodes. Can be reduced.
 また、撮像領域外における、第1、第2及び第3選択出力用電極群251、252、253の各電極S1/B1、S2/B2、S3/B3や第1HCCD31、第2HCCD32における駆動電極、第1出力部41、第2出力部42などについても、動作タイミングが同じものについて結線して入力端子を共用化することにより、より一層の小型化、低コスト化が図れる。 In addition, the drive electrodes in the first HCCD 31 and the second HCCD 32, the first SCD 1, the S 2 / B 2, and the S 3 / B 3 of the first, second, and third selection output electrode groups 251, 252, and 253 outside the imaging region, The first output unit 41, the second output unit 42, and the like can be further reduced in size and cost by connecting the same operation timing and connecting the input terminals.
 (9)上記各実施の形態では、出力画素を低減する場合の駆動タイミングについてのみ説明したが、全画素の画素信号を出力することももちろん可能である。例えば、実施の形態1における図5の構成例によれば、まず、全駆動電極16に対して垂直5:1インタレースを行うように読出しパルスを印加して隣接するVCCD12に読出し、1段の垂直転送毎に第1~第3の選択出力用電極群251~253を順次駆動しながら一つの水平ラインについて3回に分けて出力するようにすればよい。これを5フィールド分行う事で全画素の画素信号を出力画素低減させる事なく出力できる。 (9) In each of the above embodiments, only the driving timing when the output pixels are reduced has been described, but it is of course possible to output pixel signals of all pixels. For example, according to the configuration example of FIG. 5 according to the first embodiment, first, a read pulse is applied so as to perform vertical 5: 1 interlace with respect to all the drive electrodes 16 and read to the adjacent VCCD 12. For each vertical transfer, the first to third selection output electrode groups 251 to 253 may be driven in three steps for one horizontal line while being sequentially driven. By performing this for five fields, the pixel signals of all the pixels can be output without reducing the output pixels.
 本発明は、固体撮像素子において、画質の劣化を押さえつつ、出力画素数を効率的に低減させることができ、特に画素数の多い固体撮像素子やこれを用いたカメラ装置について適用される。 The present invention can efficiently reduce the number of output pixels while suppressing deterioration in image quality in a solid-state image sensor, and is particularly applicable to a solid-state image sensor having a large number of pixels and a camera device using the same.
 10         撮像部
 11         フォトダイオード
 12         VCCD
 13、13‘     第1配線
 14、14‘     第2配線
 15         水平配線部
 16         駆動電極
 17         コンタクト
 18         給電用バスライン
 20、210、220 選択出力部
 21         蓄積部
 22         バリア部
 30、33      HCCD
 31         第1HCCD
 32         第2HCCD
 40         出力部
 41         第1出力部
 42         第2出力部
 50         半導体基板
161、163     第1構造電極列
162、164     第2構造電極列
251         第1選択出力用電極群
252         第2選択出力用電極群
253         第3選択出力用電極群
400、401     カメラ装置
410         レンズユニット
420         駆動部
430         タイミング生成部
440         制御部
450         信号処理部
460         メモリ管理部
470         メモリ部
480         アナログフロントエンド
490         表示部
495         操作部
10 Imaging unit 11 Photodiode 12 VCCD
13, 13 '1st wiring 14, 14' 2nd wiring 15 Horizontal wiring part 16 Drive electrode 17 Contact 18 Power supply bus line 20, 210, 220 Selection output part 21 Storage part 22 Barrier part 30, 33 HCCD
31 1st HCCD
32 Second HCCD
40 output unit 41 first output unit 42 second output unit 50 semiconductor substrates 161 and 163 first structure electrode row 162 and 164 second structure electrode row 251 first selection output electrode group 252 second selection output electrode group 253 second 3 selection output electrode group 400, 401 camera device 410 lens unit 420 drive unit 430 timing generation unit 440 control unit 450 signal processing unit 460 memory management unit 470 memory unit 480 analog front end 490 display unit 495 operation unit

Claims (20)

