WO2011046041A1 - ミラーサイクルエンジン - Google Patents

ミラーサイクルエンジン Download PDF

Info

Publication number
WO2011046041A1
WO2011046041A1 PCT/JP2010/067423 JP2010067423W WO2011046041A1 WO 2011046041 A1 WO2011046041 A1 WO 2011046041A1 JP 2010067423 W JP2010067423 W JP 2010067423W WO 2011046041 A1 WO2011046041 A1 WO 2011046041A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
supply
air
supercharger
valve
Prior art date
Application number
PCT/JP2010/067423
Other languages
English (en)
French (fr)
Inventor
道靖 石田
健次郎 小田
長面川 昇司
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201080046272.5A priority Critical patent/CN102575589B/zh
Priority to EP10823309.9A priority patent/EP2489861B1/en
Priority to US13/501,888 priority patent/US20120279218A1/en
Priority to KR1020127009377A priority patent/KR101312157B1/ko
Publication of WO2011046041A1 publication Critical patent/WO2011046041A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a Miller cycle engine that closes an air supply valve earlier or later than bottom dead center to make a compression ratio smaller than an expansion ratio, and particularly relates to a technique for improving the thermal efficiency of the mirror cycle by increasing the air supply pressure.
  • the Miller cycle engine is effective for avoiding knocking and realizing high thermal efficiency by closing the air supply valve earlier or later than the bottom dead center and keeping the compression ratio of the engine smaller than the expansion ratio. Further, it is known that a large expansion ratio can be realized, and combustion gas can be sufficiently expanded to use combustion energy more efficiently as torque.
  • a PV diagram indicated by a solid line in FIG. 7 is a PV diagram of an internal combustion engine with a supercharger, and shows a mirror cycle in which the air supply is quickly closed based on the Otto cycle. It consists of a compression stroke (M1), a combustion / expansion stroke (M2), an exhaust stroke (M3), and an air supply stroke (M4).
  • M1 compression stroke
  • M2 combustion / expansion stroke
  • M3 exhaust stroke
  • M4 air supply stroke
  • the intake valve is set earlier than the bottom dead center. By closing, it expands along the line m1 from the point P, returns again along the line m1, compresses again, and then changes along the line of the compression stroke (M1) from the point P.
  • the piston stroke of the combustion chamber volume used for calculating the compression ratio is A1
  • the piston stroke of the combustion chamber volume used for calculating the expansion ratio is A2
  • the compression ratio is set to the expansion ratio. It can be made smaller.
  • the supply stroke (M4) and the exhaust stroke (M3) are performed by the supply air pressurization by the supercharger.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-305606
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-220480
  • the configuration shown in Patent Document 1 connects an exhaust gas supply pipe 03 from a mirror cycle gas engine 01 to a steam generator 05, and a working fluid circulation pipe connected to the steam generator 05.
  • 07 is provided with a steam turbine 09
  • an output shaft 011 of the steam turbine 09 is provided with a supercharger 013 for supplying compressed air to the Miller cycle gas engine 01
  • the combustion exhaust gas from the Miller cycle gas engine 01 is used as a heat source.
  • the feeder 013 is driven to increase the engine output.
  • Patent Document 2 discloses a Miller cycle engine having a two-stage turbocharger in series. Further, this Miller cycle engine employs exhaust gas recirculation (EGR) to suppress knocking and achieve high fuel efficiency. An invention for realizing the above is shown.
  • EGR exhaust gas recirculation
  • Patent Documents 1 and 2 do not disclose a technique for improving the thermal efficiency by increasing the pumping work formed by the exhaust stroke and the intake stroke in the Miller cycle engine. Furthermore, as already described with reference to FIG. 7, simply increasing the supercharging pressure of the supercharger not only does not improve the thermal efficiency due to the pumping work, but also increases the in-cylinder maximum pressure (Pmax). Therefore, there is a problem that an adverse effect occurs in the mechanical strength and heat load of the engine body.
  • the present invention has been made in view of the above problems, and it is possible to improve the pumping work formed by the supply stroke and the exhaust stroke by increasing only the supply pressure or increasing the supply pressure to be larger than the exhaust pressure. It is an object of the present invention to provide a mirror cycle engine that maintains the maximum in-cylinder pressure substantially the same as before the increase of the supply air pressure and improves the mechanical strength of the engine body and the reliability with respect to the heat load.
  • the present invention is provided with a supercharger that increases the supply pressure, and a mirror that closes the supply valve earlier or later than the bottom dead center to make the compression ratio smaller than the expansion ratio.
  • the supply valve variable means for controlling the opening / closing valve timing of the supply valve and the supply air pressurized by the supercharger are additionally supplied without increasing the exhaust pressure.
  • a supply air pressure adding device that raises only the air pressure or accompanies an increase in exhaust gas pressure and raises the air supply pressure to a value higher than the exhaust gas pressure, and the higher the air supply pressure added by the air supply pressure adding device, the higher the air supply pressure.
  • a valve closing timing control means for advancing the valve closing timing to maintain substantially the same cylinder maximum pressure before addition.
  • the supply air pressure is increased to be larger than the exhaust gas pressure, and the air supply stroke and the exhaust stroke are performed. Since the pumping work to be formed is improved (improvement of the pumping work by enlarging the hatched area shown in FIG. 4), the thermal efficiency of the mirror cycle engine can be improved.
  • valve closing timing control means changes the valve closing timing of the air supply valve according to the air supply pressure added by the air supply pressure adding device, and the valve closing timing of the air supply valve is increased as the added air supply pressure is higher. Since it is maintained to be almost the same as the in-cylinder maximum pressure before addition (in-cylinder maximum pressure (Pmax) shown in FIG. 4), the increase in the in-cylinder maximum pressure has an adverse effect on the mechanical strength and heat load of the engine body It can be avoided to improve reliability.
  • valve closing timing control means detects a total supply pressure of a supply pressure by the supercharger and an additional supply pressure by the supply pressure adding device by a supply pressure sensor.
  • the closing timing of the air supply valve may be controlled based on the detected value.
  • the valve closing timing of the air supply valve is controlled based on the detected value of the air supply pressure reflecting the above, it is possible to accurately control the valve closing timing of the air supply valve in response to a change in the outside air condition. For example, when the outside air temperature increases, the supply air pressure decreases due to a decrease in the air density, and the closing timing of the supply valve is controlled based on the reduced pressure value. Moreover, even if the outside air conditions fluctuate greatly, the in-cylinder maximum pressure can be maintained with high accuracy before the additional supply air pressure acts.
  • the supply air pressure adding device is configured by using regenerative energy of the engine.
  • regenerative energy is steam generated by utilizing the exhaust gas heat of the engine, and an additional supply air pressure is generated upstream of the supercharger by the compressor section of the steam turbine driven by the steam. To do.
  • steam is generated using the exhaust gas heat, the steam turbine is driven, and the supply air is pre-pressurized by the compressor portion of the steam turbine and supplied to the supercharger without increasing the exhaust pressure.
  • the supply pressure can be increased, and the pumping work formed by the exhaust stroke and the supply stroke in the mirror cycle can be increased.
