WO2011043400A1 - Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition - Google Patents

Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition Download PDF

Info

Publication number
WO2011043400A1
WO2011043400A1 PCT/JP2010/067594 JP2010067594W WO2011043400A1 WO 2011043400 A1 WO2011043400 A1 WO 2011043400A1 JP 2010067594 W JP2010067594 W JP 2010067594W WO 2011043400 A1 WO2011043400 A1 WO 2011043400A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
compound
anhydride
polyvalent carboxylic
acid composition
Prior art date
Application number
PCT/JP2010/067594
Other languages
French (fr)
Japanese (ja)
Inventor
政隆 中西
直房 宮川
静 青木
義浩 川田
智江 佐々木
健一 窪木
瑞観 鈴木
正人 鎗田
敬夫 小柳
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201080055368.8A priority Critical patent/CN102648244B/en
Priority to JP2011535440A priority patent/JP5574447B2/en
Publication of WO2011043400A1 publication Critical patent/WO2011043400A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to a polyvalent carboxylic acid composition suitable for use in electrical and electronic materials and a method for producing the same. Furthermore, the present invention relates to a curable resin composition containing the polyvalent carboxylic acid composition as a curable component.
  • Polyvalent carboxylic acid has excellent performance as a crosslinking agent, condensing agent, etc., such as high thermal stability, good electrical properties, chemical resistance, etc., as well as formation of condensates and good reactivity. As a molecular manufacturing raw material, it has attracted much attention and is widely used. It is also known that polyvalent carboxylic acids can be used as curing agents for epoxy resins.
  • a curable resin composition containing an epoxy resin is used as a resin having excellent heat resistance in the fields of architecture, civil engineering, automobiles, aircraft, and the like.
  • electronic devices such as mobile phones with cameras, ultra-thin liquid crystals, plasma TVs, and light-weight notebook computers have become key to light, thin, short, and small.
  • Very high characteristics have been demanded for packaging materials represented by resins.
  • the use in the optoelectronics related field has attracted attention.
  • a technique utilizing an optical signal has been developed instead of the conventional signal transmission using electric wiring. Accordingly, in the field of optical components such as optical waveguides, blue LEDs, and optical semiconductors, development of a resin composition that gives a cured product having excellent transparency is desired.
  • the epoxy resin curing agent used in such a field includes acid anhydride compounds.
  • acid anhydrides formed with saturated hydrocarbons are often used because cured products have excellent light resistance (see, for example, Patent Documents 1 and 2).
  • these acid anhydrides alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and tetrahydrophthalic anhydride are generally used. Hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, etc. are mainly used.
  • these curing agents have a high vapor pressure and tend to partially evaporate during curing.
  • the effect of the above volatilization on the cured product is prominent when an LED, particularly an LED used for a SMD (Surface Mount Device) is sealed with a cured product using a conventional acid anhydride as a curing agent. Since LED sealing uses a small amount of resin, there is a problem that dents are generated when acid anhydrides volatilize, and in severe cases, the wires are exposed. Furthermore, since cracks and peeling occur during solder reflow, or curing becomes insufficient, the obtained cured product has a problem that it is difficult to withstand long-term lighting.
  • a method using polyvalent carboxylic acid as a curing agent can be considered.
  • ordinary polyvalent carboxylic acids are often solidified, particularly crystallized due to their hydrogen bonds, and are very difficult to use as a liquid composition.
  • the inventors of the present invention have studied using a silicone-based polyvalent carboxylic acid as a curing agent.
  • desired properties were not obtained in terms of adhesion and corrosion gas permeability, and it was difficult to use as a cured product such as a sealing material.
  • the resulting cured product tends to be brittle, and there is a problem in toughness.
  • the present invention provides a polyvalent carboxylic acid composition that suppresses volatilization of a curing agent during curing, and further provides a cured product excellent in heat resistance, light resistance, corrosion resistance gas permeability, adhesion, toughness, and the like. It aims at providing the manufacturing method. Another object of the present invention is to provide a curable resin composition containing the polyvalent carboxylic acid composition.
  • R 1 represents an alkylene group having 1 to 10 carbon atoms that may be bonded via an ether bond
  • R 2 represents a methyl group or a phenyl group
  • n represents a repeating unit
  • the weight average molecular weight of the compound represented by) is 500 to 5,000.
  • a carboxylic acid compound (J) obtained by subjecting a silicone oil (a) represented by the formula (b) to a compound (b) having one or more carboxylic anhydride groups in the molecule; Polyvalent carboxylic acid obtained by addition reaction of saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group and compound (d) having one or more carboxylic anhydride groups in the molecule
  • Compound (K) Containing a polyvalent carboxylic acid composition
  • (2) The polyvalent carboxylic acid composition according to item (1), wherein the compounds (b) and (d) are acid anhydrides having a cyclic saturated hydrocarbon as a mother skeleton, (3)
  • the polyvalent carboxylic acid composition as described, (6) A method for producing the polyvalent carboxylic acid composition according to any one of (1) to (5) above, Compounds (b) and (d) having one or more carboxylic anhydride groups in the molecule are added to a mixture containing silicone oil (a) and a saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher functional alcoholic hydroxyl group. And the addition reaction between the silicone oil (a) and the compound (b) and the addition reaction between the compound (c) and the compound (d) are performed simultaneously.
  • Method for producing polyvalent carboxylic acid composition (9) A curable resin composition comprising the polyvalent carboxylic acid composition according to any one of (1) to (5) above and an epoxy resin; (10) The curable resin composition as described in (9) above, wherein the epoxy resin is an alicyclic epoxy resin and / or an epoxy group-containing silicone resin, (11) The curable resin composition as described in (9) above, wherein the epoxy resin is an epoxy group-containing silicone resin, (12) A cured product obtained by curing the curable resin composition according to any one of (9) to (11), About.
  • the polyvalent carboxylic acid composition of the present invention is useful as a curing agent for an epoxy resin.
  • the curable resin composition of the present invention is used as a curing agent in a temperature range usually employed for curing an epoxy resin.
  • it is excellent in heat resistance, light resistance, adhesion, corrosion resistance gas permeability, toughness and the like.
  • the polyvalent carboxylic acid composition of the present invention includes paints, adhesives, molded articles, semiconductors, optical semiconductor encapsulant resins, optical semiconductor die bond material resins, polyimide resins and other raw materials and modifiers, plasticizers, It is useful as a raw material for lubricating oils, intermediates for pharmaceuticals and agricultural chemicals, resin for paints, and resin for toners. Especially, it has excellent curing ability for epoxy resins and transparency of cured products obtained from it. It is extremely useful as a curing agent for an epoxy resin for sealing a representative optical semiconductor.
  • the polyvalent carboxylic acid composition of the present invention has the following formula (1)
  • R 1 represents an alkylene group having 1 to 10 carbon atoms that may be bonded via an ether bond
  • R 2 represents a methyl group or a phenyl group
  • n represents a repeating unit
  • the weight average molecular weight of the compound represented by is 500 to 5,000.
  • a carboxylic acid compound (J) obtained by subjecting a silicone oil (a) represented by the formula (b) to a compound (b) having one or more carboxylic anhydride groups in the molecule; Polyvalent carboxylic acid obtained by addition reaction of saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group and compound (d) having one or more carboxylic anhydride groups in the molecule And a compound (K).
  • the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) used in the production of the polyvalent carboxylic acid composition of the present invention are prepared in accordance with the following, and each raw material is allowed to react sequentially even if they are individually adjusted and mixed. May be.
  • the silicone oil (a) is represented by the formula (1).
  • R 1 specific examples of R 1 include alkylene groups having 1 to 10 carbon atoms and no ether bond, such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, and octylene; 3 H 6 —O—C 2 H 4 —, —C 2 H 4 —O—C 2 H 4 —, —C 3 H 6 —O—C 3 H 6 — etc. 10 alkylene groups are mentioned. Of these, a propylene group or —C 3 H 6 —O—C 2 H 4 — is preferable because of easy availability in the market.
  • a commercially available product includes a polyethylene oxide adduct, but this is not preferable in terms of heat resistance and light resistance.
  • the preferred molecular weight range of the silicone oil (a) is 500 to 5000, more preferably 600 to 4000, and particularly preferably 600 to 2500 in terms of weight average molecular weight. The most preferable range is 600 to 1500.
  • the molecular weight is less than 500, the intermolecular force of the obtained product is increased and the viscosity is likely to increase.
  • the molecular weight is greater than 5000, the compatibility with other components is poor and the system often becomes cloudy. That is not preferable.
  • Such a carbinol-modified silicone compound can be synthesized, for example, using a technique described in Japanese Patent Application Laid-Open No. 2007-508424.
  • the commercially available compounds include Dow Corning 5562 (manufactured by Dow Corning Toray), X22-160-AS, KF-6001, KF-6002, KF-6003 (all manufactured by Shin-Etsu Chemical), XF42-B0970 (manufactured by Momentive ), Silaplane FM-4411, FM-4421, FM-4425 (manufactured by Chisso) and the like.
  • saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group examples include conventionally known alcohols, and from the viewpoint of a balance between heat resistance, light resistance and toughness, particularly preferred is a functional group. It is preferably a polyhydric alcohol having 2 to 6 groups, and the total number of carbon atoms in one molecule is 5 to 20. More preferred are chain alkylene diols having a branched structure, diols having a cyclic structure, triols, tetraols, hexaols and the like.
  • chain alkylene diol having a branched structure examples include neopentyl glycol, 2-ethyl-2-butylpropylene-1,3-diol, 2,4-diethylpentane-1,5-diol and the like.
  • diol having a cyclic structure examples include tricyclodecane diol, pentacyclopentadecane diol, 1,4-cyclohexane diol, norbornane diol, dioxane glycol, spiro glycol and the like.
  • triol examples include glycerin and trimethylolpropane
  • examples of the tetraol include pentaerythritol and ditrimethylolpropane
  • examples of the hexaol include dipentaerythritol.
  • 2,4-diethylpentane-1,5-diol, tricyclodecanediol, or pentaerythritol it is not limited to these specific examples, Furthermore, you may use 1 type or in mixture of 2 or more types.
  • phthalic anhydride trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, Examples include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, cyclobutanetetracarboxylic acid dihydrate, butanetetracarboxylic dianhydride, and the like.
  • a compound having a saturated hydrocarbon structure is particularly preferable.
  • those having a cyclic saturated hydrocarbon structure as a mother skeleton are particularly preferable.
  • methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2,4- Tricarboxylic acid-1,2-anhydride and bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride are particularly preferred.
  • methylhexahydrophthalic anhydride or cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is particularly preferable from the viewpoint of optical properties.
  • the reaction for adding an alcohol and an acid anhydride is generally an addition reaction using an acid or a base as a catalyst.
  • a catalyst-free reaction is preferred.
  • hydrochloric acid sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds
  • sodium hydroxide potassium hydroxide
  • calcium hydroxide water
  • Metal hydroxides such as magnesium oxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, Heterocyclic compounds such as tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide Trimethyl
  • catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
  • the amount of the catalyst used is not particularly limited, but is usually 0.001 to 5 parts by weight with respect to 100 parts by weight of the total weight of the raw materials.
  • a reaction without a solvent is preferable, but an organic solvent may be used.
  • the organic solvent is used in a weight ratio of 0.005 to 1, preferably 0.005 to 0.7, more preferably 0.005 to 0.5 (that is, outside) with respect to a total amount of reaction substrate of 1. 50% by weight or less). When the weight ratio exceeds 1, the progress of the reaction is extremely slow, which is not preferable.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate.
  • alkanes such as hexane, cyclohexane and heptane
  • aromatic hydrocarbon compounds such as toluene and xylene
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • diethyl ether Ethers such as tetrahydrofuran and dioxane
  • the reaction temperature is preferably 40 to 200 ° C, particularly preferably 40 to 150 ° C.
  • the reaction at 100 ° C. or lower is preferred, and a reaction at 40 to 100 ° C., particularly 40 to 80 ° C. is preferred because of the volatilization of acid anhydride.
  • a compound having high crystallinity at room temperature such as cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride
  • the reaction is performed at 100 to 150 ° C. in order to sufficiently dissolve the crystal. It is preferable.
  • the acid anhydride which is easy to volatilize, and the acid anhydride with high crystallinity it is also possible to prevent volatilization of an acid anhydride by raising temperature in steps.
  • the reaction ratio of the compounds (a) and (b), (c) and (d) in the reaction for obtaining the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) is theoretically equivalent. Is preferable, but can be changed as necessary. That is, as will be described later, in the curing agent composition of the present invention, when the acid anhydride used in combination with the acid anhydride used here is the same as necessary, the reaction is carried out in an excess of acid anhydride at the time of production. When the reaction for obtaining the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) is completed, a mixture of the acid anhydride and the polyvalent carboxylic acid composition of the present invention can be used.
  • the functional group equivalent is compared.
  • the molar ratio (a) (or (c)) is 0.001 to 1. 0, more preferably 0.01 to 1.0, still more preferably 0.1 to 1.0.
  • the ratio is preferably in the range of 0.01 to 0.7, preferably 0.01 to 0.4. .
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety.
  • a preferred range is 1 to 48 hours, preferably 1 to 36 hours, and more preferably 1 to 24 hours.
  • the desired polycarboxylic acid (J) or (K) is obtained by removing the catalyst by neutralization, washing with water, adsorption, etc., and distilling off the solvent. .
  • the solvent is distilled off, and in the case of no solvent and without a catalyst, the polycarboxylic acid (J) or the polyvalent carboxylic acid (K) can be obtained by taking it out as it is. .
  • the most preferred production method is a method of reacting at 40 to 150 ° C. under the conditions of no catalyst and no solvent, and taking it out as it is after the reaction is completed.
  • the target polyvalent carboxylic acid composition can be obtained by mixing the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) thus obtained.
  • the ratio of (J) / (K) is particularly preferably 99/1 to 80/20, and more preferably 99/1 to 85/15.
  • the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) can also be produced simultaneously.
  • Specific methods include (i) Compounds (b) and (d) having one or more carboxylic acid anhydride groups in the molecule are charged into a mixture of silicone oil (a) and polyhydric alcohol (c) and reacted simultaneously. (Ii) The following steps (A) and (B) are sequentially reacted in one pot.
  • the compounds to be used in step (B) (or step (A)) are sequentially added, and reaction and mixing are performed in the system.
  • the polycarboxylic acid composition of the present invention thus obtained is usually a colorless liquid to semi-solid substance.
  • the polyvalent carboxylic acid composition of the present invention has excellent transparency, a curing agent for a curable resin such as an epoxy resin, a paint, an adhesive, a molded product, a semiconductor, a resin for an optical semiconductor encapsulant, and an optical semiconductor die bond material
  • a curing agent for a curable resin such as an epoxy resin, a paint, an adhesive, a molded product, a semiconductor, a resin for an optical semiconductor encapsulant, and an optical semiconductor die bond material
  • the polyvalent carboxylic acid composition of the present invention When used as a curing agent for an epoxy resin, the polyvalent carboxylic acid composition of the present invention exhibits excellent curability and the transparency of the cured product is excellent. It is extremely useful as a curing agent for epoxy resins used for sealing of other white semiconductor LEDs and other optical semiconductors.
  • the polyvalent carboxylic acid composition of the present invention is used as a curing agent for a curable resin such as an epoxy resin, particularly as a liquid composition
  • the polyvalent carboxylic acid composition of the present invention and another acid anhydride are mixed. It is preferably used in the form of a curing agent composition.
  • the acid anhydride that can be used a compound (e) having one or more carboxylic acid anhydride groups in the molecule is preferable, and an acid anhydride having no aromatic ring in its structure is particularly preferable.
  • the compound (e) having one or more carboxylic anhydride groups in the molecule include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1 ] Heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, etc. Is mentioned.
  • the proportion of the polyvalent carboxylic acid composition of the present invention is the total weight of the other acid anhydride and the polyvalent carboxylic acid composition of the present invention. On the other hand, it is 0.1 to 50% by weight, preferably 0.1 to 30% by weight. By using together in such a range, there is an effect in terms of fluidity of the composition and heat resistant mechanical strength of the cured product.
  • the curable resin composition of the present invention including the polyvalent carboxylic acid composition of the present invention will be described.
  • the curable resin composition of the present invention contains an epoxy resin as an essential component.
  • Examples of the epoxy resin that can be used in the curable resin composition of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxy
  • an alicyclic epoxy resin and / or an epoxy-group containing silicone resin are preferable, and the epoxy resin of a silsesquioxane structure is more preferable.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is more preferable.
  • These alicyclic epoxy resins include esterification reaction of cyclohexene carboxylic acid with alcohols or esterification reaction of cyclohexene methanol with carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980) ), Or Tyschenco reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and transesterification of cyclohexene carboxylic acid ester Examples thereof include an oxidized product of a compound that can be produced by a reaction (a method described in Japanese Patent Application Laid-Open No.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol is exemplified.
  • a reaction method it can be produced by applying a general acetalization reaction.
  • a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium US Pat. No. 2,945,008
  • concentrated hydrochloric acid A method in which polyhydric alcohol is dissolved in the mixture and then the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85). These may be used alone or in combination of two or more.
  • the polyvalent carboxylic acid composition (or the curing agent composition) of the present invention may be used in combination with other curing agents.
  • the proportion of the polyvalent carboxylic acid of the present invention in the total curing agent is preferably 20% by weight or more, and particularly preferably 30% by weight or more.
  • other curing agents that can be used in combination include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, Bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclo
  • the ratio of the total curing agent to the epoxy resin is 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups of the epoxy resin (note that acid anhydride groups are considered to be monofunctional).
  • the amount is particularly preferably 0.5 to 1.2 equivalents. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • a curing accelerator may be used in combination with a curing agent.
  • the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • the zinc salt and / or the zinc complex contributes as a curing accelerator between the epoxy resin and the curing agent.
  • the zinc salt and / or zinc complex is a salt and / or complex having a zinc ion as a central element, preferably a carboxylic acid having an alkyl group having 1 to 30 carbon atoms as a counter ion and / or a ligand. , Phosphoric acid ester, and phosphoric acid.
  • alkyl group having 1 to 30 carbon atoms examples include methyl group, isopropyl group, butyl group, 2-ethylhexyl group, octyl group, isodecyl group, isostearyl group, decanyl group, cetyl group and the like.
