WO2011047552A1 - 一种模具加热冷却棒及可实现急冷急热的模具 - Google Patents

一种模具加热冷却棒及可实现急冷急热的模具 Download PDF

Info

Publication number
WO2011047552A1
WO2011047552A1 PCT/CN2010/074292 CN2010074292W WO2011047552A1 WO 2011047552 A1 WO2011047552 A1 WO 2011047552A1 CN 2010074292 W CN2010074292 W CN 2010074292W WO 2011047552 A1 WO2011047552 A1 WO 2011047552A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heating
mold
hole
rod
Prior art date
Application number
PCT/CN2010/074292
Other languages
English (en)
French (fr)
Inventor
杨东佐
Original Assignee
Yang Dongzuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dongzuo filed Critical Yang Dongzuo
Publication of WO2011047552A1 publication Critical patent/WO2011047552A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling

Definitions

  • Mold heating cooling rod and mold capable of realizing quenching and rapid heat
  • the present invention relates to a mold heating and cooling rod for heating and cooling a mold, and a mold capable of realizing quenching and rapid heat, and more particularly to a mold heating and cooling rod on a molding machine such as injection or die casting, and can realize a quenching emergency Hot mold.
  • An injection molding method such as plastic or metal refers to injecting a molten plastic or metal into a molding cavity of a mold, and obtaining a product conforming to a cavity after cooling molding.
  • a heating and cooling device for quenching and quenching the mold is required to control the temperature of the mold.
  • the existing heating rod can only provide heating function, such as electric heating rod.
  • the electric heating rod does not have heat insulation function, the heat is uniformly heated along the radial direction of the heating rod, and the heat loss is large, and the mold is difficult to realize. Rapid and uniform heating;
  • the heating rod does not have the function of the coolant channel.
  • the heating rod needs to be cooled by a coolant channel at least a few centimeters away from the heating rod. The cooling effect is not good, and it is difficult to achieve rapid and uniform cooling of the mold. .
  • the existing mold capable of realizing quenching and rapid heat, an electric heating rod is used to heat the water or oil liquid heat conduction medium, and then flows into the mold to heat the mold.
  • the water-conducting medium can only be heated to 100 ° C.
  • the oil-conducting medium can only be heated to 200 ° C in principle.
  • the heating medium can carry less heat.
  • the temperature needs to be alternated between hot and cold, and the mold temperature is determined according to different injection materials.
  • the temperature of the mold is required to be between 60 ° C and 500 ° C, and the water heat transfer medium is heated to 100 ° C.
  • the heat carried by the oil heat-conducting medium heated to 200 ° C is required to heat the mold made of steel with a large heat consumption to between 60 ° C and 500 ° C, which is difficult to meet the requirements. Therefore, the technical parameters or promotional parameters indicated by the mold temperature machine currently on the market only emphasize that the liquid heat conduction medium can be heated to a maximum of degrees Celsius, and deliberately avoid the mold temperature can be heated to how many degrees Celsius. And because the size and shape of the molded products vary greatly, As a result, the mold volume difference is very large, resulting in a large difference in heat consumption. The temperature of the mold that can be heated by flowing the liquid heat-conducting medium of the same temperature into different molds is different, even different. The existing mold which can realize quenching and rapid heat by heating with a liquid heat conductive medium is difficult to realize in order to achieve the required high temperature state and accurate mold temperature setting in precision molding.
  • an electric heating type temperature control device for a high-light injection mold which uses a cylindrical cooling water channel buried in a mold to cool the injection mold, and the electric heating method, Although the structure is simple, it can meet the temperature requirements of 60 ° ⁇ to 500 ° at high temperatures. However, since the cooling water channel and the electric heating element are staggered, and the cooling water channel and the electric heating element are both cylindrical, when the mold needs to be heated, although the cooling water channel is only filled with air, the electric heating element faces the two adjacent cooling water channels.
  • the gap, the heat of the electric heating element is substantially the same in the radial direction of the heating rod, the cooling water channel has almost no heat insulation effect on the electric heating element, and the heat cannot concentrate toward the direction of the molding surface of the core, so that the core molding is easy to be caused during heating.
  • the temperature of the surface is not uniform and it is difficult to heat up rapidly.
  • the cooling medium is passed to the cooling water channel. Since the electric heating element is far away from the cooling water channel, it is arranged close to the cooling water channel. Since the adjacent surface is only one line, the cooling effect on the electric heating element is also poor. .
  • the temperature of the electric heating element is the highest when heating, the temperature of the area close to the electric heating element is higher than the temperature away from the electric heating element area, and the heat of the electric heating element cannot be quickly taken away by the cooling water channel during cooling, so that it is easy to cause cooling.
  • the temperature of the core molding surface is not uniform and it is difficult to cool quickly.
  • a conventional mold includes a core 401 having a molding surface, and a cooling member 402 completely fitted to the core.
  • the cavity wall thickness of the core 401 is designed to be relatively thin, generally 10-20 mm, and the core surface 404 corresponding to the molding surface 403 is matched with the shape of the molding surface 403, which is the same or substantially the same, and is heated in the core 401.
  • An element (not shown) is provided with a cooling water passage (not shown) in the cooling member 402.
  • the mold of this structure, the core surface 404 corresponding to the molding surface 403, and the surface 405 of the cooling member 402 and the core 401 are all processed to have a shape that is sufficiently matched with the molding surface 403, and the structure is complicated and the processing cost is high.
  • the heat of the core 401 needs to be taken away by the cooling member 402. Since the cooling member 402 is separated from the core 401, the joint surface always has a gap, which greatly reduces the heat conduction performance, and the cooling effect is not good;
  • the member 402 is attached to the core 401 without a heat insulating structure, and the cooling member 402 takes away a relatively large amount of heat to reduce heat utilization.
  • Taiwan Patent No. 200711818 which is a mold for an injection molding machine having a heat transfer member, a mold including an intermediate inner mold, a heat transfer member, and an inner mold branch is disclosed.
  • the gusset is provided with an electric heater on the middle inner template, and a cooling water pipe is arranged on the inner mold supporting plate, and the intermediate inner template, the heat transfer member, and the inner mold supporting plate are processed and removed in addition to the mold surface.
  • the matching surface of the cavity surface is expensive to process.
  • a spring is provided between the intermediate inner template and the inner mold support plate to separate the intermediate inner mold and the inner mold support plate during mold opening, and the heat transfer member is held on the inner mold support plate during the split mold. In the mold of this structure, water is always passed through the cooling water channel.
  • the electric heater works to heat the mold.
  • the mold is closed or the time is set, the electric heater stops working.
  • the inner mold support plate takes away the heat of the heat transfer member, and the heat transfer member takes the intermediate template. Heat.
  • the mold of this structure is separated from the inner mold support plate when heated, and the heat transfer member and the inner mold support plate are prevented from carrying heat from the electric heater when the mold is heated, but the electric heater is directly exposed to the air. , the insulation effect is still not good.
  • the joint surface since the inner mold support plate is separated from the inner mold, the joint surface always produces a gap, which causes the heat conductivity to be greatly lowered, and the cooling effect of the mold is not good.
  • the solution of the present invention increases the heat transfer member.
  • the hardness of the heat transfer member is smaller than that of the inner mold support plate and the inner template. If copper or the like is used, there is still a gap in the bonding surface, and a gel-like substance is used, and the gel-like substance is difficult. Evenly distributed, it is difficult to ensure that the inner mold support plate and the inner mold plate are completely gap-free, and the thermal conductivity of the gel-like substance is far less than the thermal conductivity of the metal, so the cooling effect of the mold is still not good.
  • a first object of the present invention is to provide a heating and cooling rod which not only has a heat generating function but also has a heat insulating function when the mold needs to be heated, and has a function of a coolant passage when the mold needs to be cooled.
  • the second object of the present invention is to provide a mold capable of realizing rapid heating and uniform heating, rapid cooling and uniform cooling of a mold having a molding surface, and which can realize rapid cooling and hot welding, and is easy to produce weld lines on the product. Flow marks, uneven gloss, uneven product density, surface blistering, shrinkage, large injection pressures, and major defects such as product deformation due to residual stress after solidification of the molten material.
  • a mold heating cooling rod comprising heating a cooling rod body and a heating element, heating and cooling
  • the rod body is provided with a cooling medium through the cooling medium when the mold is cooled, a cooling insulation hole for discharging the cooling medium when the mold is heated, and a heating element receiving hole, and the heating element is installed in the heating element receiving hole.
  • the mold of this structure heats the cooling rod, and has a heating function when the mold needs to be heated, and the cooling and insulating hole has a heat insulating function, and the heat can be mostly conducted toward the molding surface of the core; when the mold needs to be cooled, the cooling and heat insulation
  • the holes are in turn the coolant channels, which make the heating rods cool faster, more uniform, and simple in structure.
  • the electric heating element is manufactured in the same manner as the existing electric heating rod, and the filled thermal conductive insulating material may be an industrial ceramic material such as silicon nitride/alumina/magnesia.
  • one or more cooling insulated holes surround the heating element receiving holes from three directions.
  • the cooling insulation hole has better heat insulation effect on the heating element.
  • the cooling insulation hole cools the heating element better, so that the heating and cooling of the mold are further improved. Uniform, the mold's heating and cooling temperatures are easy to control and fast.
  • the heating element is an electric heating element; a thermal conductive insulating layer is disposed between the electric heating element and the heating element receiving hole, the electric heating element is in contact with the thermal conductive insulating layer, and the thermal conductive insulating layer and the heating element are accommodated.