  • the supercharger is a hybrid supercharger with a built-in generator, and regenerative energy is electric power generated using exhaust gas, and the electric power is provided in the air supply passage.
  • the additional air pressure may be generated by driving the air supply blower.
  • a front-stage supercharger that is driven by using the exhaust flow of the engine as regenerative energy is provided on the upstream side of the supercharger, and the front-stage supercharger causes the upstream of the supercharger. It is good to generate additional supply air pressure.
  • the supercharging characteristic of the front-stage turbocharger is set so that the increase in the supply air pressure becomes larger than the exhaust pressure that increases to drive the front-stage supercharger.
  • the pumping work formed by the supply stroke and the exhaust stroke in the mirror cycle can be improved by raising the supply pressure more than the exhaust pressure.
  • the present invention relates to a Miller cycle engine provided with a supercharger for increasing an air supply pressure, and an air supply valve variable means for controlling the opening / closing valve timing of the air supply valve, and additional to the supercharging by the supercharger.
  • the air supply pressure adding device for increasing the air supply pressure to be larger than the exhaust pressure, and the higher the air supply pressure applied by the air supply pressure adding device.
  • valve closing timing control means that advances the valve closing timing of the air supply valve and maintains it approximately the same as the maximum cylinder pressure before addition, only the air supply pressure is increased or the air supply pressure is increased more than the exhaust pressure
  • the pumping work formed by the air supply stroke and the exhaust stroke can be improved to improve the thermal efficiency.
  • the in-cylinder maximum pressure is maintained substantially the same as before the increase in the supply air pressure, it is possible to provide a mirror cycle engine with improved reliability by avoiding problems with the mechanical strength and heat load of the engine body.
  • FIG. 1 is an overall configuration diagram of a first embodiment according to a mirror cycle engine of the present invention. It is a whole block diagram of 2nd Embodiment. It is a whole block diagram of 3rd Embodiment. It is a PV diagram explaining the mirror cycle of the present invention. It is a PV diagram explaining the mirror cycle of the present invention. It is explanatory drawing which shows the relationship between an air supply pressure, exhaust pressure, and a fuel consumption, (a) shows the relationship between an air supply pressure and exhaust pressure, (b) is the air supply pressure and exhaust pressure which were shown to (a). It shows the relationship of fuel consumption in the relationship. It is a PV diagram explaining the conventional mirror cycle. It is explanatory drawing of a prior art.
  • FIG. 1 is an overall configuration diagram of a mirror cycle engine (hereinafter referred to as an engine) 2 according to a first embodiment of the present invention.
  • the engine 2 is described as a four-cycle gas engine as an example, but is not limited to a gas engine.
  • the cylinder 4 of the engine body is provided with a piston 6 slidably fitted in a reciprocating manner, and a crankshaft for converting the reciprocating motion of the piston 6 into rotation through a connecting rod (not shown).
  • a combustion chamber 10 defined between the upper surface and the inner surface of the cylinder head 8; an air supply port 12 connected to the combustion chamber 10; and an air supply valve 14 for opening and closing the air supply port 12; An exhaust port 16 connected to the chamber 10 and an exhaust valve 18 for opening and closing the exhaust port 16 are provided.
  • the fuel gas is mixed with the compressed air supplied from the compressor unit 20a of the supercharger (exhaust supercharger) 20 and supplied in a premixed gas state.
  • the gas is supplied to the combustion chamber 10 through the air port 12 and the air supply valve 14 and ignited by an ignition device.
  • Compressed air is supplied to the air supply port 12 from the compressor unit 20a of the supercharger 20 through the air supply passage K2, and an air cooler 22 is provided in the air supply passage K2. Further, the exhaust port 16 is connected to the turbine portion 20b of the supercharger 20 via the exhaust passage L1.
  • the exhaust gas that has passed through the turbine portion 20b is led to the first heat exchanger 24 (steam generator) through the exhaust passage L2, and is supplied from the outside by the first heat exchanger (steam generator) 24. Steam is generated by heating the water supply.
  • the engine cooling water supplied by the cooling water pipe C1 is led to the second heat exchanger (steam generator) 26 through the cooling water pipe C2, and the water supplied from the outside is heated to generate steam.
  • the steam generated in the first heat exchanger 24 and the second heat exchanger 26 is supplied to the turbine section 28b of the steam turbine (supply pressure adding device) 28 through the steam pipe S, and is coaxial with the turbine section 28b.
  • the compressor section 28a provided is driven to pressurize the supply air.
  • the two-stage supercharging of the compressor unit 28a of the steam turbine 28 and the compressor unit 20a of the supercharger 20 is performed so that the pressurized supply air is supplied to the compressor unit 20a of the supercharger 20 and further pressurized. Consists of.
  • steam is generated using the exhaust gas heat
  • the steam turbine 28 is driven, the supply air is pre-pressurized by the compressor section 28a of the steam turbine 28, and supplied to the supercharger 20 to thereby reduce the exhaust pressure.
  • the air supply pressure can be increased without increasing it.
  • the steam that has passed through the turbine section 28b of the steam turbine 28 is cooled and condensed by the condenser 30 and supplied again to the first heat exchanger 24 and the second heat exchange
  • a supply air pressure sensor 32 is installed in the vicinity of the supply port 12 of the supply passage K2, and the supply air pressure flowing into the combustion chamber 10 is measured. That is, the pressure in the supply passage K2 at the start of the supply stroke is input to the valve closing timing control means 34 as a detection signal.
  • the valve closing timing control means 34 calculates the optimum valve closing timing of the air supply valve 14 based on the detected pressure value, and outputs a control signal to the air supply valve variable means 36.
  • the valve closing timing control means 34 has a valve closing timing control map 38 in which the valve closing timing of the air supply valve 14 corresponding to the air supply pressure detected by the air pressure sensor 32 is set.
  • steam as a supply air pressure adding device is formed by the supercharger 20 with respect to the exhaust pressure Ph during the exhaust stroke (M3) and the supply air pressure Pk during the air supply stroke (M4).
  • the increase in the supply air pressure that is additionally pressurized by the turbine 28 is added as ⁇ P, and becomes the pressure during the supply stroke (M5).
  • the total air supply pressure (Pk + ⁇ P) of the air supply pressure Pk by the supercharger 20 and the additional air supply pressure ⁇ P by the steam turbine 28 is detected by the air pressure sensor 32, and the air supply valve 14 is detected based on this detected value.
  • the valve closing timing is controlled.
  • valve closing timing control map 38 the relationship between the total supply pressure (Pk + ⁇ P) and the closing timing of the supply valve is set in advance.
  • the valve closing timing of the air supply valve 14 is set so that the compression stroke is performed along the line of the compression stroke (M1) in FIG. 4, that is, the in-cylinder maximum pressure (Pmax) is set to the additional supply pressure by the steam turbine 28. Therefore, the start position of the compression stroke on the line of the compression stroke (M1) is changed according to the magnitude of the total supply pressure (Pk + ⁇ P). Then, the closing timing of the air supply valve 14 is advanced or delayed so as to correspond to the start position.
  • valve closing timing control map 38 the total supply pressure (Pk + ⁇ P) and the supply valve 14 are set so that the compression stroke starts along the line of the compression stroke (M1) before the additional supply pressure acts.