  1.  複数の光電変換素子が、マトリックス状に配置されてなる固体撮像素子であって、
     光電変換素子の各列に沿って配された複数の垂直駆動電極に複数の駆動パルスを印加することにより、光電変換素子の信号電荷を読み出して垂直方向に転送する複数の垂直転送部と、
     光電変換素子の各行に沿って配された複数の水平配線部と、
     前記複数の垂直転送部から転送された信号電荷を水平方向に転送する水平転送部と
    備え、
     前記垂直駆動電極は、個々の光電変換素子に対応して個別に設けられると共に、前記各水平配線部は、水平方向に伸びる第1と第2の配線を含んでおり、各垂直駆動電極が、当該垂直駆動電極と同じ行に配された水平配線部の第1と第2の配線のいずれかに選択的に接続されてなり、
     各水平配線部の第1もしくは第2の配線に接続された1列分の垂直駆動電極群を、構造電極列と定義するとき、所定の第1構造電極列と、当該第1構造電極列とは各行における水平配線部の第1、第2の配線との接続状態が異なる第2構造電極列とが、水平方向に組み合わせて配列されてなる
     ことを特徴とする固体撮像素子。
    A plurality of photoelectric conversion elements are solid-state imaging elements arranged in a matrix,
    A plurality of vertical transfer units that read out signal charges of the photoelectric conversion elements and transfer them in the vertical direction by applying a plurality of drive pulses to a plurality of vertical drive electrodes arranged along each column of the photoelectric conversion elements;
    A plurality of horizontal wiring portions arranged along each row of photoelectric conversion elements;
    A horizontal transfer unit that horizontally transfers the signal charges transferred from the plurality of vertical transfer units,
    The vertical drive electrodes are individually provided corresponding to the individual photoelectric conversion elements, and each horizontal wiring portion includes first and second wirings extending in the horizontal direction. Selectively connected to either the first or second wiring of the horizontal wiring portion arranged in the same row as the vertical drive electrode;
    When a group of vertical drive electrodes connected to the first or second wiring of each horizontal wiring portion is defined as a structure electrode array, a predetermined first structure electrode array, the first structure electrode array, A solid-state imaging device, wherein a second structure electrode column having a different connection state with the first and second wirings of the horizontal wiring portion in each row is arranged in combination in the horizontal direction.
  2.  前記第1構造電極列と第2構造電極列を合計でP列(P≧3)になるよう組み合わせた構造電極列群を配置単位として、水平方向に繰り返して配列してなる
     ことを特徴とする請求項1に記載の固体撮像素子。
    The structure electrode array group in which the first structure electrode array and the second structure electrode array are combined to be a total of P arrays (P ≧ 3) is repeatedly arranged in the horizontal direction as an arrangement unit. The solid-state imaging device according to claim 1.
  3.  第1構造電極列の垂直駆動相数は、第2構造電極列の垂直駆動相数と異なる
     ことを特徴とする請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the number of vertical drive phases of the first structure electrode array is different from the number of vertical drive phases of the second structure electrode array.
  4.  前記水平転送部は、選択出力部を介して各垂直転送部と接続されており、
     前記選択出力部により選択された列の垂直転送部の信号電荷が、所定のタイミングで前記水平転送部に転送される
     ことを特徴とする請求項1に記載の固体撮像素子。
    The horizontal transfer unit is connected to each vertical transfer unit via a selection output unit,
    2. The solid-state imaging device according to claim 1, wherein the signal charges of the vertical transfer unit of the column selected by the selection output unit are transferred to the horizontal transfer unit at a predetermined timing.
  5.  前記選択出力部は、独立して駆動パルスが印加される第1副選択出力部、第2副選択出力部、第3副選択出力部を備え、
     第1、第2、第3副選択出力部は、それぞれ各垂直転送部と水平転送部との間に配設されることを特徴とする請求項4に記載の固体撮像素子。
    The selection output unit includes a first sub selection output unit, a second sub selection output unit, and a third sub selection output unit to which drive pulses are applied independently,
    5. The solid-state imaging device according to claim 4, wherein the first, second, and third sub-selection output units are respectively disposed between the vertical transfer units and the horizontal transfer units.
