WO2013035740A1 - Curable resin composition for sealing optical semiconductor element and cured product thereof - Google Patents

Curable resin composition for sealing optical semiconductor element and cured product thereof Download PDF

Info

Publication number
WO2013035740A1
WO2013035740A1 PCT/JP2012/072617 JP2012072617W WO2013035740A1 WO 2013035740 A1 WO2013035740 A1 WO 2013035740A1 JP 2012072617 W JP2012072617 W JP 2012072617W WO 2013035740 A1 WO2013035740 A1 WO 2013035740A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
resin composition
optical semiconductor
epoxy resin
Prior art date
Application number
PCT/JP2012/072617
Other languages
French (fr)
Japanese (ja)
Inventor
直房 宮川
智江 佐々木
律子 設楽
窪木 健一
義浩 川田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201280043965.8A priority Critical patent/CN103781815A/en
Priority to JP2013532624A priority patent/JP6006725B2/en
Publication of WO2013035740A1 publication Critical patent/WO2013035740A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4269Macromolecular compounds obtained by reactions other than those involving unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/681Metal alcoholates, phenolates or carboxylates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable resin composition suitable for optical semiconductor element sealing applications, and a cured product thereof.
  • LEDs Light Emitting Diode
  • resins that encapsulate optical semiconductor elements are particularly resistant to UV and heat. It has come to be required.
  • bisphenol-type epoxy resins and alicyclic epoxy resins have sufficient UV resistance and heat resistance as described above, and may not be used in fields where high luminance is required.
  • a silicone resin sealing material using an unsaturated hydrocarbon group-containing organopolysiloxane and an organohydrogenpolysiloxane is used (see Patent Document 2). ).
  • a sealing material using such a silicone resin is excellent in UV resistance and heat resistance, it has a problem that the sealing surface becomes sticky or gas permeability is high.
  • the problem of high gas permeability is the phenomenon that the silver plating surface used in the LED is corroded by the permeation of sulfur-based gas and becomes blackened by becoming silver sulfide, which reduces the illuminance of the LED. Therefore, countermeasures (improvement of sulfidation resistance) are urgently required.
  • An object of the present invention is to provide a curable resin composition for sealing an optical semiconductor element having excellent pot life and sulfidation resistance, and a cured product thereof.
  • the present inventors have found a curable resin composition containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent. Has been found to solve the problem, and the present invention has been completed. That is, the present invention
  • a curable resin composition for encapsulating an optical semiconductor containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent is an addition reaction product of a carbinol-modified silicone oil (a) having both ends represented by the formula (1) and a compound (d) having one carboxylic anhydride group in the molecule;
  • a polycarboxylic acid resin (A) comprising an addition reaction product of a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule and a compound (d) having one carboxylic anhydride group in the molecule
  • the curable resin composition for optical semiconductor encapsulation according to (1) is an addition reaction product of a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule and a compound (d) having one carboxylic anhydride group in the molecule.
  • R 1 is each independently an alkylene group having 1 to 10 carbon atoms or an alkylene group containing an ether bond having 1 to 10 carbon atoms
  • R 2 is each independently having 1 to 3 carbon atoms.
  • M represents an average value of 1 to 100 for an alkyl group or a phenyl group.
  • the epoxy resin curing agent is a carbinol-modified silicone oil (a) having both ends represented by the formula (1), a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule,
  • a curable resin composition for encapsulating an optical semiconductor according to (1) which is a polyvalent carboxylic acid resin (A) obtained by addition reaction with a compound (d) having one carboxylic acid anhydride group object.
  • R 1 is each independently an alkylene group having 1 to 10 carbon atoms or an alkylene group containing an ether bond having 1 to 10 carbon atoms
  • R 2 is each independently having 1 to 3 carbon atoms.
  • M represents an average value of 1 to 100 for an alkyl group or a phenyl group.
  • the polyvalent carboxylic acid resin (A) is obtained by addition reaction including a compound (c) having two or more carboxylic acid anhydride groups in the molecule as a reaction raw material.
  • the curable resin composition for optical semiconductor sealing is (5) The light according to any one of (2) to (4), wherein the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule is a terminal alcohol polyester compound represented by the formula (2):
  • R 3 and R 4 each independently represent an alkylene group having 1 to 10 carbon atoms, and m represents an average value of 1 to 100
  • the curable resin composition for optical semiconductor element encapsulation according to (6) which is a polymer of the compound and has an epoxy equivalent of 300 to 1500 g / eq measured by the method described in JIS K-7236.
  • Manufacturing process 1 A step of condensing a silanol group of a silanol-terminated silicone oil and an alkoxy group of an epoxy group-containing silicon compound to obtain a modified silicone oil.
  • Manufacturing process 2 A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
  • R 5 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and p represents an average value of 3 to 200.
  • a plurality of R 5 may be the same as each other. May be different
  • X represents an organic group containing an epoxy group
  • R 6 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 7 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms
  • q represents an integer of 0 to 2
  • r represents an integer and represents (3-q).
  • an optical semiconductor device Very useful as a sealing material.
  • the curable resin composition for an optical semiconductor element sealing material of the present invention is characterized by containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent.
  • the curing catalyst in the present invention starts curing of epoxy groups, epoxy groups and carboxyl groups, epoxy groups and carboxylic anhydride groups, epoxy groups and amine groups, epoxy groups and thiol groups, epoxy groups and amide groups, or the like. It is a compound that promotes.
  • the resin composition for encapsulating an optical semiconductor of the present invention is characterized by containing a curing catalyst having a melting point of 40 to 200 ° C. among the curing catalysts.
  • a resin composition for optical semiconductor encapsulation is liquid at room temperature, and the molding method is to heat cure after injecting a sealing material into a mold in which a substrate to which an optical semiconductor element is fixed is inserted.
