WO2011045830A1 - 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置 - Google Patents

多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置 Download PDF

Info

Publication number
WO2011045830A1
WO2011045830A1 PCT/JP2009/005330 JP2009005330W WO2011045830A1 WO 2011045830 A1 WO2011045830 A1 WO 2011045830A1 JP 2009005330 W JP2009005330 W JP 2009005330W WO 2011045830 A1 WO2011045830 A1 WO 2011045830A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
driver circuit
voltage
value
resistors
Prior art date
Application number
PCT/JP2009/005330
Other languages
English (en)
French (fr)
Inventor
小島昭二
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2011543884A priority Critical patent/JP5255707B2/ja
Priority to PCT/JP2009/005330 priority patent/WO2011045830A1/ja
Priority to US13/501,451 priority patent/US8575961B2/en
Publication of WO2011045830A1 publication Critical patent/WO2011045830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes

Definitions

  • the present invention relates to a driver circuit that outputs a signal via a transmission line.
  • a multi-level driver is used to transmit a multi-level signal to a semiconductor device connected via a transmission line.
  • a buffer inverter
  • MOSFET Metal Oxide Semiconductor Field-Effect Transistor
  • N-channel MOSFET connected in a push-pull manner outputs a voltage Vdd corresponding to a high level or a voltage Vss corresponding to a low level. It is a typical example of a value driver.
  • 1 (a) and 1 (b) are an equivalent circuit diagram schematically illustrating a multi-value driver circuit and an operation waveform diagram thereof.
  • the output port Po of the multilevel driver circuit 200 is connected to a device (not shown) via the transmission line 202.
  • the multi-level driver circuit 200 selectively outputs any one of the high level voltage VIH, the low level voltage VIL, and the termination voltage VTT according to the selection signals s0 to s2.
  • the multi-value driver circuit 200 includes a selector 204, a buffer 206, and an output resistance Ro.
  • the selector 204 receives ternary voltages VIH, VIL, and VTT at three input terminals (0, 1, and 2), respectively, and selects one corresponding to the 3-bit selection signals s0 to s2. .
  • ternary voltages VIH, VIL, and VTT are generated by a D / A converter (not shown).
  • the selector 204 outputs a termination voltage VTT when the selection signal s0 is asserted (high level), a high level voltage VIH when the selection signal s1 is asserted, and a low level voltage VIL when the selection signal s2 is asserted.
  • the buffer 206 receives the voltage selected by the selector 204 and outputs it to the transmission line 202 via the output resistor Ro.
  • a semiconductor test apparatus (hereinafter also simply referred to as a test apparatus) for testing a memory, a DSP (Digital Signal Processor), etc., outputs a multi-value test pattern signal or a multi-value control signal to a DUT (device under test).
  • a multi-value driver circuit for supplying is provided.
  • the multi-level driver used in the test apparatus can arbitrarily adjust the voltage level of each multi-level level signal in accordance with the type of DUT to be inspected or the type of test.
  • a multi-value driver circuit that can arbitrarily adjust the voltage level is desired.
  • the present invention has been made in such a situation, and one of exemplary purposes of an embodiment thereof is to provide a multi-value driver circuit capable of adjusting a voltage level.
  • An aspect of the present invention relates to a multi-value driver circuit that selectively outputs one of K transmission voltages (K is an integer of 2 or more) according to a selection signal.
  • K is an integer of 2 or more
  • Each of the K voltages can be independently adjusted based on setting data of (M + Nl) bits (M and Nl are natural numbers).
  • the multi-value driver circuit includes an output port connected to the transmission line, a first memory for holding upper M bits of setting data for each of K voltages, and a lower Nl bit of the setting data for each of K voltages.
  • a second memory to be held and M first selectors provided for each of the upper M bits of the setting data, each receiving a corresponding bit of each of the K setting data, and according to the selection signal M first selectors for selecting one and Nl second selectors provided for each lower Nl bit of the setting data, each receiving a corresponding bit of each of the K setting data, and receiving a selection signal Nl second selectors for selecting one corresponding to M, and M first buffers provided for each of the M first selectors, each of the corresponding first selectors M first buffers that output voltages according to force values, and M first resistors each having a resistance value R provided for each of the M first buffers, each corresponding to one end The first buffer output voltage is applied, and each of the other ends is connected to the output port.
  • the M first resistors are provided for each of the Nl second selectors.
  • Nl second buffers that output a voltage corresponding to the output value of the corresponding second selector, a third buffer that generates a fixed voltage, and a buffer for each of the Nl second buffers.
  • Nl second resistors having a resistance value R, and Nl second resistors to which the output voltage of the second buffer corresponding to one end thereof is applied, and the output voltage of the third buffer at one end thereof.
  • Has an applied resistance value R 3 includes a resistor for Nl number of the second resistor and the third resistor, a fourth resistor, the Nl pieces which are connected to form a R-2R ladder network to output an output port.
  • Another aspect of the present invention also relates to a multilevel driver circuit that selectively outputs one of K voltages according to a selection signal.
  • Each of the K voltages can be independently adjusted based on setting data of (Nu + Nl) bits (Nu and Nl are natural numbers).
  • L first resistors having R each of which is applied with an output voltage of a first buffer corresponding to one end of each of the first resistors, and each of the other ends is connected to the output port.
  • Nl second buffers provided for each of the Nl second selectors each of which includes Nl second buffers that output a voltage corresponding to the output value of the corresponding second selector,
  • the resistance value R provided for each second buffer is Nl second resistors to which the output voltage of the second buffer corresponding to one end thereof is applied, a third buffer for generating a fixed voltage, and a third buffer at one end thereof Connected to the third resistor having the resistance value R to which the output voltage of the buffer is applied and the Nl second resistors and the third resistor so as to form an R-2R ladder network whose output port is an output.
  • Nl fourth resistors having a resistance value R / 2.
  • the voltage level can be arbitrarily set.
  • FIGS. 1A and 1B are an equivalent circuit diagram and an operation waveform diagram schematically illustrating a multi-value driver circuit.
  • 1 is a circuit diagram showing a configuration of a multilevel driver circuit according to a first embodiment.
  • FIG. FIG. 3 is a circuit diagram illustrating a configuration example of a first selector and a second selector in FIG. 2. It is a circuit diagram which shows the structure of the multi-value driver circuit which concerns on 2nd Embodiment. It is a circuit diagram which shows the structural example of the buffer which can set an output to a high impedance state.
  • 1 is a circuit diagram of a differential output driver circuit including a multi-value driver circuit according to an embodiment.
  • FIG. 1 is a circuit diagram of a single-ended output driver circuit including a multi-value driver circuit according to an embodiment.
  • FIG. It is a block diagram which shows the structure of a test apparatus provided with the driver circuit which concerns on embodiment.
  • the state in which the member A is connected to the member B means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. The case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 2 is a circuit diagram showing a configuration of the multilevel driver circuit 100 according to the first embodiment.
  • the multi-value driver circuit 100 selectively outputs one corresponding to the selection signals s0 to s (K-1) from K voltages (K is an integer of 2 or more) to the transmission line 102.
  • Each of the K voltages can be independently adjusted based on setting data of (Nu + Nl) bits (Nu and Nl are natural numbers).
  • the multi-value driver circuit 100 outputs the first voltage V0 corresponding to the first setting data D0 when the selection signal s0 is asserted (high level).
  • the selection signal s1 When the selection signal s1 is asserted, the second voltage V1 corresponding to the second setting data D1 is output.
  • the selection signal s2 When the selection signal s2 is asserted, the third voltage V2 corresponding to the third setting data D2 is output.
  • the data format of the selection signals s0 to s2 is not limited to that of the embodiment.
  • One skilled in the art understands that at least two bits are sufficient for the selection signal when switching between ternary voltages.