  • the relationship with the valve closing timing is preset.
  • the supply pressure of the supply air flowing into the combustion chamber 10 is directly detected by the supply pressure sensor 32 and the closing timing of the supply valve 14 is controlled by the detected value, that is, the atmospheric temperature, atmospheric pressure, humidity
  • the detected value that is, the atmospheric temperature, atmospheric pressure, humidity
  • the effect of changes in the outside air condition such as the above is reflected in the supply air pressure, so that the opening timing of the supply valve can be accurately corrected with respect to the change in the outside air condition.
  • the internal maximum pressure (Pmax) can be maintained constant.
  • the optimal valve closing timing control of the air supply valve 14 is performed based on the preset total air supply pressure (Pk + ⁇ P), the outside air condition has changed even when the additional air supply pressure is applied. Even in this case, since the cylinder travels on the compression stroke (M1) line before the additional supply air pressure acts, the in-cylinder maximum pressure (Pmax) is maintained constant and accurately.
  • FIG. 6 shows a simulation calculation result.
  • FIG. 6A shows a change state of the supply air pressure and the exhaust gas pressure with a crank angle on the horizontal axis in a constant supercharging pressure state.
  • FIG. 6B shows the fuel consumption.
  • the position of the bottom of the characteristic curve in FIG. 6A indicates a substantially bottom dead center, and the direction from the bottom dead center position to the left is the direction in which the closing timing of the air supply valve 14 is advanced.
  • FIG. 6 (a) in the calculation result, as the throttle of the turbocharger is made constant and the valve closing timing is advanced, the turbocharger efficiency is improved and the differential pressure between the supply air pressure and the exhaust pressure is increased.
  • the pressure difference between the exhaust stroke (M3) and the supply stroke (M5) shown in FIG. 4 is increased, and the pumping work amount can be increased.
  • an increase in the differential pressure as shown in FIG. 6A is not necessarily obtained, but the above-mentioned tendency was confirmed in the calculation. .
  • FIG. 6B showing the fuel consumption characteristics shows the direction in which the valve closing timing of the air supply valve 14 advances from the bottom dead center position to the left side with the horizontal axis as the crank angle as in FIG. 6A. It can be seen that the fuel consumption rate decreases as the valve closing timing advances. Moreover, in the calculation, when it was assumed that no increase in the exhaust pressure occurred, it was located at the point Q in FIGS. (A) and (b), and a large decrease in fuel consumption could be confirmed.
  • the first embodiment described above by using steam generated by utilizing exhaust heat and heated engine cooling water heat as regenerative energy from the engine body, it is possible to suppress an increase in exhaust pressure and only supply air pressure. It becomes possible to rise. In this way, only the supply pressure can be increased by the steam turbine 28 using the exhaust heat and the heated engine cooling water heat, so that it is formed by the supply stroke (M5) and the exhaust stroke (M3).
  • the pumping work (shaded area in FIG. 4) can be improved, and the thermal efficiency of the Miller cycle engine can be improved.
  • steam is generated by both the first heat exchanger (steam generator) 24 and the second heat exchanger (steam generator) 26, but only one of them is used, that is, It may be generated using either exhaust heat or heated engine coolant heat.
  • valve closing timing control means 34 changes the valve closing timing of the air supply valve 14 according to the air supply pressure added by the steam turbine 28, and the valve closing timing of the air supply valve 14 becomes higher as the additional air supply pressure increases. Is maintained to be approximately the same as the maximum cylinder pressure before the addition (maximum cylinder pressure (Pmax) in FIG. 4), and the adverse effect on the mechanical strength and thermal load of the engine body due to the increase in the cylinder maximum pressure is prevented. It can be avoided to improve reliability.
  • the supercharger includes a hybrid supercharger 52 with a built-in generator motor 50, and the electric power generated using the exhaust gas is supplied to the air supply passage K ⁇ b> 1 on the upstream side of the hybrid supercharger 52.
  • the additional air pressure is generated by driving the air supply blower 54 provided.
  • the hybrid supercharger 52 includes a compressor section 52a and a turbine section 52b, and the generator motor 50 is built in the compressor section 52a. Electricity is generated with the rotation of the compressor 52 a, and the generated electric power is supplied to the blower motor 56 that drives the air supply blower 54 through the power supply line M.
  • the rotational speed control of the blower motor 56 is performed using an inverter or an acceleration / deceleration gear (not shown). Further, the additional supply air pressure may be generated by supplying electric power W from the outside to the generator motor 50 and increasing the rotation of the compressor section 52a of the hybrid supercharger 52 itself.
  • the hybrid supercharger 52 and the air supply blower 54 constitute the supply air pressure adding device, so that it is easy to use without using a steam generator that generates steam as in the first embodiment. And an air supply pressure addition apparatus can be obtained, without enlarging. Further, since the hybrid supercharger 52 including the generator motor 50 is configured to generate electric power using the flow of the exhaust gas and drive the air supply blower 54 provided in the air supply passage K1, the exhaust pressure Even if the exhaust pressure is not increased or the exhaust pressure is increased, the supply air pressure can be made larger than the exhaust pressure, and the same effect as in the first embodiment can be obtained.
  • the pre-supercharger 60 is driven using exhaust gas as regenerative energy of the engine. That is, instead of the steam turbine 28 described in the first embodiment, the upstream turbocharger 60 is installed. As shown in FIG. 3, the exhaust gas that has passed through the turbine section 20b of the supercharger 20 flows into the turbine section 60b of the front-stage supercharger 60, and the front-stage supercharging provided coaxially with the turbine section 60b. The compressor 60a of the machine 60 is driven to pressurize the supply air.
  • the pressurized air supply is supplied to the compressor unit 20a of the supercharger 20 and is further pressurized so that the compressor unit 60a of the pre-supercharger 60 and the compressor unit 20a of the supercharger 20 are in two stages. Composed by supercharging.
  • an air cooler 62 is provided in an air supply passage K1 that connects the compressor unit 60a of the front-stage supercharger 60 and the compressor unit 20a of the supercharger 20.
  • the supply air pressure adding device is configured by the front-stage supercharger 60, the size can be easily increased without using a steam generator that generates steam as in the first embodiment. Therefore, it is possible to obtain a supply air pressure adding device.
  • the pumping work amount can be increased by increasing the supply pressure increase ⁇ P larger than the exhaust pressure increase ⁇ Ph rather than increasing only the supply pressure without increasing the exhaust pressure.
  • the pumping work amount can be increased by increasing the supply pressure increase ⁇ P larger than the exhaust pressure increase ⁇ Ph rather than increasing only the supply pressure without increasing the exhaust pressure.
  • the present invention improves a pumping work formed by an air supply stroke and an exhaust stroke by increasing only the supply air pressure or raising the intake air pressure more than the exhaust pressure in a mirror cycle engine equipped with a supercharger.
  • the maximum pressure in the cylinder can be maintained substantially the same as before the increase of the supply air pressure, and the mechanical strength of the engine body and the reliability with respect to the heat load can be improved, which is suitable for use in a mirror cycle engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