  • An injection method for molding a compression molding method in which a sealing material is pre-injected onto a mold, an optical semiconductor element fixed on the substrate is immersed in the mold, and then heat-cured and then released from the mold are used. ing.
  • a dispenser or the like is used as an injection method.
  • the injected sealing resin is heated and cured.
  • heating for curing methods such as hot air circulation, infrared rays, and high frequency are used.
  • the heating conditions are preferably 80 to 200 ° C. and about 1 minute to 24 hours.
  • a catalyst which is solid at room temperature (25 ° C.) does not completely adapt to the epoxy resin and the epoxy resin curing agent at room temperature (25 ° C.), and thus does not cause an excessive increase in viscosity. Moreover, in the case of heat-curing, those solid catalysts melt
  • a catalyst which is solid at room temperature (25 ° C.) is preferably one having a melting point of 40 to 200 ° C. from the viewpoint of workability and melting during heat curing to exhibit catalytic ability.
  • a curing catalyst having a melting point of 100 to 160 ° C. it is more preferable to use a curing catalyst having a melting point of 120 to 160 ° C.
  • an ammonium salt-based curing catalyst As the catalyst having a melting point of 40 to 200 ° C., an ammonium salt-based curing catalyst, a phosphonium salt-based curing catalyst, and a metal soap-based curing catalyst are particularly preferable because of excellent transparency.
  • the ammonium salt-based curing catalyst include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, Examples include trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, and trioc
  • Examples of the phosphonium salt-based curing catalyst include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like.
  • Examples of metal soap-based curing catalysts include calcium stearate, zinc stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, sodium stearate, potassium stearate, 12-hydroxycalcium phosphate, 12-hydroxystearic acid.
  • These catalysts may be used alone or in combination of two or more.
  • Zinc salts made of a monocarboxylic acid compound having 10 to 30 carbon atoms such as zinc carboxylate having 10 to 30 carbon atoms such as zinc palmitate and zinc 12-hydroxystearate can be preferably used.
  • a zinc salt composed of a monocarboxylic acid compound having 10 to 20 carbon atoms such as zinc stearate and zinc undecylenate, and a hydroxyl group such as zinc 12-hydroxystearate.
  • a zinc salt composed of a monocarboxylic acid compound having 15 to 20 carbon atoms can be preferably used, more preferably zinc stearate, zinc undecylenate and zinc 12-hydroxystearate, particularly preferably zinc stearate, 12- Zinc hydroxystearate can be used.
  • a curing catalyst having a melting point of 40 to 200 ° C. can be pulverized for use.
  • a jet mill, a planetary ball mill, a spiral mill or the like can be used as the pulverization method.
  • an epoxy resin and / or an epoxy resin curing agent is used.
  • the epoxy resin curing agent will be described.
  • the epoxy resin curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and polycarboxylic acids.
  • the epoxy resin curing agent is particularly preferably an acid anhydride or a polyvalent carboxylic acid from the viewpoints of hardness, workability (being liquid at room temperature), and transparency of the cured product.
  • the polyvalent carboxylic acid resin (A) obtained by addition reaction of the compound (c) having two or more carboxylic anhydride groups in the molecule is most preferable.
  • acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride Acid, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3- And acid anhydrides such as dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride.
  • methyltetrahydrophthalic anhydride methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid Acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, It is preferable from the viewpoint of workability.
  • the polyvalent carboxylic acid is a compound having at least two carboxyl groups.
  • the polyvalent carboxylic acid is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, malic acid, etc.
  • Linear alkyl diacids, alkyl tricarboxylic acids such as 1,3,5-pentanetricarboxylic acid, citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid
  • An aliphatic cyclic polycarboxylic acid such as acid, nadic acid and methyl nadic acid; a multimer of unsaturated fatty acids such as linolenic acid and oleic acid; and dimer acids which are reduced products thereof;
  • Examples include compounds obtained by reaction with acid anhydrides, bifunctional to hexafunctional polyhydric alcohols and acid anhydrides Compounds obtained by the reaction of, heat resistance, and more preferable from the viewpoint of workability.
  • the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable from a transparency viewpoint.
  • the bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol.
  • Diols such as methanol and norbornene diol
  • triols such as glycerin, trimethylol ethane, trimethylol propane, tri
  • Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, From the viewpoint of transparency, In particular, tricyclodecane
  • Examples of acid anhydrides to be reacted with polyhydric alcohols include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2, 2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4- Anhydrides and the like are preferable, and methylhexahydrophthalic anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride are particularly preferable from the viewpoints of heat resistance, transparency, and workability.
  • the conditions for the addition reaction can be used without any particular limitation as long as they are known methods.
  • Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent.
  • a method of reacting at 150 ° C. and heating, and taking out as it is after completion of the reaction can be mentioned.
  • a preferable polyvalent carboxylic acid resin (A) includes two or more carbinol-modified silicone oils (a) and two or more in the molecule.
  • a polyvalent carboxylic acid resin (A) obtained by performing an addition reaction is
  • polyvalent carboxylic acids composed of only low molecular weight C, H, and O atoms are often in a solid state at room temperature (25 ° C.), and as it is, a curable resin composition for sealing an optical semiconductor composed of an epoxy resin. It is difficult to use as a curing agent for objects.
  • the component contains a polysiloxane compound having a repeating unit of Si—O bond, it can exist in a liquid state at room temperature (25 ° C.) due to its low intermolecular force.
  • a polyvalent carboxylic acid resin (A) that is preferable as an epoxy resin curing agent used in the curable resin composition for encapsulating an optical semiconductor of the present invention can also be used at room temperature by using the both-end carbinol-modified silicone oil (a) as a reaction material. It can exist in liquid form at (25 ° C.).