  • the multi-value driver circuit 100 includes an output port Po, a Thevenin termination circuit 10, an R-2R ladder circuit 12, a selector circuit 14, and a memory circuit 16.
  • the memory circuit 16 includes a first memory Mt and a second memory Mr.
  • the memory circuit may be constituted by a register, a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • the selector circuit 14 includes Nu first selectors SEL1 0 to 2 and Nl second selectors SEL2 0 to 3 .
  • the Nu first selectors SEL1 0 to 2 are provided for the upper Nu bits D [Nu + Nl ⁇ 1: Nl] of the setting data D0 to D2, that is, D [6: 4], respectively.
  • the i-th (0 ⁇ i ⁇ Nu ⁇ 1) first selector SEL1 i receives the lower (i + Nl) th bit of the setting data D0 to D2, and selects one corresponding to the selection signals s0 to s2. Specifically, when the jth selection signal sj is asserted, the bit data of the jth setting data Dj is selected.
  • the Nl second selectors SEL2 0 to 3 are provided for each lower Nl bit D [Nl-1: 0] of the setting data D0 to D2.
  • the i-th (0 ⁇ i ⁇ Nl ⁇ 1) second selector SEL2 i receives the lower-order i-th bit of the setting data D0 to D2, and selects one corresponding to the selection signals s0 to s2. Specifically, when the jth selection signal sj is asserted, the bit of the jth setting data Dj is selected.
  • the Thevenin termination circuit 10 of FIG. 2 is binary weighted.
  • the input terminals of the first buffers BUF1 in the same group are connected in common.
  • j th 2 j-number of first buffer belonging to the group BUF1 outputs a voltage corresponding to the output value of the first selector SEL1 j B corresponding to the lower (j + Nl) th bit of the configuration data [j + Nl].
  • the first buffer BUF1 and the second buffer BUF2 which will be described later, receive high-level (1) or low-level (0) data B and output a voltage corresponding to the value (for example, one of Vdd and Vss).
  • the first buffer BUF1 and the second buffer BUF2 may be CMOS inverters, or may be CMOS buffers including an even number of CMOS inverters connected in series. In the following description, it is assumed that the first buffer BUF1 and the second buffer BUF2 output Vdd when the input is at a high level and Vss when the input is at a low level.
  • the L first resistors R1 0 to 6 are provided for the L first buffers BUF1 0 to 6 , respectively.
  • the first resistors R1 0-6 have equal resistance values R.
  • the output voltage of the corresponding first buffer BUF1 is applied to one end of each of the first resistors R1 0 to 6 , and the other end is connected to the output port Po.
  • the R-2R ladder circuit 12 includes Nl second buffers BUF2 0-3 , a third buffer BUF3, Nl second resistors R2 0-3, and Nl fourth resistors R4 0-3 .
  • Second buffer BUF2 0 ⁇ of Nl pieces 3 each is provided for each second selector SEL2 0 ⁇ 3 of Nl number, the output value B [0] of the second selector SEL2 0 ⁇ 3 respectively corresponding ⁇ B [3 ] According to the output.
  • Nl second resistors R2 0-3 are provided for each of the Nl second buffers BUF2 0-3 .
  • the second resistors R2 0-3 have equal resistance values R.
  • the output voltage of the corresponding second buffer BUF2 0-3 is applied to one end of each of the second resistors R2 0-3 .
  • the third buffer BUF3 generates a fixed voltage.
  • the fixed voltage may be either Vdd or Vss.
  • the third resistor R3 has a resistance value R, and the output voltage of the third buffer BUF3 is applied to one end thereof.
  • the Nl fourth resistors R4 0-3 are connected to the Nl second resistors R2 0-3 and the third resistor R3 so as to form an R-2R ladder network having the output port Po as an output.
  • the resistance value of the Nl fourth resistors R40 0 to 3 is R / 2.
  • FIG. 3 is a circuit diagram showing a configuration example of the first selector and the second selector of FIG.
  • the first selector SEL1 and the second selector SEL2 (simply referred to as selector SEL) are composed of K AND gates AND 0 to AND K-1 provided for each of K input terminals 0 to K-1, and an OR gate. 20 is included.
  • the j-th (0 ⁇ j ⁇ K ⁇ 1) AND gate AND j generates a logical product of the j-th input signal and the j-th selection signal sj.
  • the OR gate 20 generates a logical sum of output signals of the K AND gates AND 0 to AND K ⁇ 1 .
  • the above is the configuration of the multilevel driver circuit 100. Next, the operation will be described.
  • the selector circuit 14 outputs one of the setting data D0 [6: 0], D1 [6: 0], D2 [6: 0] stored in the memory circuit 16 according to the selection signals s0 to s2.
  • the multi-value driver circuit 100 of FIG. 2 generates a voltage V out proportional to the value B represented by the binary data B [6: 0] output from the selector circuit 14. be able to.
  • each bit B [i] of the binary data B [6: 0] can be obtained from Expression (11).
  • int (x) is a function that takes the maximum integer that does not exceed x
  • mod (m, n) represents the remainder obtained by dividing the integer m by the integer n, that is, a remainder operation.
  • the setting data D0 [6: 0] to D2 [6: 0] corresponding to the first voltage V0 to the third voltage V2 are stored in the memory.
  • the voltage values of the voltages V0 to V2 can be arbitrarily set.
  • the selection signals s0 to s2 are given, so that one of the plurality of voltages V0 to V2 corresponding to the selection signals s0 to s2 is supplied to the multi-value driver circuit 100. Can be generated from
  • the multi-value driver circuit 100 can be generated by increasing the number of setting data stored in the memory circuit 16 and the number of input terminals of the first selector and the second selector. The number of voltages can be increased.
  • the voltage accuracy of the multi-value driver circuit 100 can be designed according to how many bits Nu and Nl are used.
  • Nu and Nl may be determined according to the accuracy and circuit area required for the multilevel driver circuit 100.
  • the Thevenin termination circuit 10 is binary weighted.
  • the second embodiment is different in that the Thevenin termination circuit 10 is not weighted.
  • the configuration of the multi-value driver circuit 100a according to the second embodiment will be described focusing on this difference.
  • FIG. 4 is a circuit diagram showing a configuration of a multi-value driver circuit 100a according to the second embodiment.
  • the Thevenin termination circuit 10a includes M first buffers BUF1 0 to M-1 , and M first resistors R1 0 to M-1 .
  • the M first buffers BUF1 0 to M-1 are respectively associated with the M first selectors SEL1 0 to M-1 .
  • the M first resistors R1 0 to M ⁇ 1 are respectively associated with the M first buffers BUF1 0 to M ⁇ 1 .
  • the second embodiment is different in that the number M of the first buffers BUF1 and the first resistors R1 matches the number M of the first selectors SEL1.
  • the i (0 ⁇ i ⁇ M ⁇ 1) th first buffer BUF1 i receives the output data B [Nl + i] of the corresponding first selector SEL1 i , and a voltage corresponding to the value (for example, one of Vdd and Vss) Is output.
  • the output voltage of the corresponding first buffer BUF1 is applied to one end of each of the first resistors R1 0 to M ⁇ 1 , and the other end is connected to the output port Po.
  • the other configuration of the multi-value driver circuit 100a is the same as that of the multi-value driver circuit 100 of FIG. Next, the operation of the multi-value driver circuit 100a will be described.
  • the upper M bits B [M + Nl-1: Nl] assigned to the Thevenin termination circuit 10a are expressed as T [M-1: 0].
  • T [M-1: 0] the 1 is inserted is arbitrary. For example, when 1 is assigned in order from the upper bit or from the lower bit, a so-called thermometer code is obtained.
  • the value (B L / 2 N + B) corresponding to the data B [M + Nl ⁇ 1: 0] output from the selector circuit 14 is the same as the multilevel driver circuit 100 of FIG. A voltage V out proportional to U 1) / (M + 1) can be generated.
  • the Hamming distance of the code T [M-1: 0] corresponding to the upper M bits of the setting data B [M + Nl-1: 0] is binary data. It becomes shorter than the case of 2. Therefore, glitches generated in the output voltage of the Thevenin termination circuit 10a can be suppressed.
  • the first buffer and the second buffer may be configured such that their outputs can be independently set to a high impedance state (disabled state). In this case, if all the first buffers and the second buffers are set to high impedance (disabled), the multi-value driver circuit 100 can be completely disconnected from the transmission line 102. If a buffer is enabled and all other buffers are disabled, the resistance value of the resistor connected to the enabled buffer can be individually measured and evaluated. This is a very important advantage in designing and manufacturing the multi-value driver circuit 100.
  • FIG. 5 is a circuit diagram showing a configuration example of a buffer whose output can be set to a high impedance state.
  • the buffer BUF includes an enable terminal EN, a first inverter INV1, a second inverter INV2, a first transistor M1 that is a P-channel MOSFET, a second transistor M2 that is an N-channel MOSEFET, an OR gate 30, and an AND gate 32.