  • the inner side wall of the hole is in contact; the cooling heat insulating hole and the heat generating element receiving hole are both axial through holes, and the number is one; the positive electrode and the negative electrode of the power source are connected from the two ends of the heat generating element receiving hole and the heating electric heating element.
  • the electric heating element is heated and has a simple structure.
  • the heating temperature is fast, and the temperature of the heating cooling rod is more uniform during heating, so that the temperature of the mold is more uniform, and the temperature of the entire core can quickly reach 60 ° C to 500 ° C. Any temperature within the temperature range.
  • the electric heating element, the thermal conductive insulation layer, and the cooling and heat insulating holes are in contact with each other, and the heat is mainly transmitted by heat conduction instead of relying only on heat radiation, and the heat conduction effect is good, and the rapid heating effect is good.
  • the structure of the heating and cooling rod has a simple structure and is convenient for connection with a cooling medium and a power source.
  • the heating and cooling rod body is integrally formed, the heating cooling rod body is cylindrical, the heating element receiving hole is cylindrical, and the cooling and insulating hole and the heating element receiving hole are axial through holes.
  • the number is one, and the cooling and heat insulating holes are crescent shapes surrounding the heat generating component receiving holes.
  • the heating and cooling rod body has a cylindrical shape, so that the heating and cooling rod accommodating groove on the mold and the heating and cooling rod body is simple in structure, only requires drilling processing, the processing cost is greatly reduced, and the heating and cooling rod is formed simply, and can be used once. Extrusion molding process.
  • the heating element receiving hole is surrounded by the crescent-shaped cooling and insulating hole from three directions.
  • the electric heating element can be cooled more quickly by cooling from the three directions of the electric heating element.
  • the heating cooling rod cools faster and more uniformly; when the heating cooling rod heats up, the heat conduction in all three directions is blocked by the air, the heat Most of them are conducted in the direction of the molding surface of the core, and the cooling and insulating holes can reduce heat loss as much as possible, and the heat insulation effect is better.
  • the heating element is an electric heating element;
  • the cooling and insulating hole is an axial through hole, and the number of cooling and insulating holes is two, and the two cooling and insulating holes surround the heating element from three directions;
  • One end of the heating element receiving hole is closed, and the number is one;
  • a heating hole connecting the two cooling and insulating holes is arranged on the heating cooling rod corresponding to the closed end of the heating element receiving hole, and a sealing member is arranged at the end of the communication hole
  • the positive and negative poles of the power source are connected to the heating electric heating element from the end of the heating element receiving hole away from the sealing member; the inlet and the outlet of the cooling medium are also disposed at the end of the heating element receiving hole away from the sealing member.
  • the core structure and the heating and cooling rod do not facilitate the heating and cooling of the mold such as the core having the molding surface.
  • the heating and cooling rod body is integrally formed, the heating cooling rod body is cylindrical, the heating element receiving hole has a semicircular cross section, and the cooling and insulating hole has a semicircular cross section; the cooling and insulating hole and The heating element receiving holes are all axial through holes, and the number is one.
  • the cooling rod of the structure makes the heating and cooling rod accommodating groove structure simple, the processing cost is greatly reduced, and the heating and cooling rod is formed simply, and a one-time extrusion molding process can be employed.
  • one side of the heat generating component is flush with an outer side surface of the body of the heating and cooling rod.
  • the heating and cooling rod of this structure has a better heat transfer effect because the heating element is directly in contact with the mold.
  • a bent portion is provided on the heating and cooling rod.
  • the heating and cooling rods can be bent into various shapes according to the needs of the mold cavity, which can meet the cooling requirements of different products during injection molding.
  • the heating and cooling rod body comprises an inner tube and an outer tube, the cooling and heat insulating hole is an axial hole disposed in the inner tube, the heating element is wound outside the inner tube, and the outer tube is mounted outside the heating element , the heating element receiving hole is an annular hole formed by the outer tube and the inner tube.
  • the heating cooling rod of this structure can be designed to be relatively large and easy to cool.
  • a temperature sensor is provided on the heating and cooling rod.
  • the temperature sensor is placed on the heating and cooling rod and produced simultaneously with the heating and cooling rod, which makes the temperature sensor low in production cost, easy to install, and more direct in temperature control.
  • a mold capable of achieving rapid cooling and rapid heat including a core having a molding surface, and setting a number of additions
  • the heat cooling rod is provided with a heating cooling rod accommodating groove in the core, and the heating cooling rod is installed in the heating cooling rod accommodating groove, and the outer side wall of the heating cooling rod is in contact with the inner side wall of the heating cooling rod accommodating groove;
  • the side of the rod with the heating element is adjacent to the forming surface of the core.
  • the heating and cooling rod is directly disposed in the core, and the distance between the molding surface of the core and the heating cooling rod can be relatively small, and the distance between the heating cooling rod and the molding surface of the core is generally 3-20 mm.
  • the heating cooling rod is provided with a heating element receiving hole on one side close to the molding surface of the core, reducing the conduction of heat to the heating cooling rod away from the molding surface of the core, so that most of the heat of the heating cooling rod is supplied into the molding cavity of the mold.
  • Product molding needs.
  • the heating and cooling rods can meet the temperature requirements between 60 ° C and 500 ° C at high temperatures.
  • Such a mold cooling device generally does not require designing another cooling device in the core having a molding surface, and does not require designing other heating devices and heat insulating devices, thereby greatly simplifying the mold structure. Since the heating and cooling rods are easily bent into various shapes, it is easier to meet the heating and cooling needs of various products.
  • the cooling medium When the mold needs to be heated, the cooling medium is stopped from passing through the cooling and insulating holes, and the cooling medium is discharged.
  • the heating cooling rod When the heating cooling rod is heated, the cooling and insulating holes are only filled with air, and the air is convectively transferred, and the cooling and insulating holes are relatively closed spaces. Therefore, its heat transfer performance is far less than the heat transfer performance of the metal, and it has a good heat insulation effect, reducing the conduction of heat to the heating cooling rod away from the molding surface of the core, so that most of the heat of the heating and cooling rod is supplied to the mold.
  • the product in the cavity needs to be molded, and the heat of the heating and cooling rod is directly transmitted to the molding surface of the core, so that the molding surface is heated quickly and uniformly and can be rapidly heated to be close to or equal to the molten material (such as molten plastic, metal). temperature. Since the rapid temperature rise of the mold is close to or equal to the temperature of the molten material, the material just injected into the cavity is not too low due to the temperature of the mold, and the heat of the molten material is quickly taken away by the mold, so that the molten material is rapidly cooled, resulting in great fluidity. Deterioration even produces clots.
  • the molten material such as molten plastic, metal
  • the temperature of the molten material contacting the mold forming surface, the mold injection inlet, and the welding portion away from the mold injection inlet is substantially the same as the temperature of the injection inlet molten material, contacting the mold forming surface, near the mold injection inlet, and away from the injection inlet.
  • the molten material at the welded portion is not taken away by excessive heat, so that the fluidity is greatly deteriorated or even semi-melted or nearly solidified, resulting in poor fusion or false fusion of the welded portion, and at the same time, improving the fluidity of the molten material and reducing
  • the pressure of injection reduces the injection molding pressure difference between the injection inlet and the molding surface and the welded joint, so that the fluidity, injection pressure and internal tissue stress of the molten material in the entire cavity are basically the same.
  • the injection molding machine has been solved for a long time.
  • the temperature of the mold cannot be rapidly heated during injection, resulting in weld marks, flow marks, uneven gloss, uneven product density, surface blistering, shrinkage, large injection pressure, and
  • the final appearance quality of the injection molded product is good after major defects such as easy deformation of the product due to residual stress after solidification of the molten material. When the mold heats up, it loses less heat and saves energy.
  • a cooling and insulating hole passing through the cooling medium is arranged inside the heating and cooling rod.
  • the cooling medium can be introduced into the cooling and insulating hole, instead of relying only on the heating cooling rod at least a few centimeters apart.
  • the cooling device is used for cooling, the heating cooling rod can be cooled rapidly, the cooling is more uniform, the production cycle is shortened, the efficiency is improved, and the molten material contacting the molding surface of the core is rapidly cooled, so that the product contacting the high-gloss molding surface of the core is contacted.
  • the surface layer has a high density, which produces a high light effect on the surface of the product.
  • the core contains a heating and cooling rod, the total thickness can be thicker, so the rigidity of the core is good, the core is not easily deformed when the product is molded, and the quality of the molded product is good.
  • the heating and cooling rod has both heating and cooling effects.
  • the cooling and insulating holes have heat insulation when heated, and the cooling medium passages during cooling, which simplifies the mold structure and reduces the processing cost.
  • the core is a whole, and the heat transfer member and the cooling member separated from the core are not required to be designed, and the structure is simple. Except for the molding surface, the remaining surfaces need not be processed into a surface that matches the molding surface.
  • the processing amount is equivalent to 1/3 or less, which greatly reduces the processing cost.