  • a carboxylic acid resin (A) is obtained. Further, by using a compound (c) having two or more acid anhydride groups in the molecule as a reaction raw material, two or more carbinol-modified silicone oils (a) and / or two or more in the molecule are used.
  • the polyhydric alcohol compounds (i) having two hydroxyl groups and / or the carbinol-modified silicone oil (a) at both ends and the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule are polymerized as the same molecule. .
  • the compatibility between both terminal acid anhydride adducts of both ends carbinol-modified silicone oil (a) and acid anhydride adducts of polyhydric alcohol compounds (i) having two or more hydroxyl groups in the molecule is present. If it is badly separated, by using the compound (c) having two or more acid anhydride groups in the molecule, the carbinol-modified silicone oil (a) at both ends and two or more hydroxyl groups in the molecule are used.
  • the polyhydric alcohol compound (i) possessed can be polymerized as the same molecule and can be obtained as a uniform liquid substance at room temperature (25 ° C.).
  • the both-terminal carbinol-modified silicone oil (a) which is a raw material for the polycarboxylic acid resin (A), a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule,
  • the compound (c) having two or more acid anhydride groups and the compound (d) having one acid anhydride group in the molecule will be described.
  • both terminal carbinol-modified silicone oil (a) will be described.
  • An example of the both-end carbinol-modified silicone oil (a) is a silicone compound having an alcoholic hydroxyl group at both ends represented by the following formula (1).
  • R 1 represents an alkylene group having 1 to 10 carbon atoms and an alkylene group having an ether bond
  • R 2 represents an alkyl group or phenyl group having 1 to 3 carbon atoms
  • m represents an average value of 1 to 1 100 represents each.
  • R 1 examples include alkylene groups such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene, ethoxyethylene group, propoxyethylene group
  • alkylene groups such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene, ethoxyethylene group, propoxyethylene group
  • Examples include an alkylene group having an ether bond such as a propoxypropylene group and an ethoxypropylene group. Particularly preferred are propoxyethylene group and ethoxypropylene group.
  • R 2 represents an alkyl group having 1 to 3 carbon atoms such as a methyl group or a phenyl group, and may be the same or different, but both ends carbinol-modified silicone oil (a), A polyhydric alcohol compound (i) having a hydroxyl group, a compound (d) having one acid anhydride group in the molecule, and a compound (c) having two or more acid anhydride groups in the molecule as necessary.
  • a methyl group is preferable compared to a phenyl group.
  • m is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
  • the both-end carbinol-modified silicone oil (a) represented by the formula (1) is, for example, X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004.
  • SF8427 both manufactured by Toray Dow Corning Co., Ltd.
  • XF42-B0970, XF42-C3294 both manufactured by Momentive Performance Materials Japan Godo Kaisha), etc.
  • These two terminal carbinol-modified silicone oils can be used alone or in combination.
  • X-22-160AS, KF6001, KF6002, BY16-201, and XF42-B0970 are preferable.
  • polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule examples include a terminal alcohol polyester compound (b), a hydrocarbon polyhydric alcohol compound (j), and a terminal alcohol polycarbonate compound.
  • R 3 and R 4 each independently represent an alkylene group having 1 to 10 carbon atoms, and n represents an average value of 1 to 100
  • R 3 examples include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain of 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, an alkylene group having a branched chain having 1 to 10 carbon atoms or an alkylene group having a cyclic structure is preferable. It is preferable from the viewpoint.
  • R 4 examples include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene.
  • a linear alkylene group having 1 to 10 carbon atoms is preferable, and propylene, butylene, pentylene, and hexylene are particularly preferable from the viewpoint of adhesion of a cured product to a substrate or the like.
  • n is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
  • the terminal alcohol polyester compound (b) has a weight average molecular weight (Mw) of 500 to 20000, preferably 500 to 5000, and more preferably 500 to 3000.
  • Mw weight average molecular weight
  • the weight average molecular weight means a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography).
  • polyester polyols having an alcoholic hydroxyl group at the terminal examples include polyester polyols having an alcoholic hydroxyl group at the terminal. Specific examples thereof are polyester polyols such as Kyowapol 1000PA, 2000PA, 3000PA, 2000BA (all manufactured by Kyowa Hakko Chemical Co., Ltd.); Adeka New Ace Y9-10, YT-101 (all ADEKA ( Plaxel 220EB, 220EC (both manufactured by Daicel Chemical Industries); Polylite OD-X-286, OD-X-102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, OD-X-2554, OD-X-2108, OD-X-2376, OD-X-2044, OD-X-688, OD-X-2068, OD-X-2547, OD-X-2420, OD-X-2523, OD-X-2555 (all D Manufactured by C Corporation); HS2H-201AP,
  • the hydrocarbon polyhydric alcohol compound (j) is a hydrocarbon compound having two or more hydroxyl groups in the molecule, such as ethylene glycol, propylene glycol, propanediol, butanediol, dimethylethanol, pentanediol, neopentyl glycol, Hexanediol, dimethylbutanediol, heptanediol, dimethylpentanediol, diethylpropanediol, octanediol, dimethylhexanediol, diethylbutanediol, nonanediol, dimethylheptanediol, diethylpentanediol, decanediol, dimethyloctanediol, diethylhexanediol , Ethylbuty
  • hydrocarbon polyhydric alcohol compounds (j) can be used alone or in combination of two or more.
  • tricyclodecane dimethanol, ditrimethylolpropane, and diglycerin are preferable from the viewpoint of the strength of the cured product and the transparency of the cured product.