ミラーサイクルエンジンにおいて、給気圧力を上昇して熱効率を向上するとともに、筒内最高圧力を維持してエンジン本体の機械的強度および熱負荷に対する信頼性を維持することを課題とする。給気弁(14)の開閉弁時期をコントロールする給気バルブ可変手段(36)と、過給機(20)による過給に対して付加的に給気圧力だけを上昇または給気圧力を排気圧力より大きく上昇せしめる給気圧力付加装置としての蒸気タービン(28)と、該蒸気タービン(28)によって付加される給気圧力が高いほど給気弁(14)の閉弁時期を進めて付加前の筒内最高圧力と略同一に維持する閉弁時期制御手段(34)とを備えたことを特徴とする。

Description

ミラーサイクルエンジン
 本発明は、給気弁を下死点よりも早くもしくは遅く閉じて圧縮比を膨張比よりも小さくするミラーサイクルエンジンに関し、特に、給気圧力を高めてミラーサイクルの熱効率を改善する技術に関する。
 ミラーサイクルエンジンは、給気弁を下死点よりも早くもしくは遅く閉じてエンジンの圧縮比を膨張比よりも小さく維持することによりノッキングの発生を回避するとともに高い熱効率を実現するために有効である。また、大きな膨張比を実現し、燃焼ガスを十分に膨張させて燃焼エネルギーをより効率的にトルクとして活用できることで知られている。
 図7の実線で示したP-V線図は、過給機付き内燃機関のP-V線図であり、オットーサイクルをベースとした給気早閉じのミラーサイクルを示している。
 圧縮行程(M1)、燃焼・膨張行程(M2)、排気行程(M3)、給気行程(M4)からなっていて、給気行程のP点で給気弁を下死点よりも早い時期に閉じることによって、P点からラインm1に沿って膨張し、再びラインm1に沿って戻って圧縮して、その後P点から圧縮行程(M1)のラインに沿って変化する。
 その結果、図7下部に示すように、圧縮比の計算に用いられる燃焼室容積のピストンストロークはA1となり、膨張比の計算に用いられる燃焼室容積のピストンストロークはA2となり、圧縮比を膨張比よりも小さくできることが示される。
 ここで、図7の実線で示す現状の給気早閉じのミラーサイクルに対して、熱効率の向上を考えた場合、過給機による給気加圧によって給気行程(M4)と排気行程(M3)とによって形成されるM3~M4の時計方向の袋状の閉ループ(図7の斜線領域)がエンジンに対して正の仕事量を示すポンピング仕事が形成されるため、このポンピング仕事を向上(図7の斜線領域を拡大)することが熱効率向上に有効である。
 しかし、このポンピング仕事の向上のために過給圧力を高めて給気行程(M4)を上昇しようとすると、過給機の駆動源の排気圧力の上昇が必要になるため、結果的に得られるポンピング仕事は、過給圧力を高める前に比べて大幅に改善されるものではない(図7の斜線領域が上方にシフト(h)するだけである。)
 また、過給圧力を上昇しただけでは、排気圧も同様に上昇して図7に示されるようにP-V線図の全体が上昇し(図7の点線)、筒内最高圧力(Pmax)も上昇する。その結果、許容最高圧力を超えるおそれがあり、エンジン本体の機械的強度や熱負荷において悪影響を与える。
 一方、ミラーサイクルエンジンに関する発明として、特許文献1(特開平7-305606号公報)、特許文献2(特開2000-220480号公報)が知られている。
 この特許文献1に示される構成は、図8に示すように、ミラーサイクルガスエンジン01からの排ガス供給管03を蒸気発生装置05に接続し、その蒸気発生装置05に接続した作動流体の循環配管07に蒸気タービン09を設け、その蒸気タービン09の出力軸011に、前記ミラーサイクルガスエンジン01に圧縮空気を供給する過給機013を設け、ミラーサイクルガスエンジン01からの燃焼排ガスを熱源として過給機013を駆動し、エンジン出力を高くするものである。
 また、特許文献2には、直列に2段過給機を備えたミラーサイクルエンジンが示されており、さらに、このミラーサイクルエンジンに排気再循環(EGR)を採用してノッキングを抑えつつ高燃費を実現する発明が示されている。
特開平7-305606号公報 特開2000-220480号公報
 しかしながら、前記の特許文献1、2には、ミラーサイクルエンジンにおいて排気行程と給気行程とによって形成されるポンピング仕事を増大して熱効率を改善する技術は示されていない。
 さらに、図7を参照して既に説明したように、単に過給機の過給圧力を高めるだけでは、ポンピング仕事による熱効率の向上が得られないばかりでなく、筒内最高圧力(Pmax)の上昇によって、エンジン本体の機械的強度や熱負荷において悪影響が生じる問題も有する。
 そこで、本発明は前記問題点に鑑みなされたもので、給気圧力だけを上昇または給気圧力を排気圧力より大きく上昇せしめて給気行程と排気行程とによって形成されるポンピング仕事を向上せしめるとともに、筒内最高圧力を給気圧力上昇前と略同等に維持して、エンジン本体の機械的強度および熱負荷に対する信頼性を向上するミラーサイクルエンジンを提供することを課題とする。
 上記の課題を解決するために、本発明は、給気圧力を高める過給機が設けられるとともに、給気弁を下死点よりも早く若しくは遅く閉じて圧縮比を膨張比よりも小さくするミラーサイクルエンジンにおいて、前記給気弁の開閉弁時期をコントロールする給気バルブ可変手段と、前記過給機によって加圧される給気に対してさらに付加的に、排気圧力の上昇を伴わずに給気圧力だけを上昇せしめる、または排気圧力の上昇を伴うとともに給気圧力を排気圧力より大きく上昇せしめる給気圧力付加装置と、該給気圧力付加装置によって付加される給気圧力が高いほど給気弁の閉弁時期を進めて付加前の筒内最高圧力と略同一に維持する閉弁時期制御手段とを備えたことを特徴とする。
 かかる発明によれば、給気圧力付加装置によって付加的に給気圧力だけを上昇または排気圧力の上昇を伴う場合には給気圧力を排気圧力より大きく上昇せしめて給気行程と排気行程とによって形成されるポンピング仕事を向上せしめるので(図4に示す斜線領域を拡大することによるポンピング仕事の向上)、ミラーサイクルエンジンの熱効率を向上することができる。
 また、閉弁時期制御手段が給気圧力付加装置によって付加される給気圧力に応じて給気弁の閉弁時期を変更し、付加する給気圧力が高いほど給気弁の閉弁時期を進めて、付加前の筒内最高圧力と略同一に維持するので(図4に示す筒内最高圧力(Pmax))、筒内最高圧力の上昇によるエンジン本体の機械的強度および熱負荷に対する弊害を回避して信頼性を向上できる。
 また、本発明において、好ましくは、前記閉弁時期制御手段は、前記過給機による給気圧力と前記給気圧力付加装置による付加給気圧力との合計給気圧力を給気圧センサによって検出し、検出値に基づいて給気弁の閉弁時期が制御されるとよい。
 このように、エンジンに流入する給気の給気圧力を直接検出して該検出値によって給気弁の閉弁時期を制御するので、すなわち、大気温度、大気圧、湿度等の外気条件の変化が反映された給気圧力の検出値に基づいて給気弁の閉弁時期を制御するので、外気条件の変化に対して正確に給気弁の閉弁時期制御が可能になる。例えば、外気温度が高くなると、空気密度の低下によって給気圧力は低下して、該低下した圧力値に基づいて給気弁の閉弁時期が制御されるので、付加給気圧力が作用し、しかも外気条件が大きく変動しても筒内最高圧力は、付加給気圧力が作用する前の筒内最高圧力を精度よく維持できる。
 また、本発明において、好ましくは、前記給気圧力付加装置がエンジンの回生エネルギーを用いて構成されるとよい、回生エネルギーを用いることによってエンジンの排気圧力の上昇を抑えて給気圧力だけまたは排気圧力の上昇以上に給気圧力を上昇することが可能になる。
 具体的には、回生エネルギーがエンジンの排気ガス熱を利用して発生される蒸気であり、該蒸気によって駆動される蒸気タービンのコンプレッサ部によって、前記過給機の上流側に付加給気圧を生成する。