  • the cooling and insulating holes have a heat insulating effect when heated, and serve as a cooling medium passage for cooling, which simplifies the mold structure, reduces the processing cost, and improves the rigidity of the core.
  • the improvement further includes setting a number of heating rods, and a heating rod accommodating hole is arranged in the core near the molding surface, and the heating rod extends into the heating rod accommodating hole; and is close to the mold core having the molding surface
  • the position of the heating rod is provided with an insulated cooling hole corresponding to the heating rod, and the insulating cooling hole is placed on the side of the heating rod away from the forming surface, and the outer contour of the cross section of the insulating cooling hole is a closed curve, one or more
  • the insulated cooling holes surround the corresponding heating rods from three directions; a coolant inlet and a coolant outlet are provided on the insulated cooling holes.
  • the heating rod and the heat insulating cooling hole are directly disposed in the core, and the distance between the forming surface of the core and the heating rod can be relatively small, and the distance between the forming surface and the insulating cooling hole can also be designed to be relatively small.
  • the distance between the heating rod and the molding surface of the core is generally 3-20 mm
  • the diameter of the heating rod is generally 3-15 mm
  • the distance between the heating rods is generally 8_80 ⁇
  • the distance between the heating rod and the insulating cooling hole is generally 2 - 15 mm.
  • the heat-insulating cooling hole When the heating rod is heated, the heat-insulating cooling hole is only filled with air, and the heat-insulating cooling hole surrounds the heating rod from three directions, which is well separated.
  • the heat effect reduces the heat conduction to the heating rod away from the molding surface of the core, so that most of the heat of the heating rod is supplied to the product in the molding cavity of the mold, and the heat of the heating rod is directly transmitted to the molding surface of the core, thus forming
  • the face is heated quickly and evenly and can be rapidly heated to a temperature close to or equal to the molten material (eg molten plastic, metal).
  • the cooling liquid is passed to the heat insulating cooling hole, and the cooling liquid is covered with most of the outer side of the molding surface, the heat insulating cooling hole and the heating rod are placed in the core, and the heat insulating cooling hole is close to the heating rod.
  • the coolant surrounds the heating rod from three directions, so that both the heating rod and the core can be cooled rapidly and uniformly.
  • a temperature sensor for inducing the temperature of the mold is provided in the mold portion where the heating and cooling rod is mounted or a temperature sensor is provided on the heating and cooling rod, and a control unit electrically connected to the temperature sensor is further provided, and heating and cooling are provided.
  • the rod is electrically connected to the control unit.
  • the temperature sensor includes an infrared temperature sensor, a temperature sensor, and the like.
  • the temperature sensor can be placed on the outer surface of the mold or deep into the mold at a location close to the molding cavity.
  • the temperature sensor can be one or more.
  • the temperature sensor senses the temperature of a certain position of the mold, and then determines the temperature of the molding surface of the mold, so that the control unit controls the heat generation of the heating cooling rod, so that the temperature control of the mold core can be accurately controlled.
  • the heating and cooling rods cooperate with the control unit and the temperature sensor to precisely control the mold temperature according to different molten materials.
  • a compressed air line is also included; the compressed air line is connected to the cooling insulation hole and the inlet of the insulated cooling hole through the electric control valve; and the electric control valve is electrically connected to the control unit.
  • the cooling air in the mold is cooled by the compressed air, and the cooling water of the heat insulating cooling hole is discharged, thereby preventing the high temperature and high pressure caused by the residual cooling water vaporization from harming the mold, the pipeline and the operator. , improve the safety of the device.
  • the compressed air pipeline drains the cooling medium in the cooling insulation hole and the heat insulation cooling hole, which can reduce the thermal conductivity of the cooling insulation hole and the heat insulation cooling hole, in particular, it is not heated by the residual cooling medium. Excessive pressure when turning into steam creates a safety accident.
  • a heat insulating hole or a heat insulating groove is provided on the parting surface of the core and one or more surfaces of the four sides.
  • the heat insulating groove or the heat insulating hole further blocks the loss of heat, and the heat is concentrated on the molding surface of the core when heated, so that the molding surface of the core is heated faster and more uniformly.
  • the invention has the beneficial effects that the heating rod has the functions of cooling, heat insulation and heat generation, and the control core
  • the molding surface can be heated and cooled rapidly and uniformly, and can be rapidly heated to a temperature close to or equal to the molten material, so that the molded product has good quality, is not easy to produce weld lines, flow marks and surface blistering, etc., uniform gloss, product Uniform density, low shrinkage, reduced injection pressure and product deformation due to residual stress after solidification of the molten material.
  • Fig. 1 is a schematic view showing the connection of Embodiment 1 of the present invention.
  • Fig. 2 is a perspective exploded view showing the first embodiment of the present invention.
  • Fig. 3 is a cross-sectional, cross-sectional view showing the position of a heating element of the heating and cooling rod of the first embodiment of the present invention.
  • Fig. 4 is a perspective exploded view showing the heating and cooling rod assembly of the first embodiment of the present invention.
  • Fig. 5 is a cross-sectional, schematic cross-sectional view showing the position of a heating element of the heating and cooling rod of the second embodiment of the present invention.
  • Fig. 6 is a cross-sectional, cross-sectional view showing the position of a heating element of the heating and cooling rod of the third embodiment of the present invention.
  • Figure 7 is a perspective exploded view of Embodiment 4 of the present invention.
  • Figure 8 is a perspective exploded view of the heating and cooling rod assembly of Embodiment 4 of the present invention.
  • Fig. 9 is a cross-sectional, cross-sectional view showing the position of a heating element of the heating and cooling rod of Embodiment 4 of the present invention.
  • Figure 10 is a cross-sectional view taken along line A-A of Figure 9.
  • Figure 11 is a cross-sectional, cross-sectional view showing the position of a heating element of the heating and cooling rod of Embodiment 5 of the present invention.
  • Figure 12 is a perspective exploded view of Embodiment 6 of the present invention.
  • Figure 13 is a front elevational view showing the front mold core of Embodiment 6 of the present invention.
  • Figure 14 is a cross-sectional view of the present invention taken along line B-B of Figure 13;
  • Figure 15 is a schematic exploded perspective view of a front mold core and a heating and cooling device mounted thereon according to a sixth embodiment of the present invention.
  • Figure 16 is a cross-sectional, cross-sectional view showing the position of a heating element of a heating and cooling rod according to Embodiment 6 of the present invention.
  • Figure 17 is a perspective exploded view of Embodiment 7 of the present invention.
  • Figure 18 is a front elevational view showing the front mold core of the seventh embodiment of the present invention.
  • Figure 19 is a cross-sectional view of the present invention taken along line C-C of Figure 18.
  • Figure 20 is a perspective exploded view of the front mold core and the heating and cooling device mounted thereon according to Embodiment 7 of the present invention.
  • Figure 21 is a cross-sectional, cross-sectional view showing the position of a heat generating element of an L-shaped heating and cooling rod according to Embodiment 7 of the present invention.
  • Figure 22 is a cross-sectional, cross-sectional view showing the position of a U-shaped heating and cooling rod of Embodiment 7 of the present invention having a heat generating element.
  • Figure 23 is a perspective exploded view of the prior art.
  • Figure 24 is a perspective exploded view of Figure 11 projected from another direction.
  • a mold capable of realizing rapid cooling and rapid heat includes a control unit electrically connected to the injection molding, a water pump, a heating element, a temperature sensor, an electric control water valve, and an electric control gas electrically connected to the control unit.
  • the valve, the electric control air valve is connected to the pressure regulating filter and the water/air pipe connecting joint through the air pipe, and the electric control water valve is connected through the water pipe and the water pump and the water/air pipe connecting joint, and the water/air pipe connecting joint is installed in the cooling and heat insulating hole and the partition.
  • the hot cooling hole is connected to the cooling and heat insulating hole and the heat insulating cooling hole; the pressure regulating filter is connected to the compressed air pump through the air pipe.
  • the mold includes a front mold portion and a rear mold portion 1, and the front mold portion includes a core 4 having a molding surface, a core holder 5, and a core seat pad 6.
  • the core 4 is mounted in the core holder 5, and the core holder 5 is mounted on the core seat pad 6, and the core seat pad 6 is mounted on the molding machine.
  • the temperature sensor 2 is an infrared temperature sensor, and the temperature sensor is placed on the outer surface of the mold.
  • a molding surface 19 is provided in the core and a heating and cooling rod 3 is mounted.
  • the mold heats the cooling rod, including the heating and cooling rod body 7 and the heating element 8, and the heating and cooling rod body 7 is integrally formed, and a cooling partition through the cooling medium is disposed in the heating cooling rod body 7 in the axial direction.
  • the heat hole 9 and the heat generating component accommodating the heat generating component 8 accommodate holes.
  • the heating element 8 generates heat for the electric heating element; a thermally conductive insulating layer 10 is disposed between the electric heating element 8 and the heating element receiving hole, the electric heating element 8 is in contact with the thermally conductive insulating layer 10, and the thermally conductive insulating layer 10 and the heating element receiving hole are
  • the inner side wall contacts; the cooling heat insulating hole 9 and the heat generating element accommodating hole are both axial through holes, and the number is one; the positive and negative electrodes of the power source are connected to the electric heating element 8 from both ends of the electric heating element accommodating hole.
  • the heating and cooling rod body 7 has a cylindrical shape, and the heating element accommodating hole has a cylindrical shape, and the cooling and heat insulating hole 9 is a crescent shape surrounding the heat generating element accommodating hole.
  • a sealing plug 11 and a sealing plug 12 are provided at both ends of the heating and cooling rod 3, at both ends of the heating and cooling rod 3, a sealing plug 11 and a sealing plug 12 are provided.