  • terminal alcohol polycarbonate compound Although it does not specifically limit as a terminal alcohol polycarbonate compound, for example, the polycarbonate compound etc. which are shown by following formula (7) and have a hydroxyl group at the terminal are mentioned.
  • R 8 represents an alkylene group having 1 to 10 carbon atoms, and s represents an average value of 1 to 100
  • R 8 include straight-chain alkylene groups having 1 to 10 carbon atoms such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, Examples thereof include alkylene groups having a branched chain of 1 to 10 carbon atoms such as isobutylene, isopentylene, neopentylene, diethylpentylene, and the like, and alkylene groups having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene.
  • linear alkylene groups having 4 to 7 carbon atoms such as butylene, pentylene, hexylene and heptylene are preferable from the viewpoint of workability because the viscosity of the terminal alcohol polycarbonate compound is not too high.
  • a plurality of R 8 present in the formula (7) may be the same or different.
  • s is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
  • the weight average molecular weight (Mw) of the terminal alcohol polycarbonate compound is preferably 500 to 20000, more preferably 500 to 5000, and still more preferably 500 to 3000. If the weight average molecular weight is 500 or more, the cured product hardness of the curable resin composition for encapsulating an optical semiconductor of the present invention is not excessively high, and there is no concern that cracks may occur in a heat cycle test or the like. Moreover, if a weight average molecular weight is 20000 or less, there is no fear that stickiness of hardened
  • the weight average molecular weight means a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography).
  • the amount of the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule is not particularly limited, but is preferably 0.5 to 200 with respect to 100 parts by weight of the carbinol-modified silicone oil (a) at both ends. Parts by weight, more preferably 5 to 50 parts by weight, still more preferably 10 to 30 parts by weight. If it is 0.5 parts by weight or more, it is preferable because the mechanical strength of the cured product is further improved, and if it is 200 parts by weight or less, the heat-resistant transparency of the cured product is further improved or obtained polyvalent carboxylic acid resin (A). This is preferable because the viscosity becomes more appropriate.
  • the compound (c) having two or more carboxylic anhydride groups in the molecule is, for example, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid.
  • the compound (c) having two or more carboxylic acid anhydride groups in the molecule can be used alone or in combination.
  • 1,2,3,4-butanetetracarboxylic dianhydride 1,2 4,4-cyclohexanetetracarboxylic dianhydride and 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride are preferred.
  • 1,2,3,4-butanetetracarboxylic dianhydride is preferred.
  • Compound (d) having one carboxylic anhydride group in the molecule includes succinic acid anhydride, methyl succinic acid anhydride, ethyl succinic acid anhydride, 2,3-butanedicarboxylic acid anhydride, 2,4-pentanedicarboxylic acid.
  • Anhydrides saturated aliphatic carboxylic acid anhydrides such as 3,5-heptanedicarboxylic acid anhydride, maleic acid anhydrides, unsaturated aliphatic carboxylic acid anhydrides such as dodecyl succinic acid anhydride, hexahydrophthalic acid anhydrides, Methylhexahydrophthalic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, nadic acid anhydride, methylnadic acid anhydride , Bicyclo [2,2,2] octane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2 -Cyclic saturated aliphatic carboxylic acid anhydride such as anhydride, tetrahydrophthalic acid anhydride
  • the compound (d) having one carboxylic anhydride group in the molecule can be used alone or in combination.
  • hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, Norbornane-2,3-dicarboxylic acid anhydride, methylnorbornane-2,3-dicarboxylic acid anhydride, and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride are preferred. More preferred are methylhexahydrophthalic anhydride and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and particularly preferred is methylhexahydrophthalic anhydride.
  • the amount of the compound (c) having two carboxylic anhydride groups in the molecule is usually 5 to 1000 per 100 parts by weight of the compound (d) having one carboxylic anhydride group in the molecule. Part by weight, preferably 10 to 500 parts by weight, more preferably 15 to 300 parts by weight. When it is larger than 300 parts by weight, the polyvalent carboxylic acid resin (A) may have a too high molecular weight, resulting in poor workability.
  • Both ends carbinol-modified silicone oil (a), polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, compound (c) having two or more carboxylic anhydride groups in the molecule, intramolecular
  • the amount of the compound (d) having one carboxylic acid anhydride group is the total alcohol of the carbinol-modified silicone oil (a) at both ends and the polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule.
  • the total carboxylic acid with the compound (c) having two or more carboxylic acid anhydride groups in the molecule is preferably 0.5 to 2.0 equivalents, more preferably 0.8 to 1.5 equivalents. If it is 0.5 equivalent or more, it is preferable because the mechanical strength of the cured product is good, and if it is 2.0 equivalent or less, a large amount of carboxylic acid anhydride groups do not remain and storage stability becomes good.
  • the production of the polyvalent carboxylic acid resin (A) can be performed in a solvent or without a solvent.
  • a solvent carbinol-modified silicone oil (a) at both ends, a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, a compound (d) having one carboxylic anhydride group in the molecule, Any solvent that does not react with the compound (c) having two or more carboxylic acid anhydride groups in the molecule can be used without particular limitation.
  • solvents examples include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile
  • ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable.
  • These solvents may be used alone or in combination of two or more.
  • the amount used is that the carbinol-modified silicone oil (a) at both ends, a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, and one carboxylic anhydride group in the molecule.
  • 0.5 to 300 parts by weight is preferable with respect to 100 parts by weight in total of the compound (d) having the compound (d) and the compound (c) having two or more carboxylic anhydride groups in the molecule.
  • the polyvalent carboxylic acid resin (A) can be produced without a catalyst or with a catalyst.
  • usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide,
  • a catalyst When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
  • the amount used thereof is as follows: carbinol-modified silicone oil (a) at both ends, polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, one carboxylic anhydride group in the molecule. 0.05 to 10 parts by weight is preferable with respect to 100 parts by weight in total of the compound (d) having, and the compound (c) having two or more carboxylic anhydride groups in the molecule when used.
