WO2011047541A1 - 多通道阶跃式电动燃气调节阀 - Google Patents

多通道阶跃式电动燃气调节阀 Download PDF

Info

Publication number
WO2011047541A1
WO2011047541A1 PCT/CN2010/001650 CN2010001650W WO2011047541A1 WO 2011047541 A1 WO2011047541 A1 WO 2011047541A1 CN 2010001650 W CN2010001650 W CN 2010001650W WO 2011047541 A1 WO2011047541 A1 WO 2011047541A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioner
air
air distribution
valve
air outlet
Prior art date
Application number
PCT/CN2010/001650
Other languages
English (en)
French (fr)
Inventor
潘兆铿
Original Assignee
Pan Zhaokeng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Zhaokeng filed Critical Pan Zhaokeng
Priority to EP10824382.5A priority Critical patent/EP2492554B1/en
Priority to US13/502,773 priority patent/US8844568B2/en
Publication of WO2011047541A1 publication Critical patent/WO2011047541A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/044Construction of housing; Use of materials therefor of sliding valves slide valves with flat obturating members
    • F16K27/045Construction of housing; Use of materials therefor of sliding valves slide valves with flat obturating members with pivotal obturating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/048Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/042Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves with electric means, e.g. for controlling the motor or a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/007Regulating fuel supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/24Valve details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S137/00Fluid handling
    • Y10S137/905Rotary valves for multiple gas burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator
    • Y10T137/8242Electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86509Sequentially progressive opening or closing of plural ports
    • Y10T137/86517With subsequent closing of first port
    • Y10T137/86533Rotary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86863Rotary valve unit