  • a sealing ring 13 and a sealing ring 14 are respectively disposed between the sealing plug 11, the sealing plug 12 and the heating and cooling rod 3, and a water inlet 15 and a water inlet 16 are respectively arranged on the sealing ring 13 and the sealing plug 11 at one end of the heating cooling rod 3.
  • the water outlet 17 and the water outlet 18 are respectively disposed on the sealing ring 14 and the sealing plug 12 at the other end of the heating and cooling rod 3, and the lowest point of the water outlet 17 and the water outlet 18 is flush with the lowest point of the cooling and insulating hole 9. .
  • An insulating and avoiding hole 20 is further provided on the side of the core 4.
  • the temperature of the mold is first measured by a temperature sensor. If the temperature of the mold is lower than the set temperature, the control unit controls the heating and cooling rod to be energized, and the heating surface of the mold core is rapidly heated to be equal to or equal to Or near the temperature or set temperature of the molten material. After the temperature measured by the temperature sensor reaches the set temperature, the control unit sends an injection signal, and the injection machine injects the molten material into the cavity, maintaining the set temperature during the injection.
  • the control unit receives the signal of the end of the injection, the electric control valve is opened, the water pumped by the water pump enters the cooling water pipe through the electric control valve, and then enters the cooling and heat insulating hole through the cooling water pipe, when the mold temperature is cooled to the set temperature At the time of the value, the control unit sends an open mold signal to the injection molding machine, which opens the mold and pushes the product out.
  • the control unit controls the electric control water valve to close, the water in the cooling insulation hole is discharged, the electric control air valve is opened, the air in the compressed air pump passes through the filter filter, and the electric control air valve The cooling insulation hole is entered, and the residual cooling water in the cooling insulation hole is blown out through the cooling water outlet in the mold, and then proceeds to the next cycle.
  • the cooling and heat insulating holes reduce the heat conduction to the heating rod away from the molding surface of the core, and the cooling and insulating holes are close to the heating rod during cooling, so that the molding surface of the core can be heated and cooled rapidly and uniformly, and can be rapidly heated.
  • the molded product is of good quality, and it is not easy to produce weld lines, flow marks and surface foaming, etc., uniform gloss, uniform product density, small shrinkage, reduced injection pressure and solidification after the molten material is formed. Product deformation due to residual stress.
  • the heating and cooling rod body 31 has a cylindrical shape, and the heat generating component receiving hole 32 has a sector shape with a central angle of less than 180°, and the cooling and insulating hole 33 has a central angle of more than 180. .
  • the fan shape, the cooling and heat insulating hole 33 surrounds the heat generating element accommodating hole 32 from three directions.
  • the temperature sensor 34 is disposed at one end of the heating and cooling rod body 31 and extends into the heating and cooling rod body 31.
  • the heating and cooling rod body 41 has a cylindrical shape, and the heat generating component receiving hole 42 has a semicircular cross section, and the cooling and insulating hole 43 has a semicircular cross section, and the cooling and insulating hole is cooled.
  • the cross section is larger than the cross section of the heating element.
  • the mold portion includes a front mold portion and a rear mold portion 51.
  • the front mold portion includes a core 54 having a molding surface, a core holder 55, and a core seat pad 56.
  • the temperature sensor 52 is a thermocouple temperature sensor, and the temperature sensor is disposed in the mold.
  • the mold heats the cooling rod, including the heating and cooling rod body 57 and the heating element 58, the heating and cooling rod body 57 is integrally formed, and the outer side surface is cylindrical, and is axially oriented in the heating and cooling rod body 57.
  • a cooling and heat insulating hole 59 through which the cooling medium passes, a cooling and heat insulating hole 60, and a heat generating element accommodating hole accommodating the heat generating element 58 are provided.
  • the cooling and heat insulating holes 59 and the cooling and heat insulating holes 60 are axial through holes, and the cooling and heat insulating holes 59 and the cooling and heat insulating holes 60 are fan-shaped.
  • the heating element receiving hole is a blind hole, and the number is one, which is a fan shape.
  • the cooling and insulating hole 59 and the cooling and insulating hole 60 surround the heating element 58 from three directions.
  • a communication hole 61 that communicates the cooling heat insulating hole 59 and the cooling heat insulating hole 60 is provided at an end of one end of the heating and cooling rod 53 placed in the mold, and a sealing plug 62 is provided at the end of the communication hole 61.
  • a sealing plug 63 is disposed at one end of the heating and cooling rod 53 away from the sealing plug 62.
  • a sealing ring 64 is disposed between the sealing plug 63 and the heating cooling rod 53, and a water inlet 65 and a sealing inlet 63 are respectively provided on the sealing ring 64 and the sealing plug 63.
  • the lowest point of the nozzle 66 and the water outlet 67, the water outlet 68, the water outlet 67, and the water outlet 68 is slightly lower than the lowest point of the cooling and insulating hole 60.
  • An insulating and avoiding hole 69 is also provided on the parting surface of the core 4.
  • the positive and negative electrodes of the power source are connected to the heat generating component 58 from the end of the heat generating component accommodating hole away from the sealing plug 62.
  • the electrically heated cooling rod accommodating groove 80 is cylindrical, and the two cooling and insulating holes 81, 82 are non-concentric with the electric heating cooling rod accommodating groove 80.
  • the bottom of the cavity of the core 91 of the front mold portion is provided with a projection 92, and the bottom of the core 91 is provided with a heating cooling rod accommodating groove 93.
  • Heating The middle portion of the cooling rod accommodating groove 93 is a U-shaped bent portion 94, and the U-shaped bent portion 94 is placed in the protruding portion 92 to match the shape of the protruding portion 92.
  • the cross section of the heating and cooling rod body 95 is a rounded rectangle, and the cross section of the heating element receiving groove 96 is a semicircular opening groove, which is distributed on the heating cooling rod body 95 toward the molding surface.
  • the cooling and insulating hole 98 is a rectangle having a rounded shape.
  • the shape of the heat generating component 99 is the same as the shape of the heat generating component accommodating groove 96.
  • the heat generating component accommodating groove 96 is placed on one side of the heating and cooling rod body 95, and the heat generating component 99 faces the side surface 100 of the molding surface 97 and the heating and cooling rod body 95.
  • the side surface 101 of the molding surface 97 is flush.
  • the middle portion of the heating and cooling rod is bent to form a U-shaped bent portion that engages with the U-shaped bent portion 94.
  • a connector electrically connected to the power source is provided on the heat generating component 99.
  • the heating and cooling rods 102 are installed in the heating and cooling rod accommodating grooves 93 of the core 91.
  • the sealing plugs 103 and the sealing plugs 104 are provided at both ends of the heating and cooling rod 102, and the sealing plugs 103 and the sealing plugs 104 are respectively provided.
  • the water outlet 105 and the water outlet 106 are provided with an inlet pipe 107 connected to the water inlet 105, and an outlet pipe 108 is connected to the water outlet 106.
  • An electric heating rod accommodating hole is further disposed in the core 91, and an electric heating rod 109 is installed in the electric heating rod accommodating hole.
  • An insulating cooling hole (not shown) corresponding to the electric heating rod 109 is provided at a position close to the electric heating rod 109, and one heating rod corresponds to one insulating cooling hole.
  • the insulated cooling holes are placed on the side of the electric heating rod 109 away from the molding surface 97.
  • the insulated cooling hole is a semi-circular annular groove concentric with the heating rod receiving hole, and the corner groove of the annular groove is rounded.
  • Sealing block accommodating holes 110 are provided at both ends of the heat insulating cooling hole, and the sealing block accommodating holes 110 are similar in shape to the heat insulating cooling holes, and are equally spaced from the edges of the heat insulating cooling holes.
  • a sealing block 111 and a sealing block 112 are mounted in the sealing block receiving hole 110, and a gasket 113 is disposed between the sealing block 111 and the heat insulating cooling hole, and a sealing pad 114 is disposed between the sealing block 112 and the heat insulating cooling hole.
  • a water inlet 115 and a water inlet 116 communicating with the heat insulating cooling holes are respectively disposed on the sealing block 111 and the sealing pad 113 at one end of the heat insulating cooling hole, and are respectively disposed on the sealing block 112 and the sealing pad 114 at one end of the heat insulating cooling hole.
  • the bottom of the cavity of the core 200 of the front mold portion is provided with a truncated-shaped projection 201, and the bottom of the core 200 is provided with an L-shaped heating and cooling rod.
  • the accommodating groove 202 and the U-shaped heating and cooling rod accommodating groove 203 extend into the protruding portion 201.
  • An L-shaped heating and cooling rod is installed in the L heating and cooling rod accommodating groove 202 204.
  • a U-shaped heating and cooling rod 205 is installed in the accommodating groove of the U heating and cooling rod 203.
  • the outer contour of the U-shaped heating and cooling rod body 206 has a cross-section similar to a semi-cylindrical shape, the heating element 207 has a circular cross section, and the cooling heat insulating groove 208 has a circular cross section.
  • the L-shaped heating and cooling rod body 206 and the curved surface of the cooling and heat insulating groove 208 are uniform in the heat generating element accommodating hole 207.
  • the L-shaped heating and cooling rod body comprises an inner cylinder 210 and an outer cylinder 209.
  • the thermal insulation cooling holes are two semi-circular axial holes 211 and axial holes 213 disposed in the inner cylinder 210, and the heating element 214 is wound around the inner cylinder.
  • the outer cylinder 209 is mounted outside the heating element 214, and the heating element receiving hole 212 is an annular hole formed by the outer cylinder 209 and the inner cylinder 210.
  • the axial hole 211 and the axial hole 213 communicate at one end of the U-shaped heating and cooling rod body, and a sealing member 216 is provided in the communication hole 215.
  • the structure of the present invention which can realize rapid cooling of the mold can also be designed on the core of the rear mold part according to the needs, and the implementation manner is the same, and is not described in detail.
  • the electric heating element of the heating and cooling rod of the present invention is produced in the same manner as the electric heating rod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