 このように排気ガス熱を利用して蒸気を発生させ、蒸気タービンを駆動して蒸気タービンのコンプレッサ部で給気をあらかじめ加圧して過給機に供給することで排気圧力の上昇を伴わずに給気圧力を高めることができ、ミラーサイクルにおける排気行程および給気行程によって形成されるポンピング仕事の増大を図ることができる。
 また、他の例として、前記過給機が発電機を内蔵したハイブリッド過給機からなり、回生エネルギーが排気ガスを利用して発電された電力であり、該電力によって給気通路に設けられた給気ブロアを駆動することで付加給気圧を生成するとよい。
 このように発電機を内蔵したハイブリッド過給機で構成することで、排気ガスの流れを利用して電力を生成し、給気通路に設けた給気ブロアを駆動することで排気圧力の上昇を伴わずにまたは排気圧力の上昇を伴っても給気圧力を排気圧力より大きく高めることができ、ミラーサイクルにおける排気行程および給気行程によって形成されるポンピング仕事の増大を図ることができる。
 さらに、他の例として、エンジンの排気流を回生エネルギーとして利用して駆動される前段過給機を前記過給機の上流側に設け、該前段過給機によって前記過給機の上流側に付加給気圧を生成するとよい。この場合には、排気圧力の上昇を伴うが、前段過給機の過給特性を、給気圧力の上昇分が前記前段過給機を駆動するために上昇する排気圧力より大きくなるように設定することで、給気圧力を排気圧力より大きく上昇せしめてミラーサイクルにおける給気行程と排気行程とによって形成されるポンピング仕事を向上せしめることができる。
 本発明は、給気圧力を高める過給機が設けられたミラーサイクルエンジンにおいて、給気弁の開閉弁時期をコントロールする給気バルブ可変手段と、前記過給機による過給に対して付加的に給気圧力だけを上昇または排気圧力の上昇を伴う場合には給気圧力を排気圧力より大きく上昇せしめる給気圧力付加装置と、該給気圧力付加装置によって付加される給気圧力が高いほど給気弁の閉弁時期を進めて付加前の筒内最高圧力と略同一に維持する閉弁時期制御手段とを備えることで、給気圧力だけを上昇または給気圧力を排気圧力より大きく上昇せしめて給気行程と排気行程とによって形成されるポンピング仕事を向上せしめて熱効率を向上できる。
 しかも、筒内最高圧力を給気圧力上昇前と略同等に維持するため、エンジン本体の機械的強度および熱負荷に対する問題を回避して信頼性を向上したミラーサイクルエンジンを提供できる。
本発明のミラーサイクルエンジンに係る第1実施形態の全体構成図である。 第2実施形態の全体構成図である。 第3実施形態の全体構成図である。 本発明のミラーサイクルを説明するP-V線図である。 本発明のミラーサイクルを説明するP-V線図である。 給気圧力、排気圧力、および燃費の関係を示す説明図であり、(a)が給気圧力と排気圧力との関係を示し、(b)が(a)に示した給気圧力と排気圧力との関係における燃費の関係を示したものである。 従来のミラーサイクルを説明するP-V線図である。 従来技術の説明図である。
 (第1実施形態)
 図1は本発明の第1実施形態に係るミラーサイクルエンジン(以下エンジンという)2の全体構成図である。
 図1において、エンジン2は、一例として4サイクルガスエンジンとして説明するがガスエンジンには限らない。
 エンジン本体のシリンダ4内には、往復摺動自在に嵌合されたピストン6、該ピストン6の往復動を、図示しないコネクチングロッドを介して回転に変換するクランク軸を備え、また、ピストン6の上面とシリンダヘッド8の内面との間に区画形成される燃焼室10、該燃焼室10に接続される給気ポート12、該給気ポート12を開閉する給気弁14を備え、さらに前記燃焼室10に接続される排気ポート16、該排気ポート16を開閉する排気弁18を備えている。
 また、燃料ガスの供給装置および着火装置については図示しないが、燃料ガスは過給機(排気過給機)20のコンプレッサ部20aから供給された圧縮空気と混合して予混合ガスの状態で給気ポート12及び給気弁14を通して燃焼室10に供給し、着火装置によって着火するようになっている。
 給気ポート12には給気通路K2を介して過給機20のコンプレッサ部20aから圧縮空気が供給され、この給気通路K2には空気冷却器22が設けられている。また、排気ポート16は排気通路L1を介して過給機20のタービン部20bに接続される。
 タービン部20bを通過した排気ガスは、排気通路L2を通って第1熱交換器24(蒸気発生器)に導かれて、該第1熱交換器(蒸気発生器)24で外部から供給された給水を加熱して蒸気を発生させる。また、冷却水管C1によって供給されたエンジン冷却水は冷却水管C2を通って第2熱交換器(蒸気発生器)26に導かれ、外部から供給された給水を加熱して蒸気を発生させる。
 第1熱交換器24及び第2熱交換器26で発生させた蒸気は蒸気管Sを通って蒸気タービン(給気圧力付加装置)28のタービン部28bに供給され、タービン部28bと同軸状に設けられたコンプレッサ部28aを駆動して給気を加圧する。この加圧された給気は過給機20のコンプレッサ部20aに供給されてさらに加圧されるように、蒸気タービン28のコンプレッサ部28aと過給機20のコンプレッサ部20aとの2段階過給によって構成される。
 このように排気ガス熱を利用して蒸気を発生させ、蒸気タービン28を駆動して蒸気タービン28のコンプレッサ部28aで給気をあらかじ加圧して過給機20に供給することで排気圧力を上昇させることなく給気圧力を高めることができる。
 また、蒸気タービン28のタービン部28bを通過した蒸気は復水器30によって冷却凝縮されて再び給水として第1熱交換器24及び第2熱交換器26に供給されるようになっている。
 給気通路K2の給気ポート12近傍には給気圧センサ32が設置され、燃焼室10内に流入する給気圧力が測定される。すなわち、給気行程開始時の給気通路K2内の圧力が検出信号として閉弁時期制御手段34に入力される。該閉弁時期制御手段34は、圧力検出値に基づいて最適な給気弁14の閉弁時期を算出して、給気バルブ可変手段36へ制御信号を出力するようになっている。
 この閉弁時期制御手段34には、給気圧センサ32で検出した給気圧力に応じた給気弁14の閉弁時期が設定された閉弁時期制御マップ38を有している。
 図4に示すように、過給機20によって形成される排気行程(M3)時の排気圧力Phと給気行程(M4)時の給気圧力Pkに対して、給気圧力付加装置としての蒸気タービン28によって付加的に加圧される給気圧力の上昇分がΔPとして付加されて給気行程(M5)時の圧力となる。
 従って、過給機20による給気圧力Pkと蒸気タービン28による付加給気圧力ΔPとの合計給気圧力(Pk+ΔP)を給気圧センサ32によって検出し、この検出値に基づいて給気弁14の閉弁時期が制御されることになる。
 閉弁時期制御マップ38には、合計給気圧力(Pk+ΔP)と給気弁の閉弁時期との関係があらかじ設定されている。給気弁14の閉弁時期は図4の圧縮行程(M1)のラインに沿って圧縮行程が行われるようにするため、すなわち、筒内最高圧力(Pmax)を蒸気タービン28による付加給気圧力が作用する前と略同等に維持するため、合計給気圧力(Pk+ΔP)の大きさに応じて、圧縮行程(M1)のライン上の圧縮行程のスタート位置を変える。そしてそのスタート位置に対応するように、給気弁14の閉弁時期を進め、または遅らせる。
 すなわち、閉弁時期制御マップ38には、付加給気圧力が作用する前の圧縮行程(M1)のライン上に沿って圧縮行程が開始するように合計給気圧力(Pk+ΔP)と給気弁14の閉弁時期との関係があらかじめ設定されている。