  • a zinc carboxylate and a zinc phosphate ester are particularly preferable. By using a zinc carboxylate body or a zinc phosphate ester body, corrosion resistance and gas permeability can be improved.
  • the particularly preferred zinc carboxylate in the present invention preferably has an alkyl group having a chain-branched structure or an alkyl group having a functional group such as an olefin in the compound, and among them, those having 3 to 30 carbon atoms are preferred. In particular, those having 5 to 20 carbon atoms are preferred. These are preferable in terms of compatibility, and when the number of carbon atoms is too large (when the number of carbon atoms exceeds 30), or when they do not have a structure such as a branched structure or a functional group, the compatibility with the resin is poor, which is not preferable. Specific examples include zinc 2-ethylhexylate, zinc isostearate and zinc undecylenate.
  • a zinc salt and / or a zinc complex of phosphoric acid, phosphoric acid ester (monoalkyl ester body, dialkyl ester body, trialkyl ester body, or a mixture thereof) is preferable.
  • the amount of the monoalkyl ester compound is 50 area% or more at the stage of the trimethylsilylation treatment.
  • Such zinc salt and / or zinc complex of zinc phosphate ester can be obtained, for example, by reacting a phosphate ester with, for example, zinc carbonate, zinc hydroxide, etc. (Patent Document EP 699708).
  • the ratio of phosphorus atom to zinc atom is preferably 1.2 to 2.3, more preferably 1.3 to 2.0. . Particularly preferred is 1.4 to 1.9. That is, in a particularly preferred form, the amount of phosphate ester (or phosphate derived from phosphate ester) is 2.0 mol or less per mol of zinc ion, and not a simple ionic structure, some molecules are ion-bonded (or arranged). Those having a structure related by coordinate bond) are preferred.
  • Such a zinc salt and / or zinc complex can also be obtained, for example, by the technique described in Japanese Patent Publication No. 2003-51495.
  • Examples of the phosphate ester and / or zinc phosphate include LBT-2000B (manufactured by SC Organic Chemical) and XC-9206 (manufactured by King Industry).
  • the curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, more preferably 0.01 to 5 parts by weight, and particularly preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • curing is possible without using a curing accelerator, but from the viewpoint of coloring during curing, addition of a curing accelerator is preferred.
  • the use of zinc salts and / or zinc complexes is preferred in order to prevent coloring and to obtain corrosion-resistant gas permeability characteristics.
  • the curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-pho
  • Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • antioxidant to the curable resin composition of this invention as needed.
  • Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more.
  • the amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the resin component in the curable resin composition of the present invention. It is.
  • antioxidants examples include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
  • phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl
  • sulfur antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyll-3,3′-thiodipropionate, and the like. .
  • phosphorus antioxidants include 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2 , 4-Di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpenta Erythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert
  • a commercial item can also be used for the said phosphorus compound.
  • the amount of the phosphorus compound used is 0.005 to 5% by weight, more preferably 0.01 to 4% by weight, and 0.1 to 2% by weight with respect to the epoxy resin.
  • antioxidants can be used alone, but two or more kinds may be used in combination.
  • a phosphorus-based antioxidant is particularly preferable.
  • a light stabilizer it is preferable to contain a hindered amine compound especially, and it is preferable to contain a phosphorus compound as needed.
  • the amine compound that is the light stabilizer can be used as the amine compound that is the light stabilizer.
  • the light stabilizer is used in an amount of 0.005 to 5% by weight, more preferably 0.01 to 4% by weight, and 0.1 to 2% by weight with respect to the epoxy resin.
  • the amount is less than 0.005% by weight, the effect is insufficient, and when the amount exceeds 5% by weight, an influence on the heat-resistant coloring property appears, which is not preferable.
  • a binder resin can be blended with the curable resin composition of the present invention as required.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
  • An inorganic filler can be added to the curable resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these. These may be used alone or in combination of two or more.
  • the content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
  • the curable resin composition of the present invention includes various agents such as silane coupling agents, mold release agents such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, surfactants, dyes, pigments, and ultraviolet absorbers.
  • agents such as silane coupling agents, mold release agents such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, surfactants, dyes, pigments, and ultraviolet absorbers.
  • a compounding agent and various thermosetting resins can be added.
  • a fluorescent substance can be added as needed.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • silica fine powder also called Aerosil or Aerosol
  • a thixotropic agent can be added.
  • silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
  • the curable resin composition of the present invention can be obtained by uniformly mixing each component.
  • the curable resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, an epoxy resin, a curing agent and, if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are thoroughly mixed using an extruder, kneader, roll, etc. as necessary until uniform.
  • the curable resin composition is in liquid form, potting or casting, impregnating the base material, pouring the curable resin composition into a mold, casting, curing by heating, or solid
  • the curing temperature and time are 80 to 200 ° C. and 2 to 10 hours.
  • a curing method it can be hardened at a high temperature at a stretch, but it is preferable to increase the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C.
  • the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
  • the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, glass fiber,
  • a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-dried is subjected to hot press molding to obtain a cured product of the curable resin composition of the present invention. can do.
  • the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent.
  • cured material containing a carbon fiber can also be obtained with a RTM (Resin * Transfer * Molding) system with a liquid composition.
  • the curable resin composition of the present invention can also be used as a modifier for a film-type composition. Specifically, it can be used to improve flexibility in the B-stage.
  • a method for obtaining such a film-type resin composition first, the curable resin composition of the present invention is used as the curable resin composition varnish as described above, and this is applied onto a release film and heated under a solvent.
  • a method of forming a B-stage after removing the film is mentioned, whereby a film-type sealing composition can be obtained as a sheet-like adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • curable resin composition of the present invention is used as an optical semiconductor sealing material or die bond material.
  • a curing agent (curing agent composition) containing the polyvalent carboxylic acid of the present invention
  • a curable resin composition is prepared by sufficiently mixing additives such as a curing accelerator, a coupling material, an antioxidant, and a light stabilizer.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like may be used at room temperature or with heating.
  • the obtained curable resin composition can be used for a sealing material, or both a die-bonding material and a sealing material.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the periphery of such a semiconductor chip is sealed with a sealing material such as an epoxy resin.
  • the sealing material is used to protect the semiconductor chip from heat and moisture and to play a role of a lens function.
  • the curable resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the curable resin composition of the present invention for both the die bond material and the sealing material.
  • the curable resin composition of the present invention is applied on the substrate by dispenser, potting or screen printing, and then the curable resin is used.
  • a semiconductor chip is placed on the composition and heat-cured.
  • the semiconductor chip can be bonded to the substrate.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and then molded, and the sealing material on the mold A compression molding method is used in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from the mold.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • the application of the curable resin composition of the present invention is not limited to the above application, and can be applied to general applications in which a thermosetting resin such as an epoxy resin is used.
  • a thermosetting resin such as an epoxy resin
  • cyanate resin composition for resist and additives for other resins such as an acrylic ester resin as a curing agent for resist.
  • adhesives examples include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • sealing materials potting, dipping and transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
  • the cured product of the present invention obtained by curing the curable resin composition of the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a polarizing plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment field they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras.
  • optical components they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems.
  • optical passive components and optical circuit components there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, and automotive defenses Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute.
  • it is a multilayer glass for railway vehicles.
  • they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion-resistant coatings.
  • it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
  • optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • Synthesis example 2 A flask equipped with a stirrer, reflux condenser, and stirrer was charged with 98 parts of tricyclodecanediol, HTMan (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, Mitsubishi Gas Chemical ( 99 parts), MH-700 (mixture of hexahydrophthalic anhydride and 4-methylhexahydrophthalic anhydride, manufactured by Nippon Nippon Chemical Co., Ltd.), 84 parts, and 10 parts of toluene were charged in a reaction vessel at 100 ° C. for 1 hour. The reaction was carried out at 2 ° C. for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 280 parts of a colorless solid resin carboxylic acid compound (K-1).
  • K-1 colorless solid resin carboxylic acid compound
  • Example 1 A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 68.3 parts of the carboxylic acid compound (J-1) while purging with nitrogen, and the mixture was stirred at 100 ° C., and the carboxylic acid compound (K -1) 28.1 parts were added, and the mixture was stirred as it was for 1 hour to be compatible with each other to obtain a polyvalent carboxylic acid composition (MA-1) of the present invention as a colorless transparent liquid.
  • Example 2 and Comparative Example 1 The polyvalent carboxylic acid composition (MA-1) of the present invention obtained in Example 1 and, as a comparative example, MH-700 (a mixture of hexahydrophthalic anhydride and 4-methylhexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) (Hereinafter referred to as H1) as a curing agent, and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate as epoxy resin (UVR-6105 manufactured by Dow Chemical) (hereinafter referred to as epoxy resin (EP1)), curing Hexadecyltrimethylammonium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd., 25% methanol solution, hereinafter referred to as C1) is used as an accelerator, blended at the blending ratio (parts by weight) shown in Table 1 below, and desorbed for 20 minutes. Foaming was performed to obtain a curable resin composition of the present
  • LED sealing test Surface mount type (SMD) in which the curable resin compositions obtained in the examples and comparative examples were vacuum degassed for 20 minutes, filled in a syringe and mounted with a light emitting element having an emission wavelength of 465 nm using a precision discharge device.
  • Evaluation item Volatility The presence or absence of dents on the surface of the cured product after sealing was visually evaluated. In the table, ⁇ : no dent is observed, ⁇ : some dent is observed, x: many dents are observed (there is an exposed wire).
  • Example 2 shows that the curable resin composition of the present invention has a small amount of volatilization and does not cause problems such as wire exposure even when the LED is sealed. Furthermore, it can be seen that there is a tendency to reduce cracks during reflow. From the above results, it can be seen that the polyvalent carboxylic acid of the present invention and the curing agent composition containing the polyvalent carboxylic acid can give a curable resin composition effective for volatility.
  • Synthesis example 4 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (59.1 parts), polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC) 130.6 parts, 0.5 wt% KOH methanol solution 10.0 The portion was charged into a reaction vessel and heated to 75 ° C. After raising the temperature, the mixture was reacted at 75 ° C. under reflux for 8 hours. After the reaction, 135 parts of methanol was added, 25.9 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted at 75 ° C. for 8 hours under reflux.
  • reaction mixture was neutralized with a 5 wt% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 170 parts of methyl isobutyl ketone (MIBK) was added for washing, and washing with water was repeated three times. Subsequently, 162 parts of epoxy resins (EP2) were obtained by removing a solvent at 100 degreeC under pressure reduction of an organic layer.
  • the epoxy equivalent of the obtained compound was 707 g / eq, the weight average molecular weight was 2680, and the appearance was colorless and transparent.
  • Example 3 A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 500 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.) while purging with nitrogen, MH (methylhexahydrophthalic anhydride, 168 parts (manufactured by Nippon Nippon Chemical Co., Ltd.) and reacted at 70 ° C.
  • carbinol-modified silicone X22-160AS manufactured by Shin-Etsu Chemical Co., Ltd.
  • MH methylhexahydrophthalic anhydride
  • polycarboxylic acid (J) derived from carbinol-modified silicone at both ends is about 70% by weight
  • polycarboxylic acid derived from 2,4-diethylpentane-1,5-diol (K) is about 30% by weight
  • Example 4 A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while carrying both ends of the carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.) 500 parts, MH (methylcyclohexanedicarboxylic anhydride, 168 parts by Nippon Nippon Chemical Co., Ltd., 80 parts by Kyowadiol PD9 (2,4-diethylpentane-1,5-diol manufactured by Kyowa Hakko Chemical), HTAn (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride) 198 parts by Mitsubishi Gas Chemical Co., Ltd.), reacted at 70 ° C.
  • MH methylcyclohexanedicarboxylic anhydride, 168 parts by Nippon Nippon Chemical Co., Ltd., 80 parts by Kyowadiol
  • polyvalent carboxylic acid composition (MA-3) of the present invention.
  • the obtained polyvalent carboxylic acid composition was a colorless and transparent liquid.
  • polycarboxylic acid (J) derived from carbinol-modified silicone at both ends is about 70% by weight
  • polycarboxylic acid derived from 2,4-diethylpentane-1,5-diol (K) About 27% by weight and about 3% by weight of acid anhydride
  • Corrosion gas 20% by weight aqueous solution of ammonium sulfide (turns black when sulfur component reacts with silver)
  • Contact method A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
  • Judgment of corrosion The time when the lead frame inside the LED package was discolored black (referred to as blackening) was observed, and the longer the discoloration time, the better the corrosion resistance gas permeability.
  • the epoxy resin composition of the present invention has a dent and is excellent not only in reflow resistance but also in a cured product excellent in corrosion resistance and gas permeability.
  • SI-1 Chisso FM-4411
  • SI-2 Shin-Etsu Chemical X22-160AS
  • AL-1 Kyowa Hakko Chemical Kyowajiru PD-9
  • AL-2 OXEA TCDAlchol-DM
  • H1 Rikacid MH-700, manufactured by Shin Nippon Rika
  • H2 Rikacid MH, manufactured by Shin Nippon Rika
  • H3 H-TMAn, manufactured by Mitsubishi Gas Chemical.
  • Synthesis example 8 A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 100 parts of acid anhydride (H2) and saturated aliphatic polyhydric alcohol (AL-1) while purging with nitrogen, and at 70 ° C. for 3 hours. Stirring at 30 ° C. for 30 minutes gave 120 parts of a mixture of a colorless and transparent carboxylic acid compound and an acid anhydride. The ratio of the obtained carboxylic acid to acid anhydride was approximately 52:48 as a result of measurement by gel permeation chromatography.
  • Synthesis Example 10 375 parts of ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 475 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1900 (measured by GPC) (silanol equivalent 950, half of the weight average molecular weight measured using GPC) 40 parts of 0.5% potassium hydroxide (KOH) methanol solution was charged into a reaction vessel, the bath temperature was set to 75 ° C., and the temperature was raised. After raising the temperature, the reaction was carried out under reflux for 8 hours.
  • Examples 16 to 19 and Comparative Example 4 The polyvalent carboxylic acid composition of the present invention (MA-4, MA-5, MA-6, MA-10), as a comparative example, a polyvalent carboxylic acid resin (J-3) is used as a curing agent, and an epoxy resin Using the epoxy resin (EP-4) obtained in Synthesis Example 10, zinc octylate (18% Octopus Zn, hereinafter referred to as C2) manufactured by Hope Pharmaceutical, and light stabilizer (LA-81 or less, manufactured by ADEKA) were added as a curing accelerator. And an antioxidant (made by ADEKA, ADEKA 260, called additive AD-2)), and blended at the blending ratio (parts by weight) shown in Table 4 below, and removed for 20 minutes.
  • an antioxidant made by ADEKA, ADEKA 260, called additive AD-2
  • Foaming was performed to obtain a curable resin composition of the present invention and a comparative curable resin composition. Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 4. The curing conditions are 150 ° C. ⁇ 5 hours after preliminary curing at 120 ° C. ⁇ 2 hours, unless otherwise specified.
  • Examples 20-22, Comparative Example 5 The polyvalent carboxylic acid composition of the present invention (MA-7, MA-8, MA-9), as a comparative example, the polyvalent carboxylic acid resin (J-3) was used as a curing agent, and the epoxy resin was synthesized in Synthesis Example 9, 10 using the epoxy resins (EP-3, EP-4) obtained in No. 10, using the curing accelerator (C2) and additives (AD-1, AD-2), and the mixing ratios (weights) shown in Table 5 below. Part) and defoaming for 20 minutes to obtain a curable resin composition of the present invention and a comparative curable resin composition. Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 5. The curing conditions are 150 ° C.
  • the curable resin composition of the present invention is excellent in adhesion, toughness, and heat durability.
  • Corrosive gas 20% aqueous solution of ammonium sulfide (discolors black when sulfur component reacts with silver)
  • Contact method A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
  • Judgment of corrosion The time when the lead frame inside the LED package was blackened (referred to as blackening) was observed every hour, and it was judged that the longer the color changing time, the better the corrosion resistance gas resistance.
  • Example 26 Comparative Example 7
  • the polyvalent carboxylic acid composition (MA-13) of the present invention as a comparative example, the polycarboxylic acid resin (J-3) was used as a curing agent, and the epoxy resin obtained in Synthesis Examples 9 and 10 as an epoxy resin ( EP-3, EP-4), using curing accelerator (C2) and additives (AD-1, AD-2), and blending ratios (parts by weight) shown in Table 7 below, for 20 minutes Defoaming was performed to obtain a curable resin composition of the present invention and a comparative curable resin composition. Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 7. The curing conditions are 150 ° C. ⁇ 5 hours after preliminary curing at 120 ° C.
  • LED for lighting test is obtained by making it harden
  • the lighting test was performed at 210 mA, which is 7 times the specified current, for the acceleration test. Detailed conditions are shown below.
  • the illuminance before and after lighting for 40 hours was measured using an integrating sphere, and the illuminance retention rate of the test LED was calculated.
  • Light emission wavelength 465nm Drive method: constant current method, 210 mA (light emitting element specified current is 30 mA)
  • Driving environment 25 ° C, 65% RH (4) Gas permeation resistance test (corrosion gas permeability test); The package of the LED prepared with the obtained curable resin composition was left in a corrosive gas under the following conditions, and the change in the color of the silver-plated lead frame inside the seal was observed.
  • Corrosive gas 20% aqueous solution of ammonium sulfide (discolors black when sulfur component reacts with silver)
  • Contact method A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
  • Judgment of corrosion The time during which the lead frame inside the LED package was blackened (referred to as blackening) was observed every hour, and it was judged that the longer the color changing time, the better the corrosion resistance.
  • the epoxy resin composition of the present invention is not only excellent in heat resistance and light resistance, but also in a cured product excellent in adhesion, toughness, and corrosion resistance gas permeability. I know you give it.