  • the enable signal EN that is negated (low level) in the high impedance state is input to the enable terminal EN.
  • the first inverter INV1 inverts the data A from the corresponding selector.
  • the second inverter INV2 inverts the enable signal EN.
  • the first transistor M1 and the second transistor M2 are connected in series in a push-pull manner between the first power supply terminal Vdd and the second power supply terminal Vss.
  • the OR gate 30 generates a logical sum of the output signal #A (# indicates logic inversion) of the first inverter INV1 and the output signal #EN of the second inverter INV2, and applies it to the gate of the first transistor M1.
  • the AND gate 32 generates a logical product of the output signal #A of the first inverter INV1 and the enable signal EN and applies it to the gate of the second transistor M2.
  • the enable signal EN when the enable signal EN is negated (low level), both the first transistor M1 and the second transistor M2 are turned off and a high impedance state can be realized.
  • the enable signal EN When the enable signal EN is asserted (high level), the buffer BUF is enabled.
  • the signal X is a voltage Vdd when the signal A is at a high level, and a voltage Vss when the signal A is at a low level.
  • the multi-value driver circuit 100 (100a) according to the first or second embodiment can also be used for a transmission circuit in a CML (Current Mode Logic) format.
  • CML Current Mode Logic
  • FIG. 6 is a circuit diagram of a differential output driver circuit 300 including the multi-value driver circuit according to the embodiment.
  • the differential output driver circuit 300 includes a first output terminal Po1, a second output terminal Po2, a differential driver 302, and multi-value driver circuits 100_1 and 100_2.
  • Differential transmission lines 102p and 102n are connected to the first output terminal Po1 and the second output terminal Po2.
  • the differential driver 302 includes a first transistor 304, a second transistor 306, and a constant current source 308.
  • the first transistor 304 and the second transistor 306 are N-channel MOSFETs, and their drains are connected to the first output terminal Po1 and the second output terminal Po2.
  • the sources of the first transistor 304 and the second transistor 306 are connected to a constant current source 308.
  • One of the differential signals PAT to be transmitted is input to the gate of the first transistor 304, and the other of the differential signals PAT to be transmitted is input to the gate of the second transistor 306.
  • the first multi-value driver circuit 100_1 applies a voltage corresponding to the selection signal to the drain of the first transistor 304, that is, the first output terminal Po1.
  • the second multi-value driver circuit 100_2 applies a voltage corresponding to the selection signal to the drain of the second transistor 306, that is, the second output terminal Po2.
  • the multi-value driver circuits 100_1 and 100_2 are the multi-value driver circuit 100 (100a) of FIG. 2 or FIG.
  • the above is the configuration of the differential output driver circuit 300. Next, the operation will be described.
  • the differential output driver circuit 300 can be operated in the following three modes.
  • the differential output driver circuit 300 outputs a signal in which the small amplitude signal generated by the differential driver 302 is superimposed on the voltage generated by the multilevel driver circuits 100_1 and 100_2. Therefore, by providing a data signal as a selection signal for the multi-level driver circuits 100_1 and 100_2, it is possible to transmit a multi-level signal at a low speed and to transmit high-speed data by the differential driver 302.
  • the output voltages of the multi-value driver circuits 100_1 and 100_2 may be fixed to a constant voltage.
  • the multi-value driver circuits 100_1 and 100_2 function as simple 50 ⁇ terminators, and high-speed transmission by the differential driver 302 can be realized.
  • a data signal is supplied as a selection signal for the multi-value driver circuits 100_1 and 100_2, and the constant current source 308 of the differential driver 302 is stopped.
  • the differential output driver circuit 300 functions as two independent single-ended multi-value driver circuits.
  • FIG. 7 is a circuit diagram of a single-ended output driver circuit 400 including the multi-value driver circuit according to the embodiment.
  • the single-ended output driver circuit 400 includes an output terminal Po, a differential driver 402, and multi-value driver circuits 100_1, 100_2, and 100_3.
  • the configuration of the differential driver 402 is the same as that of the differential driver 302 of FIG.
  • the first multi-value driver circuit 100_1 applies a voltage corresponding to the selection signal to the drain of the first transistor 404, that is, the output terminal Po.
  • the second multi-value driver circuit 100_2 applies a voltage corresponding to the selection signal to the drain of the second transistor 406.
  • the third multi-value driver circuit 100_3 is provided for load balancing with respect to the differential driver 402, and applies a voltage corresponding to the selection signal to the drain of the second transistor 406.
  • the third multi-value driver circuit 100_3 fixedly outputs a voltage comparable to the voltage of the reception terminal of the device connected to the tip of the transmission line 102.
  • the single-ended output driver circuit 400 of FIG. 7 can also be operated in the following three modes.
  • the single-ended output driver circuit 400 outputs a signal in which the small amplitude signal generated by the differential driver 402 is superimposed on the voltage generated by the multilevel driver circuit 100_1. Therefore, by providing a data signal as a selection signal for the multi-level driver circuits 100_1 and 100_2, it is possible to transmit a multi-level signal at a low speed and to transmit high-speed data by the differential driver 302.
  • the output voltages of the multi-value driver circuits 100_1 and 100_2 may be fixed to a constant voltage.
  • the multi-value driver circuits 100_1 and 100_2 function as simple 50 ⁇ terminators, and high-speed transmission by the differential driver 402 can be realized.
  • a data signal is supplied as a selection signal for the multi-value driver circuit 100_1, and the constant current source 408 of the differential driver 402 is stopped.
  • the single end output driver circuit 400 functions as a multi-value driver circuit.
  • FIG. 8 is a block diagram illustrating a configuration of the test apparatus 2 including the driver circuit according to the embodiment.
  • the test apparatus 2 mainly includes a pattern generator PG, a timing generator TG, a waveform shaper FC, a driver DR, a timing comparator TC, and a logic comparator DC.
  • the pattern generator PG generates pattern data DP that defines a test pattern to be supplied to the DUT 1.
  • the timing generator TG sets timing setting data TP for setting the timing of the positive edge and the negative edge of the signal Vout to be given to the DUT 1 based on the pattern data DP in a predetermined cycle (hereinafter referred to as a rate cycle T RATE ). Generate for each.
  • the waveform shaper FC receives the pattern data DP and the timing setting data TP, and generates an output signal FP whose value changes at a timing according to the pattern data DP and the timing setting data TP.
  • the driver DR is the driver circuits 100, 100a, 300, and 400 according to the above-described embodiments, and outputs the voltage Vout having a level corresponding to the signal FP from the waveform shaper FC to the DUT1.
  • the timing comparator TC receives the signal S2 output from the DUT 1 and latches the value at every predetermined timing.
  • the logical comparator DC compares the output signal of the timing comparator TC for each test cycle with the corresponding expected value EXP, and generates a pass / fail signal PASS / FAIL indicating a match or mismatch.
  • the pass / fail signal is stored in the fail memory FM.
  • the above is a configuration example of the test apparatus 2.
  • the driver circuits 100, 100a, 300, 400 according to the embodiment to the driver DR of such a test apparatus 2
  • the level of the signal supplied to the DUT 1 can be determined according to the type of DUT 1 and the test item. Can be adjusted arbitrarily.
  • DESCRIPTION OF SYMBOLS 100 Multi-value driver circuit, 102 ... Transmission line, Po ... Output port, 10 ... Thevenin termination circuit, 12 ... R-2R ladder circuit, 14 ... Selector circuit, 16 ... Memory circuit, R1 ... First resistance, R2 ... First 2 resistors, R3 ... 3rd resistor, R4 ... 4th resistor, BUF1 ... 1st buffer, BUF2 ... 2nd buffer, BUF3 ... 3rd buffer, SEL1 ... 1st selector, SEL2 ... 2nd selector, Mt ...
  • the present invention can be used for a test apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 多値ドライバ回路100は、伝送線路102に対し、複数の電圧V0~V2から選択信号s0~s2に応じたひとつを選択的に出力する。メモリ回路16は、複数の電圧V0~V2それぞれのレベルを規定する設定データD0~D2を格納する。セレクタ回路14はメモリ回路16に格納された複数の設定データD0~D2のうち、選択信号に応じたひとつを選択する。テブナン終端回路10は、セレクタ回路14により選択されたデータの上位Mビットに応じた電圧を出力する。R-2Rラダー回路12は、セレクタ回路14により選択されたデータの下位Nlビットに応じた電圧を出力する。