 また、燃焼室10に流入する給気の給気圧力を給気圧センサ32で直接検出して該検出値によって給気弁14の閉弁時期を制御するので、すなわち、大気温度、大気圧、湿度等の外気条件の変化の影響が給気圧力に反映されるので、外気条件の変化に対して正確に給気弁の開弁時期の補正が可能になり、外気条件の変化に対しても筒内最高圧力(Pmax)を一定に維持できる。
 例えば、図5に示すように、外気温度が高くなり、空気密度の低下によって給気圧力が低下して合計給気圧力(Pk+ΔP)=Pbによる給気行程(M6)の場合には、給気弁閉時期をTbに設定し、また外気温度が低くなり、空気密度が高まり合計給気圧力(Pk+ΔP)=Paによる給気行程(M7)の場合には給気弁閉時期をTaのように設定される。なお、Pc、Tcは、蒸気タービン28による付加的な加圧をしない場合を示す。
 以上のように、予め設定された合計給気圧力(Pk+ΔP)に基づいて給気弁14の最適な閉弁時期制御がなされるので、付加給気圧力が作用した場合でも、外気条件が変化した場合でも、付加給気圧力が作用する前の圧縮行程(M1)ライン上を進むため、筒内最高圧力(Pmax)が一定に精度よく維持される。
 ここで、排気圧力を上昇せずに給気圧力だけを上げた場合や、給気圧力を排気圧力より大きく上昇せしめた場合の、ポンピング仕事について図6(a)、(b)を参照して説明する。
 この図6はシミュレーション計算結果を表すものであり、図6(a)は一定の過給圧状態において、給気圧力と排気圧力との変化状況を横軸にクランク角度をとって示したものであり、図6(b)は燃費を示したものである。
 図6(a)の特性曲線のボトムの位置が略下死点を示し、その下死点位置から左側に向かう方向が、給気弁14の閉弁時期を進める方向である。
 この図6(a)に示すように、計算結果では、過給機の絞りを一定とし、閉弁時期を進めるに従い、過給機効率が向上して給気圧力と排気圧力との差圧が大きくなることが分かり、図4に示す排気行程(M3)と給気行程(M5)との差圧が広がりポンピング仕事量を増大することができる。なお、実際には、過給機効率向上に限界があるため、必ずしも図6(a)のような差圧の増大が得られるわけではないが、計算においては前記のような傾向が確認できた。
 燃費特性を示す図6(b)は、図6(a)と同様に横軸をクランク角度にとり、下死点位置から左側に向かって給気弁14の閉弁時期が進む方向を示す。閉弁時期が進むに従って燃料消費率が低下することが分かる。
 しかも、計算上において、排気圧力の上昇が全く生じないと仮定した場合には、図(a)、(b)のQ点に位置し、燃費においても、大きな低下が確認できた。
 以上の第1実施形態によれば、エンジン本体からの回生エネルギーとして排気熱及び加熱されたエンジン冷却水熱を利用して発生した蒸気を用いることによって、排気圧力の上昇を抑えて給気圧力だけを上昇することが可能になる。
 このように排気熱及び加熱されたエンジン冷却水熱を利用した蒸気タービン28によって付加的に給気圧力だけを上昇せしめることができるため、給気行程(M5)と排気行程(M3)とによって形成されるポンピング仕事(図4の斜線領域)を向上でき、ミラーサイクルエンジンの熱効率を向上することができる。
 なお、第1実施形態では、第1熱交換器(蒸気発生器)24と第2熱交換器(蒸気発生器)26の両方によって蒸気を発生したが、いずれか一方のみを利用して、すなわち排気熱または加熱されたエンジン冷却水熱の一方を利用して発生させてもよい。
 また、閉弁時期制御手段34が蒸気タービン28によって付加される給気圧力に応じて給気弁14の閉弁時期を変更し、付加する給気圧力が高いほど給気弁14の閉弁時期を進めて、付加前の筒内最高圧力と略同一に維持するので(図4の筒内最高圧力(Pmax))、筒内最高圧力の上昇によるエンジン本体の機械的強度および熱負荷に対する弊害を回避して信頼性を向上できる。
(第2実施形態)
 図2を参照して第2実施形態について説明する。
 第2実施形態は、エンジンの回生エネルギーとして排気を利用して生成された電力を用いるものである。
 図2のように、過給機が発電電動機50を内蔵したハイブリッド過給機52からなり、排気ガスを利用して発電された電力によって、ハイブリッド過給機52の上流側の給気通路K1に設けられた給気ブロア54を駆動することで付加給気圧を生成する。
 ハイブリッド過給機52はコンプレッサ部52aとタービン部52bとからなり、コンプレッサ部52aに発電電動機50が内蔵されている。コンプレッサ部52aの回転に伴って発電し、発電電力が電力供給ラインMによって、給気ブロア54を駆動するブロアモータ56に供給される。ブロアモータ56の回転数制御は図示しないインバータや増減速ギヤを用いて行われる。
 また、外部から電力Wを発電電動機50に供給してハイブリッド過給機52のコンプレッサ部52a自体の回転を増速して付加給気圧を発生させるようにしてもよい。
 第2実施形態によれば、ハイブリッド過給機52と給気ブロア54とによって給気圧力付加装置を構成するため、第1実施形態のように蒸気を発生させる蒸気発生器を用いることなく簡単に、かつ大型化することなく給気圧力付加装置を得ることができる。
 また、発電電動機50を内蔵したハイブリッド過給機52で構成することで、排気ガスの流れを利用して電力を生成し、給気通路K1に設けた給気ブロア54を駆動するため、排気圧力の上昇を伴わずにまたは排気圧力の上昇を伴っても給気圧力を排気圧力より大きく高めることができ、第1実施形態と同様の作用効果がいえる。
(第3実施形態)
 次に、図3を参照して第3実施形態を説明する。この第3実施形態は、エンジンの回生エネルギーとして排気を利用して前段過給機60を駆動するものである。すなわち、第1実施形態で説明した、蒸気タービン28に代えて前段過給機60を設置する。
 図3に示すように、過給機20のタービン部20bを通過した排気ガスは、前段過給機60のタービン部60bに流入して、該タービン部60bと同軸状に設けられた前段過給機60のコンプレッサ部60aを駆動して給気を加圧する。この加圧された給気は過給機20のコンプレッサ部20aに供給されてさらに加圧されるように、前段過給機60のコンプレッサ部60aと過給機20のコンプレッサ部20aとの2段階過給によって構成される。
 また、前段過給機60のコンプレッサ部60aと過給機20のコンプレッサ部20aとを繋ぐ給気通路K1には、空気冷却器62が設けられている。
 第3実施形態によれば、前段過給機60によって給気圧力付加装置を構成するため、第1実施形態のように蒸気を発生させる蒸気発生器を用いることなく簡単に、かつ大型化することなく給気圧力付加装置を得ることができる。
 第3実施形態においては、図4に示す排気行程(M3)時の排気圧力Phが、過給機20と前段過給機60とによって形成されるため、排気圧力は、Ph+ΔPhと上昇するが、給気行程(M4)時の給気圧力Pkに対して、給気圧力付加装置としての前段過給機60による上昇分のΔPが付加されて給気行程(M5)時の圧力となるため、この給気圧力の上昇分のΔPが前記前段過給機60を駆動するために上昇する排気圧力ΔPhより大きければ(大きくなるように前段過給機60の過給特性を設定すれば)、トータルとして、排気行程(M3)と給気行程(M5)との差圧が広がりポンピング仕事量を増大させることができる。
 すなわち、排気圧力を上昇せずに給気圧力だけを上げるのではなく、給気圧力の上昇分ΔPを排気圧力の上昇分ΔPhより大きく上昇せしめることで、ポンピング仕事量を増大させることができる。その他の作用効果については第1実施形態と同様のことがいえる。
 本発明は、過給機を備えたミラーサイクルエンジンにおいて、給気圧力だけを上昇または給気圧力を排気圧力より大きく上昇せしめて、給気行程と排気行程とによって形成されるポンピング仕事を向上せしめるとともに、筒内最高圧力を給気圧力上昇前と略同等に維持して、エンジン本体の機械的強度および熱負荷に対する信頼性を向上できるので、ミラーサイクルエンジンへの利用に適している。
 