Abstract

Provided is a polycarboxylic acid composition which ensures reduction in the volatilization of a curing agent in curing and which can provide cured products that exhibit excellent heat resistance, light resistance, resistance to corrosive gas permeation, tight adhesion, and toughness. The polycarboxylic acid composition is characterized by comprising both (J) a carboxylic acid compound obtained by addition reaction of (a) a silicone oil represented by general formula (1) with (b) a compound that contains at least one carboxylic anhydride group in the molecule and (K) a polycarboxylic acid compound obtained by addition reaction of (c) a saturated aliphatic polyhydric alcohol that has two or more alcoholic hydroxyl groups with (d) a compound that has at least one carboxylic anhydride group in the molecule. In general formula (1), R1 is an alkylene group that contains 1 to 10 carbon atoms in total and may be interrupted by an ether linkage; R2 is methyl or phenyl; and n represents the number of repeating units, with the weight-average molecular weight of the compound of general formula (1) being 500 to 5000.

Description

多価カルボン酸組成物およびその製造方法、ならびに該多価カルボン酸組成物を含有してなる硬化性樹脂組成物Polyvalent carboxylic acid composition and method for producing the same, and curable resin composition containing the polyvalent carboxylic acid composition
 本発明は電気電子材料用途に好適な、多価カルボン酸組成物およびその製造方法に関する。更に、本発明は硬化性成分として前記多価カルボン酸組成物を含有する硬化性樹脂組成物に関する。 The present invention relates to a polyvalent carboxylic acid composition suitable for use in electrical and electronic materials and a method for producing the same. Furthermore, the present invention relates to a curable resin composition containing the polyvalent carboxylic acid composition as a curable component.
 多価カルボン酸は、高熱安定性や良好な電気特性、耐薬品性などと共に、縮合体の形成や反応性の良さなど、架橋剤、縮合剤等として優れた性能を備えており、近年、高分子製造原材料として、非常に着目され、広く使用されるようになってきている。
 また多価カルボン酸はエポキシ樹脂の硬化剤としても使用できることが知られている。
Polyvalent carboxylic acid has excellent performance as a crosslinking agent, condensing agent, etc., such as high thermal stability, good electrical properties, chemical resistance, etc., as well as formation of condensates and good reactivity. As a molecular manufacturing raw material, it has attracted much attention and is widely used.
It is also known that polyvalent carboxylic acids can be used as curing agents for epoxy resins.
 エポキシ樹脂を含有する硬化性樹脂組成物は、耐熱性に優れた樹脂として、建築、土木、自動車、航空機などの分野で利用されている。近年、特に半導体関連材料の分野においてはカメラ付き携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど軽・薄・短・小がキーワードとなるような電子機器があふれ、これによりエポキシ樹脂に代表されるパッケージ材料にも非常に高い特性が求められてきている。
 さらに、近年オプトエレクトロニクス関連分野における利用が注目されている。特に近年の高度情報化に伴い、膨大な情報を円滑に伝送および処理するために、従来の電気配線による信号伝送に替わり、光信号を生かした技術が開発されている。そしてこれに伴って、光導波路、青色LEDおよび光半導体等の光学部品の分野においては透明性に優れた硬化物を与える樹脂組成物の開発が望まれている。
A curable resin composition containing an epoxy resin is used as a resin having excellent heat resistance in the fields of architecture, civil engineering, automobiles, aircraft, and the like. In recent years, especially in the field of semiconductor-related materials, electronic devices such as mobile phones with cameras, ultra-thin liquid crystals, plasma TVs, and light-weight notebook computers have become key to light, thin, short, and small. Very high characteristics have been demanded for packaging materials represented by resins.
Further, in recent years, the use in the optoelectronics related field has attracted attention. In particular, with the advancement of advanced information technology in recent years, in order to smoothly transmit and process a huge amount of information, a technique utilizing an optical signal has been developed instead of the conventional signal transmission using electric wiring. Accordingly, in the field of optical components such as optical waveguides, blue LEDs, and optical semiconductors, development of a resin composition that gives a cured product having excellent transparency is desired.
 一般にこのような分野で用いられるエポキシ樹脂の硬化剤としては酸無水物系の化合物が挙げられる。特に飽和炭化水素で形成された酸無水物は硬化物が耐光性に優れることから、利用されることが多い(例えば、特許文献1および2参照)。これら酸無水物としては、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸等の脂環式酸無水物が一般的であり、中でも、取扱いの容易さから、常温で液状であるメチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が主に使用されている。
 しかしながら上記の脂環式酸無水物を硬化剤とした場合、これらの硬化剤は蒸気圧が高く、硬化時に一部が蒸発する傾向がある。このため、これらの脂環式酸無水物をエポキシ樹脂の硬化剤として用いて開放系で熱硬化させる際には、この脂環式酸無水物が大気中に揮発し、大気への有害物質の放出による環境汚染、人体への悪影響を引き起こす懸念がある。また、それ以外にも、生産ラインの汚染、硬化物中に所定量のカルボン酸無水物(硬化剤)が存在しないことに起因するエポキシ樹脂組成物の硬化不良が起こるという問題があるばかりか、硬化条件によってその特性が大幅に変わってしまい、安定して目的とした性能を有する硬化物を得ることが困難である。
In general, the epoxy resin curing agent used in such a field includes acid anhydride compounds. In particular, acid anhydrides formed with saturated hydrocarbons are often used because cured products have excellent light resistance (see, for example, Patent Documents 1 and 2). As these acid anhydrides, alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and tetrahydrophthalic anhydride are generally used. Hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, etc. are mainly used.
However, when the above alicyclic acid anhydride is used as a curing agent, these curing agents have a high vapor pressure and tend to partially evaporate during curing. For this reason, when these alicyclic acid anhydrides are used as a curing agent for epoxy resins and thermally cured in an open system, the alicyclic acid anhydrides volatilize in the atmosphere, causing harmful substances to the atmosphere. There are concerns about environmental pollution and harmful effects on humans. In addition, there is a problem that the epoxy resin composition is poorly cured due to contamination of the production line and the absence of a predetermined amount of carboxylic acid anhydride (curing agent) in the cured product. The characteristics vary greatly depending on the curing conditions, and it is difficult to stably obtain a cured product having the intended performance.
 上記揮発による硬化物への影響は、従来の酸無水物を硬化剤として用いた硬化物でLED、特にSMD(Surface Mount Device)に用いるLEDを封止した際に顕著に現れる。LEDの封止は使用する樹脂量が少ないため、酸無水物の揮発が生じるとへこみが発生し、酷い場合にはワイヤーが露出するという問題が生じる。さらには半田リフロー時にクラックや剥離が生じたりあるいは硬化が不十分になってしまうため、得られる硬化物は長期点灯にも耐えることが困難であるという問題がある。 The effect of the above volatilization on the cured product is prominent when an LED, particularly an LED used for a SMD (Surface Mount Device) is sealed with a cured product using a conventional acid anhydride as a curing agent. Since LED sealing uses a small amount of resin, there is a problem that dents are generated when acid anhydrides volatilize, and in severe cases, the wires are exposed. Furthermore, since cracks and peeling occur during solder reflow, or curing becomes insufficient, the obtained cured product has a problem that it is difficult to withstand long-term lighting.
日本国特開2003-277473号公報Japanese Unexamined Patent Publication No. 2003-277473 日本国特開2008-063333号公報Japanese Laid-Open Patent Publication No. 2008-066333
 このような問題に対し、多価カルボン酸を硬化剤として使用する手法が考えられる。しかしながら通常の多価カルボン酸はその水素結合のために固形化、特に結晶化する場合が多く、液状の組成物として使用するのは非常に難しい。そのような問題を解決するために、本発明の発明者らはシリコーン系の多価カルボン酸を硬化剤とする検討を行ったが、シリコーン系のカルボン酸を硬化剤として用いた場合、揮発性の問題は解決できたものの密着性や耐腐蝕ガス透過性という点で所望の特性が得られず、封止材等の硬化物として使用するには困難であった。
 さらに、オルガノシロキサンタイプのエポキシ樹脂との硬化においては得られる硬化物がもろくなりやすく、強靭性に課題があった。
For such a problem, a method using polyvalent carboxylic acid as a curing agent can be considered. However, ordinary polyvalent carboxylic acids are often solidified, particularly crystallized due to their hydrogen bonds, and are very difficult to use as a liquid composition. In order to solve such problems, the inventors of the present invention have studied using a silicone-based polyvalent carboxylic acid as a curing agent. Although the above problem was solved, desired properties were not obtained in terms of adhesion and corrosion gas permeability, and it was difficult to use as a cured product such as a sealing material.
Furthermore, in the curing with an organosiloxane type epoxy resin, the resulting cured product tends to be brittle, and there is a problem in toughness.
 本発明は、硬化時の硬化剤の揮発が抑制され、さらには耐熱性、耐光性、耐腐食性ガス透過性、密着性、強靭性等に優れた硬化物を与える多価カルボン酸組成物およびその製造方法を提供することを目的とする。また、本発明は、該多価カルボン酸組成物を含む硬化性樹脂組成物を提供することを目的とする。 The present invention provides a polyvalent carboxylic acid composition that suppresses volatilization of a curing agent during curing, and further provides a cured product excellent in heat resistance, light resistance, corrosion resistance gas permeability, adhesion, toughness, and the like. It aims at providing the manufacturing method. Another object of the present invention is to provide a curable resin composition containing the polyvalent carboxylic acid composition.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
 すなわち本発明は、
(1)下記式(1)
As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention
(1) The following formula (1)
Figure JPOXMLDOC01-appb-C000002
 
 
Figure JPOXMLDOC01-appb-C000002
 
 
(式(1)において、Rはエーテル結合を介しても良い炭素総数1~10アルキレン基を表し、Rはメチル基又はフェニル基を表す。また、nは繰り返し単位を表し、式(1)で表される化合物の重量平均分子量は500~5000である。)
で表されるシリコーンオイル(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)とを付加反応させることにより得られるカルボン酸化合物(J)と、
 2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)と分子内に1個以上のカルボン酸無水物基をもつ化合物(d)とを付加反応させることにより得られる多価カルボン酸化合物(K)と、
を含有することを特徴とする多価カルボン酸組成物、
(2)
前記化合物(b)および(d)が環状の飽和炭化水素を母骨格とする酸無水物であることを特徴とする前項(1)記載の多価カルボン酸組成物、
(3)
前記化合物(b)および(d)がメチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物およびビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物からなる群より選ばれる少なくとも1種の酸無水物であることを特徴とする前項(1)または(2)記載の多価カルボン酸組成物、
(4)
前記化合物(b)および(d)がメチルヘキサヒドロ無水フタル酸を必須とすることを特徴とする前項(3)記載の多価カルボン酸組成物、
(5)
前記化合物(c)が官能基数2~6の多価アルコールであって1分子中の総炭素数が5~20であることを特徴とする前項(1)~(4)のいずれか一項に記載の多価カルボン酸組成物、
(6)
前項(1)~(5)のいずれか一項に記載の多価カルボン酸組成物の製造方法であって、
 シリコーンオイル(a)と2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)を含む混合物に、分子内に1個以上のカルボン酸無水物基をもつ化合物(b)および(d)を加え、前記シリコーンオイル(a)と前記化合物(b)の付加反応と、前記化合物(c)と前記化合物(d)の付加反応を同時に行なうことを特徴とする多価カルボン酸組成物の製造方法、
(7)
前項(1)~(5)のいずれか一項に記載の多価カルボン酸組成物の製造方法であって、
 以下の工程(A)、工程(B)を逐次的に1ポットで反応させることを特徴とする多価カルボン酸組成物の製造方法、
 工程(A):シリコーンオイル(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)を付加反応させる工程
 工程(B):2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)と分子内に1個以上のカルボン酸無水物基をもつ化合物(d)を付加反応させる工程
(8)
 前記付加反応を、無溶剤、もしくは使用する原料における反応基質の総量に対して50重量%以下の有機溶剤中、40~150℃で行なうことを特徴とする前項(6)または(7)記載の多価カルボン酸組成物の製造方法、
(9)
前項(1)~(5)のいずれか一項に記載の多価カルボン酸組成物とエポキシ樹脂とを含有する硬化性樹脂組成物、
(10)
前記エポキシ樹脂が脂環式エポキシ樹脂および/またはエポキシ基含有シリコーン樹脂であることを特徴とする前項(9)記載の硬化性樹脂組成物、
(11)
前記エポキシ樹脂がエポキシ基含有シリコーン樹脂であることを特徴とする前項(9)記載の硬化性樹脂組成物、
(12)
前項(9)~(11)のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物、
に関する。
(In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms that may be bonded via an ether bond, R 2 represents a methyl group or a phenyl group, n represents a repeating unit, and Formula (1) The weight average molecular weight of the compound represented by) is 500 to 5,000.)
A carboxylic acid compound (J) obtained by subjecting a silicone oil (a) represented by the formula (b) to a compound (b) having one or more carboxylic anhydride groups in the molecule;
Polyvalent carboxylic acid obtained by addition reaction of saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group and compound (d) having one or more carboxylic anhydride groups in the molecule Compound (K),
Containing a polyvalent carboxylic acid composition,
(2)
The polyvalent carboxylic acid composition according to item (1), wherein the compounds (b) and (d) are acid anhydrides having a cyclic saturated hydrocarbon as a mother skeleton,
(3)
The compounds (b) and (d) are methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and bicyclo [2,2,1] heptane- The polyvalent carboxylic acid composition as described in (1) or (2) above, which is at least one acid anhydride selected from the group consisting of 2,3-dicarboxylic acid anhydrides,
(4)
The polyvalent carboxylic acid composition according to item (3), wherein the compounds (b) and (d) essentially comprise methylhexahydrophthalic anhydride,
(5)
Any one of (1) to (4) above, wherein the compound (c) is a polyhydric alcohol having 2 to 6 functional groups, and the total number of carbon atoms in one molecule is 5 to 20. The polyvalent carboxylic acid composition as described,
(6)
A method for producing the polyvalent carboxylic acid composition according to any one of (1) to (5) above,
Compounds (b) and (d) having one or more carboxylic anhydride groups in the molecule are added to a mixture containing silicone oil (a) and a saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher functional alcoholic hydroxyl group. And the addition reaction between the silicone oil (a) and the compound (b) and the addition reaction between the compound (c) and the compound (d) are performed simultaneously. Production method,
(7)
A method for producing the polyvalent carboxylic acid composition according to any one of (1) to (5) above,
A method for producing a polyvalent carboxylic acid composition, wherein the following step (A) and step (B) are sequentially reacted in one pot,
Step (A): Step of addition reaction of silicone oil (a) and compound (b) having one or more carboxylic anhydride groups in the molecule Step (B): Saturated fat having a bifunctional or higher functional alcoholic hydroxyl group Step (8) of reacting an aromatic polyhydric alcohol (c) with a compound (d) having one or more carboxylic anhydride groups in the molecule
(6) or (7) above, wherein the addition reaction is carried out at 40 to 150 ° C. in an organic solvent of 50% by weight or less based on the total amount of reaction substrate in the raw material to be used without solvent. Method for producing polyvalent carboxylic acid composition,
(9)
A curable resin composition comprising the polyvalent carboxylic acid composition according to any one of (1) to (5) above and an epoxy resin;
(10)
The curable resin composition as described in (9) above, wherein the epoxy resin is an alicyclic epoxy resin and / or an epoxy group-containing silicone resin,
(11)
The curable resin composition as described in (9) above, wherein the epoxy resin is an epoxy group-containing silicone resin,
(12)
A cured product obtained by curing the curable resin composition according to any one of (9) to (11),
About.
 本発明の多価カルボン酸組成物はエポキシ樹脂の硬化剤として有用であり、特に本発明の硬化性樹脂組成物は、エポキシ樹脂を硬化させるのに通常採用される温度域で、硬化剤としての多価カルボン酸成分の揮発性が極めて少ないだけでなく、耐熱性、耐光性、密着性、耐腐食性ガス透過性、強靭性等に優れる。本発明の多価カルボン酸組成物は塗料、接着剤、成形品、半導体、光半導体の封止材用樹脂、光半導体のダイボンド材用樹脂、ポリイミド樹脂などの原料や改質剤、可塑剤、潤滑油原料、医農薬中間体、塗料用樹脂の原料、トナー用樹脂として有用であるが、とりわけ、エポキシ樹脂に対する硬化能力及びこれから得られる硬化物の透明度に優れるため、高輝度の白色LED等に代表される光半導体の封止用のエポキシ樹脂の硬化剤として極めて有用である。 The polyvalent carboxylic acid composition of the present invention is useful as a curing agent for an epoxy resin. In particular, the curable resin composition of the present invention is used as a curing agent in a temperature range usually employed for curing an epoxy resin. In addition to extremely low volatility of the polyvalent carboxylic acid component, it is excellent in heat resistance, light resistance, adhesion, corrosion resistance gas permeability, toughness and the like. The polyvalent carboxylic acid composition of the present invention includes paints, adhesives, molded articles, semiconductors, optical semiconductor encapsulant resins, optical semiconductor die bond material resins, polyimide resins and other raw materials and modifiers, plasticizers, It is useful as a raw material for lubricating oils, intermediates for pharmaceuticals and agricultural chemicals, resin for paints, and resin for toners. Especially, it has excellent curing ability for epoxy resins and transparency of cured products obtained from it. It is extremely useful as a curing agent for an epoxy resin for sealing a representative optical semiconductor.
 本発明の多価カルボン酸組成物は、下記式(1) The polyvalent carboxylic acid composition of the present invention has the following formula (1)
Figure JPOXMLDOC01-appb-C000003
 