Description

多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置
 本発明は、伝送線路を介して信号を出力するドライバ回路に関する。
 伝送線路を介して接続された半導体デバイスに、多値のレベル信号を送信するために、多値ドライバが利用される。たとえばプッシュプル形式で接続されたPチャンネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)とNチャンネルMOSFETを含むバッファ(インバータ)は、ハイレベルに対応した電圧Vddまたはローレベルに対応した電圧Vssを出力する多値ドライバの代表例である。
 図1(a)、(b)は、多値ドライバ回路を模式化した等価回路図およびその動作波形図である。多値ドライバ回路200の出力ポートPoは、伝送線路202を介して図示しないデバイスと接続されている。多値ドライバ回路200は、ハイレベルの電圧VIH、ローレベルの電圧VIL、終端電圧VTTのうち、選択信号s0~s2に応じたいずれかひとつを選択的に出力する。
 多値ドライバ回路200は、セレクタ204と、バッファ206と、出力抵抗Roを含む。セレクタ204には、3個の入力端子(0、1、2)それぞれに3値の電圧VIH、VIL、VTTそれぞれが入力されており、3ビットの選択信号s0~s2に応じたひとつを選択する。たとえば3値の電圧VIH、VIL、VTTは、図示しないD/Aコンバータなどによって生成される。セレクタ204は、選択信号s0がアサート(ハイレベル)されるとき終端電圧VTTを、選択信号s1がアサートされるときハイレベル電圧VIHを、選択信号s2がアサートされるときローレベル電圧VILを出力する。バッファ206は、セレクタ204により選択された電圧を受け、それを出力抵抗Roを介して伝送線路202へと出力する。
特開平9-172361号公報 米国特許第4,833,473号明細書 米国特許第5,008,676号明細書
 メモリやDSP(Digital Signal Processor)などを試験対象とする半導体試験装置(以下、単に試験装置ともいう)は、DUT(被試験デバイス)に対して多値のテストパターン信号や多値の制御信号を供給するための多値ドライバ回路を備える。
 試験装置に使用される多値ドライバは、検査対象のDUTの種類や試験の種類などに応じて、多値のレベル信号それぞれの電圧レベルを任意に調節可能であることが望ましい。また、試験装置以外のアプリケーションにおいても、電圧レベルを任意に調節可能な多値ドライバ回路が望まれている。
 本発明はかかる状況においてなされたものであり、そのある態様の例示的な目的のひとつは、電圧レベルを調節可能な多値ドライバ回路の提供にある。
 本発明のある態様は、伝送線路に対し、K個(Kは2以上の整数)の電圧から選択信号に応じたひとつを選択的に出力する多値ドライバ回路に関する。K個の電圧はそれぞれが(M+Nl)ビット(M、Nlは自然数)の設定データにもとづいて独立に調節可能である。多値ドライバ回路は、伝送線路と接続される出力ポートと、K個の電圧それぞれの設定データの上位Mビットを保持する第1メモリと、K個の電圧それぞれの前記設定データの下位Nlビットを保持する第2メモリと、それぞれが設定データの上位Mビットごとに設けられたM個の第1セレクタであって、それぞれがK個の設定データそれぞれの対応するビットを受け、選択信号に応じたひとつを選択するM個の第1セレクタと、それぞれが設定データの下位Nlビットごとに設けられたNl個の第2セレクタであって、K個の設定データそれぞれの対応するビットを受け、選択信号に応じたひとつを選択するNl個の第2セレクタと、それぞれがM個の第1セレクタごとに設けられたM個の第1バッファであって、対応する第1セレクタの出力値に応じた電圧を出力するM個の第1バッファと、それぞれがM個の第1バッファごとに設けられた抵抗値Rを有するM個の第1抵抗であって、それぞれの一端に対応する前記第1バッファの出力電圧が印加され、それぞれの他端が前記出力ポートと接続されるM個の第1抵抗と、それぞれがNl個の第2セレクタごとに設けられたNl個の第2バッファであって、対応する第2セレクタの出力値に応じた電圧を出力するNl個の第2バッファと、固定電圧を発生する第3バッファと、それぞれがNl個の第2バッファごとに設けられた抵抗値Rを有するNl個の第2抵抗であって、それぞれの一端に対応する第2バッファの出力電圧が印加されるNl個の第2抵抗と、その一端に第3バッファの出力電圧が印加された抵抗値Rを有する第3抵抗と、Nl個の第2抵抗および第3抵抗に対して、出力ポートを出力とするR-2Rラダーネットワークを形成するように接続されたNl個の第4抵抗と、を備える。
 本発明の別の態様も、K個の電圧から選択信号に応じたひとつを選択的に出力する多値ドライバ回路に関する。K個の電圧はそれぞれが(Nu+Nl)ビット(Nu、Nlは自然数)の設定データにもとづいて独立に調節可能である。多値ドライバ回路は、伝送線路と接続される出力ポートと、K個の電圧それぞれの設定データの上位Nuビットを保持する第1メモリと、K個の電圧それぞれの設定データの下位Nlビットを保持する第2メモリと、それぞれが設定データの上位Nuビットごとに設けられたNu個の第1セレクタであって、それぞれがK個の設定データそれぞれの対応するビットを受け、選択信号に応じたひとつを選択するNu個の第1セレクタと、それぞれが設定データの下位Nlビットごとに設けられたNl個の第2セレクタであって、K個の設定データそれぞれの対応するビットを受け、選択信号に応じたひとつを選択するNl個の第2セレクタと、2個(j=0,1,…、Nu-1)ごとにグループ化され、同じグループ内の第1バッファの入力端子が共通に接続されているL個(L=Σj=0:Nu-1=2Nu-1)の第1バッファであって、j番目のグループに属する2個の第1バッファは、設定データの下位(j+Nl)ビット目に対応する第1セレクタの出力値に応じた電圧を出力するL個の第1バッファと、それぞれがL個の第1バッファごとに設けられた抵抗値Rを有するL個の第1抵抗であって、それぞれの一端に対応する第1バッファの出力電圧が印加され、それぞれの他端が前記出力ポートと接続されるL個の第1抵抗と、それぞれがNl個の第2セレクタごとに設けられたNl個の第2バッファであって、対応する第2セレクタの出力値に応じた電圧を出力するNl個の第2バッファと、それぞれがNl個の第2バッファごとに設けられた抵抗値Rを有するNl個の第2抵抗であって、それぞれの一端に対応する第2バッファの出力電圧が印加されるNl個の第2抵抗と、固定電圧を発生する第3バッファと、その一端に第3バッファの出力電圧が印加された抵抗値Rを有する第3抵抗と、Nl個の第2抵抗および第3抵抗に対して、出力ポートを出力とするR-2Rラダーネットワークを形成するように接続された抵抗値R/2を有するNl個の第4抵抗と、を備える。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置などの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様の多値ドライバ回路によれば、電圧レベルを任意に設定できる。
図1(a)、(b)は、多値ドライバ回路を模式化した等価回路図および動作波形図である。 第1の実施の形態に係る多値ドライバ回路の構成を示す回路図である。 図2の第1セレクタおよび第2セレクタの構成例を示す回路図である。 第2の実施の形態に係る多値ドライバ回路の構成を示す回路図である。 出力がハイインピーダンス状態に設定可能なバッファの構成例を示す回路図である。 実施の形態に係る多値ドライバ回路を備える差動出力ドライバ回路の回路図である。 実施の形態に係る多値ドライバ回路を備えるシングルエンド出力ドライバ回路の回路図である。 実施の形態に係るドライバ回路を備える試験装置の構成を示すブロック図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
(第1の実施の形態)
 図2は、第1の実施の形態に係る多値ドライバ回路100の構成を示す回路図である。多値ドライバ回路100は、伝送線路102に対し、K個(Kは2以上の整数)の電圧から選択信号s0~s(K-1)に応じたひとつを選択的に出力する。以下、K=3の場合を説明するが、本発明はそれに限定されず、任意の個数の電圧に適用することができる。多値ドライバ100を後述のように試験装置に利用する場合、終端電圧VTT、ハイレベル電圧VIH、ローレベル電圧VILのK=3の電圧がしばしば必要となる。あるいは将来の試験装置では、さらに多値の電圧レベルが必要となるであろう。
 K個の電圧はそれぞれが(Nu+Nl)ビット(Nu、Nlは自然数)の設定データにもとづいて独立に調節可能である。本実施の形態ではNu=3、Nl=4であり、j番目(0≦j≦K-1)の電圧レベルは、7ビットの設定データDj[6:0]によって規定される。
 多値ドライバ回路100は、選択信号s0がアサート(ハイレベル)されるとき、第1の設定データD0に応じた第1電圧V0を出力する。選択信号s1がアサートされるとき、第2の設定データD1に応じた第2電圧V1を出力する。また選択信号s2がアサートされるとき、第3の設定データD2に応じた第3電圧V2を出力する。
 なお、選択信号s0~s2のデータ形式は実施の形態のそれに限定されない。当業者には、3値の電圧を切りかえる場合、選択信号は、少なくとも2ビットで足りることが理解される。
 多値ドライバ回路100は、出力ポートPo、テブナン終端回路10、R-2Rラダー回路12、セレクタ回路14、メモリ回路16を備える。
 メモリ回路16は、第1メモリMtと第2メモリMrを含む。第1メモリMtは、K個の電圧それぞれを規定する設定データD0~D2の上位Nu(=3)ビットD0[6:4]、D1[6:4]、D2[6:4]を保持する。第2メモリMrは、K個の電圧それぞれを規定する設定データD0~D2の下位Nl(=4)ビットD0[3:0]、D1[3:0]、D2[3:0]を保持する。メモリ回路はレジスタやRAM(Random Access Memory)、ROM(Read Only Memory)などで構成すればよい。
 セレクタ回路14は、Nu個の第1セレクタSEL10~2と、Nl個の第2セレクタSEL20~3を含む。Nu個の第1セレクタSEL10~2はそれぞれ、設定データD0~D2の上位NuビットD[Nu+Nl-1:Nl]、すなわちD[6:4]ごとに設けられる。Nu個の第1セレクタSEL10~2はそれぞれ、K(=3)個の入力端子0~2を有している。i番目(0≦i≦Nu-1)の第1セレクタSEL1は、設定データD0~D2それぞれの下位(i+Nl)ビット目を受け、選択信号s0~s2に応じたひとつを選択する。具体的にはj番目の選択信号sjがアサートされるとき、j番目の設定データDjのビットデータが選択される。