  6.  前記水平転送部は、前記垂直転送部の一方の端部に配された第1副水平転送部と、垂直転送部の他方の端部に配された第2副水平転送部とからなり、
     第1構造電極列より転送される信号電荷は、第1水平転送部に転送され、
     第2構造電極列より転送される信号電荷は、第2水平転送部に転送され、
     第1及び第2構造電極列の信号電荷転送方向が互いに逆方向である
     ことを特徴とする請求項1に記載の固体撮像素子。
    The horizontal transfer unit includes a first sub horizontal transfer unit disposed at one end of the vertical transfer unit and a second sub horizontal transfer unit disposed at the other end of the vertical transfer unit,
    The signal charge transferred from the first structure electrode row is transferred to the first horizontal transfer unit,
    The signal charge transferred from the second structure electrode array is transferred to the second horizontal transfer unit,
    2. The solid-state imaging device according to claim 1, wherein the signal charge transfer directions of the first and second structure electrode arrays are opposite to each other.
  7.  前記第1副水平転送部は、第1選択出力部を介して 第1構造電極列が配された垂直転送部と接続され、
     前記第2副水平転送部は、第2選択出力部を介して第2構造電極列が配された垂直転送部と接続され、
     前記第1、第2の選択出力部により選択された列の垂直転送部の信号電荷が、対応する第1、第2の水平転送部にそれぞれ所定のタイミングで転送される
     ことを特徴とする請求項6に記載の固体撮像素子。
    The first sub-horizontal transfer unit is connected to a vertical transfer unit in which a first structure electrode array is arranged via a first selection output unit,
    The second sub-horizontal transfer unit is connected to a vertical transfer unit in which a second structure electrode array is disposed via a second selection output unit,
    The signal charge of the vertical transfer unit in the column selected by the first and second selection output units is transferred to the corresponding first and second horizontal transfer units at a predetermined timing, respectively. Item 7. The solid-state imaging device according to Item 6.
  8.  前記各第1と第2の選択出力部は、それぞれ独立して駆動パルスが印加される第1副選択出力部、第2副選択出力部、第3副選択出力部を備え、
     前記第1、第2、第3副選択出力部は、それぞれ各垂直転送部とその転送先の第1もしくは第2の水平転送部との間に配設される
     ことを特徴とする請求項7に記載の固体撮像素子。
    Each of the first and second selection output units includes a first sub selection output unit, a second sub selection output unit, and a third sub selection output unit to which driving pulses are applied independently.
    The first, second, and third sub-selection output units are respectively disposed between each vertical transfer unit and the first or second horizontal transfer unit that is the transfer destination. The solid-state image sensor described in 1.
  9.  前記第1の選択出力部は、第1および第2副選択出力部を備えると共に、前記第2の選択出力部は、第3副選択出力部を備え、かつ、第1,第2、第3副選択出力部は独立して駆動パルスが印加され、
     前記各第1、第2副選択出力部は、 第1構造電極列の配された垂直転送部と第1副水平転送部との間に配され、
     前記第3副選択出力部は、第2構造電極列の配された垂直転送部と第2副水平転送部との間に配設される
     ことを特徴とする請求項7に記載の固体撮像素子。
    The first selection output unit includes first and second sub-selection output units, and the second selection output unit includes a third sub-selection output unit, and the first, second, and third A drive pulse is applied independently to the sub-selection output unit,
    Each of the first and second sub-selection output units is disposed between a vertical transfer unit and a first sub-horizontal transfer unit in which the first structure electrode array is disposed,
    The solid-state imaging device according to claim 7, wherein the third sub-selection output unit is disposed between a vertical transfer unit and a second sub-horizontal transfer unit in which the second structure electrode array is arranged. .
  10.  水平転送部が接続されていない側の垂直転送部の端部に所定の直流バイアスが印加される電荷排出部が接続されてなる
     ことを特徴とする請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein a charge discharging unit to which a predetermined DC bias is applied is connected to an end of the vertical transfer unit on the side to which the horizontal transfer unit is not connected.