 
Figure JPOXMLDOC01-appb-C000003
 


 
(式(1)において、Rはエーテル結合を介しても良い炭素総数1~10アルキレン基を表し、Rはメチル基又はフェニル基を表す。また、nは繰り返し単位を表し、式(1)で表される化合物の重量平均分子量は500~5000である。)
で表されるシリコーンオイル(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)とを付加反応させることにより得られるカルボン酸化合物(J)と、
 2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)と分子内に1個以上のカルボン酸無水物基をもつ化合物(d)とを付加反応させることにより得られる多価カルボン酸化合物(K)と、を含有することを特徴とする。
 本発明の多価カルボン酸組成物を製造する際の多価カルボン酸(J)と多価カルボン酸(K)は下記に従い、それぞれ単独で調整して混合しても、各原料を逐次反応させてもよい。
(In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms that may be bonded via an ether bond, R 2 represents a methyl group or a phenyl group, n represents a repeating unit, and Formula (1) The weight average molecular weight of the compound represented by) is 500 to 5,000.)
A carboxylic acid compound (J) obtained by subjecting a silicone oil (a) represented by the formula (b) to a compound (b) having one or more carboxylic anhydride groups in the molecule;
Polyvalent carboxylic acid obtained by addition reaction of saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group and compound (d) having one or more carboxylic anhydride groups in the molecule And a compound (K).
The polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) used in the production of the polyvalent carboxylic acid composition of the present invention are prepared in accordance with the following, and each raw material is allowed to react sequentially even if they are individually adjusted and mixed. May be.
 シリコーンオイル(a)は前記式(1)で示される。
 前記式(1)において、Rの具体例としては、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等のエーテル結合を有しない総炭素数1~10のアルキレン基;-C-O-C-、-C-O-C-、-C-O-C-等のエーテル結合を有する総炭素数1~10のアルキレン基が挙げられる。これらのうち市場での入手のし易さからプロピレン基または-C-O-C-が好ましい。
 Rの鎖が総炭素数10を越える場合、例えば市販品であればポリエチレンオキサイド付加体等が存在するが、耐熱・耐光性の面で好ましくない。
 シリコーンオイル(a)の好ましい分子量範囲としては、重量平均分子量で500~5000、より好ましくは600~4000、特に好ましくは600~2500である。また最も好ましい範囲としては600~1500である。分子量が500より小さい場合、得られた生成物の分子間力が高くなり粘度が上昇しやすくなる、また5000より大きい場合、他の成分との相溶性が悪く、系が濁ってしまう場合が多いことから好ましくない。
 このようなカルビノール変性シリコーン化合物としては、例えば日本国特開2007-508424号公報等に記載の手法を用いて合成できる。市場から入手可能な化合物としてはDow Corning5562(東レ・ダウコーニング製)、X22-160-AS、KF-6001、KF-6002、KF-6003(いずれも信越化学工業製)、XF42-B0970(モメンティブ製)、サイラプレーンFM-4411、FM-4421、FM-4425(チッソ製)などが挙げられる。
The silicone oil (a) is represented by the formula (1).
In the formula (1), specific examples of R 1 include alkylene groups having 1 to 10 carbon atoms and no ether bond, such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, and octylene; 3 H 6 —O—C 2 H 4 —, —C 2 H 4 —O—C 2 H 4 —, —C 3 H 6 —O—C 3 H 6 — etc. 10 alkylene groups are mentioned. Of these, a propylene group or —C 3 H 6 —O—C 2 H 4 — is preferable because of easy availability in the market.
In the case where the chain of R 1 exceeds 10 carbon atoms, for example, a commercially available product includes a polyethylene oxide adduct, but this is not preferable in terms of heat resistance and light resistance.
The preferred molecular weight range of the silicone oil (a) is 500 to 5000, more preferably 600 to 4000, and particularly preferably 600 to 2500 in terms of weight average molecular weight. The most preferable range is 600 to 1500. When the molecular weight is less than 500, the intermolecular force of the obtained product is increased and the viscosity is likely to increase. When the molecular weight is greater than 5000, the compatibility with other components is poor and the system often becomes cloudy. That is not preferable.
Such a carbinol-modified silicone compound can be synthesized, for example, using a technique described in Japanese Patent Application Laid-Open No. 2007-508424. The commercially available compounds include Dow Corning 5562 (manufactured by Dow Corning Toray), X22-160-AS, KF-6001, KF-6002, KF-6003 (all manufactured by Shin-Etsu Chemical), XF42-B0970 (manufactured by Momentive ), Silaplane FM-4411, FM-4421, FM-4425 (manufactured by Chisso) and the like.
 2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)としては従来、知られているアルコール類が挙げられるが、耐熱・耐光性、強靭性のバランスの観点から、特に好ましくは官能基数2~6の多価アルコールであって1分子中の総炭素数が5~20であることが好ましい。さらに好ましくはその分子構造が分岐構造を有する鎖状アルキレンジオール、環状構造を有するジオール、トリオール、テトラオール、ヘキサオール等である。
 分岐構造を有する鎖状アルキレンジオールとしては具体的にはネオペンチルグリコール、2-エチル-2-ブチルプロピレン-1,3-ジオール、2,4-ジエチルペンタン-1,5-ジオールなどが挙げられる。
 環状構造を有するジオールとしては、トリシクロデカンジオール、ペンタシクロペンタデカンジオール、1,4-シクロヘキサンジオール、ノルボルナンジオール、ジオキサングリコール、スピログリコール等が挙げられる。
 トリオールとしてはグリセリン、トリメチロールプロパン等が、テトラオールとしてはペンタエリスリトール、ジトリメチロールプロパン等が、さらにヘキサオールとしてはジペンタエリスリトール等が挙げられる。
  光学特性、耐熱着色性、耐光着色性に優れる点から、2,4-ジエチルペンタン-1,5-ジオール、トリシクロデカンジオール、ペンタエリスリトールの使用が好ましい。
 本発明においてはこれらの具体例に限定されず、さらに1種又は2種以上を混合して用いても良い。
Examples of the saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group include conventionally known alcohols, and from the viewpoint of a balance between heat resistance, light resistance and toughness, particularly preferred is a functional group. It is preferably a polyhydric alcohol having 2 to 6 groups, and the total number of carbon atoms in one molecule is 5 to 20. More preferred are chain alkylene diols having a branched structure, diols having a cyclic structure, triols, tetraols, hexaols and the like.
Specific examples of the chain alkylene diol having a branched structure include neopentyl glycol, 2-ethyl-2-butylpropylene-1,3-diol, 2,4-diethylpentane-1,5-diol and the like.
Examples of the diol having a cyclic structure include tricyclodecane diol, pentacyclopentadecane diol, 1,4-cyclohexane diol, norbornane diol, dioxane glycol, spiro glycol and the like.
Examples of the triol include glycerin and trimethylolpropane, examples of the tetraol include pentaerythritol and ditrimethylolpropane, and examples of the hexaol include dipentaerythritol.
From the viewpoint of excellent optical properties, heat-resistant coloring properties, and light-resistant coloring properties, it is preferable to use 2,4-diethylpentane-1,5-diol, tricyclodecanediol, or pentaerythritol.
In this invention, it is not limited to these specific examples, Furthermore, you may use 1 type or in mixture of 2 or more types.
 分子内に1個以上のカルボン酸無水物基をもつ化合物(b)および(d)(なお、化合物(b)と(d)は同一であっても異なっていても構わない)としては、分子中に1個、もしくは2個のカルボン酸無水物基を有するものが好ましい。具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、シクロブタンテトラカルボン酸二水和物、ブタンテトラカルボン酸二無水物等が挙げられる。
 これらのうち、光学特性の観点から、特に飽和炭化水素構造を有する化合物が好ましい。さらに、耐熱性と強靭性のバランスの観点から、環状の飽和炭化水素構造を母骨格として有するものが特に好ましく、具体的にはメチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロブタンテトラカルボン酸二水和物、ブタンテトラカルボン酸二無水物等が挙げられるがこれらに限定されず、1種又は2種以上を混合して用いても良い。
 本発明においては、取り扱いのしやすさの観点から、特にカルボン酸無水物基を1個有する物が特に好ましく、中でもメチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物が好ましい。特に、光学的な特性から、メチルヘキサヒドロ無水フタル酸またはシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が特に好ましい。
Compounds (b) and (d) having one or more carboxylic acid anhydride groups in the molecule (compounds (b) and (d) may be the same or different) may be used as molecules Those having one or two carboxylic anhydride groups therein are preferred. Specifically, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydro Phthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, Examples include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, cyclobutanetetracarboxylic acid dihydrate, butanetetracarboxylic dianhydride, and the like.
Among these, from the viewpoint of optical properties, a compound having a saturated hydrocarbon structure is particularly preferable. Further, from the viewpoint of a balance between heat resistance and toughness, those having a cyclic saturated hydrocarbon structure as a mother skeleton are particularly preferable. Specifically, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2 , 4-tricarboxylic acid-1,2-anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclobutanetetracarboxylic acid dihydrate, butanetetracarboxylic acid dianhydride, etc. Although not limited to these, you may use 1 type or in mixture of 2 or more types.
In the present invention, from the viewpoint of ease of handling, those having one carboxylic anhydride group are particularly preferred, and among them, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2,4- Tricarboxylic acid-1,2-anhydride and bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride are preferred. In particular, methylhexahydrophthalic anhydride or cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is particularly preferable from the viewpoint of optical properties.
 シリコーンオイル(a)とカルボン酸無水物基をもつ化合物(b)との付加反応、あるいは、多価アルコール(c)とカルボン酸無水物基をもつ化合物(d)との付加反応のような、アルコールと酸無水物とを付加させる反応は、一般に酸や塩基を触媒とする付加反応であるが、本発明においては、後処理の簡便さ、製品への触媒残による悪影響を除去するという観点から、特に無触媒での反応が好ましい。また、除去が課題であるため、後述する硬化性樹脂組成物に使用する硬化促進剤や添加剤の中から選ばれる1種以上を用いることは、その後の精製が必要でないため好ましい物となる。
 触媒を用いる場合、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
 触媒の使用量には、特に制限はないが、原料の総重量100重量部に対して、通常0.001~5重量部である。
Such as addition reaction between silicone oil (a) and compound (b) having a carboxylic acid anhydride group, or addition reaction between polyhydric alcohol (c) and compound (d) having a carboxylic acid anhydride group, The reaction for adding an alcohol and an acid anhydride is generally an addition reaction using an acid or a base as a catalyst. However, in the present invention, from the viewpoint of simplicity of post-treatment and removal of adverse effects due to residual catalyst on the product. In particular, a catalyst-free reaction is preferred. Further, since removal is a problem, it is preferable to use one or more selected from among accelerators and additives used in the curable resin composition described below, since subsequent purification is not necessary.
When using a catalyst, for example, hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, calcium hydroxide, water Metal hydroxides such as magnesium oxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, imidazole, triazole, Heterocyclic compounds such as tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide Trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium Examples include quaternary ammonium salts such as acetate. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
The amount of the catalyst used is not particularly limited, but is usually 0.001 to 5 parts by weight with respect to 100 parts by weight of the total weight of the raw materials.
 本反応においては無溶剤での反応が好ましいが、有機溶剤を使用しても構わない。有機溶剤の使用量としては、反応基質の総量1に対し、重量比で0.005~1であり、好ましくは0.005~0.7、より好ましくは0.005~0.5(すなわち外割りで50重量%以下)である。重量比で1を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物などが挙げられる。 In this reaction, a reaction without a solvent is preferable, but an organic solvent may be used. The organic solvent is used in a weight ratio of 0.005 to 1, preferably 0.005 to 0.7, more preferably 0.005 to 0.5 (that is, outside) with respect to a total amount of reaction substrate of 1. 50% by weight or less). When the weight ratio exceeds 1, the progress of the reaction is extremely slow, which is not preferable. Specific examples of organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate.
 反応温度は40~200℃が好ましく、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、40~100℃、特に40~80℃での反応が好ましい。
 また室温での結晶性の高い化合物、例えばシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物等を用いる場合はその結晶を十分に溶解させるため100~150℃での反応を行うことが好ましい。
 また、揮発しやすい酸無水物と、結晶性の高い酸無水物を併用する場合は、段階的に温度を上昇させることで酸無水物の揮発を防ぐということも可能である。
The reaction temperature is preferably 40 to 200 ° C, particularly preferably 40 to 150 ° C. In particular, when this reaction is carried out in the absence of a solvent, the reaction at 100 ° C. or lower is preferred, and a reaction at 40 to 100 ° C., particularly 40 to 80 ° C. is preferred because of the volatilization of acid anhydride.
When a compound having high crystallinity at room temperature, such as cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, is used, the reaction is performed at 100 to 150 ° C. in order to sufficiently dissolve the crystal. It is preferable.
Moreover, when using the acid anhydride which is easy to volatilize, and the acid anhydride with high crystallinity, it is also possible to prevent volatilization of an acid anhydride by raising temperature in steps.
 多価カルボン酸(J)と多価カルボン酸(K)を得る反応の際の化合物(a)と(b)、(c)と(d)の反応比率は理論的には当モルでの反応が好ましいが、必要に応じて変更可能である。すなわち、後述するが、本発明の硬化剤組成物においては、必要により併用する酸無水物とここで使用する酸無水物が同じである場合は、製造時に過剰の酸無水物中で反応を行い、多価カルボン酸(J)と多価カルボン酸(K)を得る反応が終了した時点で酸無水物と本発明の多価カルボン酸組成物の混合物とすることもできる。
 具体的な反応比率としてはその官能基当量で比較し、(b)(もしくは(d))を1とした場合、そのモル比で(a)(もしくは(c))が0.001~1.0、より好ましくは0.01~1.0、さらに好ましくは0.1~1.0である。前述のように本発明の多価カルボン酸組成物と他の酸無水物の混合物を製造する場合、前記割合が0.01~0.7、好ましくは0.01~0.4の範囲が好ましい。
The reaction ratio of the compounds (a) and (b), (c) and (d) in the reaction for obtaining the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) is theoretically equivalent. Is preferable, but can be changed as necessary. That is, as will be described later, in the curing agent composition of the present invention, when the acid anhydride used in combination with the acid anhydride used here is the same as necessary, the reaction is carried out in an excess of acid anhydride at the time of production. When the reaction for obtaining the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) is completed, a mixture of the acid anhydride and the polyvalent carboxylic acid composition of the present invention can be used.
As a specific reaction ratio, the functional group equivalent is compared. When (b) (or (d)) is 1, the molar ratio (a) (or (c)) is 0.001 to 1. 0, more preferably 0.01 to 1.0, still more preferably 0.1 to 1.0. As mentioned above, when producing the mixture of the polyvalent carboxylic acid composition of the present invention and other acid anhydrides, the ratio is preferably in the range of 0.01 to 0.7, preferably 0.01 to 0.4. .
 反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。また短すぎる反応時間はその反応が急激であることを意味し、安全性の面から好ましくない。好ましい範囲としては1~48時間、好ましくは1~36時間、さらに好ましくは1~24時間である。 Although the reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy. An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety. A preferred range is 1 to 48 hours, preferably 1 to 36 hours, and more preferably 1 to 24 hours.
 反応終了後、触媒を用いた場合は、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする多価カルボン酸(J)または(K)が得られる。
 また無触媒での反応においては必要に応じて溶剤を留去、さらに無溶剤、無触媒の場合はそのまま取り出すことで多価カルボン酸(J)または多価カルボン酸(K)を得ることができる。
When the catalyst is used after completion of the reaction, the desired polycarboxylic acid (J) or (K) is obtained by removing the catalyst by neutralization, washing with water, adsorption, etc., and distilling off the solvent. .
In the reaction without a catalyst, if necessary, the solvent is distilled off, and in the case of no solvent and without a catalyst, the polycarboxylic acid (J) or the polyvalent carboxylic acid (K) can be obtained by taking it out as it is. .
 最も好適な製造方法としては、無触媒、無溶剤の条件下、40~150℃で反応させ、反応終了後、そのまま取り出すという手法である。 The most preferred production method is a method of reacting at 40 to 150 ° C. under the conditions of no catalyst and no solvent, and taking it out as it is after the reaction is completed.
 このようにして得られた多価カルボン酸(J)および多価カルボン酸(K)を混合することで目的とする多価カルボン酸組成物を得ることができる。その比率は重量比で(J)/(K)=99.7/0.3~50/50であり、より好ましくは99.7/0.3~40/40である。多価カルボン酸(J)の量が多すぎる場合、硬化物の耐腐蝕ガス透過性、耐リフロー性に問題が生じ、多価カルボン酸(K)が多すぎる場合、固形化し、取り扱いが困難となる。
 ここで、特に(J)/(K)の比率は99/1~80/20が好ましく、99/1~85/15がより好ましい。(K)を重量比で1以上混合させることで、耐腐食ガス透過性の性能が特に改善され、さらに(J)を重量比で80以上混合させることで、耐光性に優れ、基材からの剥離やクラックが生じ難く、LEDの封止材として用いた場合における照度劣化も起こり難い性能を実現できるためである。特に(J)を重量比で85以上混合させることで、上記特性をバランス良く両立させることができる。
The target polyvalent carboxylic acid composition can be obtained by mixing the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) thus obtained. The ratio by weight is (J) / (K) = 99.7 / 0.3 to 50/50, more preferably 99.7 / 0.3 to 40/40. If the amount of the polyvalent carboxylic acid (J) is too large, there will be a problem in the corrosion gas permeability and reflow resistance of the cured product. If the amount of the polyvalent carboxylic acid (K) is too large, it will be solidified and difficult to handle. Become.
Here, the ratio of (J) / (K) is particularly preferably 99/1 to 80/20, and more preferably 99/1 to 85/15. By mixing one or more (K) by weight ratio, the performance of corrosion-resistant gas permeability is particularly improved, and by mixing (J) by 80 or more by weight ratio, the light resistance is excellent, and This is because peeling and cracking are unlikely to occur, and it is possible to realize performance that hardly causes deterioration of illuminance when used as an LED sealing material. In particular, by mixing (J) in a weight ratio of 85 or more, the above characteristics can be balanced.
 また、本発明においては多価カルボン酸(J)と多価カルボン酸(K)を同時に製造することも可能である。具体的な手法としては
(i)
シリコーンオイル(a)と多価アルコール(c)の混合物に、分子内に1個以上のカルボン酸無水物基をもつ化合物(b)および(d)を仕込み、同時に反応させる。
(ii)
 以下の工程(A)、工程(B)を逐次的に1ポットで反応させる。
工程(A):シリコーンオイル(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)を反応させる工程
工程(B):2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)と分子内に1個以上のカルボン酸無水物基をもつ化合物(d)を反応させる工程
 即ち、上記(ii)の手法は、工程(A)(あるいは工程(B))を行った後に、逐次的に工程(B)(あるいは工程(A))に使用する化合物を投入し、系中で反応および混合を行うものである。
(iii)
分子内に1個以上のカルボン酸無水物基をもつ化合物(b)、(d)が同一である場合、シリコーンオイル(a)(あるいは多価アルコール(c))と、分子内に1個以上のカルボン酸無水物基をもつ化合物(b)(=(d))を仕込み、反応を行った後、多価アルコール(c)(あるいはシリコーンオイル(a))を仕込み、反応を行う。
In the present invention, the polyvalent carboxylic acid (J) and the polyvalent carboxylic acid (K) can also be produced simultaneously. Specific methods include (i)
Compounds (b) and (d) having one or more carboxylic acid anhydride groups in the molecule are charged into a mixture of silicone oil (a) and polyhydric alcohol (c) and reacted simultaneously.
(Ii)
The following steps (A) and (B) are sequentially reacted in one pot.
Step (A): Step of reacting silicone oil (a) with compound (b) having one or more carboxylic acid anhydride groups in the molecule Step (B): Saturated aliphatic having bifunctional or higher alcoholic hydroxyl group The step of reacting the polyhydric alcohol (c) with the compound (d) having one or more carboxylic acid anhydride groups in the molecule. That is, the method of (ii) is the step (A) (or step (B)). After performing, the compounds to be used in step (B) (or step (A)) are sequentially added, and reaction and mixing are performed in the system.
(Iii)
When compounds (b) and (d) having one or more carboxylic acid anhydride groups in the molecule are the same, silicone oil (a) (or polyhydric alcohol (c)) and one or more in the molecule The compound (b) (= (d)) having a carboxylic acid anhydride group is charged and reacted, and then the polyhydric alcohol (c) (or silicone oil (a)) is charged and reacted.
 このようにして得られる本発明の多価カルボン酸組成物は、通常、無色の液状~半固形物質となる。
 本発明の多価カルボン酸組成物は透明性に優れ、エポキシ樹脂等の硬化性樹脂の硬化剤、塗料、接着剤、成形品、半導体、光半導体の封止材用樹脂、光半導体のダイボンド材用樹脂、ポリアミド樹脂、ポリイミド樹脂などの原料や改質剤、可塑剤や潤滑油原料、医農薬中間体、塗料用樹脂の原料、トナー用樹脂として有用であり、とりわけエポキシ樹脂の硬化剤として有用である。
 本発明の多価カルボン酸組成物をエポキシ樹脂の硬化剤として用いた場合、本発明の多価カルボン酸組成物は優れた硬化能を示し、またその硬化物の透明度が優れるので、特に高輝度の白色LED他の光半導体封止に用いられるエポキシ樹脂用硬化剤として極めて有用である。
The polycarboxylic acid composition of the present invention thus obtained is usually a colorless liquid to semi-solid substance.
The polyvalent carboxylic acid composition of the present invention has excellent transparency, a curing agent for a curable resin such as an epoxy resin, a paint, an adhesive, a molded product, a semiconductor, a resin for an optical semiconductor encapsulant, and an optical semiconductor die bond material Useful as raw materials and modifiers for resins, polyamide resins, polyimide resins, plasticizers and lubricating oil raw materials, intermediates for pharmaceuticals and agricultural chemicals, raw materials for paint resins, and resin for toners, especially useful as a curing agent for epoxy resins It is.
When the polyvalent carboxylic acid composition of the present invention is used as a curing agent for an epoxy resin, the polyvalent carboxylic acid composition of the present invention exhibits excellent curability and the transparency of the cured product is excellent. It is extremely useful as a curing agent for epoxy resins used for sealing of other white semiconductor LEDs and other optical semiconductors.
 本発明の多価カルボン酸組成物をエポキシ樹脂等の硬化性樹脂の硬化剤として、特に液状組成物として使用する場合、本発明の多価カルボン酸組成物と他の酸無水物とを混合した硬化剤組成物の形態で使用するのが好ましい。
 使用できる酸無水物としては、分子内に1個以上のカルボン酸無水物基をもつ化合物(e)が好ましく、特にその構造に芳香環を有しない酸無水物が好ましい。分子内に1個以上のカルボン酸無水物基をもつ化合物(e)として具体的には、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物などが挙げられる。
 硬化剤組成物として酸無水物との混合で使用する場合、本発明の多価カルボン酸組成物の占める割合は、前記他の酸無水物と本発明の多価カルボン酸組成物の合計重量に対し、0.1~50重量%、好ましくは0.1~30重量%である。かかる範囲で併用することで、組成物の流動性、硬化物の耐熱性機械的強度の面で効果を奏する。
 以下、本発明の多価カルボン酸組成物を含む本発明の硬化性樹脂組成物について記載する。
 本発明の硬化性樹脂組成物はエポキシ樹脂を必須成分として含有する。
When the polyvalent carboxylic acid composition of the present invention is used as a curing agent for a curable resin such as an epoxy resin, particularly as a liquid composition, the polyvalent carboxylic acid composition of the present invention and another acid anhydride are mixed. It is preferably used in the form of a curing agent composition.
As the acid anhydride that can be used, a compound (e) having one or more carboxylic acid anhydride groups in the molecule is preferable, and an acid anhydride having no aromatic ring in its structure is particularly preferable. Specific examples of the compound (e) having one or more carboxylic anhydride groups in the molecule include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1 ] Heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, etc. Is mentioned.
When used as a curing agent composition in a mixture with an acid anhydride, the proportion of the polyvalent carboxylic acid composition of the present invention is the total weight of the other acid anhydride and the polyvalent carboxylic acid composition of the present invention. On the other hand, it is 0.1 to 50% by weight, preferably 0.1 to 30% by weight. By using together in such a range, there is an effect in terms of fluidity of the composition and heat resistant mechanical strength of the cured product.
Hereinafter, the curable resin composition of the present invention including the polyvalent carboxylic acid composition of the present invention will be described.
The curable resin composition of the present invention contains an epoxy resin as an essential component.
 本発明の硬化性樹脂組成物において使用できるエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。 Examples of the epoxy resin that can be used in the curable resin composition of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetofu Non, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of these) It has a glycidyl group and / or an epoxycyclohexane structure Epoxy resins) include solid or liquid epoxy resins such as, but not limited thereto.
 特に本発明の硬化性樹脂組成物を光学用途に用いる場合、脂環式エポキシ樹脂及び/又はエポキシ基含有シリコーン樹脂が好ましく、シルセスキオキサン構造のエポキシ樹脂がより好ましい。特に脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂がより好ましい。
 これら脂環式エポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトールなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
When using especially the curable resin composition of this invention for an optical use, an alicyclic epoxy resin and / or an epoxy-group containing silicone resin are preferable, and the epoxy resin of a silsesquioxane structure is more preferable. Particularly in the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is more preferable.
These alicyclic epoxy resins include esterification reaction of cyclohexene carboxylic acid with alcohols or esterification reaction of cyclohexene methanol with carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980) ), Or Tyschenco reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and transesterification of cyclohexene carboxylic acid ester Examples thereof include an oxidized product of a compound that can be produced by a reaction (a method described in Japanese Patent Application Laid-Open No. 2006-052187).
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane. Diols, diols such as 1,6-hexanediol and cyclohexanedimethanol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, pentaerythritol, etc. And tetraols. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
 さらに上記以外の脂環式エポキシ樹脂として、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。反応手法としては一般のアセタール化反応を応用すれば製造でき、例えば、反応媒体にトルエン、キシレンなどの溶媒を用いて共沸脱水しながら反応を行う方法(米国特許第2945008号公報)、濃塩酸に多価アルコールを溶解した後アルデヒド類を徐々に添加しながら反応を行う方法(日本国特開昭48-96590号公報)、反応媒体に水を用いる方法(米国特許第3092640号公報)、反応媒体に有機溶媒を用いる方法(日本国特開平7-215979号公報)、固体酸触媒を用いる方法(日本国特開2007-230992号公報)等が開示されている。構造の安定性から環状アセタール構造が好ましい。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)及びジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85)。