说 明 书
一种模具加热冷却棒及可实现急冷急热的模具
技术领域 本发明涉及一种用来加热和冷却模具的模具加热冷却棒及可实现可实 现急冷急热的模具, 特别是涉及一种注射或压铸等成型机上的模具加热冷 却棒及可实现急冷急热的模具。 背景技术 塑胶或金属等的射出成型方法, 是指将熔融状态的塑胶或金属等注入 模具的成型腔中, 冷却成型后获得与型腔一致的产品。 在射出成型过程中, 需可实现模具急冷急热的加热冷却装置来控制模具的温度。
现有的加热棒, 只能提供加热的功能, 如电加热棒, 在模具需加热时, 电加热棒不具有隔热功能, 热量沿加热棒的径向均匀发热, 热量损失大, 模具难以实现急速和均匀加热; 在冷却时, 加热棒不具有冷却液通道的功 會^ 加热棒需离加热棒至少几厘米远的冷却液通道来冷却, 冷却效果不好, 难以实现模具的急速和均匀冷却。
现有的可实现急冷急热的模具, 一种采用电热棒加热水或油液体导热 媒介,然后流入模具内加热模具。其中水导热媒介原则上只能被加热到 100 °C, 油导热媒介原则上只能被加热到 200°C, 这种加热方式液体导热媒介 所能携带的热量很少。模具注射成型工作时温度需要急热急冷的循环交替, 根据不同的注射材料确定模具温度, 模具高温时的温度要求在 60°C至 500 °C之间, 而水导热媒介被加热到 100°C和油导热媒介被加热到 200°C时所 携带的热量要把耗热巨大的钢材做成的模具加热到 60°C至 500°C之间, 很 难达到要求。 故目前市面上所销售的模温机所标示的技术参数或促销参数 都只是强调液体导热媒介最高能被加热到多少摄氏度, 而刻意地避开模具 温度可以被加热到多少摄氏度。 而且由于成型的产品大小、 形状差异很大, 导致模具体积差异很大, 致使耗热量相差很大, 相同温度的液体导热媒介 流入不同体积的模具后所能加热到达的模具温度也各不同, 甚至差别很大。 现有的这种利用液体导热媒介加热的可实现急冷急热的模具, 要实现精密 成型时要求模具达到所要求的高温状态和精确模温定值, 很难实现。
中国专利号为 200810015094. 4的发明专利中, 提供了一种高光注塑模 具的电加热式温度控制装置, 利用埋在模具内的圆柱形的冷却水道对注塑 模具进行冷却, 这种电加热方式, 虽然结构简单, 也能满足模具高温时 60 °〇至500 之间的温度要求。但由于冷却水道与电热元件错开排列,而且冷 却水道和电热元件均为圆柱形, 当模具需要加热时, 虽然冷却水道内仅填 充有空气, 但由于电热元件对着与其相邻的两个冷却水道的间隙, 电热元 件的热量沿加热棒径向方向传导的热量基本相同, 冷却水道对电热元件几 乎没有隔热作用, 热量不能集中朝向模芯成型面的方向流动, 因此容易造 成加热时模芯成型面的温度不均匀和难以急速升温。 同理, 当模具需要冷 却时, 向冷却水道通冷却介质, 由于电热元件离冷却水道较远, 就是靠近 冷却水道布置, 由于其相邻的面仅为一条线, 对电热元件的冷却效果也差。 而由于电热元件在加热时的温度是最高的, 靠近电热元件的区域温度比远 离电热元件区域的温度会高, 冷却时电热元件的热量又不能很快被冷却水 道带走, 因此容易造成冷却时模芯成型面的温度不均匀和难以快速冷却。
如图 23、 图 24所示, 现有的一种模具, 包括具有成型面的模芯 401、 与模芯完全贴合的冷却件 402。 模芯 401 的型腔壁厚设计得比较薄, 一般 为 10-20mm, 其与成型面 403对应的模芯表面 404与成型面 403形状匹 配, 相同或大致相同, 在模芯 401 内设有加热元件 (未示出), 在冷却件 402内设有冷却水通道(未示出)。 这种结构的模具, 与成型面 403对应的 模芯表面 404、 冷却件 402与模芯 401贴合的面 405, 均需加工成与成型 面 403充分匹配的形状, 结构复杂, 加工费用昂贵。 冷却时, 需由冷却件 402带走模芯 401的热量, 由于冷却件 402与模芯 401分离,其结合面始终 会留有间隙, 会大大降低热传导性能, 冷却效果不好; 加热时由于冷却件 402与模芯 401贴合, 又没有隔热结构, 冷却件 402会带走比较多的热量, 减少热利用率。
在台湾专利号为 200711818、 名称为具有传热部件之射出铸模机的模 具的发明专利中, 公开了一种模具, 包括中间内模板、 热传部件、 内模支 撑板, 在中间内模板上设有电加热器, 在内模支撑板上设有冷却水管, 除 模穴面外, 在中间内模板、 热传部件、 和内模支撑板上均需加工与模穴面 相配合的面, 加工费用昂贵。 在中间内模板与内模支撑板间设有将中间内 模板与内模支撑板在开模时分离的弹簧, 分模时传热部件保持在内模支撑 板上。 这种结构的模具, 冷却水道内始终通水。 开模时电加热器工作给模 具加热, 合模时或延时设定的时间电加热器停止工作, 由内模支撑板带走 热传部件的热量, 由热传部件带走中间内模板的热量。 这种结构的模具, 在加热时虽然中间内模板与内模支撑板分离, 模具加热时阻止热传部件和 内模支撑板带走电加热器的热量, 但电加热器还是直接露在空气中, 隔热 效果还是不好。 特别是冷却时, 由于内模支撑板与内模板是分离的, 其结 合面总是会产生间隙, 这会导致热传导性大大降低, 使模具的冷却效果不 好。 本发明的解决办法增加传热部件, 传热部件的硬度小于内模支撑板和 内模板, 如果采用铜等, 在贴合面还是有间隙存在, 采用凝胶状物质, 凝 胶状物质很难分布均匀, 也很难保证内模支撑板和内模板完全无间隙贴合, 而凝胶状物质的导热性远不如金属的导热性, 因此模具的冷却效果还是不 好。
上述的现有的可实现急冷急热的模具, 均难以实现模具或低成本、 或 高刚性、 或加工周期短的急速加热和均匀加热、 急速冷却和均匀冷却, 影 响注射成型产品的最终外观和内部质量, 容易在产品上产生熔接痕、 流痕、 光泽不均匀、 产品密度不均匀、 表面起泡、 缩水、 需要很大的注射压力和 在熔融材料凝固成型后因残余应力导致的产品易变形等重大缺陷。 发明内容
本发明的第一个目的在于提供一种在模具需要加热时不但具有发热功 能还具有隔热功能、在模具需要冷却时具有冷却液通道功能的加热冷却棒。
本发明第二个的目的在于提供一种容易实现模具设有成型面的模芯急 速加热和均匀加热、 急速冷却和均匀冷却的可实现急冷急热的模具, 解决 在产品上容易产生熔接痕、 流痕、 光泽不均匀、 产品密度不均匀、 表面起 泡、 缩水、 需要很大的注射压力和在熔融材料凝固成型后因残余应力导致 的产品变形等重大缺陷的问题。
一种模具加热冷却棒, 包括加热冷却棒本体和发热元件, 在加热冷却 棒本体内沿轴向方向设有模具需冷却时通冷却介质、 模具需加热时排出冷 却介质的冷却隔热孔和发热元件容置孔, 发热元件安装在发热元件容置孔 内。 这种结构的模具加热冷却棒, 在模具需加热时, 具有发热功能, 冷却 隔热孔具有隔热功能, 热量可大部分朝向模芯成型面的方向传导; 在模具 需要冷却时, 冷却隔热孔又是冷却液通道, 使加热棒的冷却更快、 更均匀, 且结构简单。 电发热元件与现有的电加热棒的制作方法相同, 其填充的导 热绝缘材料可为工业陶瓷材料如氮化硅 /氧化铝 /氧化镁等。
作为改进, 一个或一个以上的冷却隔热孔从三个方向环绕发热元件容 置孔。 发热元件工作加热模具时, 冷却隔热孔对发热元件的隔热效果更好, 发热元件停止工作冷却模具时, 冷却隔热孔对发热元件的冷却效果更好, 从而使模具的加热、 冷却更均匀, 模具的加热和冷却温度易于控制和速度 快。
作为方案二的第一种改进, 发热元件为电发热元件; 在电发热元件和 发热元件容置孔间设有导热绝缘层, 电发热元件和导热绝缘层接触, 导热 绝缘层和发热元件容置孔的内侧壁接触; 冷却隔热孔和发热元件容置孔均 为轴向通孔, 个数均为一个; 电源的正极和负极从发热元件容置孔的两端 和加热电发热元件相连。 电发热元件加热, 结构简单, 电发热元件工作时, 升温快, 加热时加热冷却棒的温度更均匀, 从而使模具的温度更均匀, 整 个模芯的温度能迅速达到 60 °C至 500 °C温度区间内的任意温度。 电发热元 件、 导热绝缘层、 冷却隔热孔相互接触, 主要通过热传导而不是仅依靠热 辐射的方式来传递热量, 热传导效果好, 快速加热的效果好。 这种结构的 加热冷却棒结构简单, 与冷却介质和电源的连接也方便。
作为方案二的第二种改进, 加热冷却棒本体一体成型, 加热冷却棒本 体为圆柱形, 发热元件容置孔为圆柱形, 冷却隔热孔和发热元件容置孔均 为轴向通孔, 个数均为一个, 冷却隔热孔为环绕发热元件容置孔的月牙形。 加热冷却棒本体为圆柱形, 使在模具上与加热冷却棒本体配合的加热冷却 棒容置槽结构简单, 只需要钻削加工, 加工费大大降低, 加热冷却棒的成 型也简单, 可采用一次性挤出成型工艺。 特别是发热元件容置孔被月牙形 的冷却隔热孔从三个方向环绕, 在向冷却隔热孔通冷却介质时, 由于从电 发热元件三个方向冷却, 电发热元件能更快速冷却, 加热冷却棒冷却更快、 更均匀; 在加热冷却棒发热时, 因三个方向的热传导均被空气阻挡, 热量 绝大部分朝向模芯的成型面方向传导, 冷却隔热孔又能尽可能减少热量丧 失, 隔热作用更好。
作为方案二的第三种改进, 发热元件为电发热元件; 冷却隔热孔为轴 向通孔, 冷却隔热孔个数为两个, 两个冷却隔热孔从三个方向环绕发热元 件; 发热元件容置孔的一端封闭, 个数为一个; 在对应发热元件容置孔封 闭端的加热冷却棒上设有连通两个冷却隔热孔的连通孔, 在连通孔的端部 设有密封件; 电源的正极和负极从发热元件容置孔远离密封件的一端与加 热电发热元件相连; 冷却介质的进口和出口也设置在发热元件容置孔远离 密封件的一端。 这种结构的加热冷却棒, 电源的正极和负极从加热冷却棒 的一端进入、 冷却介质的进口和出口也设置在同一端, 加热冷却棒不需贯 穿具有成型面的模芯, 能满足具有抽芯结构、 加热冷却棒不方便贯穿具有 成型面的模芯等模具的加热和冷却的需要。