Definitions

  • the invention relates to the technical field of gas flow regulating valves, in particular to a multi-channel step type electric gas regulating valve. Background technique
  • the gas regulating valve mainly adopts an electromagnetic type linear gradual gas flow regulating mode.
  • the electromagnetic valve uses an electromagnet as a driving component, and the purpose of changing the gas flow rate is achieved by changing the current amount of the electromagnet coil winding.
  • the current value of the electromagnet coil is close to the linear relationship between the gas flow rate change.
  • This kind of solenoid valve is often used for the constant temperature adjustment of the gas water heater, which is characterized by fast adjustment speed and large working current.
  • an electromagnetic valve can only regulate the gas flow rate of one gas passage; and the processing precision of the product is high and the cost is high.
  • the gas regulating valve is required to simultaneously control the gas flow of the three gas passages of the inner, middle and outer ring fires, and also requires the function of shutting off the three gas passages.
  • each gas passage requires a separate gas regulating valve. If it is required to have the function of independently shutting off the gas, it is necessary for each regulating valve that does not have the function of shutting off the gas.
  • a gas shut-off valve is installed in the gas passages. Therefore, even a household gas stove that controls a double burner and is a double-ring fire requires more than five gas solenoid valves in addition to the main on-off valve.
  • the Chinese Patent Gazette discloses a "double-closed adjustable flow valve", the publication number of which is CN1601184.
  • the double-closed adjustable flow valve can only close the gas passage of the fire and the fire at the same time, and cannot independently shut down the fire. Or the gas passage of the fire; the gas flow of the fire is only a fixed value and cannot be adjusted separately; and the adjustment of the fire cannot accurately determine the relative position of the regulator and the adjustment port, and the adjustment can only be performed for open loop control.
  • the flow valve is subjected to open-loop control, it is difficult to accurately control the flow rate, and this situation will become more apparent after repeated adjustments. Therefore, in the prior art, it has not been seen that only one electric or electromagnetic gas regulating valve can be used to independently and accurately adjust the gas flow rate of multiple gas passages or shut down each From the gas channel. Summary of the invention
  • the object of the present invention is to provide an accurate control of a gas regulating valve by an action position feedback signal and a control circuit, which can simultaneously adjust multiple step gas flow rates of multiple gas passages, and can be independently turned off.
  • the multi-channel step type electric gas regulating valve of the multi-channel gas passage is to provide an accurate control of a gas regulating valve by an action position feedback signal and a control circuit, which can simultaneously adjust multiple step gas flow rates of multiple gas passages, and can be independently turned off.
  • a multi-channel step type electric gas regulating valve comprising a geared motor 1 and a valve casing 2
  • the valve casing 2 is provided with an air inlet and an air outlet
  • the geared motor 1 is mounted on The outer side of the casing 2
  • the drive shaft 6 of the reduction motor 1 extends into the valve casing 2 and is sealingly connected to the casing wall
  • the other casing wall of the valve casing 2 perpendicular to the drive shaft 6 is provided with N air outlets.
  • N is a 1-5 integer
  • the drive shaft 6 is provided with a cylindrical positioner 3
  • a set of positioning nodes 3-2 is arranged on the outer circumference of the positioner 3
  • a circular air flow distributor 4 is further provided.
  • the airflow distributor 4 is slidably connected to the positioner 3 by a spline, the center line of the airflow distributor 4, the center line of the positioner 3 and the center line of the drive shaft 6 are coincident; the air outlet 2
  • the inner port of the -1 is provided with an air outlet O-ring 7 and a rigid hollow gasket 8 from the outside to the inside.
  • the inner end surface of the rigid hollow gasket 8 is slightly higher than the inner end surface of the air outlet 2-1; N sets of air distribution holes 4-3 and corresponding N are disposed on the air distribution disc 4-1 of the center line of the air distributor 4 and coincident with the center of the circle
  • the air distribution start hole 4-2, the respective gas flow opening has a rectangular cross-sectional area from zero to 20mm 2 through holes of different sizes, the centerline of each of the air distribution hole slots 4-3 are allocated through the airflow hole slots 4-3
  • the center 0 of the distributor disc 4-1 is equal to the center line of the adjacent two air distribution holes 4-3 of the same group, and the air distribution starting hole 4-2 of each group and the corresponding air outlet 2 -1 coincident, the line connecting the center of the air distribution starting hole 4-2 of each group and the center O of the air distributor disc 4-1 and the airflow adjacent to the group of air distribution starting holes 4-2
  • the center line of the distribution hole 4-3 is equal; the movable sealing device is disposed between the port at the air outlet
  • the movable sealing device is extended from the inner port of the air outlet 2-1, the air outlet O-ring ⁇ and the rigid hollow washer 8 installed in the inner port, the air distribution starting hole 4-2 and the hole
  • the semi-closed cylinder 4-4, the sealing spring 10 housed in the semi-closed cylinder 4-4 and the rigid ball 11 having a diameter slightly larger than the inner diameter of the O-ring 7 of the air outlet and slightly Less than the inner diameter of the rigid hollow gasket 8, the rigid sphere 11 is in sliding engagement with the inner wall of the semi-closed cylinder 4-4.
  • the positioner rotation angle detecting mechanism is a mechanical structure, and the mechanism is surrounded by the outer circumference of the positioner 3.
  • the sliding teeth 13-3 are composed, and the sliding teeth 13-3 are elastically contacted with a set of vertical protruding teeth 3-2 on the outer circumference of the positioner 3.
  • the positioner rotation angle detecting mechanism is a magnetoelectric structure, and the mechanism is fixed to the valve by a set of permanent magnet blocks arranged at the same horizontal position on the outer circumference of the positioner 3 and opposite to the set of permanent magnet blocks.
  • the Hall element on the inner wall of the shell 2 is composed of.
  • the positioner rotation angle detecting mechanism is a photoelectric structure, and the mechanism is arranged by a set of through holes arranged at the same horizontal position on the outer circumference of the positioner 3 and respectively located on both sides of the set of through holes and fixed to the valve casing 2
  • the upper LED and the photoelectric receiving tube are composed.
  • the arc distance between adjacent sides of the adjacent two air distribution holes 4-3 in the same group is smaller than the inner diameter of the rigid hollow gasket 8.
  • the air distribution starting hole 4-2 and the last air distribution hole 4-3 are respectively located at the corresponding air outlet 2-1, and two stop blocks 2-2 having different positions respectively are opposite to the positioner 3. move.
  • the number of the air distribution holes 4-3 of each group is 1 to 10.
  • the driving shaft 6 of the geared motor 1 extending into the valve casing 2 drives the airflow distributor 4 to rotate through the positioner 3 and the splines 3-1 and the splines 4-3, and the air distributor disc 4 -1 is pressed against the rigid hollow gasket 8 by the action of the pressure spring 9, since the O-ring 7 is interposed between the port in the air outlet 2-1 and the rigid hollow gasket 8, when the rigid hollow gasket 8 is flat and
  • the contact airflow distributor disc 4-1 has sufficient smoothness and is coated with high-quality silicone oil which is both easy to dry and has a sealing effect, the amount of air leakage between the planes in contact with each other can be less than The amount of gas leakage required by the gas regulating valve.
  • each group of the same number of air distribution holes 4-3 will coincide with the corresponding group of air outlets 2-1 at the same time, when a certain serial number
  • the corresponding positioning node 3-2 on the outer circumference of the positioner 3 interacts with the positioning end 13 fixed on the valve housing 2 to generate a change position signal. Based on this signal, the control circuit can ascertain the exact rotational position of the airflow distributor 4 and accurately coincide the corresponding air distribution orifice 4-3 with the corresponding air outlet 2-1.
  • the airflow distributor 4 When the airflow distributor 4 is turned to the starting hole 4-2 of each group of the air distribution hole 4-3, the rigid ball 11 is pressed by the sealing spring 10 through the rigid hollow gasket 8 toward the O-ring 7 , the air outlet 2-1 is sealed.
  • the air flow distributor 4 When the number of the air distribution holes 4-3 is large, the air flow distributor 4 is rotated through the corresponding air outlets 2-1 in a minimum rotation angle, that is, the shortest Adjust the time to complete the airflow transition process of each air outlet 2-1.
  • the side of the air distribution hole 4-3 facing the rigid hollow gasket 8 is a rectangular groove, and the other is The surface is drilled with a through-hole having a predetermined cross-sectional area according to the amount of gas output, and when one of the air outlets 2-1 is required to turn the gas distributor 4 to a certain position to turn off the gas, the corresponding air distribution hole 4
  • the cross-sectional area of the through hole of 3 is zero, and the purpose of shutting off the gas can be achieved.
  • the arc distance between the adjacent sides of the adjacent air distribution holes 4-3 in the same group is smaller than the inner diameter of the rigid hollow washer 8, thereby ensuring that the air distribution distributor 4 is rotated from the previous air distribution slot 4- 3 During the process of turning to the next air distribution slot 4-3, the air flow will not be completely interrupted.
  • the positioner rotation angle detecting mechanism adopts a mechanical type
  • the driving shaft 6 drives the positioner 3 and the airflow distributor 4