 

Claims (6)

  1.  給気圧力を高める過給機が設けられるとともに、給気弁を下死点よりも早く若しくは遅く閉じて圧縮比を膨張比よりも小さくするミラーサイクルエンジンにおいて、
     前記給気弁の開閉弁時期をコントロールする給気バルブ可変手段と、
     前記過給機によって加圧される給気に対してさらに付加的に、排気圧力の上昇を伴わずに給気圧力だけを上昇せしめる、または排気圧力の上昇を伴うとともに給気圧力を排気圧力より大きく上昇せしめる給気圧力付加装置と、
     該給気圧力付加装置によって付加される給気圧力が高いほど給気弁の閉弁時期を進めて付加前の筒内最高圧力と略同一に維持する閉弁時期制御手段と、
     を備えたことを特徴とするミラーサイクルエンジン。
  2.  前記閉弁時期制御手段は、前記過給機による給気圧力と前記給気圧力付加装置による付加給気圧力との合計給気圧力を給気圧センサによって検出し、検出値に基づいて給気弁の閉弁時期が制御されることを特徴とする請求項1記載のミラーサイクルエンジン。
  3.  前記給気圧力付加装置がエンジンの回生エネルギーを用いて構成されることを特徴とする請求項1記載のミラーサイクルエンジン。
  4.  回生エネルギーがエンジンの排気ガス熱を利用して発生される蒸気であり、該蒸気によって駆動される蒸気タービンのコンプレッサ部によって、前記過給機の上流側に付加給気圧を生成することを特徴とする請求項3記載のミラーサイクルエンジン。
  5.  前記過給機が発電機を内蔵したハイブリッド過給機からなり、回生エネルギーが排気ガスを利用して発電された電力であり、該電力によって給気通路に設けられた給気ブロアを駆動することで付加給気圧を生成することを特徴とする請求項3記載のミラーサイクルエンジン。
  6.  エンジンの排気流を回生エネルギーとして利用して駆動される前段過給機を前記過給機の上流側に設け、該前段過給機によって前記過給機の上流側に付加給気圧を生成することを特徴とする請求項3記載のミラーサイクルエンジン。
     
     
     
PCT/JP2010/067423 2009-10-16 2010-10-05 ミラーサイクルエンジン WO2011046041A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080046272.5A CN102575589B (zh) 2009-10-16 2010-10-05 米勒循环发动机
EP10823309.9A EP2489861B1 (en) 2009-10-16 2010-10-05 Miller cycle engine
US13/501,888 US20120279218A1 (en) 2009-10-16 2010-10-05 Miller cycle engine
KR1020127009377A KR101312157B1 (ko) 2009-10-16 2010-10-05 미러 사이클 엔진

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009239461A JP5185910B2 (ja) 2009-10-16 2009-10-16 ミラーサイクルエンジン
JP2009-239461 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011046041A1 true WO2011046041A1 (ja) 2011-04-21

Family

ID=43876092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067423 WO2011046041A1 (ja) 2009-10-16 2010-10-05 ミラーサイクルエンジン

Country Status (6)