作为方案一的第一种改进, 加热冷却棒本体一体成型, 加热冷却棒本 体为圆柱形, 发热元件容置孔截面为半圆形, 冷却隔热孔截面为半圆形; 冷却隔热孔和发热元件容置孔均为轴向通孔, 个数均为一个。 这种结构的 冷却棒, 使加热冷却棒容置槽结构简单, 加工费大大降低, 加热冷却棒的 成型也简单, 可采用一次性挤出成型工艺。
作为方案一的第二种改进, 发热元件的一个侧面与加热冷却棒本体的 一个外侧面齐平。 这种结构的加热冷却棒, 由于发热元件直接与模具接触, 热传递效果更好。
作为方案一的第三种改进, 在加热冷却棒上设有弯折部。 加热冷却棒 可根据模具型腔的需要弯折成各种形状, 这样可满足不同产品注射成型时 冷却的需要。
作为方案一的第四种改进, 加热冷却棒本体包括内筒和外筒, 冷却隔 热孔为设置在内筒内的轴向孔, 发热元件缠绕在内筒外, 外筒安装在发热 元件外,, 发热元件容置孔为外筒和内筒形成的环形孔。 这种结构的加热冷 却棒, 冷却隔热孔可以设计的比较大, 便于冷却。
作为上述方案的共同改进, 在加热冷却棒上设有温度感应器。 将温度 感应器设置在加热冷却棒上, 与加热冷却棒同时生产, 使温度感应器的生 产成本低, 安装方便, 温度控制更直接。
一种可实现急冷急热的模具, 包括具有成型面的模芯, 设定个数的加 热冷却棒, 在模芯内设有加热冷却棒容置槽, 加热冷却棒安装在加热冷却 棒容置槽内, 加热冷却棒的外侧壁与加热冷却棒容置槽的内侧壁接触; 加 热冷却棒设有发热元件的一侧靠近模芯的成型面。
加热冷却棒直接设置在模芯内, 模芯的成型面离加热冷却棒的距离可 以设计比较小, 加热冷却棒离模芯成型面间的距离一般为 3-20mm。加热冷 却棒设有发热元件容置孔的一侧靠近模芯的成型面, 减少热量向加热冷却 棒远离模芯成型面方向的传导, 使加热冷却棒的热量绝大部分供给模具成 型腔内的产品成型需要。 加热冷却棒能满足模具高温时在 60°C至 500°C之 间的温度要求。 这种模具冷却装置, 一般情况下在具有成型面的模芯内可 以不需要设计别的冷却装置, 也不需要设计别的加热装置、 隔热装置, 大 大简化模具结构。 由于加热冷却棒易弯折成各种形状, 因此更容易满足各 种产品的加热和冷却需要。
模具需升温时, 停止向冷却隔热孔通冷却介质, 冷却介质排出, 加热 冷却棒发热时冷却隔热孔内仅填充有空气, 空气靠对流传热, 而冷却隔热 孔为相对密闭的空间, 因此其传热性能远远小于金属的传热性能, 具有很 好地隔热效果, 减少热量向加热冷却棒远离模芯成型面的方向传导, 使加 热冷却棒的热量绝大部分供给模具成型腔内的产品成型需要, 且加热冷却 棒的热量直接传递给模芯的成型面, 因此成型面被快速、 均匀地加热并能 急速加热到接近或等于熔融材料 (如熔融的塑胶,金属)的温度。 由于模具温 度急速升温接近或等于熔融材料的温度, 刚注入模腔内的材料不会因模具 温度过低, 熔融材料的热量被模具快速带走, 使熔融材料被急速冷却, 而 导致流动性大大变差甚至产生凝块。 注射过程中, 接触模具成型面、 靠近 模具注射入口和远离模具注射入口的熔接部位的熔融材料的温度与注射入 口熔融材料的温度基本一致, 接触模具成型面、 靠近模具注射入口和远离 注射入口的熔接部位的熔融材料不会因热量过多被带走, 使流动性大大变 差甚至产生半熔融或接近凝固的现象, 导致熔接部位熔接效果差或假熔接, 同时提高熔融材料的流动性, 减少注射的压力, 减少注射入口与成型面、 熔接部位的射出成形压力差, 使整个模腔内的熔融材料的流动性、 注射压 力、 内部组织应力基本一致; 解决了注射成形机长期以来一直解决不了的 因注射时模具温度不能急速升温导致熔融材料成形时产生熔接痕、 流痕、 光泽不均匀、 产品密度不均匀、 表面起泡、 缩水、 需要很大的注射压力和 在熔融材料凝固成型后因残余应力导致的产品易变形等重大缺陷, 注射成 型产品的最终外观质量好。 模具升温时热量丧失少, 节省能源。
在加热冷却棒的内部设有通冷却介质的冷却隔热孔, 当模具需要冷却 时, 向冷却隔热孔内通入冷却介质即可, 而不是只依靠与加热冷却棒至少 隔开几厘米的冷却装置来冷却, 加热冷却棒可以迅速冷却, 冷却更均匀, 缩短了产品的生产周期, 提高了效率, 而且由于接触模芯成型面的熔融材 料被急速冷却, 因此接触模芯高光成型面的产品表层密度大, 使产品的表 面产生高光的效果。
模芯因包含加热冷却棒, 总厚度可以较厚, 因此模芯的刚性好,模芯成 型产品时不容易变形, 成型产品的质量好。 加热冷却棒既有加热作用, 又 有冷却作用, 冷却隔热孔加热时具有隔热作用, 冷却时为冷却介质通道, 简化了模具结构, 降低了加工费用。 而且模芯为一个整体, 不需再设计与 模芯分离的传热件、 冷却件 , 结构简单。 除成型面外, 其余的面均不需加 工成与成型面相配合的面。 而目前的韩国、 日本等可实现急热急冷的模具, 除成型面外, 还需加工成型面模芯的外表面、 传热件的内表面、 外表面、 冷却件的内表面等配合接触面。 与现有的韩国、 日本等可实现急热急冷的 模具相比, 加工量相当于其 1/3以下, 大大降低了加工成本。 冷却隔热孔 加热时具有隔热作用, 冷却时为冷却介质通道, 起冷却作用,简化了模具结 构, 降低了加工费用,又提高了模芯的刚性。
作为改进, 还包括设定个数的加热棒, 在模芯内靠近成型面的位置设 有加热棒容置孔, 加热棒伸入加热棒容置孔内; 在具有成型面的模芯内靠 近加热棒的位置设有与加热棒对应的隔热冷却孔, 隔热冷却孔置于加热棒 远离成型面的一侧, 隔热冷却孔的横截面外轮廓线为封闭曲线, 一个或一 个以上的隔热冷却孔从三个方向环绕对应的加热棒; 在隔热冷却孔上设有 冷却液入口和冷却液出口。
加热棒、 隔热冷却孔直接设置在模芯内, 模芯的成型面离加热棒的距 离可以设计比较小, 成型面与隔热冷却孔的距离也可以设计得比较小。 加 热棒离模芯成型面间的距离一般为 3_20mm, 加热棒的直径一般为 3_15mm, 加热棒之间的距离为一般为 8_80匪, 加热棒与隔热冷却孔间的距离一般为 2 - 15mm。 模具需升温时, 停止向隔热冷却孔通冷却液, 冷却液排出, 加热棒发 热时隔热冷却孔内仅填充有空气, 隔热冷却孔从三个方向环绕加热棒, 具 有很好地隔热效果, 减少热量向加热棒远离模芯成型面的方向传导, 使加 热棒的热量绝大部分供给模具成型腔内的产品成型需要, 加热棒的热量直 接传递给模芯的成型面, 因此成型面被快速、 均匀地加热, 并能急速加热 到接近或等于熔融材料 (如熔融的塑胶,金属)的温度。
当模具需要冷却时, 向隔热冷却孔通冷却液, 冷却液布满成型面外后 侧的大部分区域, 隔热冷却孔和加热棒均置于模芯内, 隔热冷却孔靠近加 热棒, 冷却液从三个方向环绕加热棒, 因此加热棒和模芯均能急速和均匀 地被冷却。
作为又一改进, 在安装有加热冷却棒的模具部分设有感应模具温度的 温度感应器或在加热冷却棒上设有温度感应器, 还设有与温度感应器电连 接的控制单元, 加热冷却棒与控制单元电连接。
温度感应器包括红外线温度感应器、 温度传感器等。 温度感应器可设 置在模具的外表面, 也可深入模具内靠近成型面型腔的某个位置。 温度感 应器可为一个, 也可为多个。 通过温度感应器感应模具某个位置的温度, 进而确定模具成型面的温度, 使控制单元控制加热冷却棒的发热量, 可以 使模具模芯的温度控制很精确。 加热冷却棒与控制单元和温度传感器配合 能根据不同的熔融材料精确控制模具温度。
作为进一步改进, 还包括压缩空气管路; 压缩空气管路通过电动控制 阀与冷却隔热孔、 隔热冷却孔的入口连接; 电动控制阀与控制单元电连接。 在对模具加热前, 利用压缩空气将模具中的冷却隔热孔、 隔热冷却孔的冷 却水排出, 防止了由于残留的冷却水汽化导致的高温高压对模具、 管路及 操作人员造成的危害, 提高了设备的安全性。 加热时, 压缩空气管路将冷 却隔热孔、 隔热冷却孔内的冷却介质排干, 可减少冷却隔热孔、 隔热冷却 孔的导热系数, 特别是不会因残留的冷却介质在加热变成蒸汽时过大压力 造成安全事故。
作为另一改进, 在模芯的分型面、 四个侧面的一个或一个以上的面上 设有隔热孔或隔热槽。 隔热槽或隔热孔进一步阻挡热量丧失, 加热时使热 量集中于模芯成型面, 使模芯成型面升温更快、 更均匀。
本发明的有益效果是, 加热棒具有冷却、 隔热和发热功能, 控制模芯 的成型面能被急速、 均匀地加热和冷却, 并能急速加热到接近或等于熔融 材料的温度, 因此成型的产品质量好, 不易产生熔接痕、 流痕和表面起泡 等, 光泽均匀、 产品密度均匀、 缩水小、 减少了注射压力和在熔融材料凝 固成型后因残余应力导致的产品变形。
附图说明
图 1本发明实施例 1的连接示意图。
图 2是本发明实施例 1的立体分解示意图。
图 3是本实用实施例 1的加热冷却棒的具有发热元件位置的横截面剖切 示意图。
图 4是本发明实施例 1的加热冷却棒组件的立体分解示意图。
图 5是本实用实施例 2的加热冷却棒的具有发热元件位置的横截面剖切 示意图。
图 6是本实用实施例 3的加热冷却棒的具有发热元件位置的横截面剖切 示意图。
图 7是本发明实施例 4的立体分解示意图。
图 8是本发明实施例 4的加热冷却棒组件的立体分解示意图。
图 9是本发明实施例 4的加热冷却棒的具有发热元件位置的横截面剖切 示意图。
图 10是沿图 9的 A-A位置的剖切图。
图 11是本发明实施例 5的加热冷却棒的具有发热元件位置的横截面剖 切示意图。
图 12是本发明实施例 6的立体分解示意图。
图 13是本发明实施例 6的前模模芯的主视示意图。
图 14是本发明沿图 13的 B— B的剖视图。
图 15是本发明实施例 6的前模模芯与安装在其上的加热冷却装置的立 体分解示意图。
图 16是本发明实施例 6的加热冷却棒的具有发热元件位置的横截面剖 切示意图。
图 17是本发明实施例 7的立体分解示意图。
图 18是本发明实施例 7的前模模芯的主视示意图。
图 19是本发明沿图 18的 C一 C的剖视图。 图 20是本发明实施例 7的前模模芯与安装在其上的加热冷却装置的立 体分解示意图。