  • the sliding teeth 13-3 are not in contact with the outer circumference of the positioner 3, and at this time, the reduction motor 1 only needs to overcome between the air distribution distributor disc 4-1 and the rigid hollow gasket 8. Friction.
  • the speed reducing motor 1 needs to overcome the above-mentioned frictional force, and also needs to overcome the positioning spring 13-1 to apply the sliding teeth 13-3.
  • the driving force of the reduction motor 1 needs to be increased.
  • the reduction motor 1 When the positioner 3 is swung to the position of the airflow distributor starting hole 4-2 and is in contact with one of the stoppers 2-2, the reduction motor 1 is in the braking state and is subjected to the maximum force. Since the driving current of the micro DC motor is larger as the force is applied to it.
  • the drive current of the reduction motor 1 is the smallest, and when the teeth 3-2 are in contact with the sliding teeth 13-3, The driving current of the geared motor 1 is increased, and the magnitude of the current can be changed by adjusting the elastic force of the positioning spring 13-1.
  • the control circuit can know the specific position at which the positioner 3 and the air distributor disc 4-1 are rotated, that is, the position signal, thereby realizing the closed loop control of the system.
  • the positioner rotation angle detecting mechanism adopts the magnetoelectric type
  • the circuit implements closed loop control of the system.
  • the positioner rotation angle detecting mechanism adopts the photoelectric type
  • the light between the light emitting diode mounted on the valve casing 2 and the photoelectric receiving tube passes through a set of through holes provided on the outer circumference of the positioner 3 to generate a set of on and off.
  • the changed position signal, the input control circuit implements closed-loop control of the system.
  • the scheme of restricting the gas flow rate by using the air distribution hole 4-3 of the cross-sectional area of different through holes can achieve the purpose of accurately adjusting the gas flow rate.
  • the corresponding group of the same number of air distribution holes 4-3 are coincident with the corresponding air outlets 2-1, at this time
  • the outflow amount of the air outlet 2-1 is determined by the cross-sectional area of the through hole of each of the air distribution holes 4-3, so that the gas flow rate of each gas outlet 2-1 can be simultaneously discharged, and at the same time, the positioner 3 can send out its position signal, and the closed loop control of the system can be realized through the control circuit.
  • each group of air distribution starting holes 4-2 is in the air outlet sealing spring 10, the rigid ball 1 1
  • the air outlet O-ring 7 is completely closed under the joint action.
  • the air distribution starting hole 4-2 is simply rotated to the corresponding air outlet 2-1 position by the control circuit. It is possible to achieve the purpose of simultaneously sealing each gas passage of the regulating valve and determining the starting position of the regulating valve when it is started again. The regulating valve no longer operates when it reaches the specified airflow, and it does not consume electrical energy.
  • the present invention has the following remarkable effects as compared with the prior art:
  • the invention is generally applicable to a gas product which does not need to quickly adjust the gas flow rate, but needs to simultaneously adjust the gas flow rate and consumes less electric energy in multiple channels and multiple stages.
  • FIG. 1 is a schematic view showing the structure of a multi-channel step type electric gas regulating valve according to a first embodiment of the present invention, wherein the positioner detecting angle detecting mechanism of the regulating valve is mechanical.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Fig. 3 is a structural schematic view showing a rotation angle detecting mechanism of a magnetoelectric positioner used in the multi-channel step type electric gas regulating valve of the second embodiment of the present invention.
  • Fig. 4 is a structural schematic view showing a rotation angle detecting mechanism of a photoelectric type positioner used in a multi-channel step type electric gas regulating valve according to a third embodiment of the present invention. detailed description
  • a mechanical multi-channel step type electric gas regulating valve is composed of a geared motor 1, a valve casing 2, a positioner 3, an air flow distributor 4, and a positioner rotation angle detecting mechanism.
  • a reduction motor 1 is mounted on the outer side of the casing 2, and the drive shaft 6 of the reduction motor 1 extends into the valve body 2 and is sealingly connected to the casing wall via an O-ring 5, and the valve casing 2 is perpendicular to the drive shaft 6.
  • the other shell wall is provided with two air outlets 2-1, and the valve housing 2 is further provided with an air inlet 2-3.
  • a cylindrical positioner 3 is mounted on the drive shaft 6, and a set of vertically and mutually parallel projections 3-2 are provided on the outer circumference of the positioner 3 as positioning nodes of the positioner 3.
  • the circular air distributor 4 is slidably coupled to the positioner 3 by its own splines 4-3 and splines 3-1 of the positioner, the center line of the air distributor 4, the center line of the positioner 3 and the drive shaft 6 The center lines coincide.
  • an air outlet 0-shaped sealing ring 7 and a rigid hollow gasket 8 are provided in order from the outside to the inner end, and the inner end of the rigid hollow gasket 8 is provided.
  • the surface is slightly higher than the inner end surface of the air outlet 2-1.
  • Two sets of air distribution holes 4-3 and corresponding two air distribution starting holes 4-2 are provided on the air distributor disc 4-1 which is perpendicular to the center line of the air distributor 4 and coincides with the center.
  • the structure of the air distribution hole 4-3 is such that at least one through hole of different diameter is drilled in the rectangular semi-closed groove, the cross-sectional area of each slot is from 0 to 20 mm 2 , and the center lines of all the air distribution holes 4-3 are Through the center 0 of the air distributor disc 4-1, that is, the axis of the drive shaft 6, the center line angles of the adjacent two air distribution holes 4-3 of the same group are equal, and the air distribution of each group is started.
  • the hole 4-2 coincides with the corresponding air outlet 2-1, the center of the airflow distribution starting hole 4-2 of each group and the connection of the center O of the disk 4-1 and the group of air distribution starting holes 4 -2
  • the center line angles of adjacent air distribution holes 4-3 are equal.
  • An active sealing device is disposed between the port at the outlet port 2-1 and the corresponding air distribution starting hole 4-2, and a pressure spring 9 is disposed between the positioner 3 and the airflow distributor 4 to make the air distributor round Plate 4-1 is attached to the rigid hollow gasket.
  • the movable sealing device extends from an inner port of the air inlet 2-1, an air outlet O-ring 7 and a rigid hollow gasket 8 installed in the inner port, and an air distribution starting hole 4-2 and the hole extends rearward
  • the semi-closed cylinder 4-4, the sealing spring 10 housed in the semi-closed cylinder 4-4, and the rigid ball 11 are composed.
  • the diameter of the rigid ball 11 is slightly larger than the inner diameter of the air outlet O-ring 7 and slightly smaller than the inner diameter of the rigid hollow gasket 8, so that the air outlet 2-1 can be reliably sealed, and the rigid ball 11 and the semi-closed circle
  • the inner wall of the cylinder 4-4 is a sliding fit.
  • a positioning end corresponding to the set of positioning nodes 3-2 is disposed on the inner wall of the wide shell 2 to constitute a positioner rotation angle detecting mechanism, and the air flow of the same positioning node 3-2 and the groups on the disc 4-1 are sorted.
  • a vertically arranged set of teeth on the outer circumference of the positioner 3 is the set of positioning nodes 3-2, and the positioning end is provided by a positioning spring 13 -1, the stroke limiting piece 13-2, the sliding teeth 13-3, the sliding teeth 13-3 elastically contact with a set of protruding teeth 3-2 on the outer circumference of the positioner 3, so that the current of the geared motor 1 changes, and the control
  • the circuit emits a position signal of the positioner 3.
  • two sets of positioning nodes 3-2 and positioning ends are symmetrically mounted on both sides of the positioner and the valve housing 2.
  • a stop block 2-2 for the positioner 3 is also provided on the valve housing 2, wherein one stop block 2-2 is provided at the initial state of the positioner 3, and the other stop block 2-2 is provided at the positioner
  • the termination state of 3 that is, the state in which the gas outflow amount reaches the maximum value.
  • this example is a magnetoelectric multi-channel step type electric gas regulating valve, that is, the positioner detecting angle detecting mechanism adopts a magnetoelectric structure, and other structures are the same as those in the first embodiment.
  • the magnetoelectric positioner rotation angle detecting mechanism comprises a row of permanent magnet blocks 15 mounted at the same horizontal position on the outer circumference of the positioner 3 and a Hall element fixed on the inner wall of the valve casing 2 opposite to the row of permanent magnet blocks 15. 16 composition.
  • the Hall element is activated by the permanent magnet block 15 to emit a position signal of the positioner 3 to the control circuit to control the gas outflow amount.
  • this example is a photoelectric multi-channel step type electric gas regulating valve, that is, a positioner.
  • the rotation angle detecting mechanism adopts a photoelectric structure, and other structures are the same as those in the first embodiment.
  • the photoelectric positioner rotation angle detecting mechanism is provided by a row of through holes 17 provided at the same horizontal position on the outer circumference of the positioner 3, and the light emitting diodes 18 and the photoelectric receiving portions respectively located on the sides of the row of through holes 17 and fixed to the valve casing 2
  • the tube 19 is composed.
  • the positioner 3 When the positioner 3 rotates, the light emitted by the light-emitting diode 18 is received by the photoreceiving tube 19 through the through hole 17 and outputs a position signal of the positioner 3 to the control circuit, thereby realizing the control of the gas outflow amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Description