  11.  請求項1に記載の固体撮像素子と、
     前記固体撮像素子の第1構造電極列を駆動する第1の駆動パルスと、前記第2構造電極列を駆動する第2の駆動パルスとを生成し、それぞれ第1と第2の構造電極列に印加する駆動手段と
     を備えることを特徴とする固体撮像装置。
    A solid-state imaging device according to claim 1;
    A first drive pulse for driving the first structure electrode array of the solid-state imaging device and a second drive pulse for driving the second structure electrode array are generated, and the first and second structure electrode arrays are respectively generated. A solid-state imaging device comprising: a drive unit that applies the power.
  12.  前記駆動手段は、
     第1もしくは第2構造電極列のいずれか一方を駆動させて、対応する光電変換素子列から信号電荷を読み出して垂直転送する際に、
     信号電荷を読出さない他方の構造電極列における垂直転送動作を停止、あるいは前記信号電荷を読み出して垂直転送する方向と逆方向に垂直転送動作を実行させるように前記第1および/もしくは第2の駆動パルスを生成することを特徴とする請求項11に記載の固体撮像装置。
    The driving means includes
    When driving one of the first or second structure electrode rows to read out signal charges from the corresponding photoelectric conversion element rows and vertically transfer them,
    Stop the vertical transfer operation in the other structure electrode row that does not read out the signal charge, or read out the signal charge and execute the vertical transfer operation in the direction opposite to the vertical transfer direction. The solid-state imaging device according to claim 11, wherein a driving pulse is generated.
  13.  前記駆動手段は、
     第1構造電極列を第1のモードで駆動し、第2構造電極列を第2のモードで駆動し、かつ、これらのモードを並行して実行させるよう前記第1と第2の駆動パルスを生成する
     ことを特徴とする請求項11に記載の固体撮像装置。
    The driving means includes
    The first and second drive pulses are driven so that the first structure electrode row is driven in the first mode, the second structure electrode row is driven in the second mode, and these modes are executed in parallel. It produces | generates. The solid-state imaging device of Claim 11 characterized by the above-mentioned.
  14.  前記駆動手段は、
     第1構造電極列を駆動する第1のモードのフレームレートが、第2構造電極列を駆動する第2のモードのフレームレートのK倍(Kは2以上の整数)となるように第1と第2の駆動パルスを生成する
     ことを特徴とする請求項13に記載の固体撮像装置。
    The driving means includes
    The first and second frame rates of the first mode for driving the first structure electrode row are K times (K is an integer of 2 or more) the frame rate of the second mode for driving the second structure electrode row. The solid-state imaging device according to claim 13, wherein the second driving pulse is generated.
  15.  前記駆動手段は、
     前記第1と第2のモードの一方のモードの水平ライン出力期間の後に、他方のモードの水平ライン出力期間が続くように前記第1と第2の駆動パルスを生成する
    ことを特徴とする請求項13に記載の固体撮像装置。
    The driving means includes
    The first and second drive pulses are generated so that a horizontal line output period of one mode of the first and second modes is followed by a horizontal line output period of the other mode. Item 14. The solid-state imaging device according to Item 13.
  16.  前記駆動手段は、
     第1のモードでの画素加算数が、第2のモードでの画素加算数よりも少ない場合に、
     第1のモードでの信号電荷読み出し時における固体撮像素子の基板電位を第1の電位になるように設定すると共に、
     第2のモードでの信号電荷読み出し時の固体撮像素子の基板電位を前記第1の電位より高い第2の電位になるように設定し、
     かつ、光電変換素子による露光時間中は、基板電位を第1の電位及び第2の電位以下である第3の電位に設定した状態で維持するように基板電位を制御する
     ことを特徴とする請求項11に記載の固体撮像装置。
    The driving means includes
    When the pixel addition number in the first mode is smaller than the pixel addition number in the second mode,
    While setting the substrate potential of the solid-state imaging device at the time of reading the signal charge in the first mode to be the first potential,
    Setting the substrate potential of the solid-state imaging device at the time of signal charge readout in the second mode to be a second potential higher than the first potential;