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like.
  • an alcoholic solvent such as methanol or ethanol or water means that the unreacted compound (c) having two or more carboxylic acid anhydride groups in the molecule or one carboxylic acid anhydride in the molecule. Since it reacts with the compound (d) having a physical group, it is preferable to avoid it.
  • the reaction temperature during the production of the polyvalent carboxylic acid resin (A) is usually 20 to 160 ° C., preferably 50 to 150 ° C., particularly preferably 60 to 145 ° C., although it depends on the amount of catalyst and the solvent used.
  • the total reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the reaction may be carried out in two or more stages. For example, the reaction may be carried out at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours.
  • the compound (d) having one carboxylic anhydride group in the molecule is often highly volatile. When such a compound is used, it is reacted at 20 to 100 ° C.
  • the catalyst can be removed by quenching and / or washing with water as necessary, but it is left as it is and used as a curing accelerator for the curable resin composition of the present invention.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone
  • esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate
  • hydrocarbons such as hexane, cyclohexane, toluene and xylene.
  • the polycarboxylic acid resin (A) thus obtained is normally a liquid having fluidity at 25 ° C.
  • the molecular weight is preferably from 800 to 80000, more preferably from 1000 to 10000, particularly preferably from 1500 to 8000, as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the fluidity at 25 ° C. may be lowered. May be inferior.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
  • the acid value (measured by the method described in JIS K-2501) of the produced polycarboxylic acid resin (A) is preferably 35 to 200 mgKOH / g, more preferably 50 to 180 mgKOH / g, particularly 60-150 mgKOH / g is preferred.
  • the functional group equivalent is less than 35 mgKOH / g, the mechanical properties of the cured product tend to deteriorate, and when it exceeds 150 mgKOH / g, the cured product tends to be hard and the elastic modulus tends to be too high.
  • the viscosity of the polyvalent carboxylic acid resin (A) is preferably from 50 to 800,000 mPa ⁇ s, more preferably from 500 to 100,000 mPa ⁇ s, particularly from 800 to Those having a viscosity of 30,000 mPa ⁇ s are preferred.
  • the viscosity is less than 50 mPa ⁇ s, the viscosity may be too low to be suitable as an optical semiconductor encapsulant, and when it exceeds 800,000 mPa ⁇ s, the viscosity may be too high and workability may be poor. is there.
  • two or more acid anhydrides, polyvalent carboxylic acids, and polyvalent carboxylic acid resins (A) may be used in combination.
  • a liquid acid anhydride and / or a polyvalent carboxylic acid resin (A) is used in combination, It is desirable to use it as a liquid mixture.
  • the acid anhydride and / or the polyvalent carboxylic acid resin (A) can be used in a proportion of 0.5 to 99.5% by weight of the total epoxy resin curing agent.
  • the proportion of the total amount of the polyvalent carboxylic acid resin (A) in the total curing agent is preferably 30% by weight or more, and particularly preferably 40% by weight or more.
  • the curing agent that can be used in combination include amine compounds, amide compounds, phenol compounds, and the like.
  • curing agents that can be used include amines and polyamide compounds (diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and dimer of linolenic acid, etc.)
  • Polyphenols bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fe (Phenol, alkyl-substituted
  • halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols, etc. Imidazole, trifluoroborane -. Amine complex, guanidine derivatives, etc.) and the like, but the invention is not limited to these may be used alone, or two or more may be used.
  • the epoxy resin contained in the curable resin composition for optical semiconductor encapsulation of the present invention will be described.
  • the epoxy resin include an epoxy resin that is a glycidyl etherified product of a phenol compound, an epoxy resin that is a glycidyl etherified product of various novolak resins, an alicyclic epoxy resin, an aliphatic epoxy resin, a heterocyclic epoxy resin, and a glycidyl ester.
  • Epoxy resins glycidylamine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, condensates of silicon compounds having epoxy groups with other silicon compounds, polymerizable unsaturated compounds having epoxy groups and others And other copolymers with other polymerizable unsaturated compounds.
  • the silicone skeleton epoxy resin (B) which is one embodiment of the condensate of the silicon compound having an epoxy group and the other silicon compound is preferable from the viewpoint of transparency of the cured product and heat-resistant transparency.
  • the silicone skeleton epoxy resin (B) of the present invention is a resin having an epoxy group having a silicone bond (Si—O bond) as a main skeleton.
  • the silicone skeleton epoxy resin (B) of the present invention is a resin having an epoxy group having a silicone bond (Si—O bond) as a main skeleton.
  • Hydrolysis condensation polymer of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, or a condensation polymer of an alkoxysilane compound having an epoxy group and a silanol-terminated silicone oil can be obtained.
  • an addition polymerization product of a silicone resin having a hydrosilyl group (SiH group) and an epoxy compound having an unsaturated hydrocarbon group such as a vinyl group can also be exemplified.
  • the silicone skeleton epoxy resin (B) in the present invention includes, as raw materials, a silanol-terminated silicone oil (e) and an epoxy group-containing silicon compound (f) (and, if necessary, an alkoxysilicon compound (g)).
  • a silanol-terminated silicone oil (e) and an epoxy group-containing silicon compound (f) (and, if necessary, an alkoxysilicon compound (g)).
  • the silicone skeleton epoxy resin obtained through the two-stage manufacturing process is most preferable.
  • silanol-terminated silicone oil (e) is a silicone resin represented by the following formula (3) and having silanol groups at both ends.
  • R 5 represents an alkyl group having 1 to 3 carbon atoms such as a methyl group or a phenyl group.