多通道阶跃式电动燃气调节阀 技术领域
本发明涉及气体流量调节阀技术领域, 特别涉及一种多通道阶跃式电动 燃气调节阀。 背景技术
现有技术中, 燃气调节阀以电磁型线性渐变燃气流量的调节方式为主, 这种电磁阀以电磁铁作驱动元件, 通过改变电磁铁线圈绕组的电流量来达到 改变燃气流量的目的。 电磁铁线圈的电流值与燃气流量的变化量接近线性关 系, 这种电磁阀往往用于燃气热水器的恒温调节, 其特点是调节速度快、 工 作电流大。 但是当需要保持某一燃气流量时仍然要消耗一定的电能; 一只电 磁阀只能调节一个燃气通道的燃气流量;而且产品加工精度要求高,成本高。
现有的需要自动调节燃气量的燃气具中, 并不是所有的燃气具都需要快 速、 线性连续地调节燃气流量的, 但却需要同时改变多个燃气通道的燃气流 量。 为了节省电能, 在设定的某个燃气量时不需消耗电能, 而且还要求该电 动燃气调节阔能同时兼有关闭燃气通道的功能。 如在家用自动燃气灶上, 当 灶具是双环火时,每个炉头用于燃气流量控制的调节阀,就需要同时控制内、 外环火两个燃气通道的不同的燃气流量, 同时还要求燃气调节阀能兼有关断 两个燃气通道的功能。 同理, 当灶具是三环火时, 就要求燃气调节阀能同时 控制内、 中、 外环火的三个燃气通道的燃气流量, 同时还要求具备关断三个 燃气通道的功能。 在现有技术中, 每个燃气通道就需要一个独立的燃气调节 阀, 如要求同时还具有独立关断燃气的功能, 则对于没有兼具关断燃气功能 的调节阀而言, 就需要在每个燃气通道中加装一个燃气截止阀, 因此, 即使 是控制双燃烧器且为双环火的家用燃气灶, 加上总开关阀就需要五个以上的 燃气电磁阀。
中国专利公报公开了一种"双封闭可调节流量气阀", 其公开号为 CN1601184, 该双封闭可调节流量气阀, 只可以同时关闭火种与大火的燃气 通道, 而不能单独地任意关闭火种或大火的燃气通道; 火种的燃气流量也只 是一个固定值而不能单独进行调节; 而大火的调节由于没有可以准确确定其 调节体与调节口的相对位置, 调节只能进行开环控制, 当对该流量气阀进行 开环控制时, 就很难准确地控制其流量的大小, 当进行若干次反复调节后, 这种状况将更加明显。 因此, 现有技术中, 尚未见有只用一只电动或电磁燃 气调节阀就可以同时各自独立准确地调节多个燃气通道的燃气流量或关断各 自的燃气通道。 发明内容
本发明的目的在于提供一种通过动作位置反馈信号及控制电路对燃气调 节阀进行准确控制, 能同时对多路燃气通道进行多档的阶跃式燃气流量的调 节,并能各自独立地关断所述多路燃气通道的多通道阶跃式电动燃气调节阀。
本发明所提出的技术解决方案是这样的: 一种多通道阶跃式电动燃气调 节阀, 包括减速电机 1和阀壳 2, 阀壳 2设有进气口和出气口, 减速电机 1 安装在阀壳 2—壳壁外侧, 减速电机 1的驱动轴 6伸入阀壳 2内并与壳壁密 封连接, 在与所述驱动轴 6垂直的阀壳 2另一壳壁设有 N个出气口 2-1, N 为 1一 5整数; 所述驱动轴 6装有圆柱形定位器 3, 在定位器 3外圆周上设有 一组定位节点 3-2, 还设有一个圆形气流分配器 4, 该气流分配器 4通过花键 与所述定位器 3作滑动连接, 所述气流分配器 4的中心线、 定位器 3的中心 线和驱动轴 6的中心线相重合; 所述出气口 2-1的内端口处从外到内依次设 有出气口 O形密封圈 7和硬质空心垫圈 8, 该硬质空心垫圈 8的内端面稍高 于出气口 2-1的内端面; 在垂直于气流分配器 4中心线且圆心重合的气流分 配器圆盘 4-1上设有 N组气流分配孔槽 4-3和相应 N个气流分配起始孔 4-2, 所述各个长方形气流分配孔槽 4-3内开有截面积从零至 20mm2不同大小的通 孔, 各气流分配孔槽 4-3的中心线均通过气流分配器圆盘 4-1的圆心 0, 同 一组的相邻两条气流分配孔槽 4-3的中心线夹角相等, 每一组的气流分配起 始孔 4-2与对应的出气口 2-1重合,每一组的气流分配起始孔 4-2的圆心和所 述气流分配器圆盘 4-1的圆心 O的连线与该组气流分配起始孔 4-2相邻的气 流分配孔槽 4-3的中心线夹角相等; 所述出气口 2-1 内端口处与对应的气流 分配起始孔 4-2之间设有活动密封装置, 在定位器 3与气流分配器 4之间设 有压力弹簧 9, 气流分配器圆盘 4-1贴紧在硬质空心垫圈 8上, 在所述阀壳 2 内壁上设有与该组定位节点 3-2对应的定位端, 组成定位器转动角度检测机 构, 该组各个定位节点 3-2与各组相同排序的气流分配孔槽 4-3—一对应, 在所述阀壳 2 内壁上设有与所述定位器 3 在起始状态和终止状态的止动块 2-2。
所述活动密封装置由出气口 2-1的内端口、 装在该内端口的出气口 O形 密封圈 Ί和硬质空心垫圈 8、气流分配起始孔 4-2及该孔向后延伸的半封闭圆 筒 4-4、装在半封闭圆筒 4-4内的密封弹簧 10和刚性圆球 11组成, 所述刚性 圆球 11的直径稍大于出气口 O形密封圈 7的内径又稍小于所述硬质空心垫 圈 8的内径, 所述刚性圆球 1 1与所述半封闭圆筒 4-4内壁作滑动配合。
所述定位器转动角度检测机构为机械式结构, 该机构由定位器 3外圆周 上的一组定位节点 3-2和装在阀壳 2内壁上的定位端组成,所述定位节点 3-2 由竖置的突齿构成,所述定位端由定位弹簧 13-1、行程限制片 13-2、滑齿 13-3 组成,所述滑齿 13-3与所述定位器 3外圆周上一组竖置的突齿 3-2弹性接触。
所述定位器转动角度检测机构为磁电式结构, 该机构由装在所述定位器 3 外圆周上同一水平位置排列的一组永久磁铁块和与该组永久磁铁块相对的 固装在阀壳 2内壁上的霍尔元件组成。