    The substrate potential is controlled so that the substrate potential is maintained at a third potential which is lower than the first potential and the second potential during the exposure time by the photoelectric conversion element. Item 12. The solid-state imaging device according to Item 11.
  17.  前記駆動手段は、
     第(N-2)列および第(N+2)列の第M行の画素の信号電荷を第1構造電極列により読み出し、第N列目の第(M-2)行および第(M+2)行の画素の各信号電荷を第2構造電極列により読み出して垂直加算し、第(N-2)列、第N列及び第(N+2)列の信号電荷を水平加算して4画素分の加算出力を行う(N、Mは、3以上の整数)ように前記第1と第2の駆動パルスを生成する
     ことを特徴とする請求項11に記載の固体撮像装置。
    The driving means includes
    The signal charges of the pixels in the Mth row of the (N−2) th column and the (N + 2) th column are read out by the first structure electrode column, and the (M−2) th and (M + 2) th rows of the Nth column are read out. Each signal charge of the pixel is read out by the second structure electrode column and vertically added, and the signal charges of the (N−2) th column, the Nth column and the (N + 2) th column are horizontally added to obtain an addition output for four pixels. The solid-state imaging device according to claim 11, wherein the first and second drive pulses are generated so as to be performed (N and M are integers of 3 or more).
  18.  前記駆動手段は、
     第(N-2)列および第(N+2)列の第(M-2)行及び第(M+2)行の画素の各信号電荷を第1構造電極列により読み出して垂直加算し、第N列の第M行の画素の信号電荷を第2構造電極列に読み出して、第(N-2)列、第N列目及び第(N+2)列の信号電荷を水平加算して5画素分の加算出力を行う(N、Mは、3以上の整数)ように前記第1と第2の駆動パルスを生成する
     ことを特徴とする請求項11に記載の固体撮像装置。
    The driving means includes
    The signal charges of the pixels in the (M−2) -th and (M + 2) -th rows of the (N−2) th column and the (N + 2) th column are read out by the first structure electrode column and vertically added, and the Nth column The signal charges of the pixels in the Mth row are read out to the second structure electrode column, and the signal charges in the (N−2) th column, the Nth column, and the (N + 2) th column are horizontally added and added for 5 pixels. The solid-state imaging device according to claim 11, wherein the first and second drive pulses are generated so as to perform (N and M are integers of 3 or more).
  19.  前記駆動手段は、
     前記第N行の第M列の画素の信号電荷を、固体撮像素子の基板電位を第1の電位に設定して読み出した後に、基板電位を前記第1の電位よりも高い第2の電位に設定し、
     前記第(N-2)列および第(N+2)列の第(M-2)行及び第(M+2)行の画素の各信号電荷を読み出した後に基板電位を第1の電位に再設定し、
     第(N-2)列、第N列目及び第(N+2)列の信号電荷を水平加算して出力を行い、
     露光時間中は基板電位を第1の電位以下の第3の電位に維持すること
     を特徴とする請求項18に記載の固体撮像装置。
    The driving means includes
    After reading the signal charges of the pixels in the Mth column of the Nth row with the substrate potential of the solid-state imaging device set to the first potential, the substrate potential is set to a second potential higher than the first potential. Set,
    After reading the signal charges of the pixels in the (M-2) th row and the (M + 2) th row in the (N-2) th column and the (N + 2) th column, the substrate potential is reset to the first potential,
    The signal charges of the (N−2) th, Nth and (N + 2) th columns are horizontally added and output,
    The solid-state imaging device according to claim 18, wherein the substrate potential is maintained at a third potential equal to or lower than the first potential during the exposure time.
  20.  請求項11から19のいずれかに記載の固体撮像装置を備えたカメラ装置。 A camera device comprising the solid-state imaging device according to any one of claims 11 to 19.
PCT/JP2010/004223 2009-10-21 2010-06-25 Solid state image capture element, solid state image capture device and method of driving solid state image capture element, and camera device WO2011048726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-242605 2009-10-21
JP2009242605A JP2011091562A (en) 2009-10-21 2009-10-21 Solid state image capture element, solid state image capture device, method of driving solid state image capture element, and camera device