图 21是本发明实施例 7的 L型加热冷却棒具有发热元件位置的横截面 剖切示意图。
图 22是本发明实施例 7的 U型加热冷却棒具有发热元件位置的横截面 剖切示意图。
图 23是现有技术的立体分解示意图。
图 24是图 11从另一个方向投影的立体分解示意图。
实施例 1
如图 1所示, 一种可实现急冷急热的模具, 包括与注塑机电连接的控 制单元, 均与控制单元电连接的水泵、 发热元件、 温度感应器、 电动控制 水阀、 电动控制气阀, 电动控制气阀通过气管与调压过滤器、 水 /气管连接 接头连接, 电动控制水阀通过水管与水泵、 水 /气管连接接头连接, 水 /气管 连接接头安装在冷却隔热孔、 隔热冷却孔上并与冷却隔热孔、 隔热冷却孔 连通; 调压过滤器通过气管与压缩空气泵连接。 加热冷却棒、 加热棒发热 时的模具温度为 60°C至 500°C。
如图 2所示,模具包括前模部分和后模部分 1,前模部分包括具有成型 面的模芯 4、 模芯座 5、 模芯座垫板 6。 模芯 4安装在模芯座 5内, 模芯座 5安装在模芯座垫板 6上, 模芯座垫板 6安装在成型机上。 温度感应器 2 为红外线温度感应器, 温度感应器设置在模具的外表面。 在模芯内设有成 型面 19和安装有加热冷却棒 3。
如图 3所示, 模具加热冷却棒, 包括加热冷却棒本体 7和发热元件 8, 加热冷却棒本体 7—体成型, 在加热冷却棒本体 7内沿轴向方向设有通冷 却介质的冷却隔热孔 9和容置发热元件 8的发热元件容置孔。 发热元件 8 为电发热元件发热; 在电发热元件 8和发热元件容置孔间设有导热绝缘层 10, 电发热元件 8和导热绝缘层 10接触, 导热绝缘层 10和发热元件容置 孔的内侧壁接触; 冷却隔热孔 9和发热元件容置孔均为轴向通孔, 个数均 为一个; 电源的正极和负极从电发热元件容置孔的两端与电发热元件 8相 连。加热冷却棒本体 7为圆柱形, 发热元件容置孔为圆柱形, 冷却隔热孔 9 为环绕发热元件容置孔的月牙形。
如图 4所示, 在加热冷却棒 3的两端设有密封塞 11、 密封塞 12, 在密 封塞 11、 密封塞 12与加热冷却棒 3间分别设有密封圈 13、 密封圈 14, 在 加热冷却棒 3的一端的密封圈 13和密封塞 11上分别设有进水口 15、 进水 口 16, 在加热冷却棒 3的另一端的密封圈 14和密封塞 12上分别设有出水 口 17、 出水口 18, 出水口 17、 出水口 18的最低点与冷却隔热孔 9的最低 点齐平。 在模芯 4的侧面还设有隔热避空孔 20。
在合模过程中, 先由温度感应器测量模具的温度, 如果模具的温度低 于设定的温度, 则控制单元控制加热冷却棒通电, 利用加热冷却棒对模芯 的成型面急速加热至等于或接近熔融材料的温度或设定温度。 在温度感应 器测定的温度到达设定的温度后, 控制单元发出注射信号, 注射机将熔融 材料注射到型腔中, 在注射过程中一直保持设定的温度。 完成注射后, 控 制单元接收到注射终止的信号, 电动控制阀开启, 水泵抽取的水经电动控 制阀进入冷却水管, 再经冷却水管进入冷却隔热孔, 当模具温度被冷却到 设定的温度值时, 控制单元向注塑机发出开模信号, 注塑机打开模具并顶 出产品。 在注射机发出开模信号的同时, 控制单元控制电动控制水阀关闭、 冷却隔热孔内的水排出, 电动控制气阀开启, 压缩空气泵内的空气通过压 滤过滤器、 电动控制气阀进入冷却隔热孔, 将冷却隔热孔内的残余冷却水 通过模具内的冷却水出口吹出, 然后进入下一个循环。
加热时, 冷却隔热孔减少热量向加热棒远离模芯成型面的方向传导, 冷却时冷却隔热孔靠近加热棒, 因此模芯成型面能被急速、 均匀地加热和 冷却, 并能急速加热到接近或等于熔融材料的温度, 因此成型的产品质量 好, 不易产生熔接痕、 流痕和表面起泡等, 光泽均匀、 产品密度均匀、 缩 水小、 减少了注射压力和在熔融材料凝固成型后因残余应力导致的产品变 形。 实施例 2
如图 5所示, 与实施例 1不同的是, 加热冷却棒本体 31为圆柱形, 发 热元件容置孔 32截面为中心角小于 180°的扇形, 冷却隔热孔 33截面为中 心角大于 180。的扇形, 冷却隔热孔 33从三个方向环绕发热元件容置孔 32。 温度感应器 34设置在加热冷却棒本体 31的一端, 并伸入加热冷却棒本体 31内。 实施例 3
如图 6所示, 与实施例 1不同的是, 加热冷却棒本体 41为圆柱形, 发 热元件容置孔 42截面类似半圆形, 冷却隔热孔 43截面类似半圆形, 冷却 隔热孔的横截面大于发热元件的横截面。 实施例 4
如图 7所示, 与实施例 1不同的是, 模具部分包括前模部分和后模部 分 51。 前模部分包括具有成型面的模芯 54、 模芯座 55、 模芯座垫板 56。 温度感应器 52为热电偶温度感应器, 温度感应器设置在模具内。
如图 7至 10所示, 模具加热冷却棒, 包括加热冷却棒本体 57和发热 元件 58, 加热冷却棒本体 57—体成型, 外侧面为圆柱形, 在加热冷却棒本 体 57内沿轴向方向设有通冷却介质的冷却隔热孔 59、 冷却隔热孔 60和容 置发热元件 58的发热元件容置孔。 冷却隔热孔 59、 冷却隔热孔 60为轴向 通孔, 冷却隔热孔 59、 冷却隔热孔 60为扇形。 发热元件容置孔为盲孔, 个 数为一个, 为扇形。冷却隔热孔 59、冷却隔热孔 60从三个方向环绕发热元 件 58。在加热冷却棒 53置于模具内的一端的端部设有连通冷却隔热孔 59、 冷却隔热孔 60的连通孔 61, 在连通孔 61的端部设有密封塞 62。 在加热冷 却棒 53远离密封塞 62的一端设有密封塞 63, 在密封塞 63与加热冷却棒 53间设有密封圈 64,在密封圈 64和密封塞 63上分别设有进水口 65、进水 口 66和出水口 67、 出水口 68, 出水口 67、 出水口 68的最低点比冷却隔热 孔 60的最低点稍低。在模芯 4的分型面上还设有隔热避空孔 69。电源的正 极和负极从发热元件容置孔远离密封塞 62的一端和发热元件 58相连。 实施例 5
如图 11所示, 与实施例 4不同的是, 电加热冷却棒容置槽 80为圆柱 形, 两个冷却隔热孔 81、 82为由与电加热冷却棒容置槽 80非同心的的两 个圆弧面相交并从中间隔开倒圆形成的两个对称孔。 实施例 6
如图 12至 14所示, 与实施例 1不同的是, 前模部分的模芯 91的型腔 的底部设有突出部 92, 在模芯 91的底部设有加热冷却棒容置槽 93, 加热 冷却棒容置槽 93的中部为 U型弯曲部 94, U型弯曲部 94置于突出部 92 内与突出部 92形状相匹配。
如 15、 16所示, 加热冷却棒本体 95的横截面为带倒圆的矩形, 发热元 件容置槽 96的横截面为为半圆形的开口槽, 分布在加热冷却棒本体 95朝 向成型面 97的一侧。 冷却隔热孔 98为带倒圆的矩形。 发热元件 99的形状 与发热元件容置槽 96的形状相同, 发热元件容置槽 96置于加热冷却棒本 体 95的一侧,发热元件 99朝向成型面 97的侧面 100与加热冷却棒本体 95 朝向成型面 97的侧面 101齐平。加热冷却棒的中部弯折形成与 U型弯曲部 94配合的 U型弯曲部。 在发热元件 99上设有与电源电连接的接头。
加热冷却棒 102安装在模芯 91的加热冷却棒容置槽 93内,在加热冷却 棒 102的两端设有密封塞 103、 密封塞 104, 在密封塞 103、 密封塞 104上 分别设有进水口 105和出水口 106,在进水口 105上设有连接有进水管 107, 在出水口 106上连接有出水管 108。
在模芯 91内还设有电加热棒容置孔,在电加热棒容置孔内安装有电加 热棒 109。在靠近电加热棒 109的位置设有与电加热棒 109对应的隔热冷却 孔(未示出), 一个加热棒对应一个隔热冷却孔。 隔热冷却孔置于电加热棒 109远离成型面 97的一侧。 隔热冷却孔为与加热棒容置孔同心的半圆弧形 的环形槽, 环形槽的转角圆角过渡。 在隔热冷却孔的两端设有密封块容置 孔 110, 密封块容置孔 110与隔热冷却孔形状相似, 与隔热冷却孔的各边距 离相等。 在密封块容置孔 110内安装有密封块 111、 密封块 112, 在密封块 111与隔热冷却孔间设有密封垫 113, 在密封块 112与隔热冷却孔间设有密 封垫 114。 在隔热冷却孔一端的密封块 111、 密封垫 113上分别设有与隔热 冷却孔连通的进水口 115、 进水口 116, 在隔热冷却孔一端的密封块 112、 密封垫 114上分别设有与隔热冷却孔连通的出水口 117、 出水口 118, 进水 口的水流量大于出水口的水流量。 实施例 7
如图 17至 22所示, 与实施例 6不同的是, 前模部分的模芯 200的型 腔的底部设有圆台形的突出部 201, 在模芯 200的底部设有 L型加热冷却 棒容置槽 202和 U型加热冷却棒容置槽 203, L型加热冷却棒容置槽 202 伸入突出部 201内。 在 L加热冷却棒容置槽 202内安装有 L型加热冷却棒 204, 在 U加热冷却棒 203容置槽内安装有 U型加热冷却棒 205。
U型加热冷却棒本体 206的外轮廓线的横截面类似半圆柱形, 发热元 件 207的横截面为圆形, 冷却隔热槽 208的横截面为环形。 L型加热冷却 棒本体 206、 冷却隔热槽 208的弧形面均匀发热元件容置孔 207同心。
L型加热冷却棒本体包括内筒 210和外筒 209,隔热冷却孔为设置在内 筒 210内的两个半圆形的轴向孔 211、 轴向孔 213, 发热元件 214缠绕在内 筒 210外, 外筒 209安装在发热元件 214外, 发热元件容置孔 212为外筒 209和内筒 210形成的环形孔。轴向孔 211、轴向孔 213在 U型加热冷却棒 本体的一端连通, 在其连通孔 215内设有密封件 216。 本发明的可实现模具急冷急热的结构, 还可根据需要设计在后模部分 的模芯上, 其实施方式一致, 不在详述。 本发明中的加热冷却棒的电发热 元件, 其制作方式与电加热棒的制作方式相同。