所述定位器转动角度检测机构为光电式结构, 该机构由设在所述定位器 3 外圆周上同一水平位置排列的一组通孔和分别位于该组通孔两侧且固定于 阀壳 2上的发光二极管和光电接收管组成。
所述同一组内相邻两条气流分配孔槽 4-3的相邻边之间的弧线距离小于 所述硬质空心垫圈 8的内径。
所述气流分配起始孔 4-2和末位气流分配孔槽 4-3分别位于相应的出气 口 2-1时分别有两块位置不同的止动块 2-2对所述定位器 3止动。
所述每组气流分配孔槽 4-3的数量为 1一 10个。
本电动燃气调节阀工作时, 减速电机 1伸入阀壳 2内的驱动轴 6通过定 位器 3及花键 3-1、 花键 4-3带动气流分配器 4转动, 气流分配器圆盘 4-1在 压力弹簧 9的作用下压在硬质空心垫圈 8上, 由于出气口 2-1内端口与硬质 空心垫圈 8之间装有 O形密封圈 7, 当硬质空心垫圈 8平面与相接触的气流 分配器圆盘 4-1有足够的光洁度并涂有既起润滑作用又起密封作用的不易干 涸变质的优质硅油时, 这些相接触的平面之间的漏气量即可以小于对燃气调 节阀所要求的燃气泄漏量。在起始状态时, 由于不同组的气流分配起始孔 4-2 的中心均与对应的出气口 2-1中心重合,同一组的相邻两条气流分配孔槽 4-3 的中心线夹角相等, 每一组的气流分配起始孔 4-2的圆心和驱动轴 6的轴心 连线与该气流分配起始孔 4-2相邻的气流分配孔槽 4-3的中心线夹角相等, 因而驱动轴 6带动定位器 3及气流分配器 4转动时, 各组相同序号的气流分 配孔槽 4-3都会同时与对应各组的出气口 2-1重合, 当某一序号的气流分配 孔槽 4_3与对应的出气孔 2-1重合时, 定位器 3外圆周上的对应定位节点 3-2 与固定在阀壳 2上的定位端 13相互作用产生变化的位置信号,控制电路根据 该信号就能确知气流分配器 4的准确转动位置并且准确地使相应的气流分配 孔槽 4-3与对应的出气口 2-1重合。 当气流分配器 4转至各组气流分配孔槽 4-3的起始孔 4-2时,刚性圆球 11在密封弹簧 10的作用下穿过硬质空心垫圈 8压向 O形密封圈 7, 对该出气口 2-1密封。 当每组气流分配孔槽 4-3数量较 多时, 为了使气流分配器 4以最小的转动角度去完成各个气流分配孔槽 4-3 依次转过相应的出气口 2-1,即以最短的调节时间去完成各出气口 2-1的气流 转变过程。 气流分配孔槽 4-3正对硬质空心垫圈 8的一面为长方槽, 其另一 面则按照出气量钻有预设截面积的通孔, 而当设计其中一个出气口 2-1需要 气流分配器 4转到某一个位置要关断燃气时, 则对应的气流分配孔槽 4-3的 通孔截面积为零, 就可以达到关断燃气的目的。 同一组内相邻的气流分配孔 槽 4-3的相邻边之间的弧线距离小于硬质空心垫圈 8的内径, 从而保证了气 流分配器 4转动时,从前一个气流分配孔槽 4-3转向后一个气流分配孔槽 4-3 的过程中, 出气流量不会被完全中断。
当定位器转动角度检测机构采用机械式时, 在驱动轴 6带动定位器 3及 气流分配器 4转动过程中, 如果定位器 3在位于相邻两个气流分配孔槽 4-3 之间转动时, 由于行程控制片 13-2的限制, 滑齿 13-3不与定位器 3的外圆 周接触, 此时减速电机 1只需克服气流分配器圆盘 4-1与硬质空心垫圈 8之 间的摩擦力。 当定位器 3旋转至突齿 3-2与滑齿 13-3相碰接时, 减速电机 1 除需克服上述的摩擦力外, 还需要克服定位弹簧 13-1施予滑齿 13-3的作用 力, 此时, 减速电机 1的驱动力就需要加大。 当定位器 3回转至气流分配器 起始孔 4-2的位置并与其中一块止动块 2-2相接触, 减速电机 1处于制动状 态而受力最大。 由于微型直流电机的驱动电流是随其受力越大而越大的。 在 上述工作过程中, 定位器 3在相邻两个气流分配孔槽 4-3之间转动时, 减速 电机 1驱动电流最小, 在突齿 3-2与滑齿 13-3相碰接时, 减速电机 1的驱动 电流加大, 该电流的大小可通过调节定位弹簧 13-1的弹力而改变, 当减速电 机 1处于制动状态时,其驱动电流最大,但只要对减速电机 1采取限流措施, 微型电机及减速齿轮就不会损坏。 控制电路通过检测上述三种状态时减速电 机 1的驱动电流的变化, 就可以知道定位器 3和气流分配器圆盘 4-1转动到 达的具体位置, 即位置信号, 从而实现系统闭环控制。
当定位器转动角度检测机构采用磁电式时, 通过安装在定位器 3外圆周 上的一组永久磁铁对安装在阀壳 2 上的霍尔元件产生的一组变化的位置信 号, 并输入控制电路实现系统闭环控制。
当定位器转动角度检测机构采用光电式时, 安装在阀壳 2上的发光二极 管与光电接收管之间的光线穿过设在定位器 3外圆周上的一组通孔而产生一 组通断变化的位置信号, 输入控制电路实现系统闭环控制。
采用预设不同通孔截面积的气流分配孔槽 4-3去限制燃气流量的方案, 可以达到准确地调整燃气流量的目的。 当定位器 3的某一个定位节点 3-2转 动到与定位端相对时, 与之对应的各组相同序号的气流分配孔槽 4-3均与对 应的出气口 2-1重合, 此时各出气口 2-1的出气量均由各自的气流分配孔槽 4-3的通孔截面积决定,因此可以同时令各出气口 2-1流出实际所需的燃气流 量, 与此同时, 定位器 3能发出其位置信号, 通过控制电路可实现系统的闭 环控制。 由于各组气流分配起始孔 4-2在出气口密封弹簧 10、 刚性圆球 1 1、 出气口 O形密封圈 7的共同作用下被完全封闭, 在调节阀每次工作完毕后, 只需通过控制电路把气流分配起始孔 4-2回旋至对应的出气口 2-1位置, 便 可以达到调节阀的各燃气通道同时密闭并可确定调节阀再次启动时的起始位 置的目的。 调节阀在到达指定气流量时就不再动作, 也就不会消耗电能。