  • a plurality of R 5 may be the same or different, but it is preferable to contain a phenyl group from the viewpoint of compatibility with other resins, high refractive index, and improvement in sulfur resistance. From the viewpoint of adjusting the viscosity of the silicone skeleton epoxy resin (B), it is preferable to contain a methyl group.
  • the proportion of the phenyl group contained is preferably 0.05 to 2.0 mol, more preferably 0.1 to 1.0 mol, and still more preferably 0.15 to 0.3 mol, per 1 mol of the substituted methyl group. Particularly preferred is 0.15 to 0.2 mol. If it is less than 0.05 mol, not only the compatibility with other raw materials in the composition is inferior, but also the refractive index of the cured product is low, the light extraction efficiency of the LED may deteriorate, and the sulfidation resistance may be inferior. If the amount exceeds 2.0 mol, the light resistance (UV resistance) of the cured product may be inferior or the heat cycle resistance may be inferior.
  • p represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • p represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • the silanol-terminated silicone oil (e) preferably has a weight average molecular weight (Mw) in the range of 400 to 3000 (GPC).
  • Mw weight average molecular weight
  • the molecular weight of the silanol-terminated silicone oil (e) is the weight average molecular weight (Mw) calculated in terms of polystyrene based on the value measured under the following conditions using GPC (gel permeation chromatography). means.
  • Silanol-terminated silicone oil (e) is produced, for example, by hydrolyzing and condensing dimethyldialkoxysilane, methylphenyldichlorosilane, diphenylalkoxysilane, dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane. it can.
  • preferable silanol-terminated silicone oil (e) include the following product names.
  • PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd. X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive Co., Ltd.
  • the epoxy group-containing silicon compound (f) in the present invention is an alkoxysilicon compound represented by the formula (4).
  • X is not particularly limited as long as X is an organic group having an epoxy group.
  • an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, ⁇ -glycidoxybutyl, glycidyl group, ⁇ - (3,4-epoxy Cyclohexyl) ethyl group, ⁇ - (3,4-epoxycyclohexyl) propyl group, ⁇ - (3,4-epoxycycloheptyl) ethyl group, 4- (3,4-epoxycyclohexyl) butyl group, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group.
  • a glycidoxy group such as
  • alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group and an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group for example, ⁇ -Glycidoxyethyl group, ⁇ -glycidoxypropyl group, ⁇ - (3,4-epoxycyclohexyl) ethyl group are preferable, and since ⁇ - (3,4-epoxycyclohexyl) ethyl group can be particularly suppressed in coloration Is preferred.
  • R 6 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 6 is preferably a methyl group or a phenyl group from the viewpoints of compatibility and heat-resistant transparency of the cured product.
  • R 7 in the formula (4) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • R 7 is preferably a methyl group or an ethyl group, particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.
  • Q in the formula (4) is an integer representing 0, 1, 2 and r represents (3-q).
  • q is preferably 0 or 1.
  • epoxy group-containing silicon compound (f) examples include ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxy.
  • the alkoxy silicon compound (g) represented by the following formula (5) can be used together with the epoxy group-containing silicon compound (f).
  • the viscosity, refractive index and the like of the silicone skeleton epoxy resin can be adjusted.
  • R 6 and R 7 have the same contents as described above, s is an integer, 0, 1, 2, 3 and t is (4-s).
  • preferred alkoxysilicon compounds (g) that can be used in combination include methyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diphenyl. Examples include dimethoxysilane and diphenyldidiethoxysilane. Among these, methyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diphenyldimethoxysilane are preferable.
  • At least one of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and the alkoxysilicon compound (g) if necessary) has an aromatic skeleton. It is preferable to use a compound having a phenyl group from the viewpoint of an increase in refractive index and a reduction in sulfur resistance, and it is particularly preferable to use a compound having a phenyl group.
  • the silanol-terminated silicone oil (e) preferably has a phenyl group.
  • the alkoxy group is reacted in an amount less than 1.5 equivalents, two or more alkoxy groups in the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxy silicon compound (g)) are terminated with a silanol-terminated silicone. It will react with the silanol group of oil (e), and it will become a polymer
  • (Manufacturing process 1) A step of obtaining a modified silicone oil (h) by condensing the silanol group of the silanol-terminated silicone oil (e) and the alkoxy group of the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)). .
  • (Manufacturing process 2) A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
  • the modified silicone oil (h) and the epoxy group-containing silicon compound (f) (and the alkoxysilicon compound (g) as required) are polymerized through the production steps 1 and 2 described above. To do.
  • the silanol group of the silanol-terminated silicone oil (e) and the alkoxy group of the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxy silicon compound (g)) are ensured.
  • a modified silicone oil (h) and then subjecting the remaining alkoxy group to dealcohol hydrolysis hydrolysis, a uniform and stable product can be obtained.
  • the condensation reaction between the silanol group and the alkoxy group and the polymerization reaction between the alkoxysilanes become a competitive reaction, resulting in a difference in the reaction rate between the products and the compatibility of the products. Due to the difference, a heterogeneous compound can be obtained, or a large amount of silanol-terminated silicone oil (e) having no epoxy group can be adversely affected.
  • the reaction is preferably performed in the presence of a solvent, and alcohol is particularly preferable among the solvents from the viewpoint of reaction control.
  • alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc.
  • primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols.
  • Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like.
  • Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture.
  • the amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
  • the amount of alcohol used is 2% by weight or more based on the total weight of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)). It is preferable to contain. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight. When the amount exceeds 100% by weight, the progress of the reaction is extremely slow, and when it is less than 2% by weight, the reaction other than the intended reaction proceeds, the molecular weight increases, gelation, increase in viscosity, An increase in modulus may occur. In this reaction, other solvents may be used in combination as necessary.