 Nl個の第2セレクタSEL20~3は、それぞれが設定データD0~D2の下位NlビットD[Nl-1:0]ごとに設けられる。Nl個の第2セレクタSEL20~3はそれぞれ、K(=3)個の入力端子0~2を有している。i番目の(0≦i≦Nl-1)の第2セレクタSEL2は、設定データD0~D2それぞれの下位iビット目を受け、選択信号s0~s2に応じたひとつを選択する。具体的にはj番目の選択信号sjがアサートされるとき、j番目の設定データDjのビットが選択される。
 テブナン終端回路10は、L個(L=Σj=0:Nu-1=2Nu-1)の第1バッファBUF10~6と、L個の第1抵抗R10~6を含む。Nu=3のとき、L=1+2+4=7である。以下で説明するように、図2のテブナン終端回路10はバイナリーで重み付けされている。
 L個の第1バッファBUF10~6は、2個(j=0,1,…、Nu-1)ごとに、具体的には、1個、2個、4個・・・ごとにグループ化されている。そして同じグループ内の第1バッファBUF1の入力端子は共通に接続されている。j番目のグループに属する2個の第1バッファBUF1は、設定データの下位(j+Nl)ビット目に対応する第1セレクタSEL1の出力値B[j+Nl]に応じた電圧を出力する。
 第1バッファBUF1および後述の第2バッファBUF2は、ハイレベル(1)またはローレベル(0)のデータBを受け、その値に応じた電圧(たとえばVdd、Vssの一方)を出力する。第1バッファBUF1および第2バッファBUF2は、CMOSインバータであってもよいし、直列に接続された偶数個のCMOSインバータを含むCMOSバッファであってもよい。以下では、第1バッファBUF1および第2バッファBUF2は、入力がハイレベルのときVddを、入力がローレベルのときVssを出力するものとする。
 L個の第1抵抗R10~6は、それぞれがL個の第1バッファBUF10~6ごとに設けられる。第1抵抗R10~6は等しく抵抗値Rを有する。第1抵抗R10~6のそれぞれ一端には、対応する第1バッファBUF1の出力電圧が印加され、それぞれの他端は出力ポートPoと接続される。
 R-2Rラダー回路12は、Nl個の第2バッファBUF20~3、第3バッファBUF3、Nl個の第2抵抗R20~3およびNl個の第4抵抗R40~3を含む。
 Nl個の第2バッファBUF20~3は、それぞれがNl個の第2セレクタSEL20~3ごとに設けられ、それぞれ対応する第2セレクタSEL20~3の出力値B[0]~B[3]に応じた電圧を出力する。
 Nl個の第2抵抗R20~3は、Nl個の第2バッファBUF20~3ごとに設けられる。第2抵抗R20~3は等しく抵抗値Rを有する。第2抵抗R20~3それぞれの一端には、対応する第2バッファBUF20~3の出力電圧が印加される。
 第3バッファBUF3は、固定電圧を発生する。固定電圧はVddまたはVssの一方でよい。第3抵抗R3は抵抗値Rを有し、その一端には、第3バッファBUF3の出力電圧が印加される。
 Nl個の第4抵抗R40~3は、Nl個の第2抵抗R20~3および第3抵抗R3に対して、出力ポートPoを出力とするR-2Rラダーネットワークを形成するように接続される。Nl個の第4抵抗R40~3の抵抗値はR/2である。
 図3は、図2の第1セレクタおよび第2セレクタの構成例を示す回路図である。第1セレクタSEL1および第2セレクタSEL2(単にセレクタSELと総称する)は、K個の入力端子0~K-1ごとに設けられたK個のANDゲートAND~ANDK-1と、ORゲート20を含む。j番目(0≦j≦K-1)のANDゲートANDは、j番目の入力信号と、j番目の選択信号sjの論理積を生成する。ORゲート20は、K個のANDゲートAND~ANDK-1の出力信号の論理和を生成する。
 以上が多値ドライバ回路100の構成である。続いてその動作を説明する。
 セレクタ回路14からは、メモリ回路16に格納された設定データD0[6:0]、D1[6:0]、D2[6:0]のうち、選択信号s0~s2に応じたひとつが出力される。セレクタ回路14から出力される(Nu+Nl)ビットのバイナリデータB[6:0]が表す値は、
 B=Σi=0:Nu+Nl-1(2・B[i])  …(1)
で与えられる。
 バイナリデータB[6:0]のうち、テブナン終端回路10に割り当てられる上位Nu(=3)ビットB[6:4]を、B[Nu-1:0]と表記する。このバイナリデータB[Nu-1:0]が表す値は、
 B=Σi=0:Nu-1(2・B[i])  …(2)
となる。
 同様にバイナリデータB[6:0]のうち、R-2Rラダー回路12に割り当てられる下位Nl(=4)ビットB[3:0]を、B[Nl-1:0]と表記する。このバイナリデータB[Nl-1:0]が表す値は、
 B=Σi=0:Nl-1(2・B[i])  …(3)
となる。
 式(1)~(3)から、式(4)を得る。
 B=B+B・2Nl  …(4)
 テブナン終端回路10に着目する。上位データB[Nu-1:0]を受けたテブナン終端回路10の出力電圧Vおよび出力インピーダンスZはそれぞれ、式(5)、(6)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 R-2Rラダー回路12に着目する。下位データB[Nl-1:0]を受けたR-2Rラダー回路12の出力電圧Vおよび出力インピーダンスZはそれぞれ、式(7)、(8)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 図2に示すように、テブナン終端回路10とR-2Rラダー回路12を並列に接続した場合の出力電圧Voutおよび出力インピーダンスZoutはそれぞれ、式(9)、(10)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 式(9)から明らかなように、図2の多値ドライバ回路100によれば、セレクタ回路14から出力されるバイナリデータB[6:0]が表す値Bに比例した電圧Voutを発生することができる。
 なお、数値Bから、バイナリデータB[6:0]の各ビットB[i]は、式(11)から得ることができる。ここでint(x)は、xを越えない最大の整数をとる関数であり、mod(m,n)は、整数mを整数nで割ったあまり、すなわち除余演算を表す。
Figure JPOXMLDOC01-appb-M000004
 この多値ドライバ回路100によれば、第1電圧V0~第3電圧V2に要求される電圧値に応じて、それぞれに対応する設定データD0[6:0]~D2[6:0]をメモリ回路16に書き込むことにより、各電圧V0~V2の電圧値を任意に設定することができる。
 そしてメモリ回路16に各設定データD0~D2を書き込んだ後に、選択信号s0~s2を与えることにより、複数の電圧V0~V2のうち、選択信号s0~s2に応じたひとつを多値ドライバ回路100から発生させることができる。
 またこの多値ドライバ回路100によれば、メモリ回路16に格納する設定データの個数、ならびに第1セレクタおよび第2セレクタそれぞれの入力端子の個数を増やすことにより、多値ドライバ回路100が発生可能な電圧の個数を増やすことができる。
 また、多値ドライバ回路100の電圧精度は、NuおよびNlをそれぞれ何ビットとするかによって設計することができる。言い換えれば、NuおよびNlは、多値ドライバ回路100に要求される精度、回路面積に応じて決めればよい。
 また、式(10)の出力インピーダンスZoutが、伝送線路102の特性インピーダンスZ0と一致するように、抵抗Rおよび定数Nuの値を決定することにより、送受信系のインピーダンス整合をとることができる。
(第2の実施の形態)
 第1の実施の形態において、テブナン終端回路10はバイナリで重み付けされていた。これに対して、第2の実施の形態ではテブナン終端回路10は重み付けされていない点で相違する。以下では、この相違点を中心に第2の実施の形態に係る多値ドライバ回路100aの構成を説明する。
 図4は、第2の実施の形態に係る多値ドライバ回路100aの構成を示す回路図である。テブナン終端回路10aは、M個の第1バッファBUF10~M-1と、M個の第1抵抗R10~M-1を含む。M個の第1バッファBUF10~M-1はそれぞれ、M個の第1セレクタSEL10~M-1に対応づけられる。M個の第1抵抗R10~M-1はそれぞれ、M個の第1バッファBUF10~M-1に対応づけられる。
 第1の実施の形態では、第1バッファBUF1および第1抵抗R1の個数Lが、第1セレクタSEL1の個数Nuを用いてL=Σj=0:Nu-1=2Nu-1で与えられた。これに対して第2の実施の形態では、第1バッファBUF1および第1抵抗R1の個数Mは、第1セレクタSEL1の個数Mと一致している点が異なっている。
 i(0≦i≦M-1)番目の第1バッファBUF1は、対応する第1セレクタSEL1の出力データB[Nl+i]を受け、その値に応じた電圧(たとえばVdd、Vssの一方)を出力する。
 第1抵抗R10~M-1のそれぞれ一端には、対応する第1バッファBUF1の出力電圧が印加され、それぞれの他端は出力ポートPoと接続される。
 多値ドライバ回路100aのその他の構成は図2の多値ドライバ回路100と同様である。続いて多値ドライバ回路100aの動作を説明する。
 セレクタ回路14からは、メモリ回路16に格納された設定データD0[6:0]、D1[6:0]、D2[6:0]のうち、選択信号s0~s2に応じたひとつのデータB[M+Nl-1:0]が出力される。
 データB[M+Nl-1:0]のうち、テブナン終端回路10aに割り当てられる上位MビットB[M+Nl-1:Nl]を、T[M-1:0]と表記する。このときMビットのコードT[M-1:0]のうち、値が1であるビットの個数をBとすれば、
 B=Σi=0:M-1(T[i])  …(12)
となる。なお、コードT[M-1:0]のどのビットから1を入れるかは任意である。たとえば上位ビットから順に、あるいは下位ビットから順に1を割り当てる場合、いわゆるサーモメータコードとなる。
 Mの値を、第1の実施の形態における自然数Nuと対応づけて、
 M=2Nu-1  …(13)
を満たすように決めた場合、第2の実施の形態においても式(5)~(10)がそのまま成り立つ。またコードT[M-1:0]の値Bを表すデータがNuビットのバイナリデータで与えられる場合に、式(13)を満たすように自然数Mを選ぶことにより、値Bを表すバイナリデータのすべてのビットを有効に利用することができ、コード効率がよくなる。
 もし式(13)の拘束条件に従わずに整数Mを決めた場合、以下の式(14)~(17)が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 図4の多値ドライバ回路100aによっても、図2の多値ドライバ回路100と同様に、セレクタ回路14から出力されるデータB[M+Nl-1:0]に応じた値(B/2+B)/(M+1)に比例した電圧Voutを発生することができる。