综上所述, 与现有技术相比, 本发明具有如下显著效果:
( 1 ) 可以同时对多个燃气通道的气流量进行多档的准确的系统闭环调 节。
(2)本调节阀工作完后可以完全关断各燃气通道的燃气。
( 3 )本调节阀工作于燃气流量设定值时或停止工作后,减速电机不工作, 整个调节阔基本不消耗电能。
本发明通用于无需快速调节燃气流量, 但需同时进行多路多档次准确调 节燃气流量且耗用电能小的燃气产品。 附图说明
图 1是本发明实施例 1的多通道阶跃式电动燃气调节阀结构示意图, 该 调节阀的定位器转动角度检测机构为机械式。
图 2是图 1的 A— A剖视示意图。
图 3是本发明实施例 2的多通道阶跃式电动燃气调节阀所采用的磁电式 定位器转动角度检测机构结构示意图。
图 4是本发明实施例 3的多通道阶跃式电动燃气调节阀所采用的光电式 定位器转动角度检测机构结构示意图。 具体实施方式
通过下面实施例对本发明作进一步详细阐述。
实施例 1
参见图 1、 图 2所示, 一种机械式的多通道阶跃式电动燃气调节阀由减 速电机 1、 阀壳 2、定位器 3、气流分配器 4、 定位器转动角度检测机构组成。 阀壳 2—壳壁外侧安装有减速电机 1, 该减速电机 1的驱动轴 6伸入阀体 2 内并通过 O形密封圈 5与壳壁密封连接, 与驱动轴 6垂直的该阀壳 2另一壳 壁设有两个出气口 2-1, 所述阀壳 2上还设有进气口 2-3。 在驱动轴 6上装有 圆柱形定位器 3,在定位器 3的外圆周上设有一组竖置且相互平行的突齿 3-2 作为定位器 3的定位节点。 圆形气流分配器 4通过自身的花键 4-3和定位器 的花键 3-1与定位器 3作滑动连接, 气流分配器 4的中心线、 定位器 3的中 心线和驱动轴 6的中心线相重合。 在两个出气口 2-1的内端口处从外到内依 次装有出气口 0形密封圈 7和硬质空心垫圈 8, 所述硬质空心垫圈 8的内端 面稍高于出气口 2-1的内端面。 垂直于气流分配器 4中心线且圆心重合的气 流分配器圆盘 4-1上设有两组气流分配孔槽 4-3和对应的两个气流分配起始 孔 4-2。气流分配孔槽 4-3的结构是在长方形半封闭槽内钻有至少一个不同直 径的通孔, 每槽孔的截面积从 0至 20mm2, 所有气流分配孔槽 4-3的中心线 均通过气流分配器圆盘 4-1的圆心 0, 即驱动轴 6的轴心, 同一组的相邻两 条气流分配孔槽 4-3的中心线夹角相等, 每一组的气流分配起始孔 4-2与对 应的出气口 2-1重合, 每一组的气流分配起始孔 4-2的圆心和所述圆盘 4-1 圆心 O的连线与该组气流分配起始孔 4-2相邻的气流分配孔槽 4-3的中心线 夹角相等。 在出气口 2-1 内端口处与对应的气流分配起始孔 4-2之间设有活 动密封装置, 在定位器 3与气流分配器 4之间设有压力弹簧 9, 使气流分配 器圆盘 4-1贴紧在硬质空心垫圈上。 所述活动密封装置由进气口 2-1的内端 口、 装在该内端口的出气口 O形密封圈 7和硬质空心垫圈 8、 气流分配起始 孔 4-2及该孔向后延伸的半封闭圆筒 4-4、装在半封闭圆筒 4-4内的密封弹簧 10和刚性圆球 11组成。所述刚性圆球 11的直径稍大于出气口 O形密封圈 7 的内径又稍小于硬质空心垫圈 8的内径,可以对出气口 2-1进行可靠的密封, 刚性圆球 11与半封闭圆筒 4-4内壁作滑动配合。在阔壳 2内壁上设有与该组 定位节点 3-2对应的定位端, 组成定位器转动角度检测机构, 该组各个定位 节点 3-2与圆盘 4-1上各组相同排序的气流分配孔槽 4-3—一对应。对于机械 式多通道阶跃式电动燃气调节阀而言, 定位器 3外圆周上的竖向排列的一组 突齿就是所述的一组定位节点 3-2, 所述定位端由定位弹簧 13-1、 行程限制 片 13-2、滑齿 13-3组成,滑齿 13-3与定位器 3外圆周上一组突齿 3-2弹性接 触, 使减速电机 1的电流发生变化, 向控制电路发出定位器 3的位置信号。 本实施例中, 为了定位器平衡受力, 采用两组定位节点 3-2及定位端分别对 称安装在定位器及阀壳 2两侧。在阀壳 2上还设有针对定位器 3的止动块 2-2, 其中一块止动块 2-2设在定位器 3的起始状态, 另一块止动块 2-2设在定位 器 3的终止状态, 即燃气出气量达到最大值的状态。
实施例 2
参见图 3所示, 本例是磁电式多通道阶跃式电动燃气调节阀, 即定位器 转动角度检测机构采用磁电式结构, 其他结构与实施例 1相同。 磁电式定位 器转动角度检测机构由装在定位器 3外圆周同一水平位置上的一排永久磁铁 块 15和与该排永久磁铁块 15相对的固装在阀壳 2内壁上的霍尔元件 16组成。 定位器 3转动时,霍尔元件受各永久磁铁块 15的作用会发出定位器 3的位置 信号给控制电路对燃气出气量进行控制。
实施例 3
参见图 4所示, 本例是光电式多通道阶跃式电动燃气调节阀, 即定位器 转动角度检测机构采用光电式结构, 其他结构与实施例 1相同。 光电式定位 器转动角度检测机构由设在定位器 3 外圆周同一水平位置上的一排通孔 17 和分别位于该排通孔 17两侧且固定于阀壳 2上的发光二极管 18和光电接收 管 19组成。定位器 3转动时,发光二极管 18发出的光线穿过通孔 17被光电 接收管 19接收并向控制电路输出此时定位器 3的位置信号,实现对燃气出气 量的控制。