  • solvents examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene, and xylene. Can be illustrated.
  • the reaction in the production process 1 can be carried out without a catalyst, the reaction proceeds slowly with no catalyst, so that it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time.
  • the catalyst that can be used any compound that exhibits acidity or basicity can be used.
  • the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of basic catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal hydroxides such as cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc.
  • Inorganic bases such as alkali metal carbonates and organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • a basic catalyst is particularly preferable, and an inorganic base is preferable in terms of easy catalyst removal from the product.
  • alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, particularly hydroxides are preferable.
  • the amount of the catalyst added is usually 0.001 to 5% by weight based on the total weight of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and the alkoxysilicon compound (g) if necessary). Preferably, it is 0.01 to 2% by weight.
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol.
  • the reaction product produced thereby may not be compatible with the silanol-terminated silicone oil (e) and may become cloudy.
  • the allowable range of moisture is usually 0.5% by weight or less based on the total weight of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)). More preferably, it is 0.3% by weight or less, and it is more preferable that there is as little moisture as possible.
  • the reaction temperature in the production step 1 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the modified silicone oil (h) obtained in the production process 1 is considered to have a structure represented by the following formula (6) as a main component (the confirmation of the structure is difficult and accurate Cannot be identified.)
  • R 5 and p have the same meaning as described above.
  • R 8 represents any one of the aforementioned X, R 6 , and —OR 7
  • R 9 represents R 6 and / or —OR 7 , respectively.
  • the manufacturing process 2 After completion of the reaction in the production step 1, water is added, and the alkoxy groups remaining in the resulting modified silicone oil (h) are polymerized (sol-gel reaction). At this time, the silicon compound (f) containing the above-mentioned epoxy group (and the alkoxysilicon compound (g) if necessary) and the catalyst may be added within the above-mentioned amounts as necessary. This reaction is performed between (1) the modified silicone oils (h) and / or (2) the silicon compound (f) containing an epoxy group (and the alkoxysilicon compound (g) if used).
  • the polymerization reactions (1) to (4) are considered to proceed simultaneously in parallel.
  • a basic inorganic catalyst is preferable as the catalyst, and a necessary amount may be added in the production process 1 in advance. However, it is not preferable to exceed the range described as a preferred embodiment in the production process 1.
  • alcohol is preferably used as the solvent in the production process 2.
  • examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc.
  • primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. The presence of these alcohols contributes to molecular weight control and stability.
  • the addition amount of the alcohol the total weight of the silanol-terminated silicone oil (e) and the silicon compound (f) containing an epoxy group (and the alkoxysilicon compound (g) if necessary) charged in the production process 1, It is 20 to 200% by weight, preferably 20 to 150% by weight, particularly preferably 30 to 120% by weight.
  • water is added (ion exchange water, distilled water, or clean water can be used).
  • the amount of water used is usually 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. .
  • the amount of water is less than 0.5 equivalent, the progress of the reaction is slow, and the silicon compound (f) containing an epoxy group (and the alkoxysilicon compound (g) if necessary) remains without reacting.
  • a problem such as the above will occur, a sufficient network cannot be formed, and a curing failure will occur even after the subsequent curing of the curable resin composition.
  • it exceeds 8.0 equivalents the molecular weight control is not effective and the molecular weight becomes higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the silicone skeleton epoxy resin (B).
  • the reaction temperature in production step 2 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the catalyst is removed by quenching and / or washing with water as necessary.
  • a solvent that can be separated from water.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • the catalyst may be removed only by washing with water, but the reaction is carried out under acidic or basic conditions. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using Any compound that is acidic or basic can be used for the neutralization reaction.
  • the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate.
  • Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphates such as polyphosphoric acid, sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • an inorganic base or an inorganic acid is particularly preferable because it can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.
  • adsorbent examples include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
  • activated clay for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168 are manufactured by Mizusawa Chemical Co., Ltd. Galeon Earth, Mizuka Ace, etc. are listed.
  • Examples of the activated carbon include CL-H, Y-10S, and Y-10SF manufactured by Ajinomoto Fine Techno Co., and S, Y, FC, DP, SA1000, K, A, KA, M, manufactured by Phutamura Chemical Co., Ltd.
  • Examples thereof include CW130BR, CW130AR, and GM130A.
  • Examples of zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa.
  • As a synthetic adsorbent for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd.
  • 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, manufactured by Dow Chemical Company, Dowex 66, HCR-S, HCR-W2, MAC-3, etc. may be mentioned.
  • the adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
  • the reaction After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration.
  • the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
  • reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
  • the silicone skeleton epoxy resin (B) of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
  • the appearance of the silicone skeleton epoxy resin (B) thus obtained is usually a colorless and transparent liquid having a fluidity at 25 ° C.
  • the molecular weight is preferably 800 to 3000, more preferably 1000 to 3000, and particularly preferably 1500 to 2800 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 3000, the encapsulant may be peeled off from the substrate at the time of solder reflow of the LED element encapsulated using the weight average molecular weight.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
  • the epoxy equivalent (measured by the method described in JIS K-7236) of the silicone skeleton epoxy resin (B) is 300 to 1500 g / eq. Preferably 320 to 1400 g / eq, more preferably 350 to 1200 g / eq, and particularly preferably 350 to 1000 g / eq.
  • the silicone skeleton epoxy resin (B) may be a single silicone skeleton epoxy resin (B) or a mixture of two or more kinds of silicone skeleton epoxy resins (B).
  • the epoxy resin is a single silicone skeleton epoxy resin (B)
  • the epoxy resin is a mixture of two or more types of silicone skeleton epoxy resins (B).