 これらは単独で用いてもよく、2種以上併用してもよい。
Furthermore, as an alicyclic epoxy resin other than the above, an acetal compound obtained by an acetal reaction between a cyclohexene aldehyde derivative and an alcohol is exemplified. As a reaction method, it can be produced by applying a general acetalization reaction. For example, a method of carrying out a reaction while azeotropically dehydrating using a solvent such as toluene or xylene as a reaction medium (US Pat. No. 2,945,008), concentrated hydrochloric acid A method in which polyhydric alcohol is dissolved in the mixture and then the reaction is carried out while gradually adding aldehydes (Japanese Patent Laid-Open No. 48-96590), a method using water as a reaction medium (US Pat. No. 3,092,640), reaction A method using an organic solvent as a medium (Japanese Patent Laid-open No. 7-215979), a method using a solid acid catalyst (Japanese Patent Laid-Open No. 2007-230992), and the like are disclosed. A cyclic acetal structure is preferable from the viewpoint of structural stability.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85).
These may be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物において、本発明の多価カルボン酸組成物(もしくは硬化剤組成物)は他の硬化剤と併用しても構わない。併用する場合、本発明の多価カルボン酸の全硬化剤中に占める割合は20重量%以上が好ましく、特に30重量%以上が好ましい。
 併用できる他の硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。使用できる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
In the curable resin composition of the present invention, the polyvalent carboxylic acid composition (or the curing agent composition) of the present invention may be used in combination with other curing agents. When used in combination, the proportion of the polyvalent carboxylic acid of the present invention in the total curing agent is preferably 20% by weight or more, and particularly preferably 30% by weight or more.
Examples of other curing agents that can be used in combination include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, Bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid 3, -Anhydride, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [1, 1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols ( Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1,4 Polycondensates with '-bis (chloromethyl) benzene, 1,4'-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, imidazole, trifluoroborane-amine Examples include, but are not limited to, complexes, guanidine derivatives, and condensates of terpenes and phenols. These may be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物において全硬化剤とエポキシ樹脂の比率は、エポキシ樹脂のエポキシ基1当量に対して0.5~1.5当量(なお酸無水基は1官能と考える。)が好ましく、特に好ましくは0.5~1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。 In the curable resin composition of the present invention, the ratio of the total curing agent to the epoxy resin is 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups of the epoxy resin (note that acid anhydride groups are considered to be monofunctional). The amount is particularly preferably 0.5 to 1.2 equivalents. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
 本発明の硬化性樹脂組成物においては、硬化剤とともに硬化促進剤を併用しても差し支えない。用い得る硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル,4-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。 In the curable resin composition of the present invention, a curing accelerator may be used in combination with a curing agent. Specific examples of the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole. 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methyl Imidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′- Methylimidazole (1 ')) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethyl Various imidazoles such as imidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and imidazoles and phthalic acid, isophthalic acid, terephthalic acid Acids, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid, salts with polyvalent carboxylic acids such as succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4.0) undecene Diaza compounds such as 7 and their tetrafes Salts such as ruborate and phenol novolac, salts with the above polycarboxylic acids or phosphinic acids, ammonium salts such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide, triphenylphosphine, tri (tolyl) phosphine Phosphines and phosphonium compounds such as tetraphenylphosphonium bromide and tetraphenylphosphonium tetraphenylborate, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts and tin octylate, and curing thereof Examples thereof include a microcapsule-type curing accelerator having a microcapsule as an accelerator.
 本発明においては亜鉛塩および/または亜鉛錯体含有することが好ましい。本発明の硬化性樹脂組成物において、亜鉛塩および/または亜鉛錯体は、エポキシ樹脂と硬化剤との硬化促進剤として寄与する。
 亜鉛塩および/または亜鉛錯体としては、亜鉛イオンを中心元素とした塩および/または錯体であって、好ましくは、カウンターイオンおよび/または配位子として炭素数1~30のアルキル基を有するカルボン酸、燐酸エステル、燐酸から選ばれる少なくとも1種を有する。炭素数1~30のアルキル基としてはメチル基、イソプロピル基、ブチル基、2-エチルヘキシル基、オクチル基、イソデシル基、イソステアリル基、デカニル基、セチル基などが挙げられる。
 本発明においては特にカルボン酸亜鉛体、燐酸エステル亜鉛体が好ましい。カルボン酸亜鉛体、燐酸エステル亜鉛体を使用することによって、耐腐食性ガス透過性を向上させることができる。
In the present invention, it is preferable to contain a zinc salt and / or a zinc complex. In the curable resin composition of the present invention, the zinc salt and / or the zinc complex contributes as a curing accelerator between the epoxy resin and the curing agent.
The zinc salt and / or zinc complex is a salt and / or complex having a zinc ion as a central element, preferably a carboxylic acid having an alkyl group having 1 to 30 carbon atoms as a counter ion and / or a ligand. , Phosphoric acid ester, and phosphoric acid. Examples of the alkyl group having 1 to 30 carbon atoms include methyl group, isopropyl group, butyl group, 2-ethylhexyl group, octyl group, isodecyl group, isostearyl group, decanyl group, cetyl group and the like.
In the present invention, a zinc carboxylate and a zinc phosphate ester are particularly preferable. By using a zinc carboxylate body or a zinc phosphate ester body, corrosion resistance and gas permeability can be improved.
 本発明において特に好ましいカルボン酸亜鉛体としては、鎖状分岐構造を有するアルキル基あるいはオレフィン等の官能基を有するアルキル基を化合物中に有することが好ましく、中でも炭素数3~30であるものが好ましく、特に炭素数5~20のものが好ましい。これらは相溶性の面で好ましく、炭素数が大きすぎる(炭素数30を超える場合)、あるいは分岐構造、官能基等の構造を持たない場合、樹脂との相溶性が悪く、好ましくない。
 具体的には2-エチルヘキシル酸亜鉛、イソステアリン酸亜鉛、ウンデシレン酸亜鉛などが挙げられる。
The particularly preferred zinc carboxylate in the present invention preferably has an alkyl group having a chain-branched structure or an alkyl group having a functional group such as an olefin in the compound, and among them, those having 3 to 30 carbon atoms are preferred. In particular, those having 5 to 20 carbon atoms are preferred. These are preferable in terms of compatibility, and when the number of carbon atoms is too large (when the number of carbon atoms exceeds 30), or when they do not have a structure such as a branched structure or a functional group, the compatibility with the resin is poor, which is not preferable.
Specific examples include zinc 2-ethylhexylate, zinc isostearate and zinc undecylenate.
 本発明において得に好ましい燐酸エステル体としては、燐酸、燐酸エステル(モノアルキルエステル体、ジアルキルエステル体、トリアルキルエステル体、もしくはそれらの混合物)の亜鉛塩および/または亜鉛錯体が好ましく、複数の燐酸エステル体を含有しても構わない。具体的には含有される燐酸エステル中、モノアルキルエステル体、ジアルキルエステル体、トリアルキルエステル体のモル比(ガスクロマトグラフィーの純度で代替。ただし、トリメチルシリル化を行う必要があるため、感度に差が出てしまう。)において、トリメチルシリル化処理をした段階で、モノアルキルエステル体の存在量が50面積%以上であることが好ましい。
 このような燐酸エステル亜鉛の亜鉛塩および/または亜鉛錯体は、例えば燐酸エステルを例えば炭酸亜鉛、水酸化亜鉛などと反応させることで得られる(特許文献 EP699708号公報)。
As a preferable phosphoric acid ester body to be obtained in the present invention, a zinc salt and / or a zinc complex of phosphoric acid, phosphoric acid ester (monoalkyl ester body, dialkyl ester body, trialkyl ester body, or a mixture thereof) is preferable. You may contain an ester body. Specifically, the molar ratio of monoalkyl ester, dialkyl ester, and trialkyl ester in the phosphoric acid ester contained (substitute with the purity of gas chromatography. However, since trimethylsilylation is required, there is a difference in sensitivity. In this case, it is preferable that the amount of the monoalkyl ester compound is 50 area% or more at the stage of the trimethylsilylation treatment.
Such zinc salt and / or zinc complex of zinc phosphate ester can be obtained, for example, by reacting a phosphate ester with, for example, zinc carbonate, zinc hydroxide, etc. (Patent Document EP 699708).
 このような燐酸エステルの亜鉛塩および/または亜鉛錯体の詳細としては燐原子と亜鉛原子の比率(P/Zn)が1.2~2.3が好ましく、1.3~2.0がより好ましい。特に好ましくは1.4~1.9である。すなわち、特に好ましい形態では、亜鉛イオン1モルに対し、燐酸エステル(もしくはリン酸エステル由来の燐酸)が2.0モル以下となり、単純なイオン構造ではなく、いくつかの分子がイオン結合(あるいは配位結合)により関わった構造を有しているものが好ましい。このような亜鉛塩および/または亜鉛錯体としては例えば日本国特表2003-51495号公報に記載の手法で得ることもできる。 As for the details of the zinc salt and / or zinc complex of such phosphate ester, the ratio of phosphorus atom to zinc atom (P / Zn) is preferably 1.2 to 2.3, more preferably 1.3 to 2.0. . Particularly preferred is 1.4 to 1.9. That is, in a particularly preferred form, the amount of phosphate ester (or phosphate derived from phosphate ester) is 2.0 mol or less per mol of zinc ion, and not a simple ionic structure, some molecules are ion-bonded (or arranged). Those having a structure related by coordinate bond) are preferred. Such a zinc salt and / or zinc complex can also be obtained, for example, by the technique described in Japanese Patent Publication No. 2003-51495.
 このような化合物として、市販品としてはカルボン酸亜鉛として、Zn-St、Zn-St 602、Zn-St NZ、ZS-3、ZS-6、ZS-8、ZS-8、ZS-7、ZS-10、ZS-5、ZS-14、ZS-16(日東化成工業製)、XK-614(キングインダストリー製)、18%オクトープZn、12%オクトープZn、8%オクトープZn(ホープ製薬製)、燐酸エステルおよび/またはリン酸亜鉛として、LBT-2000B(SC有機化学製)、XC-9206(キングインダストリー製)が挙げられる。 As such compounds, commercially available products such as zinc carboxylate are Zn-St, Zn-St 602, Zn-St NZ, ZS-3, ZS-6, ZS-8, ZS-8, ZS-7, ZS. -10, ZS-5, ZS-14, ZS-16 (manufactured by Nitto Kasei Kogyo), XK-614 (manufactured by King Industry), 18% octope Zn, 12% octope Zn, 8% octope Zn (manufactured by Hope Pharmaceutical) Examples of the phosphate ester and / or zinc phosphate include LBT-2000B (manufactured by SC Organic Chemical) and XC-9206 (manufactured by King Industry).
 これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部、より好ましくは0.01~5重量部、特に好ましくは0.01~3重量部の範囲で使用される。本反応においては硬化促進剤をしなくとも硬化は可能であるが、硬化時の着色の問題から、硬化促進剤の添加が好ましい。特に着色を防止するとともに耐腐蝕性ガス透過性特性を得る上では、亜鉛塩および/または亜鉛錯体の使用が好ましい。 Which of these curing accelerators is used is appropriately selected depending on the characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. The curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, more preferably 0.01 to 5 parts by weight, and particularly preferably 0.01 to 3 parts by weight with respect to 100 parts by weight of the epoxy resin. In this reaction, curing is possible without using a curing accelerator, but from the viewpoint of coloring during curing, addition of a curing accelerator is preferred. In particular, the use of zinc salts and / or zinc complexes is preferred in order to prevent coloring and to obtain corrosion-resistant gas permeability characteristics.
 本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1未満では難燃性が不十分であり、0.6を超えると硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。 The curable resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes A phosphorus-containing product obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned. Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The phosphorus-containing compound content is preferably phosphorus-containing compound / total epoxy resin = 0.1 to 0.6 (weight ratio). If it is less than 0.1, the flame retardancy is insufficient, and if it exceeds 0.6, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
 さらに本発明の硬化性樹脂組成物には、必要に応じて酸化防止剤を添加しても構わない。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明の硬化性樹脂組成物中の樹脂成分に対して100重量部に対して、通常0.008~1重量部、好ましくは0.01~0.5重量部である。 Furthermore, you may add antioxidant to the curable resin composition of this invention as needed. Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more. The amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the resin component in the curable resin composition of the present invention. It is.
 酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが挙げられる。フェノール系酸化防止剤の具体例として、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。 Examples of the antioxidant include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant. Specific examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis (3- Til-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) ) Propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t -Butyl-4-hydroxy-hydrocinnamamide), 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3,5-di-t -Butyl-4-hydroxybenzyl phosphonate-diethyl ester, 3,9-bis [1,1-dimethyl-2- {β- (3-t-butyl-4-hydroxy-5- Bisphenols such as (tilphenyl) propionyloxy} ethyl] 2,4,8,10-tetraoxaspiro [5,5] undecane, bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate ethyl) calcium 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis- (4 '-Hydroxy-3'-tert-butylphenyl) butyric acid] glycol ester, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -iso Anureate, 1,3,5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, tocophenol And the like.
 イオウ系酸化防止剤の具体例として、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリルル-3,3’-チオジプロピオネート等が例示される。 Specific examples of the sulfur antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyll-3,3′-thiodipropionate, and the like. .
 リン系酸化防止剤の具体例としては、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。
 上記リン系化合物は、市販品を用いることもできる。
 例えば、アデカ製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPPが挙げられる。
 本発明において、リン系化合物の使用量は、エポキシ樹脂に対し、重量比で0.005~5重量%、より好ましくは0.01~4重量%、0.1~2重量%である。
Specific examples of phosphorus antioxidants include 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2 , 4-Di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpenta Erythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite , Tris 2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2 , 4-Di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2 ′ -Methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2'-ethylidenebis (4-methyl-6-tert-butylphenyl) (2 -Tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylene Diphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, Tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis ( 2,6-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4- Di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3 Phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, Tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4′-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, Examples include diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate and the like.
A commercial item can also be used for the said phosphorus compound.
For example, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB 522A, ADK STAB 1178, ADK STAB 1500, ADK STAB C, and ADK STAB C 135A, ADK STAB 3010, and ADK STAB TPP.
In the present invention, the amount of the phosphorus compound used is 0.005 to 5% by weight, more preferably 0.01 to 4% by weight, and 0.1 to 2% by weight with respect to the epoxy resin.
 これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。 These antioxidants can be used alone, but two or more kinds may be used in combination. In the present invention, a phosphorus-based antioxidant is particularly preferable.
 さらに本発明の硬化性樹脂組成物には、必要に応じて光安定剤を添加しても構わない。
 光安定剤としては、特にヒンダートアミン化合物を含有することが好ましく、必要に応じてリン系化合物を含有することが好ましい。前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)=1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N′,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系化合物等が挙げられる。 
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、アデカ製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
 本発明において、光安定剤の使用量は、エポキシ樹脂に対し、重量比で0.005~5重量%、より好ましくは0.01~4重量%、0.1~2重量%である。
 0.005重量%よりも少ない場合、効果が足りず、5重量%を超えるような過剰の場合、耐熱着色性への影響が現れてしまうことから好ましくない。
Furthermore, you may add a light stabilizer to the curable resin composition of this invention as needed.
As a light stabilizer, it is preferable to contain a hindered amine compound especially, and it is preferable to contain a phosphorus compound as needed. Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) = 1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6, -tetrame Ru-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] bu Lumalonate, bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester decanedioate, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl)- 4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexa Polycondensate of methylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-Triazine -2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], Polymer of dimethyl acid and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7- Oxa-3,20-diazadispiro [5,1,11,2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / tetra Decyl ester, N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7- Oki -3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11, 2] -Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) Ester, higher fatty acid ester of 2,2,6,6-tetramethyl-4-piperidinol, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4- And hindered amine compounds such as piperidinyl).
The following commercially available products can be used as the amine compound that is the light stabilizer.
For example, as manufactured by Ciba Specialty Chemicals, TINUVIN 765, TINUVIN 770DF, TINUVIN 144, TINUVIN 123, TINUVIN 622LD, TINUVIN 152, CHIMASSORB 944, manufactured by ADEKA, LA-52, LA-57, LA-62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like can be mentioned.
In the present invention, the light stabilizer is used in an amount of 0.005 to 5% by weight, more preferably 0.01 to 4% by weight, and 0.1 to 2% by weight with respect to the epoxy resin.
When the amount is less than 0.005% by weight, the effect is insufficient, and when the amount exceeds 5% by weight, an influence on the heat-resistant coloring property appears, which is not preferable.
 さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。 Furthermore, a binder resin can be blended with the curable resin composition of the present invention as required. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
 本発明の硬化性樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができる。 An inorganic filler can be added to the curable resin composition of the present invention as necessary. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention. Furthermore, the curable resin composition of the present invention includes various agents such as silane coupling agents, mold release agents such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, surfactants, dyes, pigments, and ultraviolet absorbers. A compounding agent and various thermosetting resins can be added.
 本発明の硬化性樹脂組成物を光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1~80重量部、好ましくは、5~60重量部が好ましい。 When using the curable resin composition of this invention for an optical semiconductor sealing agent, a fluorescent substance can be added as needed. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
 本発明の硬化性樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。 When the curable resin composition of the present invention is used for an optical material, particularly an optical semiconductor encapsulant, for the purpose of preventing sedimentation of various phosphors upon curing, silica fine powder (also called Aerosil or Aerosol) is used. A thixotropic agent can be added. Examples of such silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
 本発明の硬化性樹脂組成物は、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂と硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物を液状である場合はポッティングやキャスティング、基材に含浸、金型に硬化性樹脂組成物を流し込み注型し、加熱により硬化、また固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化するという手法が挙げられる。硬化温度、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に固めることもできるが、ステップワイズに昇温し、硬化反応を進めることが好ましい。具体的には80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。 The curable resin composition of the present invention can be obtained by uniformly mixing each component. The curable resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, an epoxy resin, a curing agent and, if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are thoroughly mixed using an extruder, kneader, roll, etc. as necessary until uniform. If the curable resin composition is in liquid form, potting or casting, impregnating the base material, pouring the curable resin composition into a mold, casting, curing by heating, or solid In this case, there is a method of molding by using a casting after melting or a transfer molding machine and further curing by heating. The curing temperature and time are 80 to 200 ° C. and 2 to 10 hours. As a curing method, it can be hardened at a high temperature at a stretch, but it is preferable to increase the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C. As the curing stage, the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
 また本発明の硬化性樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM(Resin Transfer Molding)方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。 In addition, the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, glass fiber, A prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and heat-dried is subjected to hot press molding to obtain a cured product of the curable resin composition of the present invention. can do. In this case, the solvent is used in an amount usually accounting for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. Moreover, the epoxy resin hardened | cured material containing a carbon fiber can also be obtained with a RTM (Resin * Transfer * Molding) system with a liquid composition.
 また本発明の硬化性樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキシビリティ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物を得る方法としては、まず本発明の硬化性樹脂組成物を前記のような硬化性樹脂組成物ワニスとし、これを剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行う方法が挙げられ、これによりフィルム型封止用組成物をシート状の接着剤として得ることができる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することができる。 The curable resin composition of the present invention can also be used as a modifier for a film-type composition. Specifically, it can be used to improve flexibility in the B-stage. As a method for obtaining such a film-type resin composition, first, the curable resin composition of the present invention is used as the curable resin composition varnish as described above, and this is applied onto a release film and heated under a solvent. A method of forming a B-stage after removing the film is mentioned, whereby a film-type sealing composition can be obtained as a sheet-like adhesive. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
 次に本発明の硬化性樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。 Next, the case where the curable resin composition of the present invention is used as an optical semiconductor sealing material or die bond material will be described in detail.
 本発明の硬化性樹脂組成物を高輝度白色LED等の光半導体の封止材またはダイボンド材として用いる場合には、本発明の多価カルボン酸を含有する硬化剤(硬化剤組成物)と、エポキシ樹脂の他、硬化促進剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製する。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合すればよい。得られる硬化性樹脂組成物は、封止材、またはダイボンド材と封止材の両方に使用することができる。 When using the curable resin composition of the present invention as a sealing material or die bond material for an optical semiconductor such as a high-intensity white LED, a curing agent (curing agent composition) containing the polyvalent carboxylic acid of the present invention, In addition to the epoxy resin, a curable resin composition is prepared by sufficiently mixing additives such as a curing accelerator, a coupling material, an antioxidant, and a light stabilizer. As a mixing method, a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like may be used at room temperature or with heating. The obtained curable resin composition can be used for a sealing material, or both a die-bonding material and a sealing material.