 図2の回路では、上位データB[M-1:0]に桁上がりまたは桁下がりが発生するときに、値が変化するビットの個数が大きい。つまりハミング距離が長い。したがって桁上がりや桁下がりに際して、テブナン終端回路10の出力電圧に比較的大きなグリッジが発生するおそれがある。これに対して図4の多値ドライバ回路100aでは、設定データB[M+Nl-1:0]の上位Mビットに対応するコードT[M-1:0]のハミング距離が、バイナリデータである図2の場合に比べて短くなる。したがってテブナン終端回路10aの出力電圧に発生するグリッジを抑制することができる。
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセス、それらの組み合わせには、さまざまな変形例が存在しうる。以下、こうした変形例について説明する。
 第1、第2の実施の形態において、第1バッファおよび第2バッファは、それぞれの出力が独立にハイインピーダンス状態(ディスエーブル状態)に設定可能に構成されてもよい。この場合、すべての第1バッファおよび第2バッファをハイインピーダンス(ディスエーブル)とすれば、多値ドライバ回路100を伝送線路102から完全に切り離すことができる。また、あるバッファをイネーブルとし、その他のバッファをすべてディスエーブル状態とすれば、イネーブルであるバッファに接続される抵抗の抵抗値を個別に測定、評価することが可能となる。このことは、多値ドライバ回路100を設計、製造する上できわめて重要なメリットである。
 図5は、その出力がハイインピーダンス状態に設定可能なバッファの構成例を示す回路図である。バッファBUFは、イネーブル端子EN、第1インバータINV1、第2インバータINV2、PチャンネルMOSFETである第1トランジスタM1、NチャンネルMOSEFETである第2トランジスタM2、ORゲート30、ANDゲート32を含む。
 イネーブル端子ENには、ハイインピーダンス状態においてネゲート(ローレベル)されるイネーブル信号ENが入力される。第1インバータINV1は、対応するセレクタからのデータAを反転する。第2インバータINV2は、イネーブル信号ENを反転する。第1トランジスタM1および第2トランジスタM2は、第1の電源端子Vddと第2の電源端子Vssの間にプッシュプル形式で直列に接続される。ORゲート30は、第1インバータINV1の出力信号#A(#は論理反転を示す)と第2インバータINV2の出力信号#ENの論理和を生成し、第1トランジスタM1のゲートに印加する。ANDゲート32は、第1インバータINV1の出力信号#Aとイネーブル信号ENの論理積を生成し、第2トランジスタM2のゲートに印加する。
 この構成によれば、イネーブル信号ENがネゲート(ローレベル)されるとき、第1トランジスタM1、第2トランジスタM2がともにオフとなりハイインピーダンス状態が実現できる。イネーブル信号ENがアサート(ハイレベル)されるときバッファBUFはイネーブル状態となる。信号Xは、信号Aがハイレベルのとき電圧Vdd、信号Aがローレベルのとき電圧Vssとなる。
 第1または第2の実施の形態に係る多値ドライバ回路100(100a)は、CML(Current Mode Logic)形式の送信回路にも利用することができる。
 図6は、実施の形態に係る多値ドライバ回路を備える差動出力ドライバ回路300の回路図である。
 差動出力ドライバ回路300は、第1出力端子Po1、第2出力端子Po2、差動ドライバ302、多値ドライバ回路100_1、100_2を備える。
 第1出力端子Po1、第2出力端子Po2には、差動伝送線路102p、102nが接続される。
 差動ドライバ302は、第1トランジスタ304、第2トランジスタ306、定電流源308を含む。第1トランジスタ304および第2トランジスタ306はNチャンネルMOSFETであり、それぞれのドレインは第1出力端子Po1、第2出力端子Po2に接続されている。第1トランジスタ304および第2トランジスタ306のソースは、定電流源308に接続される。第1トランジスタ304のゲートには、送信すべき差動信号PATの一方が、第2トランジスタ306のゲートには、送信すべき差動信号PATの他方が入力される。
 第1多値ドライバ回路100_1は、第1トランジスタ304のドレインつまり第1出力端子Po1に、選択信号に応じた電圧を与える。同様に、第2多値ドライバ回路100_2は、第2トランジスタ306のドレインつまり第2出力端子Po2に、選択信号に応じた電圧を与える。多値ドライバ回路100_1、100_2は、図2または図4の多値ドライバ回路100(100a)であり、簡略化して示している。
 以上が差動出力ドライバ回路300の構成である。続いてその動作を説明する。差動出力ドライバ回路300は、以下の3つのモードで動作させることができる。
(第1のモード)
 差動出力ドライバ回路300は、多値ドライバ回路100_1、100_2が発生した電圧に差動ドライバ302が発生した小振幅信号が重畳された信号を出力する。したがって、多値ドライバ回路100_1、100_2に対する選択信号としてデータ信号を与えることにより、低速で多値信号を送信するとともに、差動ドライバ302によって高速データを送信することができる。
(第2のモード)
 多値ドライバ回路100_1、100_2の出力電圧を一定の電圧に固定してもよい。この場合、多値ドライバ回路100_1、100_2は、単なる50Ω終端器として機能し、差動ドライバ302による高速伝送が実現できる。
(第3のモード)
 多値ドライバ回路100_1、100_2に対する選択信号としてデータ信号を与えるとともに、差動ドライバ302の定電流源308を停止する。この場合、差動出力ドライバ回路300は、独立した2つのシングルエンドの多値ドライバ回路として機能する。
 図7は、実施の形態に係る多値ドライバ回路を備えるシングルエンド出力ドライバ回路400の回路図である。
 シングルエンド出力ドライバ回路400は、出力端子Po、差動ドライバ402、多値ドライバ回路100_1、100_2、100_3を備える。差動ドライバ402の構成は図6の差動ドライバ302と同様である。
 第1多値ドライバ回路100_1は、第1トランジスタ404のドレインすなわち出力端子Poに選択信号に応じた電圧を印加する。第2多値ドライバ回路100_2は、第2トランジスタ406のドレインに選択信号に応じた電圧を印加する。第3多値ドライバ回路100_3は、差動ドライバ402に対する負荷バランス用に設けられ、第2トランジスタ406のドレインに選択信号に応じた電圧を印加する。第3多値ドライバ回路100_3は、伝送線路102の先に接続されるデバイスの受信端子の電圧と同程度の電圧を固定的に出力する。
 図7のシングルエンド出力ドライバ回路400も、以下の3つのモードで動作させることができる。
(第1のモード)
 シングルエンド出力ドライバ回路400は、多値ドライバ回路100_1が発生した電圧に差動ドライバ402が発生した小振幅信号が重畳された信号を出力する。したがって、多値ドライバ回路100_1、100_2に対する選択信号としてデータ信号を与えることにより、低速で多値信号を送信するとともに、差動ドライバ302によって高速データを送信することができる。
(第2のモード)
 多値ドライバ回路100_1、100_2の出力電圧を一定の電圧に固定してもよい。この場合、多値ドライバ回路100_1、100_2は、単なる50Ω終端器として機能し、差動ドライバ402による高速伝送が実現できる。
(第3のモード)
 多値ドライバ回路100_1に対する選択信号としてデータ信号を与えるとともに、差動ドライバ402の定電流源408を停止する。この場合、シングルエンド出力ドライバ回路400は多値ドライバ回路として機能する。
 最後に、図2、図4の多値ドライバ回路、あるいは図6、図7のドライバ回路のアプリケーションを説明する。図8は、実施の形態に係るドライバ回路を備える試験装置2の構成を示すブロック図である。
 試験装置2は、主としてパターン発生器PG、タイミング発生器TG、波形整形器FC、ドライバDR、タイミングコンパレータTC、論理比較器DCを備える。
 パターン発生器PGは、DUT1に対して供給すべきテストパターンを規定するパターンデータDPを発生する。タイミング発生器TGは、パターンデータDPにもとづいて、DUT1に与えるべき信号Voutのポジティブエッジおよびネガティブエッジのタイミングを設定するタイミング設定データTPを、所定の周期(以下、レート周期TRATEと称する)ごとに生成する。
 波形整形器FCは、パターンデータDPおよびタイミング設定データTPを受け、それに応じたタイミングで値が変化する出力信号FPを生成する。ドライバDRは、上述の実施の形態に係るドライバ回路100、100a、300、400であり、波形整形器FCからの信号FPに応じたレベルを有する電圧VoutをDUT1へと出力する。
 タイミングコンパレータTCは、DUT1から出力される信号S2を受け、所定のタイミングごとにその値をラッチする。論理比較器DCは、テストサイクルごとのタイミングコンパレータTCの出力信号を、それぞれに対応する期待値EXPと比較し、一致、不一致を示すパスフェイル信号PASS/FAILを生成する。パスフェイル信号はフェイルメモリFMに格納される。
 以上が試験装置2の構成例である。実施の形態に係るドライバ回路100、100a、300、400を、このような試験装置2のドライバDRに適用することにより、DUT1に対して供給する信号のレベルを、DUT1の種類や試験項目に応じて、任意に調節することができる。
 実施の形態にもとづき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。
100…多値ドライバ回路、102…伝送線路、Po…出力ポート、10…テブナン終端回路、12…R-2Rラダー回路、14…セレクタ回路、16…メモリ回路、R1…第1抵抗、R2…第2抵抗、R3…第3抵抗、R4…第4抵抗、BUF1…第1バッファ、BUF2…第2バッファ、BUF3…第3バッファ、SEL1…第1セレクタ、SEL2…第2セレクタ、Mt…第1メモリ、Mr…第2メモリ、300…差動出力ドライバ回路、302…差動ドライバ、304…第1トランジスタ、306…第2トランジスタ、308…定電流源、Po1…第1出力端子、Po2…第2出力端子、400…シングルエンド出力ドライバ回路、402…差動ドライバ、404…第1トランジスタ、406…第2トランジスタ、408…定電流源、1…DUT、2…試験装置、PG…パターン発生器、TG…タイミング発生器、FC…波形整形器、DR…ドライバ、TC…タイミングコンパレータ、DC…論理比較器。
 本発明は、試験装置に利用できる。