Claims

权利要求
1、一种多通道阶跃式电动燃气调节阀,包括减速电机(1)和阀壳(2), 阀壳 (2) 设有进气口和出气口, 减速电机 (1) 安装在阀壳 (2) —壳壁外 侧, 减速电机 (1) 的驱动轴 (6) 伸入阀壳 (2) 内并与壳壁密封连接, 其 特征在于: 在与所述驱动轴(6)垂直的阀壳(2)另一壳壁设有 N个出气口 (2-1) , N为 1一 5整数; 所述驱动轴 (6)装有圆柱形定位器(3) , 在定 位器 (3) 外圆周上设有一组定位节点 (3-2) , 还设有一个圆形气流分配器 (4) , 该气流分配器 (4)通过花键与所述定位器 (3) 作滑动连接, 所述 气流分配器 (4) 的中心线、 定位器 (3) 的中心线和驱动轴 (6) 的中心线 相重合; 所述出气口 (2-1) 的内端口处从外到内依次设有出气口 O形密封 圈 (7) 和硬质空心垫圈 (8) , 该硬质空心垫圈 (8) 的内端面稍高于出气 口 (2-1) 的内端面; 在垂直于气流分配器(4) 中心线且圆心重合的气流分 配器圆盘(4-1)上设有 N组气流分配孔槽(4-3)和相应 N个气流分配起始 孔(4-2) , 各个长方形气流分配孔槽(4-3) 内开有截面积从零至 20mm2不 同大小的通孔,各气流分配孔槽(4-3)的中心线均通过气流分配器圆盘(4-1) 的圆心◦, 同一组的相邻两条气流分配孔槽(4-3)的中心线夹角相等, 每一 组的气流分配起始孔(4-2) 与对应的出气口 (2-1) 重合, 每一组的气流分 配起始孔(4-2) 的圆心和所述气流分配器圆盘 (4-1) 圆心 O的连线与该组 气流分配起始孔 (4-2) 相邻的气流分配孔槽 (4-3) 的中心线夹角相等; 所 述出气口 (2-1) 内端口处与对应的气流分配起始孔 (4-2)之间设有活动密 封装置, 在定位器 (3) 与气流分配器 (4) 之间设有压力弹簧 (9) , 气流 分配器圆盘(4-1)贴紧在硬质空心垫圈 (8)上, 在所述阀壳(2) 内壁上设 有与该组定位节点(3-2)对应的定位端, 组成定位器转动角度检测机构, 该 组各个定位节点 (3-2) 与各组相同排序的气流分配孔槽 (4-3) —一对应, 在所述阀壳(2) 内壁上设有所述定位器(3)在起始状态和终止状态的止动 块 (2-2) 。
2、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 所述活动密封装置由出气口 (2-1) 的内端口、 装在该内端口的出气口 O形 密封圈 (7)和硬质空心垫圈 (8) 、 气流分配起始孔(4-2)及该孔向后延伸 的半封闭圆筒 (4-4) 、 装在半封闭圆筒 (4-4) 内的密封弹簧(10) 和刚性 圆球(11)组成, 所述刚性圆球(11) 的直径稍大于出气口 O形密封圈 (7) 的内径又稍小于所述硬质空心垫圈 (8) 的内径, 所述刚性圆球 (11) 与所 述半封闭圆筒(4-4) 内壁作滑动配合。
3、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 所述定位器转动角度检测机构为机械式结构, 该机构由定位器(3) 外圆周 上的一组定位节点 (3-2)和装在阀壳 (2) 内壁上的定位端组成, 所述定位 节点 (3-2) 由竖置的突齿构成, 所述定位端由定位弹簧(13-1 ) 、 行程限制 片 (13-2) 、 滑齿 (13-3 )组成, 所述滑齿 (13-3 )与所述定位器(3 )外圆 周上一组竖置的突齿 (3-2) 弹性接触。
4、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 所述定位器转动角度检测机构为磁电式结构, 该机构由装在所述定位器(3 ) 外圆周上同一水平位置排列的一组永久磁铁块和与该组永久磁铁块相对的 固装在阀壳 (2) 内壁上的霍尔元件组成。
5、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 所述定位器转动角度检测机构为光电式结构, 该机构由设在所述定位器(3 ) 外圆周上同一水平位置排列的一组通孔和分别位于该组通孔两侧且固定于 阀壳 (2)上的发光二极管和光电接收管组成。
6、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 所述同一组内相邻两条气流分配孔槽(4-3 )的相邻边之间的弧线距离小于所 述硬质空心垫圈 (8) 的内径。
7、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 所述气流分配起始孔 (4-2) 和末位气流分配孔槽(4-3 ) 分别位于相应的出 气口 (2-1 ) 时, 分别有两块位置不同的止动块(2-2)对所述定位器(3 )止 动。
8、 根据权利要求 1所述的多通道阶跃式电动燃气调节阀, 其特征在于: 每组气流分配孔槽 (4-3 ) 的数量为 1一 10个。
PCT/CN2010/001650 2009-10-21 2010-10-21 多通道阶跃式电动燃气调节阀 WO2011047541A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10824382.5A EP2492554B1 (en) 2009-10-21 2010-10-21 Multi-channel stepped motor operated gas adjusting valve
US13/502,773 US8844568B2 (en) 2009-10-21 2010-10-21 Multi-channel stepped motor operated gas adjusting valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101933255A CN101696742B (zh) 2009-10-21 2009-10-21 多通道阶跃式电动燃气调节阀
CN200910193325.5 2009-10-21

Publications (1)

Publication Number Publication Date
WO2011047541A1 true WO2011047541A1 (zh) 2011-04-28

Family

ID=42141859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001650 WO2011047541A1 (zh) 2009-10-21 2010-10-21 多通道阶跃式电动燃气调节阀

Country Status (4)

Country Link
US (1) US8844568B2 (zh)
EP (1) EP2492554B1 (zh)
CN (1) CN101696742B (zh)
WO (1) WO2011047541A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989861A (zh) * 2015-07-09 2015-10-21 广东长青(集团)股份有限公司 一种灶具智能阀

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9317046B2 (en) * 2008-07-03 2016-04-19 Mike Gum Variable output heating control system
TWI435196B (zh) 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
CN101696742B (zh) 2009-10-21 2010-12-08 潘兆铿 多通道阶跃式电动燃气调节阀
US9400004B2 (en) 2010-11-29 2016-07-26 Pivotal Systems Corporation Transient measurements of mass flow controllers
CN102705553A (zh) * 2012-06-25 2012-10-03 江苏亚希维医疗器械有限责任公司 一种流量调节装置
CN103644320B (zh) * 2013-11-21 2016-03-30 宁波方太厨具有限公司 带角度传感器的燃气旋塞阀
CN103615589B (zh) * 2013-12-06 2016-01-20 潘兆铿 多通道阶跃式电动燃气调节阀的点火通道结构
CN103900846A (zh) * 2014-04-11 2014-07-02 上海创塔电子科技有限公司 一种pm2.5、pm10、spm切割器自动转换装置
CN104006420B (zh) * 2014-06-24 2016-09-14 佛山市禅城区星火燃气具电子有限公司 一种旋塞阀式燃气灶用的固定定时防干烧点火控制器
WO2017011325A1 (en) 2015-07-10 2017-01-19 Pivotal Systems Corporation Method and apparatus for gas flow control
MX2018006277A (es) * 2015-11-20 2018-08-15 Smc Corp Valvula de conmutacion.
WO2017210386A1 (en) * 2016-06-01 2017-12-07 B/E Aerospace, Inc. Valve assembly and method of operating same
JP6832183B2 (ja) * 2017-02-13 2021-02-24 三菱重工業株式会社 排気バイパス装置及び過給機
US10935249B2 (en) 2017-02-17 2021-03-02 Lg Electronics Inc. Knob assembly for cook top
KR102420106B1 (ko) * 2017-02-17 2022-07-12 엘지전자 주식회사 노브 조립체 및 이를 포함하는 조리기기
US11231180B2 (en) 2017-02-17 2022-01-25 Lg Electronics Inc. Knob assembly for cook top
CN107940032B (zh) * 2017-12-08 2024-04-30 曹樊德 一种恒温执行器及其控制方法
CN111140672B (zh) * 2018-11-06 2021-07-16 宁波方太厨具有限公司 热水器前管气路控制阀结构
CN111981500B (zh) * 2019-05-24 2024-04-23 林内株式会社 火势调节阀
US11841145B2 (en) * 2020-02-28 2023-12-12 Midea Group Co., Ltd. Configurable control selectors
US11442487B2 (en) 2020-02-28 2022-09-13 Midea Group Co., Ltd. Appliance burner assignment indication
CN212899882U (zh) * 2020-08-04 2021-04-06 厦门吉科卫浴有限公司 一种轻便的水路切换装置
JP7320853B2 (ja) * 2021-01-28 2023-08-04 株式会社不二工機 流量制御弁