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs、GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。かかる半導体チップは、その周囲をエポキシ樹脂等の封止材で封止されている。封止材は半導体チップを熱や湿気から守り、かつレンズ機能の役割を果たすために用いられる。本発明の硬化性樹脂組成物はこの封止材やダイボンド材として用いることができる。工程上からは本発明の硬化性樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。 Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The periphery of such a semiconductor chip is sealed with a sealing material such as an epoxy resin. The sealing material is used to protect the semiconductor chip from heat and moisture and to play a role of a lens function. The curable resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the curable resin composition of the present invention for both the die bond material and the sealing material.
 本発明の硬化性樹脂組成物を用いて、半導体チップを基板に接着する方法としては、本発明の硬化性樹脂組成物をディスペンサー、ポッティングあるいはスクリーン印刷により基板上に塗布した後、前記硬化性樹脂組成物上に半導体チップをのせて加熱硬化を行う方法が挙げられる。かかる方法により、半導体チップを基板に接着させることができる。加熱には、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
As a method for adhering a semiconductor chip to a substrate using the curable resin composition of the present invention, the curable resin composition of the present invention is applied on the substrate by dispenser, potting or screen printing, and then the curable resin is used. There is a method in which a semiconductor chip is placed on the composition and heat-cured. By this method, the semiconductor chip can be bonded to the substrate. For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.
For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
 封止材の成形方式としては、上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
As a molding method of the sealing material, as described above, an injection method in which the sealing material is injected into the mold frame in which the substrate on which the semiconductor chip is fixed is inserted and then heat-cured and then molded, and the sealing material on the mold A compression molding method is used in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from the mold.
Examples of the injection method include dispenser, transfer molding, injection molding and the like.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used.
For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
 更に、本発明の硬化性樹脂組成物の用途は上記用途のみに限定されることはなく、エポキシ樹脂等の熱硬化性樹脂が使用される一般の用途に適用可能である。具体的には、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。 Furthermore, the application of the curable resin composition of the present invention is not limited to the above application, and can be applied to general applications in which a thermosetting resin such as an epoxy resin is used. Specifically, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), sealing materials, sealing materials, substrates Examples of the cyanate resin composition for resist and additives for other resins such as an acrylic ester resin as a curing agent for resist.
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。 Examples of adhesives include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
 封止材としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなどに用いられるポッティング、ディッピング及びトランスファーモールド封止、ICやLSI類のCOB、COF、TABなどに用いられるポッティング封止、フリップチップなどに用いられるアンダーフィル、QFP、BGA及びCSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。 As sealing materials, potting, dipping and transfer mold sealing used for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, potting sealings used for COB, COF, TAB, etc. of ICs and LSIs, flip Examples include underfill used for chips and the like, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
 本発明の硬化性樹脂組成物を硬化して得られる本発明の硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏光板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。 The cured product of the present invention obtained by curing the curable resin composition of the present invention can be used for various applications including optical component materials. The optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a polarizing plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field. In addition, color PDP (plasma display) sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass replacement materials, adhesives, and LED displays that are expected as next-generation flat panel displays LED molding materials, LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate Front glass protective films, front glass substitute material, an adhesive. In the field of optical recording, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate materials for optical cards, Pickup lenses, protective films, sealing materials, adhesives and the like.
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。 In the optical equipment field, they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices. In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber material, ferrule, sealing material, adhesive, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like. These are substrate materials, fiber materials, device sealing materials, adhesives, etc. around an optoelectronic integrated circuit (OEIC). In the field of optical fiber, it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection. As the semiconductor integrated circuit peripheral material, it is a resist material for microlithography for LSI and VLSI material. In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, and automotive defenses Rusted steel plate, interior panel, interior material, wire harness for protection / bundling, fuel hose, automobile lamp, glass substitute. In addition, it is a multilayer glass for railway vehicles. Further, they are toughness imparting agents for aircraft structural materials, engine peripheral members, protective / bundling wire harnesses, and corrosion-resistant coatings. In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. The next generation of optical / electronic functional organic materials include organic EL element peripheral materials, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
 次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)の測定は以下の条件で行った。
 カラム:Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)
 連結溶離液:テトラヒドロフラン、流速は1ml/min.
 カラム温度:40℃、また検出はRI(Reflective index)
 検量線:Shodex製標準ポリスチレン
EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples. In the examples, gel permeation chromatography (hereinafter referred to as “GPC”) was measured under the following conditions.
Column: Shodex SYSTEM-21 column (KF-803L, KF-802.5 (× 2), KF-802)
Linked eluent: tetrahydrofuran, flow rate 1 ml / min.
Column temperature: 40 ° C, detection is RI (Reflective index)
Calibration curve: Standard polystyrene manufactured by Shodex
合成例1
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製 式(1)において、R=-C-O-C-、R=CH、重量平均分子量は約1000)500部、HTMAn(1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、三菱ガス化学(株)製)99部、MH-700(ヘキサヒドロ無水フタル酸と4-メチルヘキサヒドロ無水フタル酸の混合物、新日本理化製)84部、トルエン50部を反応容器に仕込み、90℃で2時間反応後、130℃に昇温し、3時間後にGPCを測定したところ酸無水物のピークが消失していた。その後さらに2時間反応させた。反応終了後、減圧下で溶媒を除去することにより無色~淡黄色液体のカルボン酸化合物(J-1)681部を得た。
Synthesis example 1
Both ends carbinol-modified silicone X22-160AS (in Shin-Etsu Chemical Co., Ltd., formula (1), R 1 = −C 3 H) while purging nitrogen with a stirrer, a reflux condenser, and a stirrer. 6- O—C 2 H 4 —, R 2 ═CH 3 , weight average molecular weight is about 1000) 500 parts, HTAn (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, Mitsubishi Gas Chemical Co., Ltd. )) 99 parts, MH-700 (a mixture of hexahydrophthalic anhydride and 4-methylhexahydrophthalic anhydride, manufactured by Shin Nippon Chemical Co., Ltd.), 84 parts, and 50 parts of toluene were charged in a reaction vessel and reacted at 90 ° C. for 2 hours. When the temperature was raised to 130 ° C. and GPC was measured 3 hours later, the acid anhydride peak disappeared. Thereafter, the reaction was further continued for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 681 parts of a colorless to pale yellow liquid carboxylic acid compound (J-1).
合成例2
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジオール98部、HTMAn(1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、三菱ガス化学(株)製)99部、MH-700(ヘキサヒドロ無水フタル酸と4-メチルヘキサヒドロ無水フタル酸の混合物、新日本理化製)84部、トルエン10部を反応容器に仕込み、60℃で1時間100℃で2時間反応を行った。反応終了後、減圧下で溶媒を除去することにより、無色の固形樹脂のカルボン酸化合物(K-1)280部を得た。
Synthesis example 2
A flask equipped with a stirrer, reflux condenser, and stirrer was charged with 98 parts of tricyclodecanediol, HTMan (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, Mitsubishi Gas Chemical ( 99 parts), MH-700 (mixture of hexahydrophthalic anhydride and 4-methylhexahydrophthalic anhydride, manufactured by Nippon Nippon Chemical Co., Ltd.), 84 parts, and 10 parts of toluene were charged in a reaction vessel at 100 ° C. for 1 hour. The reaction was carried out at 2 ° C. for 2 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain 280 parts of a colorless solid resin carboxylic acid compound (K-1).
実施例1
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらカルボン酸化合物(J-1)68.3部を仕込み、100℃で撹拌しているところに、カルボン酸化合物(K-1)28.1部を加え、そのまま1時間撹拌し、相溶させることで無色透明液体として本発明の多価カルボン酸組成物(MA-1)を得た。
Example 1
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 68.3 parts of the carboxylic acid compound (J-1) while purging with nitrogen, and the mixture was stirred at 100 ° C., and the carboxylic acid compound (K -1) 28.1 parts were added, and the mixture was stirred as it was for 1 hour to be compatible with each other to obtain a polyvalent carboxylic acid composition (MA-1) of the present invention as a colorless transparent liquid.
実施例2、比較例1
 実施例1で得られた本発明の多価カルボン酸組成物(MA-1)、比較例として、MH-700(ヘキサヒドロ無水フタル酸と4-メチルヘキサヒドロ無水フタル酸の混合物、新日本理化製 以下、H1と称す)を硬化剤として用い、エポキシ樹脂として3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレート(ダウ・ケミカル製 UVR-6105 以下エポキシ樹脂(EP1)と称す)、硬化促進剤としてヘキサデシルトリメチルアンモニウムヒドロキシド(東京化成工業(株)製 25%メタノール溶液、以下C1と称す。)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。
Example 2 and Comparative Example 1
The polyvalent carboxylic acid composition (MA-1) of the present invention obtained in Example 1 and, as a comparative example, MH-700 (a mixture of hexahydrophthalic anhydride and 4-methylhexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) (Hereinafter referred to as H1) as a curing agent, and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate as epoxy resin (UVR-6105 manufactured by Dow Chemical) (hereinafter referred to as epoxy resin (EP1)), curing Hexadecyltrimethylammonium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd., 25% methanol solution, hereinafter referred to as C1) is used as an accelerator, blended at the blending ratio (parts by weight) shown in Table 1 below, and desorbed for 20 minutes. Foaming was performed to obtain a curable resin composition of the present invention.
 得られた硬化性樹脂組成物を用い、以下に示す要領でLED封止試験を行った。結果を表1に合わせて示す。なお、硬化条件は120℃×1時間の予備硬化の後150℃×3時間である。 Using the obtained curable resin composition, an LED sealing test was performed in the following manner. The results are shown in Table 1. The curing conditions are 150 ° C. × 3 hours after 120 ° C. × 1 hour pre-curing.
(LED封止試験)
 実施例及び比較例で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型(SMD型 外径5mm角表面実装型LEDパッケージ 内径4.4mm、外壁高さ1.25mm)LEDに注型した。その後、所定の硬化条件で硬化させることで、試験用LEDを得た。
評価項目
 揮発性:封止した後の硬化物表面の凹みの有無を目視で評価した。表中、○;凹みが認められない、△;凹みが多少認められる、×;凹みが多く認められる(ワイヤーの露出がある)。
(LED sealing test)
Surface mount type (SMD) in which the curable resin compositions obtained in the examples and comparative examples were vacuum degassed for 20 minutes, filled in a syringe and mounted with a light emitting element having an emission wavelength of 465 nm using a precision discharge device. Type outer diameter 5 mm square surface-mount type LED package inner diameter 4.4 mm, outer wall height 1.25 mm) was cast into LED. Thereafter, a test LED was obtained by curing under predetermined curing conditions.
Evaluation item Volatility: The presence or absence of dents on the surface of the cured product after sealing was visually evaluated. In the table, ◯: no dent is observed, Δ: some dent is observed, x: many dents are observed (there is an exposed wire).
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 実施例2と比較例1を比較すると、本発明の硬化性樹脂組成物は、揮発量が少なく、LEDを封止した際にも、ワイヤーの露出等の問題も起こらない。さらにはリフロー時のクラックも低減できることからという傾向が見られることがわかる。以上の結果から、本発明の多価カルボン酸、および多価カルボン酸を含有する硬化剤組成物は、対揮発性に有効な硬化性樹脂組成物を与えることができるということがわかる。 Comparison of Example 2 and Comparative Example 1 shows that the curable resin composition of the present invention has a small amount of volatilization and does not cause problems such as wire exposure even when the LED is sealed. Furthermore, it can be seen that there is a tendency to reduce cracks during reflow. From the above results, it can be seen that the polyvalent carboxylic acid of the present invention and the curing agent composition containing the polyvalent carboxylic acid can give a curable resin composition effective for volatility.
合成例4
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン59.1部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン130.6部、0.5重量%KOHメタノール溶液10.0部を反応容器に仕込み、75℃に昇温した。昇温後、還流下75℃にて8時間反応させた。反応後、メタノールを135部追加後、50%蒸留水メタノール溶液25.9部を60分かけて滴下し、還流下75℃にてさらに8時間反応させた。反応終了後、5重量%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン(MIBK)170部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することによりエポキシ樹脂(EP2)162部を得た。得られた化合物のエポキシ当量は707g/eq、重量平均分子量は2680、外観は無色透明であった。
Synthesis example 4
2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (59.1 parts), polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC) 130.6 parts, 0.5 wt% KOH methanol solution 10.0 The portion was charged into a reaction vessel and heated to 75 ° C. After raising the temperature, the mixture was reacted at 75 ° C. under reflux for 8 hours. After the reaction, 135 parts of methanol was added, 25.9 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted at 75 ° C. for 8 hours under reflux. After completion of the reaction, the reaction mixture was neutralized with a 5 wt% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 170 parts of methyl isobutyl ketone (MIBK) was added for washing, and washing with water was repeated three times. Subsequently, 162 parts of epoxy resins (EP2) were obtained by removing a solvent at 100 degreeC under pressure reduction of an organic layer. The epoxy equivalent of the obtained compound was 707 g / eq, the weight average molecular weight was 2680, and the appearance was colorless and transparent.
実施例3
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)500部、MH(メチルヘキサヒドロ無水フタル酸、新日本理化製)168部を加え、70℃で2時間反応後、キョウワジオールPD9(2,4-ジエチルペンタン-1,5-ジオール 協和発酵ケミカル製)80部、HTMAn(1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、三菱ガス化学(株)製)198部を添加し、70℃で1時間、130℃で5時間反応を行うことで本発明の多価カルボン酸組成物(MA-2)を得た。得られた多価カルボン酸組成物は、無色透明の液体(半固形に近いが室温にて流動性はある)であった。(正確には算出できないが、両末端カルビノール変性シリコーン由来の多価カルボン酸(J)が約70重量%、2,4-ジエチルペンタン-1,5-ジオール由来の多価カルボン酸(K)が約30重量%含まれる)
Example 3
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 500 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.) while purging with nitrogen, MH (methylhexahydrophthalic anhydride, 168 parts (manufactured by Nippon Nippon Chemical Co., Ltd.) and reacted at 70 ° C. for 2 hours, 80 parts of Kyowadiol PD9 (2,4-diethylpentane-1,5-diol, manufactured by Kyowa Hakko Chemical), HTAn (1,2,4- 198 parts of cyclohexanetricarboxylic acid-1,2-anhydride (manufactured by Mitsubishi Gas Chemical Co., Inc.) are added, and the reaction is carried out at 70 ° C. for 1 hour and at 130 ° C. for 5 hours, thereby producing the polyvalent carboxylic acid composition of the present invention. (MA-2) was obtained. The polyvalent carboxylic acid composition obtained was a colorless and transparent liquid (semi-solid but fluid at room temperature). (Although it cannot be calculated accurately, polycarboxylic acid (J) derived from carbinol-modified silicone at both ends is about 70% by weight, polycarboxylic acid derived from 2,4-diethylpentane-1,5-diol (K) About 30% by weight)
実施例4
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)500部、MH(メチルシクロヘキサンジカルボン酸無水物、新日本理化製)168部、キョウワジオールPD9(2,4-ジエチルペンタン-1,5-ジオール 協和発酵ケミカル製)80部、HTMAn(1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、三菱ガス化学(株)製)198部を添加し、70℃で2時間、130℃で5時間反応を行った後、50℃に冷却後、MH(メチルヘキサヒドロ無水フタル酸、新日本理化製)33.6部添加し、完全に相溶させることで本発明の多価カルボン酸組成物(MA-3)を得た。得られた多価カルボン酸組成物は、無色透明の液体であった。(正確には算出できないが、両末端カルビノール変性シリコーン由来の多価カルボン酸(J)が約70重量%、2,4-ジエチルペンタン-1,5-ジオール由来の多価カルボン酸(K)が約27重量%、酸無水物が約3重量%含まれる)
Example 4
A flask equipped with a stirrer, a reflux condenser, and a stirrer was purged with nitrogen while carrying both ends of the carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.) 500 parts, MH (methylcyclohexanedicarboxylic anhydride, 168 parts by Nippon Nippon Chemical Co., Ltd., 80 parts by Kyowadiol PD9 (2,4-diethylpentane-1,5-diol manufactured by Kyowa Hakko Chemical), HTAn (1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride) 198 parts by Mitsubishi Gas Chemical Co., Ltd.), reacted at 70 ° C. for 2 hours and 130 ° C. for 5 hours, cooled to 50 ° C., and then MH (methylhexahydrophthalic anhydride, Shin Nippon Rika) Product) 33.6 parts was added and completely mixed to obtain the polyvalent carboxylic acid composition (MA-3) of the present invention. The obtained polyvalent carboxylic acid composition was a colorless and transparent liquid. (Although it cannot be calculated accurately, polycarboxylic acid (J) derived from carbinol-modified silicone at both ends is about 70% by weight, polycarboxylic acid derived from 2,4-diethylpentane-1,5-diol (K) About 27% by weight and about 3% by weight of acid anhydride)
実施例5、6、比較例2、3
 実施例3、4で得られた本発明の多価カルボン酸組成物(MA-2、MA-3)、比較例として、合成例1で製造したカルボン酸(J-1)、酸無水物(H1)をそれぞれ硬化剤として用い、エポキシ樹脂として合成例4で得られたエポキシ樹脂(EP2)を用い、硬化促進剤としてヘキサデシルトリメチルアンモニウムヒドロキシド(東京化成工業(株)製 25%メタノール溶液、以下C1と称す。)を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明または比較用の硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を用い、以下に示す要領で各種試験を行った。結果を表2に合わせて示す。
Examples 5 and 6, Comparative Examples 2 and 3
The polyvalent carboxylic acid composition of the present invention (MA-2, MA-3) obtained in Examples 3 and 4, as a comparative example, the carboxylic acid (J-1) prepared in Synthesis Example 1, an acid anhydride ( H1) is used as a curing agent, the epoxy resin (EP2) obtained in Synthesis Example 4 is used as an epoxy resin, and hexadecyltrimethylammonium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd., 25% methanol solution, (Hereinafter referred to as “C1”), and blended at a blending ratio (parts by weight) shown in Table 2 below, followed by defoaming for 20 minutes to obtain a curable resin composition for the present invention or for comparison.
Using the obtained curable resin composition, various tests were performed in the following manner. The results are shown in Table 2.
(1)凹み試験;
 実施例5、6、比較例2、3で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LEDに開口部が平面になるように注型した。120℃×3時間の予備硬化の後、150℃×1時間で硬化し、表面実装型LEDを封止した。このように封止した後の硬化剤の揮発に伴う樹脂表面の凹みの有無を目視で評価した。表中、○;凹みが認められない、△;凹みが多少認められる、×;凹みが多く認められる(ワイヤーの露出)
(2)リフロー試験;
 実施例5、6、比較例2、3で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LEDに開口部が平面になるように注型した。120℃×3時間の予備硬化の後、150℃×1時間で硬化し、表面実装型LEDを封止した。得られた試験用LEDを30℃70%×72Hr吸湿後、高温観察装置(SMT Scope SK-5000 山陽精工株式会社製)を用い、以下のリフロー条件下での、試験用LEDへのクラックの発生を目視で観察した。n=3でテストを行い、(OK数)/(テスト数)で評価する。
 条件は25℃より2℃/秒で150℃まで昇温、その後、2分150℃で保持し、さらに2℃/秒で260℃まで昇温し、10秒の温度保持後、1.3℃/秒で室温まで冷却する、というものである。
(3)耐ガス透過性試験(腐食ガス透過性試験);
 実施例5、6、比較例2、3で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDパッケージを腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。
<測定条件>
 腐食ガス:硫化アンモニウム20重量%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
 接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
 腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を観察し、その変色時間が長い物ほど、耐腐食性ガス透過性にすぐれていると判断した。
(1) dent test;
The curable resin compositions obtained in Examples 5 and 6 and Comparative Examples 2 and 3 were vacuum degassed for 20 minutes, then filled into a syringe and mounted with a light emitting element having an emission wavelength of 465 nm using a precision discharge device. The surface mounted LED was cast so that the opening was flat. After pre-curing at 120 ° C. for 3 hours, curing was performed at 150 ° C. for 1 hour to seal the surface-mounted LED. The presence or absence of dents on the resin surface accompanying the volatilization of the curing agent after sealing in this way was visually evaluated. In the table, ○: No dent is observed, △: Some dent is observed, ×: Many dents are observed (exposure of wire)
(2) Reflow test;
The curable resin compositions obtained in Examples 5 and 6 and Comparative Examples 2 and 3 were vacuum degassed for 20 minutes, then filled into a syringe and mounted with a light emitting element having an emission wavelength of 465 nm using a precision discharge device. The surface mounted LED was cast so that the opening was flat. After pre-curing at 120 ° C. for 3 hours, curing was performed at 150 ° C. for 1 hour to seal the surface-mounted LED. After the obtained test LED absorbs moisture at 30 ° C. and 70% × 72 hours, generation of cracks in the test LED under the following reflow conditions using a high-temperature observation device (SMT Scope SK-5000 manufactured by Sanyo Seiko Co., Ltd.) Was visually observed. The test is performed with n = 3, and the evaluation is made with (OK number) / (test number).
The temperature was raised from 25 ° C. to 150 ° C. at 2 ° C./second, then held at 150 ° C. for 2 minutes, further heated to 260 ° C. at 2 ° C./second, and maintained at 10 ° C., then 1.3 ° C. It cools to room temperature at / second.
(3) Gas permeation resistance test (corrosion gas permeability test);
The curable resin compositions obtained in Examples 5 and 6 and Comparative Examples 2 and 3 were vacuum degassed for 20 minutes, filled in a syringe, and mounted with a chip having a central emission wave of 465 nm using a precision discharge device. A 5 mm-diameter surface-mount LED package (inner diameter: 4.4 mm, outer wall height: 1.25 mm) was cast. The cast product was put into a heating furnace and cured at 120 ° C. for 1 hour, further at 150 ° C. for 3 hours, and an LED package was prepared. The LED package was left in a corrosive gas under the following conditions, and the color change of the silver-plated lead frame part inside the seal was observed.
<Measurement conditions>
Corrosion gas: 20% by weight aqueous solution of ammonium sulfide (turns black when sulfur component reacts with silver)
Contact method: A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
Judgment of corrosion: The time when the lead frame inside the LED package was discolored black (referred to as blackening) was observed, and the longer the discoloration time, the better the corrosion resistance gas permeability.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示す結果から明らかなように、本発明のエポキシ樹脂組成物は、凹みが少なく、耐リフロー性に優れるだけでなく、耐腐食性ガス透過性に優れる硬化物を与えることがわかる。 As is apparent from the results shown in Table 2, it can be seen that the epoxy resin composition of the present invention has a dent and is excellent not only in reflow resistance but also in a cured product excellent in corrosion resistance and gas permeability.
実施例7~13、合成例6,7
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら両末端カルビノール変性シリコーン化合物(SI-1、SI-2から選ばれる1種)、飽和脂肪族多価アルコール(AL-1、AL-2から選ばれる1種)、酸無水物(H1,H2、H3から選ばれる少なくとも1種)を下記表3に記載の配合量で仕込み、70℃で5時間、90℃で3時間反応させることで、無色透明液体として多価カルボン酸組成物(MA-4~MA10)およびカルボン酸樹脂(J-2、J-3)を得た。
 なお、それぞれSI-1:チッソ製 FM-4411、SI-2:信越化学工業製 X22-160AS、AL-1:協和発酵ケミカル製 キョーワジールPD-9、AL-2:OXEA製 TCDAlchol-DM、H1:新日本理化製 リカシッドMH-700、H2:新日本理化製 リカシッドMH、H3:三菱瓦斯化学製 H-TMAnである。
Examples 7 to 13, Synthesis Examples 6 and 7
A flask equipped with a stirrer, a reflux condenser, and a stirrer is purged with nitrogen while both ends carbinol-modified silicone compound (one selected from SI-1 and SI-2), saturated aliphatic polyhydric alcohol (AL -1 and AL-2) and an acid anhydride (at least one selected from H1, H2, and H3) in the amounts shown in Table 3 below, at 70 ° C for 5 hours, at 90 ° C By reacting for 3 hours, polyvalent carboxylic acid compositions (MA-4 to MA10) and carboxylic acid resins (J-2, J-3) were obtained as colorless and transparent liquids.
In addition, SI-1: Chisso FM-4411, SI-2: Shin-Etsu Chemical X22-160AS, AL-1: Kyowa Hakko Chemical Kyowajiru PD-9, AL-2: OXEA TCDAlchol-DM, H1 : Rikacid MH-700, manufactured by Shin Nippon Rika, H2: Rikacid MH, manufactured by Shin Nippon Rika, H3: H-TMAn, manufactured by Mitsubishi Gas Chemical.
Figure JPOXMLDOC01-appb-T000006
  