Claims (7)

  1.  伝送線路に対し、K個(Kは2以上の整数)の電圧から選択信号に応じたひとつを選択的に出力する多値ドライバ回路であって、K個の電圧はそれぞれが(M+Nl)ビット(M、Nlは自然数)の設定データにもとづいて独立に調節可能である多値ドライバ回路であって、
     前記伝送線路と接続される出力ポートと、
     前記K個の電圧それぞれの前記設定データの上位Mビットを保持する第1メモリと、
     前記K個の電圧それぞれの前記設定データの下位Nlビットを保持する第2メモリと、
     それぞれが前記設定データの上位Mビットごとに設けられたM個の第1セレクタであって、それぞれが前記K個の設定データそれぞれの対応するビットを受け、前記選択信号に応じたひとつを選択するM個の第1セレクタと、
     それぞれが前記設定データの下位Nlビットごとに設けられたNl個の第2セレクタであって、前記K個の設定データそれぞれの対応するビットを受け、前記選択信号に応じたひとつを選択するNl個の第2セレクタと、
     それぞれが前記M個の第1セレクタごとに設けられたM個の第1バッファであって、対応する前記第1セレクタの出力値に応じた電圧を出力するM個の第1バッファと、
     それぞれが前記M個の第1バッファごとに設けられた抵抗値Rを有するM個の第1抵抗であって、それぞれの一端に対応する前記第1バッファの出力電圧が印加され、それぞれの他端が前記出力ポートと接続されるM個の第1抵抗と、
     それぞれが前記Nl個の第2セレクタごとに設けられたNl個の第2バッファであって、対応する前記第2セレクタの出力値に応じた電圧を出力するNl個の第2バッファと、
     固定電圧を発生する第3バッファと、
     それぞれが前記Nl個の第2バッファごとに設けられた抵抗値Rを有するNl個の第2抵抗であって、それぞれの一端に対応する前記第2バッファの出力電圧が印加されるNl個の第2抵抗と、
     その一端に前記第3バッファの出力電圧が印加された抵抗値Rを有する第3抵抗と、
     前記Nl個の第2抵抗および前記第3抵抗に対して、前記出力ポートを出力とするR-2Rラダーネットワークを形成するように接続されたNl個の第4抵抗と、
     を備えることを特徴とする多値ドライバ回路。
  2.  伝送線路に対し、K個(Kは2以上の整数)の電圧から選択信号に応じたひとつを選択的に出力する多値ドライバ回路であって、K個の電圧はそれぞれが(Nu+Nl)ビット(Nu、Nlは自然数)の設定データにもとづいて独立に調節可能である多値ドライバ回路であって、
     前記伝送線路と接続される出力ポートと、
     前記K個の電圧それぞれの前記設定データの上位Nuビットを保持する第1メモリと、
     前記K個の電圧それぞれの前記設定データの下位Nlビットを保持する第2メモリと、
     それぞれが前記設定データの上位Nuビットごとに設けられたNu個の第1セレクタであって、それぞれが前記K個の設定データそれぞれの対応するビットを受け、前記選択信号に応じたひとつを選択するNu個の第1セレクタと、
     それぞれが前記設定データの下位Nlビットごとに設けられたNl個の第2セレクタであって、前記K個の設定データそれぞれの対応するビットを受け、前記選択信号に応じたひとつを選択するNl個の第2セレクタと、
     2個(j=0,1,…、Nu-1)ごとにグループ化され、同じグループ内の第1バッファの入力端子が共通に接続されているL個(L=2Nu-1)の第1バッファであって、j番目のグループに属する2個の第1バッファは、前記設定データの下位(j+Nl)ビット目に対応する前記第1セレクタの出力値に応じた電圧を出力するL個の第1バッファと、
     それぞれが前記L個の第1バッファごとに設けられた抵抗値Rを有するL個の第1抵抗であって、それぞれの一端に対応する前記第1バッファの出力電圧が印加され、それぞれの他端が前記出力ポートと接続されるL個の第1抵抗と、
     それぞれが前記Nl個の第2セレクタごとに設けられたNl個の第2バッファであって、対応する前記第2セレクタの出力値に応じた電圧を出力するNl個の第2バッファと、
     それぞれが前記Nl個の第2バッファごとに設けられた抵抗値Rを有するNl個の第2抵抗であって、それぞれの一端に対応する前記第2バッファの出力電圧が印加されるNl個の第2抵抗と、
     固定電圧を発生する第3バッファと、
     その一端に前記第3バッファの出力電圧が印加された抵抗値Rを有する第3抵抗と、
     前記Nl個の第2抵抗および前記第3抵抗に対して、前記出力ポートを出力とするR-2Rラダーネットワークを形成するように接続された抵抗値R/2を有するNl個の第4抵抗と、
     を備えることを特徴とする多値ドライバ回路。
  3.  前記第1バッファおよび前記第2バッファは、それぞれの出力が独立にハイインピーダンス状態に設定可能に構成されることを特徴とする請求項1または2に記載の多値ドライバ回路。
  4.  前記第1バッファおよび前記第2バッファはそれぞれ、
     ハイインピーダンス状態においてネゲートされるイネーブル信号を受けるイネーブル端子と、
     対応するセレクタからのデータを反転する第1インバータと、
     前記イネーブル信号を反転する第2インバータと、
     第1の電源端子と第2の電源端子の間にプッシュプル形式で直列に接続されたPチャンネルMOSFETとNチャンネルMOSFETと、
     前記第1インバータと前記第2インバータの出力信号の論理和を生成し、前記PチャンネルMOSFETのゲートに印加するORゲートと、
     前記第1インバータの出力信号とイネーブル信号の論理積を生成し、前記NチャンネルMOSFETのゲートに印加するANDゲートと、
     を含むことを特徴とする請求項3に記載の多値ドライバ回路。
  5.  第1、第2出力端子と、
     定電流源と、
     そのソースが前記定電流源に接続され、そのドレインが前記第1出力端子に接続され、そのゲートに差動信号の一方が入力されている第1MOSFETと、
     そのソースが前記定電流源に接続され、そのドレインが前記第2出力端子に接続され、そのゲートに差動信号の他方が入力されている第2MOSFETと、
     前記第1MOSFETのドレインに電圧を与える請求項1から4のいずれかに記載の第1の多値ドライバ回路と、
     前記第2MOSFETのドレインに電圧を与える請求項1から4のいずれかに記載の第2の多値ドライバ回路と、
     を備えることを特徴とする差動出力ドライバ回路。
  6.  出力端子と、
     定電流源と、
     そのソースが前記定電流源に接続され、そのドレインが前記出力端子に接続され、そのゲートに差動信号の一方が入力されている第1MOSFETと、
     そのソースが前記定電流源に接続され、そのゲートに差動信号の他方が入力されている第2MOSFETと、
     前記第1MOSFETのドレインに電圧を与える請求項1から4のいずれかに記載の第1の多値ドライバ回路と、
     前記第2MOSFETのドレインに電圧を与える請求項1から4のいずれかに記載の第2の多値ドライバ回路と、
     前記第2MOSFETのドレインに電圧を与える請求項1から4のいずれかに記載の第3の多値ドライバ回路と、
     を備えることを特徴とするシングルエンド出力ドライバ回路。
  7.  被試験デバイスを検査する試験装置であって、
     前記被試験デバイスにテストパターンに応じた電圧を出力する請求項1から6のいずれかに記載のドライバ回路を備えることを特徴とする試験装置。
PCT/JP2009/005330 2009-10-13 2009-10-13 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置 WO2011045830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011543884A JP5255707B2 (ja) 2009-10-13 2009-10-13 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置
PCT/JP2009/005330 WO2011045830A1 (ja) 2009-10-13 2009-10-13 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置
US13/501,451 US8575961B2 (en) 2009-10-13 2009-10-13 Multi-valued driver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005330 WO2011045830A1 (ja) 2009-10-13 2009-10-13 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置