Publications (1)

Publication Number Publication Date
WO2011048726A1 true WO2011048726A1 (en) 2011-04-28

Family

ID=43899971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004223 WO2011048726A1 (en) 2009-10-21 2010-06-25 Solid state image capture element, solid state image capture device and method of driving solid state image capture element, and camera device

Country Status (2)

Country Link
JP (1) JP2011091562A (en)
WO (1) WO2011048726A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220642A (en) * 2013-05-08 2014-11-20 キヤノン株式会社 Photoelectric conversion device
JP2017118592A (en) * 2017-03-15 2017-06-29 キヤノン株式会社 Photoelectric conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158925A (en) * 2000-11-22 2002-05-31 Sony Corp Solid-state image pickup device and its driving method
JP2008060726A (en) * 2006-08-29 2008-03-13 Matsushita Electric Ind Co Ltd Solid state imaging device
JP2008193050A (en) * 2007-01-12 2008-08-21 Sony Corp Solid-state imaging apparatus and imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158925A (en) * 2000-11-22 2002-05-31 Sony Corp Solid-state image pickup device and its driving method
JP2008060726A (en) * 2006-08-29 2008-03-13 Matsushita Electric Ind Co Ltd Solid state imaging device
JP2008193050A (en) * 2007-01-12 2008-08-21 Sony Corp Solid-state imaging apparatus and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220642A (en) * 2013-05-08 2014-11-20 キヤノン株式会社 Photoelectric conversion device
JP2017118592A (en) * 2017-03-15 2017-06-29 キヤノン株式会社 Photoelectric conversion device

Also Published As

Publication number Publication date
JP2011091562A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US9942482B2 (en) Image sensor with transfer gate control signal lines
US9661306B2 (en) Solid-state imaging device and camera system
JP5496213B2 (en) Image sensor with vertical pixel binning
US7053948B2 (en) Solid-state image pickup device with discharge gate operable in an arbitrary timing
CN101490846B (en) Multiple output charge-coupled devices
CN102984468A (en) Solid-state imaging device and camera system
CN102984472A (en) Solid-state imaging device and camera system
KR101440921B1 (en) Solid-state imaging device and camera system
JPH09182091A (en) Solid-state image pickup element, method for driving solid-state image pickup element, camera device and camera system
JP5423125B2 (en) Solid-state imaging device, driving method thereof, and camera system
JP2009290659A (en) Solid-state imaging device, imaging device, and drive method of the solid-state imaging device
CN104851898A (en) Solid-state imaging device and electronic apparatus
JP2013034045A (en) Solid-state imaging device and imaging device
WO2011048726A1 (en) Solid state image capture element, solid state image capture device and method of driving solid state image capture element, and camera device
KR20070105880A (en) Method for driving solid-state imaging device
CN101621069B (en) Solid-state imaging device and electronic apparatus
JP4497261B2 (en) Charge transfer device, CCD image sensor, and CCD imaging system
JP4514912B2 (en) Solid-state imaging device and driving method thereof
JP5655783B2 (en) Image reading device
JP2008104017A (en) Solid-state imaging apparatus and its driving method, and electronic information device
JP4373431B2 (en) Solid-state imaging device
JP5044184B2 (en) Driving device and driving method of solid-state imaging device
JP2006128600A (en) Solid-state imaging device and method of controlling thereof
JP2006073988A (en) Solid state imaging device and control method therefor
JPH0473347B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824582

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824582

Country of ref document: EP

Kind code of ref document: A1