Figure JPOXMLDOC01-appb-T000006
  
合成例8
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら酸無水物(H2)100部、飽和脂肪族多価アルコール(AL-1)を仕込み、50℃で3時間、70℃で30分撹拌することで、無色透明のカルボン酸化合物と酸無水物の混合物120部を得た。得られたカルボン酸と酸無水物の比はゲルパーミエーションクロマトグラフィーにより測定した結果、約52:48であった。
Synthesis example 8
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 100 parts of acid anhydride (H2) and saturated aliphatic polyhydric alcohol (AL-1) while purging with nitrogen, and at 70 ° C. for 3 hours. Stirring at 30 ° C. for 30 minutes gave 120 parts of a mixture of a colorless and transparent carboxylic acid compound and an acid anhydride. The ratio of the obtained carboxylic acid to acid anhydride was approximately 52:48 as a result of measurement by gel permeation chromatography.
実施例14、15
 合成例8で得られた無色透明のカルボン酸化合物と酸無水物の混合物1部(実施例14)、2部(実施例15)に対し、合成例6で得られた多価カルボン酸化合物(J-2)100部を加え均一に溶解した。これによりそれぞれ無色の多価カルボン酸組成物MA-11、MA-12を得た。
Examples 14 and 15
With respect to 1 part (Example 14) and 2 parts (Example 15) of the mixture of the colorless and transparent carboxylic acid compound and acid anhydride obtained in Synthesis Example 8, the polyvalent carboxylic acid compound obtained in Synthesis Example 6 ( J-2) 100 parts were added and dissolved uniformly. As a result, colorless polyvalent carboxylic acid compositions MA-11 and MA-12 were obtained.
合成例9
 β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン39.4部、重量平均分子量1900(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル137部(シラノール当量950、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液10部を反応容器に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて10時間反応させた。製造工程(ii)として、メタノールを140部追加後、50%蒸留水メタノール溶液17.3部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、80℃でメタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)200部を添加し、水洗を3回繰り返した。得られた有機層を減圧下、100℃で溶媒を除去することによりエポキシシクロヘキシル基含有オルガノポリシロキサン(EP-3)152部を得た。得られた化合物(EP-3)のエポキシ当量は1040g/eq.、重量平均分子量は2290、外観は無色透明の液状樹脂であった。
Synthesis Example 9
β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane 39.4 parts, weight average molecular weight 1900 (GPC measured value) silanol-terminated methylphenyl silicone oil 137 parts (silanol equivalent 950, weight average molecular weight measured using GPC) 10 parts of 0.5% potassium hydroxide (KOH) methanol solution was charged into the reaction vessel, the bath temperature was set to 75 ° C., and the temperature was raised. After raising the temperature, the reaction was carried out under reflux for 10 hours. As a manufacturing process (ii), after adding 140 parts of methanol, 17.3 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and reacted at 75 ° C. for 8 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation at 80 ° C. Subsequently, 200 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. By removing the solvent from the obtained organic layer at 100 ° C. under reduced pressure, 152 parts of an epoxycyclohexyl group-containing organopolysiloxane (EP-3) was obtained. The epoxy equivalent of the obtained compound (EP-3) was 1040 g / eq. The weight average molecular weight was 2290, and the appearance was a colorless and transparent liquid resin.
合成例10
 β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン375部、重量平均分子量1900(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル475部(シラノール当量950、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。メタノールを655部追加後、50%蒸留水メタノール溶液144部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸2水素ナトリウム水溶液で中和後、80℃でメタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)750部を添加し、水洗を3回繰り返した。得られた有機層を減圧下、100℃で溶媒を除去することによりエポキシシクロヘキシル基含有オルガノポリシロキサン(EP-4)647部を得た。得られた化合物(EP-4)のエポキシ当量は541g/eq.、重量平均分子量は2100、外観は無色透明の液状樹脂であった。
Synthesis Example 10
375 parts of β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 475 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1900 (measured by GPC) (silanol equivalent 950, half of the weight average molecular weight measured using GPC) 40 parts of 0.5% potassium hydroxide (KOH) methanol solution was charged into a reaction vessel, the bath temperature was set to 75 ° C., and the temperature was raised. After raising the temperature, the reaction was carried out under reflux for 8 hours. After adding 655 parts of methanol, 144 parts of a 50% distilled water methanol solution was added dropwise over 60 minutes and reacted at 75 ° C. for 8 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation at 80 ° C. Next, 750 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. The solvent was removed from the obtained organic layer at 100 ° C. under reduced pressure to obtain 647 parts of an epoxycyclohexyl group-containing organopolysiloxane (EP-4). The epoxy equivalent of the obtained compound (EP-4) was 541 g / eq. The weight average molecular weight was 2,100, and the appearance was a colorless and transparent liquid resin.
実施例16~19、比較例4
 本発明の多価カルボン酸組成物(MA-4、MA-5、MA-6、MA-10)、比較例として、多価カルボン酸樹脂(J-3)を硬化剤として用い、エポキシ樹脂として合成例10で得られたエポキシ樹脂(EP-4)を用い、硬化促進剤としてオクチル酸亜鉛(ホープ製薬製 18% オクトープ Zn 以下C2と称す。)、光安定剤(ADEKA製 LA-81 以下 添加剤AD-1と称す)、酸化防止剤(ADEKA製、アデカ260、添加剤AD-2と称す))、を使用し、下記表4に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を用い、以下に示す要領で、試験をおこない、結果を表4に合わせて示す。なお、硬化条件は、特に断りの無い場合は、120℃×2時間の予備硬化の後150℃×5時間である。
 (1)引っ張り試験 JIS K 6911に準拠
    サンプル 厚み0.9±0.05mm 断面積4.5±0.2mm
    速度 5mm/min、チャック間距離 15mm
 (2)熱耐久性透過率試験
 得られた硬化性樹脂組成物を、30mm×20mm×高さ1mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×3時間の予備硬化の後150℃×1時間で硬化させ、厚さ1mmの透過率用試験片を得た。
 これらの試験片を用い、150℃オーブン中72hr放置前後における透過率(測定波長:400nm)を分光光度計により測定し、その変化率を算出した。
 評価:透過率低下が5%未満の場合○、5%以上10%未満の場合△、10%以上の場合×とする。
Examples 16 to 19 and Comparative Example 4
The polyvalent carboxylic acid composition of the present invention (MA-4, MA-5, MA-6, MA-10), as a comparative example, a polyvalent carboxylic acid resin (J-3) is used as a curing agent, and an epoxy resin Using the epoxy resin (EP-4) obtained in Synthesis Example 10, zinc octylate (18% Octopus Zn, hereinafter referred to as C2) manufactured by Hope Pharmaceutical, and light stabilizer (LA-81 or less, manufactured by ADEKA) were added as a curing accelerator. And an antioxidant (made by ADEKA, ADEKA 260, called additive AD-2)), and blended at the blending ratio (parts by weight) shown in Table 4 below, and removed for 20 minutes. Foaming was performed to obtain a curable resin composition of the present invention and a comparative curable resin composition.
Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 4. The curing conditions are 150 ° C. × 5 hours after preliminary curing at 120 ° C. × 2 hours, unless otherwise specified.
(1) Tensile test Conforms to JIS K 6911 Sample Thickness 0.9 ± 0.05 mm Cross-sectional area 4.5 ± 0.2 mm 2
Speed 5mm / min, Chuck distance 15mm
(2) Thermal durability transmittance test The obtained curable resin composition was gently cast on a glass substrate on which a dam was formed with a heat-resistant tape so as to be 30 mm × 20 mm × height 1 mm. The cast was cured at 120 ° C. for 1 hour after pre-curing at 120 ° C. for 3 hours to obtain a test piece for transmittance having a thickness of 1 mm.
Using these test pieces, the transmittance (measurement wavelength: 400 nm) before and after being left for 72 hours in a 150 ° C. oven was measured with a spectrophotometer, and the rate of change was calculated.
Evaluation: When the transmittance decrease is less than 5%, ○, when 5% or more and less than 10%, Δ when 10% or more, and x.
Figure JPOXMLDOC01-appb-T000007
  
Figure JPOXMLDOC01-appb-T000007
  
実施例20~22、比較例5
 本発明の多価カルボン酸組成物(MA-7、MA-8、MA-9)、比較例として、多価カルボン酸樹脂(J-3)を硬化剤として用い、エポキシ樹脂として合成例9、10で得られたエポキシ樹脂(EP-3、EP-4)を用い、硬化促進剤(C2)、添加剤(AD-1、AD-2)を使用し、下記表5に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を用い、以下に示す要領で、試験をおこない、結果を表5に合わせて示す。なお、硬化条件は120℃×2時間の予備硬化の後150℃×5時間である。
 (1)ピール試験 JIS K 6911 に準拠
    支持体:銅箔粗面使用、サンプル幅:10mm、剥離スピード:3mm/分 
 (2)引っ張り試験 JIS K 6911に準拠
    サンプル 厚み0.9±0.05mm 断面積4.5±0.2mm
    速度 5mm/min、チャック間距離 15mm
Examples 20-22, Comparative Example 5
The polyvalent carboxylic acid composition of the present invention (MA-7, MA-8, MA-9), as a comparative example, the polyvalent carboxylic acid resin (J-3) was used as a curing agent, and the epoxy resin was synthesized in Synthesis Example 9, 10 using the epoxy resins (EP-3, EP-4) obtained in No. 10, using the curing accelerator (C2) and additives (AD-1, AD-2), and the mixing ratios (weights) shown in Table 5 below. Part) and defoaming for 20 minutes to obtain a curable resin composition of the present invention and a comparative curable resin composition.
Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 5. The curing conditions are 150 ° C. × 5 hours after preliminary curing at 120 ° C. × 2 hours.
(1) Peel test Conforms to JIS K 6911 Support: Use of copper foil rough surface, Sample width: 10 mm, Peeling speed: 3 mm / min
(2) Tensile test Conforms to JIS K 6911 Sample Thickness 0.9 ± 0.05 mm Cross-sectional area 4.5 ± 0.2 mm 2
Speed 5mm / min, Chuck distance 15mm
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 以上の結果から本発明の硬化性樹脂組成物は密着性、強靭性、耐熱耐久性に優れる事がわかる。 From the above results, it can be seen that the curable resin composition of the present invention is excellent in adhesion, toughness, and heat durability.
実施例23、24、比較例6
 本発明の多価カルボン酸組成物(MA-11,MA-12)、比較例として、多価カルボン酸樹脂(J-2)を硬化剤として用い、エポキシ樹脂として合成例10で得られたエポキシ樹脂(EP-4)を用い、硬化促進剤(C2)、添加剤(AD-1、AD-2)を使用し、下記表6に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を用い、以下に示す要領で、試験をおこない、結果を表6に合わせて示す。なお、硬化条件は120℃×2時間の予備硬化の後150℃×5時間である。
 (1)引っ張り試験 JIS K 6911に準拠
    サンプル 厚み0.9±0.05mm 断面積4.5±0.2mm
    速度 5mm/min、チャック間距離 15mm
 (2)LED点灯試験
 実施例及び比較例で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LED(Φ5mm)に注型した。その後、所定の硬化条件で硬化させることで、点灯試験用LEDを得る。点灯試験は、加速試験のため、規定電流の7倍である210mAでの点灯試験を行った。詳細な条件は下記に示した。測定項目としては、20時間点灯前後の照度を積分球を使用して測定し、試験用LEDの照度の保持率を算出した。
 点灯詳細条件
 発光波長:465nm
 駆動方式:定電流方式、210mA(発光素子規定電流は30mA)
 駆動環境:25℃、65%RH
 (3)耐ガス透過性試験(腐食ガス透過性試験);
 得られた硬化性樹脂組成物で作成した、LEDをパッケージを下記条件で腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。
<測定条件>
 腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
 接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
 腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を1時間毎に観察し、その変色時間が長い物ほど、耐腐食性ガス性に優れていると判断した。
Examples 23 and 24, Comparative Example 6
The polyhydric carboxylic acid composition (MA-11, MA-12) of the present invention and, as a comparative example, the polycarboxylic acid resin (J-2) as a curing agent and the epoxy obtained in Synthesis Example 10 as an epoxy resin Using resin (EP-4), using curing accelerator (C2) and additives (AD-1, AD-2), blending ratios (parts by weight) shown in Table 6 below, and defoaming for 20 minutes The curable resin composition of the present invention and a comparative curable resin composition were obtained.
Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 6. The curing conditions are 150 ° C. × 5 hours after preliminary curing at 120 ° C. × 2 hours.
(1) Tensile test Conforms to JIS K 6911 Sample Thickness 0.9 ± 0.05 mm Cross-sectional area 4.5 ± 0.2 mm 2
Speed 5mm / min, Chuck distance 15mm
(2) LED lighting test After carrying out vacuum defoaming for 20 minutes with the curable resin compositions obtained in Examples and Comparative Examples, a syringe is filled and a light emitting element having an emission wavelength of 465 nm is mounted using a precision discharge device. Was cast into a surface-mounted LED (Φ5 mm). Then, LED for lighting test is obtained by making it harden | cure on predetermined hardening conditions. The lighting test was performed at 210 mA, which is 7 times the specified current, for the acceleration test. Detailed conditions are shown below. As a measurement item, the illuminance before and after lighting for 20 hours was measured using an integrating sphere, and the illuminance retention rate of the test LED was calculated.
Detailed lighting conditions Light emission wavelength: 465nm
Drive method: constant current method, 210 mA (light emitting element specified current is 30 mA)
Driving environment: 25 ° C, 65% RH
(3) Gas permeation resistance test (corrosion gas permeability test);
The package of the LED prepared with the obtained curable resin composition was left in a corrosive gas under the following conditions, and the change in the color of the silver-plated lead frame inside the seal was observed.
<Measurement conditions>
Corrosive gas: 20% aqueous solution of ammonium sulfide (discolors black when sulfur component reacts with silver)
Contact method: A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
Judgment of corrosion: The time when the lead frame inside the LED package was blackened (referred to as blackening) was observed every hour, and it was judged that the longer the color changing time, the better the corrosion resistance gas resistance.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
実施例25
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら両末端カルビノール変性シリコーン化合物(SI-2)365部、ペンタエリスリトール(以下、飽和脂肪族多価アルコールAL-3と称す)9部、酸無水物(H2)168部を仕込み、90℃で2時間、110℃で3時間反応させることで、無色透明液体として多価カルボン酸組成物(MA-13)542部を得た。(SI-2由来の多価カルボン酸の重量(J)/AL-3由来の多価カルボン酸の重量(K)=90/10)
Example 25
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 365 parts of both ends carbinol-modified silicone compound (SI-2), pentaerythritol (hereinafter referred to as saturated aliphatic polyhydric alcohol AL-3) while purging with nitrogen. 9 parts) and 168 parts of acid anhydride (H2) were charged and reacted at 90 ° C. for 2 hours and at 110 ° C. for 3 hours to obtain 542 parts of a polyvalent carboxylic acid composition (MA-13) as a colorless transparent liquid. Obtained. (Weight of polycarboxylic acid derived from SI-2 (J) / weight of polycarboxylic acid derived from AL-3 (K) = 90/10)
実施例26、比較例7
 本発明の多価カルボン酸組成物(MA-13)、比較例として、多価カルボン酸樹脂(J-3)を硬化剤として用い、エポキシ樹脂として合成例9、10で得られたエポキシ樹脂(EP-3、EP-4)を用い、硬化促進剤(C2)、添加剤(AD-1、AD-2)を使用し、下記表7に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物、および比較用の硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を用い、以下に示す要領で、試験をおこない、結果を表7に合わせて示す。なお、硬化条件は120℃×2時間の予備硬化の後150℃×5時間である。
 (1)ピール試験 JIS K 6911 に準拠
   支持体:銅箔粗面使用、サンプル幅:10mm、剥離スピード:3mm/分 
 (2)引っ張り試験 JIS K 6911に準拠
   サンプル 厚み0.9±0.05mm 断面積4.5±0.2mm
   速度 5mm/min、チャック間距離 15mm
 (3)LED点灯試験
 実施例及び比較例で得られた硬化性樹脂組成物を真空脱泡20分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長465nmを持つ発光素子を搭載した表面実装型LED(Φ5mm)に注型した。その後、所定の硬化条件で硬化させることで、点灯試験用LEDを得る。点灯試験は、加速試験のため、規定電流の7倍である210mAでの点灯試験を行った。詳細な条件は下記に示した。測定項目としては、40時間点灯前後の照度を積分球を使用して測定し、試験用LEDの照度の保持率を算出した。
 点灯詳細条件
 発光波長:465nm
 駆動方式:定電流方式、210mA(発光素子規定電流は30mA)
 駆動環境:25℃、65%RH
(4)耐ガス透過性試験(腐食ガス透過性試験);
 得られた硬化性樹脂組成物で作成した、LEDをパッケージを下記条件で腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。
<測定条件>
 腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
 接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
 腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を1時間毎に観察し、その変色時間が長い物ほど、耐腐食性ガス性にすぐれていると判断した。
Example 26, Comparative Example 7
The polyvalent carboxylic acid composition (MA-13) of the present invention, as a comparative example, the polycarboxylic acid resin (J-3) was used as a curing agent, and the epoxy resin obtained in Synthesis Examples 9 and 10 as an epoxy resin ( EP-3, EP-4), using curing accelerator (C2) and additives (AD-1, AD-2), and blending ratios (parts by weight) shown in Table 7 below, for 20 minutes Defoaming was performed to obtain a curable resin composition of the present invention and a comparative curable resin composition.
Using the obtained curable resin composition, a test was conducted in the following manner, and the results are shown in Table 7. The curing conditions are 150 ° C. × 5 hours after preliminary curing at 120 ° C. × 2 hours.
(1) Peel test Conforms to JIS K 6911 Support: Use of copper foil rough surface, Sample width: 10 mm, Peeling speed: 3 mm / min
(2) Tensile test Conforms to JIS K 6911 Sample Thickness 0.9 ± 0.05 mm Cross-sectional area 4.5 ± 0.2 mm 2
Speed 5mm / min, Chuck distance 15mm
(3) LED lighting test After carrying out vacuum defoaming for 20 minutes with the curable resin compositions obtained in Examples and Comparative Examples, a syringe is filled and a light emitting element having an emission wavelength of 465 nm is mounted using a precision discharge device. Was cast into a surface-mounted LED (Φ5 mm). Then, LED for lighting test is obtained by making it harden | cure on predetermined hardening conditions. The lighting test was performed at 210 mA, which is 7 times the specified current, for the acceleration test. Detailed conditions are shown below. As a measurement item, the illuminance before and after lighting for 40 hours was measured using an integrating sphere, and the illuminance retention rate of the test LED was calculated.
Detailed lighting conditions Light emission wavelength: 465nm
Drive method: constant current method, 210 mA (light emitting element specified current is 30 mA)
Driving environment: 25 ° C, 65% RH
(4) Gas permeation resistance test (corrosion gas permeability test);
The package of the LED prepared with the obtained curable resin composition was left in a corrosive gas under the following conditions, and the change in the color of the silver-plated lead frame inside the seal was observed.
<Measurement conditions>
Corrosive gas: 20% aqueous solution of ammonium sulfide (discolors black when sulfur component reacts with silver)
Contact method: A container of an ammonium sulfide aqueous solution and the LED package were mixed in a wide-mouth glass bottle, and the wide-mouth glass bottle was covered to bring the volatilized ammonium sulfide gas into contact with the LED package in a sealed state.
Judgment of corrosion: The time during which the lead frame inside the LED package was blackened (referred to as blackening) was observed every hour, and it was judged that the longer the color changing time, the better the corrosion resistance.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 以上の結果から明らかなように、本発明のエポキシ樹脂組成物は、耐熱性、耐光性に優れるだけでなく、密着性、強靭性に優れ、さらには耐腐食性ガス透過性に優れる硬化物を与えることがわかる。 As is clear from the above results, the epoxy resin composition of the present invention is not only excellent in heat resistance and light resistance, but also in a cured product excellent in adhesion, toughness, and corrosion resistance gas permeability. I know you give it.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2009年10月6日付で出願された日本特許出願(特願2009-232113)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on October 6, 2009 (Japanese Patent Application No. 2009-232113), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (12)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
     