Publications (1)

Publication Number Publication Date
WO2011045830A1 true WO2011045830A1 (ja) 2011-04-21

Family

ID=43875892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005330 WO2011045830A1 (ja) 2009-10-13 2009-10-13 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置

Country Status (3)

Country Link
US (1) US8575961B2 (ja)
JP (1) JP5255707B2 (ja)
WO (1) WO2011045830A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158051A (ja) * 2015-02-24 2016-09-01 ファナック株式会社 ノイズ検出装置
JP2017076836A (ja) * 2015-10-13 2017-04-20 富士通株式会社 終端抵抗調整回路および終端抵抗調整回路を有する装置
JP2019068454A (ja) * 2014-03-25 2019-04-25 ソニー株式会社 送信装置および通信システム
JP2022003836A (ja) * 2016-02-02 2022-01-11 ソニーグループ株式会社 送信装置および通信システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112550B1 (en) 2014-06-25 2015-08-18 Kandou Labs, SA Multilevel driver for high speed chip-to-chip communications
TWI635705B (zh) * 2017-11-16 2018-09-11 和碩聯合科技股份有限公司 驅動電路及具有驅動電路的電子裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411613A (en) * 1977-06-27 1979-01-27 Toshiba Corp Band compressing system
JPH01158823A (ja) * 1987-10-05 1989-06-21 General Electric Co <Ge> スイッチ機能補償付きディジタル・アナログ変換器
JPH03238927A (ja) * 1990-02-15 1991-10-24 Mitsubishi Electric Corp ディジタル・アナログ変換器
JPH09172361A (ja) * 1995-12-20 1997-06-30 Advantest Corp ドライバ回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654352B2 (ja) * 1994-07-29 1997-09-17 日本電気アイシーマイコンシステム株式会社 半導体集積回路
DE10249016B4 (de) * 2002-10-21 2006-10-19 Infineon Technologies Ag Mehrpegeltreiberstufe
US7809052B2 (en) * 2006-07-27 2010-10-05 Cypress Semiconductor Corporation Test circuit, system, and method for testing one or more circuit components arranged upon a common printed circuit board
US7639165B2 (en) * 2007-08-10 2009-12-29 Marvell World Trade Ltd. Calibrating replica digital-to-analog converters
US8274296B2 (en) * 2009-11-11 2012-09-25 Advantest Corporation Test apparatus and electronic device that tests a device under test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411613A (en) * 1977-06-27 1979-01-27 Toshiba Corp Band compressing system
JPH01158823A (ja) * 1987-10-05 1989-06-21 General Electric Co <Ge> スイッチ機能補償付きディジタル・アナログ変換器
JPH03238927A (ja) * 1990-02-15 1991-10-24 Mitsubishi Electric Corp ディジタル・アナログ変換器
JPH09172361A (ja) * 1995-12-20 1997-06-30 Advantest Corp ドライバ回路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068454A (ja) * 2014-03-25 2019-04-25 ソニー株式会社 送信装置および通信システム
JP2016158051A (ja) * 2015-02-24 2016-09-01 ファナック株式会社 ノイズ検出装置
US9960886B2 (en) 2015-02-24 2018-05-01 Fanuc Corporation Noise detection device
JP2017076836A (ja) * 2015-10-13 2017-04-20 富士通株式会社 終端抵抗調整回路および終端抵抗調整回路を有する装置
JP2022003836A (ja) * 2016-02-02 2022-01-11 ソニーグループ株式会社 送信装置および通信システム
JP7147949B2 (ja) 2016-02-02 2022-10-05 ソニーグループ株式会社 送信装置および通信システム

Also Published As

Publication number Publication date
US20120201284A1 (en) 2012-08-09
JP5255707B2 (ja) 2013-08-07
US8575961B2 (en) 2013-11-05
JPWO2011045830A1 (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5255707B2 (ja) 多値ドライバ回路ならびにそれを用いたシングルエンド出力ドライバ回路、差動出力ドライバ回路および試験装置
JP5165877B2 (ja) 電子回路及び制御方法
US10841138B2 (en) PAM-4 calibration
JP4215896B2 (ja) ディジタル信号をプリエンファシス伝送路経由で送信するための出力バッファ回路
US6353334B1 (en) Circuit for converting a logic signal on an output node to a pair of low-voltage differential signals
US7990178B2 (en) Driving circuit with impedence calibration
US8538362B2 (en) Squelch detection circuit and method
US9160403B2 (en) Signal transmission circuit, signal transmission system, and signal transmission method
KR101476119B1 (ko) 다입력 연산 증폭회로, 그것을 사용한 디지털/아날로그변환기 및 그것을 사용한 표시장치의 구동회로
KR100897255B1 (ko) 반도체 메모리 장치의 온 다이 터미네이션 회로 및 방법
US7038502B2 (en) LVDS driver circuit and driver circuit
US20190312757A1 (en) Decision feedback equalizer and interconnect circuit
JPWO2011045832A1 (ja) 差動ドライバ回路およびそれを用いた試験装置
EP1548944B1 (en) Receiving device
TW595172B (en) Digital line driver circuit
JP2022530221A (ja) 電圧ドライバ回路
KR20090001356A (ko) 펄스 진폭 변조에서 전압 마진을 증가시키는 방법 및 장치
JP2011124989A (ja) Srフリップフロップならびにそれを用いたレベルシフタおよび試験装置
KR101803464B1 (ko) 다수 판정 회로
US8504320B2 (en) Differential SR flip-flop
Kwak et al. A low-power two-tap voltage-mode transmitter with precisely matched output impedance using an embedded calibration circuit
KR20040038601A (ko) 입력 신호의 논리 레벨을 판정하는 레벨 판정 회로
JP2001077870A (ja) 多値信号伝送システム
US20130287085A1 (en) Push-pull source-series terminated transmitter apparatus and method
TWI770772B (zh) 使用基於電源電壓差步進的級聯差動電晶體對實現邏輯的光子發射器驅動器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543884

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13501451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850375

Country of ref document: EP

Kind code of ref document: A1