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151963A (ja) * 1994-11-30 1996-06-11 Unisia Jecs Corp 排気還流制御弁
US6109302A (en) * 1999-04-23 2000-08-29 Delphi Technologies, Inc. Three-way gas management valve
CN2494463Y (zh) * 2001-06-21 2002-06-05 绍兴水联智能仪表有限公司 微功耗电动磁控阀
FR2827362A1 (fr) * 2001-07-13 2003-01-17 Giat Ind Sa Vanne d'alimentation pour vehicule fonctionnant au gaz naturel comprime
CN1601184A (zh) 2004-10-27 2005-03-30 潘兆铿 双封闭可调节流量气阀
CN201318496Y (zh) * 2008-12-08 2009-09-30 郑龙永 燃气表电控阀
CN101696742A (zh) * 2009-10-21 2010-04-21 潘兆铿 多通道阶跃式电动燃气调节阀

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US891076A (en) * 1907-07-18 1908-06-16 Abrahm Jarmolowsky Gas-valve.
US923433A (en) * 1909-03-22 1909-06-01 Gustave E Kaschub Gas-chandelier.
US1154177A (en) * 1915-05-07 1915-09-21 Forest V Detwiler Valve for gas-burners.
US1228469A (en) * 1916-06-17 1917-06-05 Thomas J Hruby Valve.
US1630781A (en) * 1923-09-28 1927-05-31 E J Woodison Company Multiway valve
US2062749A (en) * 1933-07-03 1936-12-01 Railway Utility Company Burner control apparatus
US2075458A (en) * 1935-09-13 1937-03-30 Arthur L Parker Disk valve assembly
US2209132A (en) * 1938-03-17 1940-07-23 Arthur L Parker Valve assembly
US2335085A (en) * 1941-03-18 1943-11-23 Colonnade Company Valve construction
US2389000A (en) * 1943-10-21 1945-11-13 Colonnade Company Valve construction
NL126881C (zh) * 1959-06-04 1900-01-01
DE3028408C2 (de) * 1980-07-26 1986-05-07 Ideal-Standard Gmbh, 5300 Bonn Mischventil zur Steuerung eines Wasserstromes
US5261451A (en) * 1991-05-02 1993-11-16 General Electric Company Pneumatic multiplexer
US5329968A (en) * 1992-06-29 1994-07-19 KWW Gesellschaft fur Verfahrenstechnik mbH Shuttle valve
CN2152992Y (zh) * 1993-02-20 1994-01-12 袁培茂 燃气自动控制阀
US5799698A (en) * 1996-06-05 1998-09-01 Lin; Hsing-Chu Switch for gas burner
CN1093615C (zh) * 1998-11-25 2002-10-30 海尔集团公司 燃气源转换阀
DE10249936A1 (de) * 2002-10-24 2004-05-13 Abb Research Ltd. Ventilanordnung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151963A (ja) * 1994-11-30 1996-06-11 Unisia Jecs Corp 排気還流制御弁
US6109302A (en) * 1999-04-23 2000-08-29 Delphi Technologies, Inc. Three-way gas management valve
CN2494463Y (zh) * 2001-06-21 2002-06-05 绍兴水联智能仪表有限公司 微功耗电动磁控阀
FR2827362A1 (fr) * 2001-07-13 2003-01-17 Giat Ind Sa Vanne d'alimentation pour vehicule fonctionnant au gaz naturel comprime
CN1601184A (zh) 2004-10-27 2005-03-30 潘兆铿 双封闭可调节流量气阀
CN201318496Y (zh) * 2008-12-08 2009-09-30 郑龙永 燃气表电控阀
CN101696742A (zh) * 2009-10-21 2010-04-21 潘兆铿 多通道阶跃式电动燃气调节阀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989861A (zh) * 2015-07-09 2015-10-21 广东长青(集团)股份有限公司 一种灶具智能阀

Also Published As

Publication number Publication date
EP2492554A1 (en) 2012-08-29
CN101696742A (zh) 2010-04-21
US8844568B2 (en) 2014-09-30
EP2492554A4 (en) 2017-01-04
EP2492554B1 (en) 2018-07-18
CN101696742B (zh) 2010-12-08
US20120204979A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
WO2011047541A1 (zh) 多通道阶跃式电动燃气调节阀
KR100929211B1 (ko) 정유량 자동제어장치
US10088849B2 (en) Fluid activated flow control apparatus
US5944052A (en) Multiple outlets self-actuated irrigation valve
US9341281B2 (en) Fluid activated flow control apparatus
WO2010133137A1 (zh) 智能恒温出水装置
US20150204454A1 (en) Fluid activated flow control apparatus
JP2013534602A (ja) ステップモータ作動の平衡型流量制御弁
US20110266355A1 (en) Water mixer for faucet
JPS6069375A (ja) 流量調整弁の開度制御装置
JPS6111499A (ja) フアン駆動装置
CA2688773C (en) Rotary type heat exchange apparatus with automatic flow rate exchange modulation
US10119735B2 (en) Electronic expansion valve
EG24907A (en) Choke valve device
CN205331487U (zh) 燃气旋塞阀
WO2013169511A1 (en) Fluid activated flow control apparatus
US20160215975A1 (en) Gas burner assembly for a gas hob, gas hob and gas oven
CN106195333B (zh) 一种切换阀及热水器
CN109931418B (zh) 电控旋塞阀
CN212318853U (zh) 一种阀芯
CN219712416U (zh) 一种两进两出式控制装置
KR101586257B1 (ko) 더블 노즐 타입 스마트 포지셔너
CN217003140U (zh) 一种电动式暖气漏水自动控制装置
JPS6069373A (ja) 流量調整弁の開度制御装置
CN217842901U (zh) 一种新型阀门驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13502773

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010824382

Country of ref document: EP