     
    (式(1)において、Rはエーテル結合を介しても良い炭素総数1~10アルキレン基を表し、Rはメチル基又はフェニル基を表す。また、nは繰り返し単位を表し、式(1)で表される化合物の重量平均分子量は500~5000である。)で表されるシリコーンオイル(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)とを付加反応させることにより得られるカルボン酸化合物(J)と、
     2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)と分子内に1個以上のカルボン酸無水物基をもつ化合物(d)とを付加反応させることにより得られる多価カルボン酸化合物(K)と、
    を含有することを特徴とする多価カルボン酸組成物。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001


    (In Formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms that may be bonded via an ether bond, R 2 represents a methyl group or a phenyl group, n represents a repeating unit, and Formula (1) The weight average molecular weight of the compound represented by) is 500 to 5000. The addition reaction of the silicone oil (a) represented by) and the compound (b) having one or more carboxylic anhydride groups in the molecule. A carboxylic acid compound (J) obtained by
    Polyvalent carboxylic acid obtained by addition reaction of saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher alcoholic hydroxyl group and compound (d) having one or more carboxylic anhydride groups in the molecule Compound (K),
    Containing a polyvalent carboxylic acid composition.
  2.  前記化合物(b)および(d)が環状の飽和炭化水素を母骨格とする酸無水物であることを特徴とする請求項1記載の多価カルボン酸組成物。 The polyvalent carboxylic acid composition according to claim 1, wherein the compounds (b) and (d) are acid anhydrides having a cyclic saturated hydrocarbon as a mother skeleton.
  3.  前記化合物(b)および(d)がメチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物およびビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物からなる群より選ばれる少なくとも1種の酸無水物であることを特徴とする請求項1または2記載の多価カルボン酸組成物。 The compounds (b) and (d) are methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and bicyclo [2,2,1] heptane- 3. The polyvalent carboxylic acid composition according to claim 1, wherein the polycarboxylic acid composition is at least one acid anhydride selected from the group consisting of 2,3-dicarboxylic acid anhydrides.
  4.  前記化合物(b)および(d)がメチルヘキサヒドロ無水フタル酸を必須とすることを特徴とする請求項3記載の多価カルボン酸組成物。 The polyvalent carboxylic acid composition according to claim 3, wherein the compounds (b) and (d) essentially comprise methylhexahydrophthalic anhydride.
  5.  前記化合物(c)が官能基数2~6の多価アルコールであって1分子中の総炭素数が5~20であることを特徴とする請求項1~4のいずれか一項に記載の多価カルボン酸組成物。 5. The polyhydric alcohol according to claim 1, wherein the compound (c) is a polyhydric alcohol having 2 to 6 functional groups, and the total number of carbon atoms in one molecule is 5 to 20. Carboxylic acid composition.
  6.  請求項1~5のいずれか一項に記載の多価カルボン酸組成物の製造方法であって、
     シリコーンオイル(a)と2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)を含む混合物に、分子内に1個以上のカルボン酸無水物基をもつ化合物(b)および(d)を加え、前記シリコーンオイル(a)と前記化合物(b)の付加反応と、前記化合物(c)と前記化合物(d)の付加反応を同時に行なうことを特徴とする多価カルボン酸組成物の製造方法。
    A method for producing a polyvalent carboxylic acid composition according to any one of claims 1 to 5,
    Compounds (b) and (d) having one or more carboxylic anhydride groups in the molecule are added to a mixture containing silicone oil (a) and a saturated aliphatic polyhydric alcohol (c) having a bifunctional or higher functional alcoholic hydroxyl group. And the addition reaction between the silicone oil (a) and the compound (b) and the addition reaction between the compound (c) and the compound (d) are performed simultaneously. Production method.
  7.  請求項1~5のいずれか一項に記載の多価カルボン酸組成物の製造方法であって、
     以下の工程(A)、工程(B)を逐次的に1ポットで反応させることを特徴とする多価カルボン酸組成物の製造方法。
    工程(A):シリコーンオイル(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)を付加反応させる工程
    工程(B):2官能以上のアルコール性水酸基を有する飽和脂肪族多価アルコール(c)と分子内に1個以上のカルボン酸無水物基をもつ化合物(d)を付加反応させる工程
    A method for producing a polyvalent carboxylic acid composition according to any one of claims 1 to 5,
    A method for producing a polyvalent carboxylic acid composition, wherein the following step (A) and step (B) are sequentially reacted in one pot.
    Step (A): Addition reaction of silicone oil (a) and compound (b) having one or more carboxylic anhydride groups in the molecule Step (B): Saturated fat having a bifunctional or higher functional alcoholic hydroxyl group A step of addition reaction of an aromatic polyhydric alcohol (c) and a compound (d) having one or more carboxylic anhydride groups in the molecule
  8.  前記付加反応を、無溶剤、もしくは使用する原料における反応基質の総量に対して50重量%以下の有機溶剤中、40~150℃で行うことを特徴とする請求項6または7記載の多価カルボン酸組成物の製造方法。 8. The polyvalent carboxylic acid according to claim 6, wherein the addition reaction is carried out at 40 to 150 ° C. in an organic solvent in an amount of 50% by weight or less based on the total amount of the reaction substrate in the raw material to be used without solvent. A method for producing an acid composition.
  9.  請求項1~5のいずれか一項に記載の多価カルボン酸組成物とエポキシ樹脂とを含有する硬化性樹脂組成物。 A curable resin composition comprising the polyvalent carboxylic acid composition according to any one of claims 1 to 5 and an epoxy resin.
  10.  前記エポキシ樹脂が脂環式エポキシ樹脂および/またはエポキシ基含有シリコーン樹脂であることを特徴とする請求項9記載の硬化性樹脂組成物。 10. The curable resin composition according to claim 9, wherein the epoxy resin is an alicyclic epoxy resin and / or an epoxy group-containing silicone resin.
  11.  前記エポキシ樹脂がエポキシ基含有シリコーン樹脂であることを特徴とする請求項9記載の硬化性樹脂組成物。 10. The curable resin composition according to claim 9, wherein the epoxy resin is an epoxy group-containing silicone resin.
  12.  請求項9~11のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 9 to 11.
PCT/JP2010/067594 2009-10-06 2010-10-06 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition WO2011043400A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080055368.8A CN102648244B (en) 2009-10-06 2010-10-06 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
JP2011535440A JP5574447B2 (en) 2009-10-06 2010-10-06 Polyvalent carboxylic acid composition and method for producing the same, and curable resin composition containing the polyvalent carboxylic acid composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232113 2009-10-06
JP2009-232113 2009-10-06

Publications (1)

Publication Number Publication Date
WO2011043400A1 true WO2011043400A1 (en) 2011-04-14

Family

ID=43856850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067594 WO2011043400A1 (en) 2009-10-06 2010-10-06 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition

Country Status (5)

Country Link
JP (1) JP5574447B2 (en)
KR (1) KR20120085256A (en)
CN (1) CN102648244B (en)
TW (1) TWI488890B (en)
WO (1) WO2011043400A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102337A (en) * 2009-11-10 2011-05-26 Nippon Kayaku Co Ltd Epoxy resin composition
JP2011256326A (en) * 2010-06-11 2011-12-22 Nippon Kayaku Co Ltd Curable resin composition and its cured product
JP2012001570A (en) * 2010-06-14 2012-01-05 Nippon Steel Chem Co Ltd Epoxy silicone resin containing curable resin composition
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof
CN102746790A (en) * 2012-07-23 2012-10-24 尹利勋 Imaging material for fabricating rear-projection screen
WO2013035740A1 (en) * 2011-09-09 2013-03-14 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element and cured product thereof
WO2013047620A1 (en) * 2011-09-27 2013-04-04 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element, and cured material of same
WO2013180148A1 (en) * 2012-05-31 2013-12-05 日本化薬株式会社 Polycarboxylic acid composition, method for producing polycarboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition, and cured product
JP2014095053A (en) * 2012-11-12 2014-05-22 Nippon Kayaku Co Ltd Curable resin composition and cured material therefrom
WO2014136693A1 (en) * 2013-03-05 2014-09-12 日本化薬株式会社 Polycarboxylic acid composition, curing agent composition for epoxy resins, and epoxy resin composition and cured product thereof
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
JP2016045243A (en) * 2014-08-20 2016-04-04 日本化薬株式会社 Thermosetting resin composition comprising near-infrared absorbing dye, and near-infrared cut filter
JPWO2014050978A1 (en) * 2012-09-27 2016-08-22 日本化薬株式会社 Polyvalent carboxylic acid resin and epoxy resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939315A (en) * 2010-06-11 2013-02-20 日本化药株式会社 Curable resin composition and substance obtained by curing same
FR3006493A1 (en) * 2013-06-04 2014-12-05 Nexans ELECTRICAL CABLE WITH MEDIUM OR HIGH VOLTAGE
JP7236817B2 (en) * 2017-06-19 2023-03-10 日本化薬株式会社 Reactive polycarboxylic acid compound, active energy ray-curable resin composition using the same, cured product thereof, and use thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182583A (en) * 1983-03-31 1984-10-17 Nitto Electric Ind Co Ltd Light emitting element or light receiving element sealed body
JPS6362363A (en) * 1986-09-03 1988-03-18 Nitto Electric Ind Co Ltd Optical semiconductor device
JPH0551558A (en) * 1991-02-14 1993-03-02 Nippon Paint Co Ltd Coating resin composition
JPH05226700A (en) * 1992-02-12 1993-09-03 Hitachi Chem Co Ltd Epoxy resin composition for sealing light emitting diode and light emitting diode sealed with same
JPH06100762A (en) * 1992-09-21 1994-04-12 Nippon Kayaku Co Ltd Epoxy resin composition
JPH09194597A (en) * 1996-01-11 1997-07-29 Dow Corning Corp Organosiloxane compound and composition containing the same
JPH10298290A (en) * 1997-04-30 1998-11-10 Kansai Paint Co Ltd Hydrophilic polymer and coating composition containing the same
JPH1121502A (en) * 1997-05-07 1999-01-26 Sanyo Chem Ind Ltd Resin composition for coating
JP2002114849A (en) * 2000-10-05 2002-04-16 Kao Corp Organopolysiloxane
WO2007029503A1 (en) * 2005-09-02 2007-03-15 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
JP2008179811A (en) * 2006-12-28 2008-08-07 Asahi Kasei Corp Siloxane derivative and its cured material
WO2009105625A2 (en) * 2008-02-21 2009-08-27 Webster Dean C Uv-curable low surface energy coatings
JP2010053203A (en) * 2008-08-27 2010-03-11 Nof Corp Thermosetting resin composition
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104002A (en) * 1980-01-23 1981-08-19 Dantani Plywood Co Method of cutting and working end surface of board material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182583A (en) * 1983-03-31 1984-10-17 Nitto Electric Ind Co Ltd Light emitting element or light receiving element sealed body
JPS6362363A (en) * 1986-09-03 1988-03-18 Nitto Electric Ind Co Ltd Optical semiconductor device
JPH0551558A (en) * 1991-02-14 1993-03-02 Nippon Paint Co Ltd Coating resin composition
JPH05226700A (en) * 1992-02-12 1993-09-03 Hitachi Chem Co Ltd Epoxy resin composition for sealing light emitting diode and light emitting diode sealed with same
JPH06100762A (en) * 1992-09-21 1994-04-12 Nippon Kayaku Co Ltd Epoxy resin composition
JPH09194597A (en) * 1996-01-11 1997-07-29 Dow Corning Corp Organosiloxane compound and composition containing the same
JPH10298290A (en) * 1997-04-30 1998-11-10 Kansai Paint Co Ltd Hydrophilic polymer and coating composition containing the same
JPH1121502A (en) * 1997-05-07 1999-01-26 Sanyo Chem Ind Ltd Resin composition for coating
JP2002114849A (en) * 2000-10-05 2002-04-16 Kao Corp Organopolysiloxane
WO2007029503A1 (en) * 2005-09-02 2007-03-15 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
JP2008179811A (en) * 2006-12-28 2008-08-07 Asahi Kasei Corp Siloxane derivative and its cured material
WO2009105625A2 (en) * 2008-02-21 2009-08-27 Webster Dean C Uv-curable low surface energy coatings
JP2010053203A (en) * 2008-08-27 2010-03-11 Nof Corp Thermosetting resin composition
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102337A (en) * 2009-11-10 2011-05-26 Nippon Kayaku Co Ltd Epoxy resin composition
JP2011256326A (en) * 2010-06-11 2011-12-22 Nippon Kayaku Co Ltd Curable resin composition and its cured product
JP2012001570A (en) * 2010-06-14 2012-01-05 Nippon Steel Chem Co Ltd Epoxy silicone resin containing curable resin composition
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof
JP5948317B2 (en) * 2011-04-07 2016-07-06 日本化薬株式会社 Polyvalent carboxylic acid resin and composition thereof
JPWO2013035740A1 (en) * 2011-09-09 2015-03-23 日本化薬株式会社 Curable resin composition for optical semiconductor element sealing and cured product thereof
WO2013035740A1 (en) * 2011-09-09 2013-03-14 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element and cured product thereof
CN103781815A (en) * 2011-09-09 2014-05-07 日本化药株式会社 Curable resin composition for sealing optical semiconductor element and cured product thereof
WO2013047620A1 (en) * 2011-09-27 2013-04-04 日本化薬株式会社 Curable resin composition for sealing optical semiconductor element, and cured material of same
JP2013071950A (en) * 2011-09-27 2013-04-22 Nippon Kayaku Co Ltd Curable resin composition and cured product thereof
WO2013180148A1 (en) * 2012-05-31 2013-12-05 日本化薬株式会社 Polycarboxylic acid composition, method for producing polycarboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition, and cured product
JPWO2013180148A1 (en) * 2012-05-31 2016-01-21 日本化薬株式会社 Polyvalent carboxylic acid composition, method for producing polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product
CN102746790A (en) * 2012-07-23 2012-10-24 尹利勋 Imaging material for fabricating rear-projection screen
JPWO2014050978A1 (en) * 2012-09-27 2016-08-22 日本化薬株式会社 Polyvalent carboxylic acid resin and epoxy resin composition
JP2014095053A (en) * 2012-11-12 2014-05-22 Nippon Kayaku Co Ltd Curable resin composition and cured material therefrom
WO2014136693A1 (en) * 2013-03-05 2014-09-12 日本化薬株式会社 Polycarboxylic acid composition, curing agent composition for epoxy resins, and epoxy resin composition and cured product thereof
JPWO2014136693A1 (en) * 2013-03-05 2017-02-09 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product thereof
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
JP2016045243A (en) * 2014-08-20 2016-04-04 日本化薬株式会社 Thermosetting resin composition comprising near-infrared absorbing dye, and near-infrared cut filter

Also Published As

Publication number Publication date
KR20120085256A (en) 2012-07-31
CN102648244B (en) 2014-05-07
JPWO2011043400A1 (en) 2013-03-04
TWI488890B (en) 2015-06-21
TW201116555A (en) 2011-05-16
JP5574447B2 (en) 2014-08-20
CN102648244A (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5574447B2 (en) Polyvalent carboxylic acid composition and method for producing the same, and curable resin composition containing the polyvalent carboxylic acid composition
TWI491590B (en) Multivalent carboxylic acid composition, curable resin composition, cured article and method for producing multivalent carboxylic acid composition
JP5878862B2 (en) Curable resin composition and cured product thereof
JP5348764B2 (en) Curable resin composition for optical semiconductor encapsulation, and cured product thereof
JP5730852B2 (en) Method for producing organopolysiloxane, organopolysiloxane obtained by the production method, and composition containing the organopolysiloxane
WO2016013257A1 (en) Polycarboxylic acid, polycarboxylic acid composition, epoxy resin composition and heat-curable resin composition each containing said polycarboxylic acid, cured products of said compositions, and optical semiconductor device
JP5775869B2 (en) Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing the polyvalent carboxylic acid composition or the curing agent composition as a curing agent for epoxy resin
KR101763192B1 (en) Curable resin composition and cured product thereof
JP6143359B2 (en) Silicone-modified epoxy resin and composition thereof
WO2014050978A1 (en) Polycarboxylic acid resin and epoxy resin composition
JP6239587B2 (en) Polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product thereof
JP5519685B2 (en) Curable resin composition and cured product thereof
JP5993003B2 (en) Polyvalent carboxylic acid composition, method for producing polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product
KR20110135917A (en) Diolefin compound, epoxy resin and composition thereof
JP6377445B2 (en) Epoxy resin composition and cured product thereof
JP5832601B2 (en) Curable resin composition and cured product thereof
JP6478808B2 (en) Polyvalent carboxylic acid, polyvalent carboxylic acid composition containing the same, and epoxy resin composition
JP6376692B2 (en) Carboxylic anhydride group-containing cyclic siloxane compound, epoxy resin composition containing the same, and cured product thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055368.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535440

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127008989

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201001609

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822070

Country of ref document: EP

Kind code of ref document: A1