Country Link
US (1) US20120279218A1 (ja)
EP (1) EP2489861B1 (ja)
JP (1) JP5185910B2 (ja)
KR (1) KR101312157B1 (ja)
CN (1) CN102575589B (ja)
WO (1) WO2011046041A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326972B1 (ko) * 2011-12-07 2013-11-13 현대자동차주식회사 밀러 사이클엔진 시스템 및 제어방법
KR101449141B1 (ko) * 2012-11-07 2014-10-08 현대자동차주식회사 차량의 폐열 회수 시스템을 이용한 터보장치
DE102012024318A1 (de) * 2012-12-13 2014-06-18 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine
JP6016682B2 (ja) * 2013-03-19 2016-10-26 三菱重工業株式会社 ガス内燃機関の副室燃料供給装置
CN103557068A (zh) * 2013-10-24 2014-02-05 朱譞晟 超高增压的涡轮增压米勒循环发动机
CN104314648A (zh) * 2014-10-18 2015-01-28 沈杰 双子星尾气热发电汽车空调
US10428746B2 (en) * 2014-12-08 2019-10-01 Wärtsilä Finland Oy Method of controlling an operation of an inlet valve system and an inlet valve control system
CN106150627B (zh) * 2015-03-27 2020-01-31 长城汽车股份有限公司 发动机组件及具有其的车辆
US10018108B2 (en) 2015-06-03 2018-07-10 Ford Global Technologies, Llc Methods for engine air-path reversion management
KR101871136B1 (ko) 2015-06-16 2018-06-25 바르실라 핀랜드 오이 내연 엔진을 제어하기 위한 방법 및 장치
AT517669A1 (de) * 2015-09-04 2017-03-15 Ge Jenbacher Gmbh & Co Og Brennkraftmaschine
WO2017158676A1 (ja) * 2016-03-14 2017-09-21 新潟原動機株式会社 エンジンシステムとその制御方法
CN106285869B (zh) * 2016-08-30 2019-01-15 潍柴动力股份有限公司 排气后处理方法
US10077041B1 (en) * 2017-03-20 2018-09-18 Ford Global Technologies, Llc Variable compression ratio engine
US10760519B2 (en) * 2018-05-22 2020-09-01 Mazda Motor Corporation Control device of compression-ignition engine
DE102018211206A1 (de) * 2018-07-06 2020-01-09 Hitachi Automotive Systems, Ltd. Verfahren und Vorrichtung zum Steuern des Einspritzens eines nicht brennbaren Fluids
WO2020023639A1 (en) * 2018-07-24 2020-01-30 Cummins Inc. Two point fuel system for gas power generation
CN113202639A (zh) * 2021-05-19 2021-08-03 胡勤伟 一种电动增压米勒循环发动机动力系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122533U (ja) * 1984-01-25 1985-08-19 マツダ株式会社 過給機付デイ−ゼルエンジンの吸気弁制御装置
JPH0233413A (ja) * 1988-07-21 1990-02-02 Isuzu Motors Ltd 回転電機付ターボチャージャの駆動装置
JPH07305606A (ja) 1994-05-10 1995-11-21 Osaka Gas Co Ltd 排熱回収システム
JP2000220480A (ja) 1999-01-28 2000-08-08 Osaka Gas Co Ltd ミラーサイクルエンジン
JP2003314315A (ja) * 2002-04-26 2003-11-06 Nissan Motor Co Ltd 内燃機関の制御装置
JP2004183511A (ja) * 2002-11-29 2004-07-02 Mitsubishi Motors Corp 高膨張比サイクルエンジン
JP2007518019A (ja) * 2004-01-14 2007-07-05 ロータス カーズ リミテッド ターボチャージャ過給型内燃機関
JP2007239566A (ja) * 2006-03-08 2007-09-20 Hino Motors Ltd Egrガスの排熱エネルギを利用した過給機の補助装置
JP2008025551A (ja) * 2006-07-25 2008-02-07 Yanmar Co Ltd ディーゼルエンジンのバルブタイミング制御方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB712613A (en) * 1950-11-28 1954-07-28 Miller Ralph Improvements in or relating to internal combustion engines
CH632559A5 (en) * 1978-08-15 1982-10-15 Sulzer Ag Method for the operation of a ship's propulsion system and device for performing the method
JPS60212621A (ja) * 1984-04-09 1985-10-24 Ishikawajima Harima Heavy Ind Co Ltd 内燃機関の過給装置
DE3674835D1 (de) * 1985-05-29 1990-11-15 Mazda Motor Brennkraftmaschinen-turbolader-kontrolle.
JPH0758050B2 (ja) * 1989-06-20 1995-06-21 マツダ株式会社 排気ターボ式過給機付エンジンの吸気制御装置
FI89969C (fi) * 1989-12-21 1993-12-10 Waertsilae Diesel Int Foerfarande och arrangemang foer effektivering av tillvaratagande av avgasernas vaermeenergi vid stora dieselmotorer
EP0474007A3 (en) * 1990-09-06 1993-04-14 Krupp Mak Maschinenbau Gmbh Running up device for diesel engine turbo charges
FI94895C (fi) * 1993-05-31 1995-11-10 Kurki Suonio Eero Juhani Ilmar Järjestely kombivoimalaitoksessa
US6029452A (en) * 1995-11-15 2000-02-29 Turbodyne Systems, Inc. Charge air systems for four-cycle internal combustion engines
US7281527B1 (en) * 1996-07-17 2007-10-16 Bryant Clyde C Internal combustion engine and working cycle
JPH10148120A (ja) * 1996-11-18 1998-06-02 Isuzu Ceramics Kenkyusho:Kk 給電用エンジンの熱回収装置
JPH10238354A (ja) * 1996-12-27 1998-09-08 Kanesaka Gijutsu Kenkyusho:Kk ハイブリッド過給エンジン
DE19830575A1 (de) * 1998-07-08 2000-01-13 Nonox B V Ladungssteuervorrichtung für eine sowie Verfahren zum Steuern des Betriebs einer Hubkolbenbrennkraftmaschine
DE10159801A1 (de) * 2001-12-05 2003-04-10 Audi Ag Verbrennungsmotor und Verfahren zum Betreiben eines Verbrennungsmotors
US20050229900A1 (en) * 2002-05-14 2005-10-20 Caterpillar Inc. Combustion engine including exhaust purification with on-board ammonia production
DE10225305A1 (de) * 2002-06-07 2003-12-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
FR2852356B1 (fr) * 2003-03-13 2005-04-29 Moteur suralimente a turbocompresseur electriquement assiste
US7210467B2 (en) * 2004-06-22 2007-05-01 Gas Technology Institute Advanced high efficiency, ultra-low emission, thermochemically recuperated reciprocating internal combustion engine
US20080121218A1 (en) * 2004-12-13 2008-05-29 Caterpillar Inc. Electric turbocompound control system
US20070144175A1 (en) * 2005-03-31 2007-06-28 Sopko Thomas M Jr Turbocharger system
US7454911B2 (en) * 2005-11-04 2008-11-25 Tafas Triantafyllos P Energy recovery system in an engine
US7886522B2 (en) * 2006-06-05 2011-02-15 Kammel Refaat Diesel gas turbine system and related methods
DE102006032719A1 (de) * 2006-07-14 2008-01-17 Daimler Ag Verfahren zum Betrieb eines Otto-Motors
DE102007012667A1 (de) * 2007-03-16 2008-09-18 Bayerische Motoren Werke Aktiengesellschaft Aufladevorrichtung für eine Brennkraftmaschine
JP4512617B2 (ja) * 2007-06-26 2010-07-28 日立オートモティブシステムズ株式会社 内燃機関の制御装置および方法
CN101092893A (zh) * 2007-07-12 2007-12-26 奇瑞汽车有限公司 高增压米勒循环发动机及其控制方法
GB2457326B (en) * 2008-10-17 2010-01-06 Univ Loughborough An exhaust arrangement for an internal combustion engine
JP5249866B2 (ja) * 2009-06-25 2013-07-31 三菱重工業株式会社 エンジン排気エネルギー回収装置
DE102009028467A1 (de) * 2009-08-12 2011-02-17 Robert Bosch Gmbh Vorrichtung zur Nutzung von Abwärme
DE102009044913A1 (de) * 2009-09-23 2011-04-07 Robert Bosch Gmbh Brennkraftmaschine
DE102009045380A1 (de) * 2009-10-06 2011-04-07 Robert Bosch Gmbh Antriebseinrichtung
JP5155980B2 (ja) * 2009-10-23 2013-03-06 三菱重工業株式会社 ターボコンパウンドシステムおよびその運転方法
US20110209473A1 (en) * 2010-02-26 2011-09-01 Jassin Fritz System and method for waste heat recovery in exhaust gas recirculation
US20120006020A1 (en) * 2010-04-10 2012-01-12 Karim Wahdan Methods and systems for powering a compressor turbine
JP5496006B2 (ja) * 2010-08-02 2014-05-21 三菱重工業株式会社 発電プラント設備およびその運転方法
JP5374465B2 (ja) * 2010-09-06 2013-12-25 三菱重工業株式会社 発電プラント設備およびこれを備えた船舶ならびに発電プラント設備の運転方法
KR101449141B1 (ko) * 2012-11-07 2014-10-08 현대자동차주식회사 차량의 폐열 회수 시스템을 이용한 터보장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122533U (ja) * 1984-01-25 1985-08-19 マツダ株式会社 過給機付デイ−ゼルエンジンの吸気弁制御装置
JPH0233413A (ja) * 1988-07-21 1990-02-02 Isuzu Motors Ltd 回転電機付ターボチャージャの駆動装置
JPH07305606A (ja) 1994-05-10 1995-11-21 Osaka Gas Co Ltd 排熱回収システム
JP2000220480A (ja) 1999-01-28 2000-08-08 Osaka Gas Co Ltd ミラーサイクルエンジン
JP2003314315A (ja) * 2002-04-26 2003-11-06 Nissan Motor Co Ltd 内燃機関の制御装置
JP2004183511A (ja) * 2002-11-29 2004-07-02 Mitsubishi Motors Corp 高膨張比サイクルエンジン
JP2007518019A (ja) * 2004-01-14 2007-07-05 ロータス カーズ リミテッド ターボチャージャ過給型内燃機関
JP2007239566A (ja) * 2006-03-08 2007-09-20 Hino Motors Ltd Egrガスの排熱エネルギを利用した過給機の補助装置
JP2008025551A (ja) * 2006-07-25 2008-02-07 Yanmar Co Ltd ディーゼルエンジンのバルブタイミング制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2489861A4 *

Also Published As

Publication number Publication date
US20120279218A1 (en) 2012-11-08
EP2489861A4 (en) 2014-04-09
KR20120068027A (ko) 2012-06-26
KR101312157B1 (ko) 2013-09-26
EP2489861A1 (en) 2012-08-22
CN102575589A (zh) 2012-07-11
EP2489861B1 (en) 2017-04-05
CN102575589B (zh) 2016-06-01
JP5185910B2 (ja) 2013-04-17
JP2011085089A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5185910B2 (ja) ミラーサイクルエンジン
US20120137676A1 (en) Engine-exhaust-gas energy recovery apparatus, ship equipped with the same, and power plant equipped with the same
JP5271961B2 (ja) 内燃機関の過給装置
KR101522476B1 (ko) 엔진 배기 에너지 회수 장치
EP1816326A1 (en) Control of supercharged engine with variable geometry turbocharger and electric supercharger
JP5243637B1 (ja) 内燃機関システム
US20120210952A1 (en) Motor vehicle with a combustion engine, and method of operating a combustion engine
US20180202374A1 (en) Internal combustion engine system and control method for internal combustion engine
JP2015522122A (ja) 可変圧縮比ディーゼルエンジン
CN104712419A (zh) 发动机系统
CN112664282B (zh) 用于可变涡轮增压器的控制方法
CN113202639A (zh) 一种电动增压米勒循环发动机动力系统
US10697359B2 (en) Supercharged internal combustion engine
US20120107089A1 (en) Fluid Flow Control System Having a Moving Fluid Expander Providing Flow Control and Conversion of Fluid Energy into Other Useful Energy Forms
US10309299B2 (en) Systems and methods for use with internal combustion engines and vehicles comprising the same
JP6809253B2 (ja) エンジン
JP2020204292A (ja) エンジンの冷却装置
US9926836B2 (en) System and method for oxidant temperature control
US20050235971A1 (en) Method of heating the interior of a vehicle
JP5678580B2 (ja) 内燃機関の制御装置
JP2013199904A (ja) 内燃機関の過給装置
JP3820109B2 (ja) ターボクーリングシステム
JP2006328969A (ja) 内燃機関の制御方法
JP2017089390A (ja) 内燃機関の吸気装置
GB2474847A (en) Exhaust gas recirculation system comprising a turbocharger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046272.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823309

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010823309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010823309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127009377

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13501888

Country of ref document: US