Claims

权 利 要 求 书
1、 一种模具加热冷却棒, 包括加热冷却棒本体和发热元件, 其特征在于: 在加热冷却棒本体内沿轴向方向设有模具需冷却时通冷却介质、 模具需加 热时排出冷却介质的冷却隔热孔和发热元件容置孔, 发热元件安装在发热 元件容置孔内。
2、 如权利要求 1所述的一种模具加热冷却棒, 其特征在于: 一个或一个以 上的冷却隔热孔从三个方向环绕发热元件容置孔。
3、 如权利要求 2所述的一种模具加热冷却棒, 其特征在于: 发热元件为电 发热元件; 在电发热元件和发热元件容置孔间设有导热绝缘层, 电发热元 件和导热绝缘层接触, 导热绝缘层和发热元件容置孔的内侧壁接触; 冷却 隔热孔和发热元件容置孔均为轴向通孔, 个数均为一个; 电源的正极和负 极从发热元件容置孔的两端和加热电发热元件相连。
4、 如权利要求 2所述的一种模具加热冷却棒, 其特征在于: 加热冷却棒本 体一体成型, 加热冷却棒本体为圆柱形, 发热元件容置孔为圆柱形, 冷却 隔热孔和发热元件容置孔均为轴向通孔, 个数均为一个, 冷却隔热孔为环 绕发热元件容置孔的月牙形。
5、 如权利要求 2所述的一种模具加热冷却棒, 其特征在于: 发热元件为电 发热元件; 冷却隔热孔为轴向通孔, 冷却隔热孔个数为两个, 两个冷却隔 热孔从三个方向环绕发热元件; 发热元件容置孔的一端封闭, 个数为一个; 在对应发热元件容置孔封闭端的加热冷却棒上设有连通两个冷却隔热孔的 连通孔, 在连通孔的端部设有密封件; 电源的正极和负极从发热元件容置 孔远离密封件的一端与加热电发热元件相连; 冷却介质的进口和出口也设 置在发热元件容置孔远离密封件的一端。
6、 如权利要求 1所述的一种模具加热冷却棒, 其特征在于: 加热冷却棒本 体一体成型, 加热冷却棒本体为圆柱形, 发热元件容置孔横截面为半圆形, 冷却隔热孔横截面为半圆形; 冷却隔热孔和发热元件容置孔均为轴向通孔, 个数均为一个。
7、 如权利要求 1所述的一种模具加热冷却棒, 其特征在于: 发热元件的一 个侧面与加热冷却棒本体的一个外侧面齐平。
8、 如权利要求 1所述的一种模具加热冷却棒, 其特征在于: 在加热冷却棒 上设有弯折部。
9、 如权利要求 1所述的一种模具加热冷却棒, 其特征在于: 加热冷却棒本 体包括内筒和外筒, 冷却隔热孔为设置在内筒内的轴向孔, 发热元件缠绕 在内筒外, 外筒安装在发热元件外, 发热元件容置孔为外筒和内筒形成的 环形孔。
10、 如权利要求 1至 9任一项所述的一种模具加热冷却棒, 其特征在于: 在加热冷却棒上设有温度感应器。
11、 一种使用 1至 9任一项权利要求所述的模具加热冷却棒的可实现急冷 急热的模具, 其特征在于: 包括具有成型面的模芯, 设定个数的加热冷却 棒, 在模芯内设有加热冷却棒容置槽, 加热冷却棒安装在加热冷却棒容置 槽内, 加热冷却棒的外侧壁与加热冷却棒容置槽的内侧壁接触; 加热冷却 棒设有发热元件的一侧靠近模芯的成型面。
12、 如权利要求 11所述的一种可实现急冷急热的模具, 其特征在于: 还包 括设定个数的加热棒, 在模芯内靠近成型面的位置设有加热棒容置孔, 加 热棒伸入加热棒容置孔内; 在具有成型面的模芯内靠近加热棒的位置设有 与加热棒对应的隔热冷却孔, 隔热冷却孔置于加热棒远离成型面的一侧, 隔热冷却孔的横截面外轮廓线为封闭曲线, 一个或一个以上的隔热冷却孔 从三个方向环绕对应的加热棒; 在隔热冷却孔上设有冷却液入口和冷却液 出口。
13、 如权利要求 11所述的一种可实现急冷急热的模具, 其特征在于: 在安 装有加热冷却棒的模具部分设有感应模具温度的温度感应器或在加热冷却 棒上设有温度感应器, 还设有与温度感应器电连接的控制单元, 加热冷却 棒与控制单元电连接。
14、 如权利要求 13所述的一种可实现急冷急热的模具, 其特征在于: 还包 括压缩空气管路; 压缩空气管路通过电动控制阀与冷却隔热孔、 隔热冷却 孔的入口连接; 电动控制阀与控制单元电连接。
15、 如权利要求 11所述的一种可实现模具急热急冷的结构, 其特征在于: 在模芯的分型面、 四个侧面的一个或一个以上的面上设有隔热孔或隔热槽。
PCT/CN2010/074292 2009-10-22 2010-06-23 一种模具加热冷却棒及可实现急冷急热的模具 WO2011047552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910209734XA CN101698320B (zh) 2009-10-22 2009-10-22 一种模具加热冷却棒及可实现急冷急热的模具
CN200910209734.X 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011047552A1 true WO2011047552A1 (zh) 2011-04-28

Family

ID=42146784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074292 WO2011047552A1 (zh) 2009-10-22 2010-06-23 一种模具加热冷却棒及可实现急冷急热的模具

Country Status (2)

Country Link
CN (1) CN101698320B (zh)
WO (1) WO2011047552A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811338B (zh) * 2009-10-22 2012-02-22 杨东佐 一种可实现急冷急热的模具
CN101698320B (zh) * 2009-10-22 2011-12-14 杨东佐 一种模具加热冷却棒及可实现急冷急热的模具
CN103448209A (zh) * 2012-06-01 2013-12-18 富瑞精密组件(昆山)有限公司 射出成型模具
CN103448213A (zh) * 2013-09-25 2013-12-18 常熟市金马模具有限公司 一种快速冷却模具
CA2929253C (en) * 2013-11-04 2023-01-24 Plastic Unbound Ltd An injection mold, injection molding tool comprising the injection mold, methods of theirs uses and objects obtained
CN105500584A (zh) * 2014-09-26 2016-04-20 国家电网公司 一种模具的冷却系统
CN104309084A (zh) * 2014-10-20 2015-01-28 苏州广型模具有限公司 高成形质量的注塑模具
DE102015112748A1 (de) * 2015-08-03 2017-02-09 Günther Heisskanaltechnik Gmbh Heizelement für einen Strömungskanal oder ein Formnest und Spritzgießdüse mit einem solchen Heizelement
CN106626217A (zh) * 2015-10-28 2017-05-10 晋江中天模具有限公司 一种加热冷却一体的高效鞋底模具
CN105790028B (zh) * 2016-03-24 2018-07-03 浙江海悦自动化机械股份有限公司 一种汇流排制作冷却装置
CN105618717B (zh) * 2016-03-24 2017-11-03 浙江海悦自动化机械股份有限公司 一种汇流排制作加热装置
CN106900094B (zh) * 2017-02-28 2023-08-04 孙劲腾 一种大型复合辐射式加热棒及其制备方法
CN108327325A (zh) * 2018-02-01 2018-07-27 邓瑜 一种箱包制作用行李箱高效定形装置
CN109277525A (zh) * 2018-10-22 2019-01-29 瑞安市亚泰铜带厂 浇铸铜工艺品的模具及浇铸方法
CN110239009A (zh) * 2019-06-06 2019-09-17 扬州广泰化纤有限公司 聚酯棒快速成型生产设备及聚酯棒的制备方法
CN110435102B (zh) * 2019-08-15 2021-05-04 厦门灏斯菲尔科技有限公司 可快速排出残留水的连接器
CN111068183B (zh) * 2019-12-31 2021-07-27 青岛温可微电子科技有限公司 一种熔接型发热装置的制作方法
CN115255245B (zh) * 2022-07-21 2024-02-02 江苏辰顺精密科技有限公司 一种用于提高热锻效率的铝件热锻模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890905B1 (ko) * 2008-10-15 2009-04-02 레이젠 주식회사 금형 장치
CN101531050A (zh) * 2009-04-15 2009-09-16 林建岳 离合式冷却结构的电热高光注塑模具
CN101698320A (zh) * 2009-10-22 2010-04-28 杨东佐 一种模具加热冷却棒及可实现急冷急热的模具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890905B1 (ko) * 2008-10-15 2009-04-02 레이젠 주식회사 금형 장치
CN101531050A (zh) * 2009-04-15 2009-09-16 林建岳 离合式冷却结构的电热高光注塑模具
CN101698320A (zh) * 2009-10-22 2010-04-28 杨东佐 一种模具加热冷却棒及可实现急冷急热的模具

Also Published As

Publication number Publication date
CN101698320B (zh) 2011-12-14
CN101698320A (zh) 2010-04-28

Similar Documents

Publication Publication Date Title
WO2011047552A1 (zh) 一种模具加热冷却棒及可实现急冷急热的模具
WO2011047551A1 (zh) 一种可实现急冷急热的模具
CN201511506U (zh) 可实现快速均匀加热和冷却的模具
KR100975014B1 (ko) 사출금형의 급속 가열/냉각 장치 및 그 금형온도 제어방법
TWI389600B (zh) Coaxial cooling and thermally conductive coil construction and molds with coaxial cooling and thermally conductive coil construction
CN107175799B (zh) 热流道系统和相关的喷嘴加热装置
JP2008502500A (ja) プレフォームのネックリングを冷却するための冷却回路
JP2004536724A (ja) 製品を鋳造するための方法及びそれに用いる鋳型
JP2009000863A (ja) 成形金型及びその制御方法
EP1758721A1 (en) Mold apparatus
CN201597134U (zh) 一种模具加热冷却装置
JP4499181B2 (ja) 金型の急速加熱方法
CN201525114U (zh) 一种模具急冷急热结构
CN104108165B (zh) 注塑成形用模具和注塑成形方法
JP2004025812A (ja) ホットランナー型を有する射出金型
KR20100052654A (ko) 급속가열 및 급속냉각 금형구조
US8840394B2 (en) Injection molding apparatus having a plate heater and having a cooling passage or an insulation space
JP2010188412A (ja) 鋳造装置
KR200461240Y1 (ko) 사출금형의 온도제어용 카트리지 히터
KR101030595B1 (ko) 웰드레스 방식의 사출금형 장치
JP7189222B2 (ja) 射出装置
JP2012152800A (ja) 金型冷却構造及びその製造方法
CN212194026U (zh) 一种防止产品出现熔接断裂的模具
KR101172392B1 (ko) 히터 카트리지
CN215151576U (zh) 一种快速散热的汽车高压连接器外壳成型模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824393

Country of ref document: EP

Kind code of ref document: A1