  • the epoxy equivalent of the sum of the epoxy equivalent of the specific silicone skeleton epoxy resin (B) ⁇ (content of the specific silicone skeleton epoxy resin (B) / total amount of the silicone skeleton epoxy resin (B) fat) is 300 to 1500 g. / Eq, preferably 350 to 1000 g / eq.
  • the viscosity of the silicone skeleton epoxy resin (B) is preferably 50 to 20,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, particularly 800 to 5 1,000 mPa ⁇ s is preferred.
  • the viscosity is less than 50 mPa ⁇ s, the viscosity is too low and may not be suitable as an optical semiconductor sealing material.
  • it exceeds 20,000 mPa ⁇ s the viscosity is too high and workability is reduced. There is.
  • the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, and particularly preferably 6 to 15 mol%. preferable.
  • the ratio of silicon atoms bonded to three oxygen atoms derived from silsesquioxane with respect to all silicon atoms is less than 3 mol%, the cured product tends to be too soft and may cause surface tack and scratches. .
  • it exceeds 50 mol% hardened
  • the proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the silicone skeleton epoxy resin (B).
  • silicone skeleton epoxy resin (B) As the silicone skeleton epoxy resin (B), the above silanol-terminated silicone oil (e) is not used, and a silicon compound (f) containing an epoxy group (and an alkoxy silicon compound (g) if necessary) is condensed. Polymers can also be exemplified.
  • the silicon compound (f) containing an epoxy group represented by the above formula (4) (and optionally represented by the above formula (5) can be produced by a one-step reaction.
  • the alkoxysilicon compound (g)) can be obtained by adding water dropwise in the presence of a catalyst and a solvent as described above and condensing under the conditions of a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 24 hours.
  • a condensate of the silicon compound (f) containing an epoxy group (and, if necessary, the alkoxysilicon compound (g)) can be obtained by quenching, removing, washing with water, and concentrating as described above. .
  • An embodiment of the silicone skeleton epoxy resin (B) that is particularly preferable from the viewpoint of excellent sulfidation resistance and excellent pot life of the present invention is as follows.
  • an epoxy resin can be used alone or in combination with the silicone skeleton epoxy resin (B) described above.
  • Other epoxy resins that can be used include epoxy resins that are glycidyl etherified products of phenolic compounds, epoxy resins that are glycidyl etherified products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, Glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, copolymers of polymerizable unsaturated compounds having an epoxy group and other polymerizable unsaturated compounds, etc. Can be mentioned.
  • Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-methylene -Bis (4-methyl-6-tert-butylphenol), 4,4'-butylidene-bis (3-methyl-6
  • novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
  • Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate. And a formula epoxy resin.
  • Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
  • heterocyclic epoxy resin examples include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
  • examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
  • examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
  • epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • An epoxy resin obtained by glycidylating any of the halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • Marproof G-0115S, G-0130S and G-0250S are commercially available products.
  • the polymerizable unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, 4 -Vinyl-1-cyclohexene-1,2-epoxide and the like.
  • Examples of other polymerizable unsaturated compound copolymers include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, and vinylcyclohexane.
  • the above epoxy resins may be used alone or in combination of two or more.
  • an alicyclic epoxy resin is preferable from the viewpoints of transparency, heat-resistant transparency, and light-resistant transparency.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc.
  • Diols Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, and tetraols such as pentaerythritol and ditrimethylolpropane.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to them (reference: review epoxy resin basic edition I p76-85, the entire contents of which are incorporated herein by reference).
  • the ratio of the silicone skeleton epoxy resin (B) to the total epoxy resin composition is preferably 60 to 99 parts by weight, -97 parts by weight are particularly preferred. If it is less than 60 parts by weight, the light resistance (UV resistance) of the cured product may be lowered.
  • the blending ratio of the total epoxy resin containing the silicone skeleton epoxy resin (B) and the epoxy resin curing agent is 0.5 to 1.2 with respect to 1 equivalent of the epoxy groups of the total epoxy resin. It is preferred to use an equivalent amount of curing agent. When the amount is less than 0.5 equivalent or 1 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • a curing catalyst having a melting point of 40 to 200 ° C. and a curing catalyst that is liquid at room temperature (25 ° C.) are used as long as the pot life characteristics of the curable resin composition are not impaired. be able to.
  • a curing catalyst which is liquid at room temperature (25 ° C.) zinc octylate is mentioned because of its excellent transparency and sulfidation resistance.
  • the curing catalyst having a melting point of 40 to 200 ° C is 60 to 99 parts by weight. Preferably there is. If it is less than 60 parts by weight, the pot life may be reduced.
  • the total curing catalyst is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the total epoxy resin.
  • the curable resin composition of the present invention it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product by using a coupling agent as necessary.
  • a coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Trimethoxysilane N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate
  • the curable resin composition of the present invention it is possible to supplement mechanical strength and the like without impairing transparency by using a nano-order level inorganic filler as necessary.
  • a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less.
  • examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
  • a phosphor can be added to the curable resin composition of the present invention as necessary.
  • the phosphor has, for example, a function of forming white light by absorbing a part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light.
  • the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, the rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of such a phosphor those known in this field are used, but the average particle size is usually 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m.
  • the amount added is usually 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • a thixotropic imparting agent such as fine silica powder (also referred to as “aerosil” or “aerosol”) can be added for the purpose of preventing sedimentation of various phosphors during curing.
  • silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
  • the curable resin composition of the present invention can contain an amine compound as a light stabilizer, or a phosphorus compound and a phenol compound as an antioxidant.
  • the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2
  • the following commercially available products can be used as the amine compound as the light stabilizer.
  • the commercially available amine compound is not particularly limited.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited.
  • the commercially available phosphorus compounds are not particularly limited.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • the commercially available phenolic compounds are not particularly limited. , ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd. , Sumilizer MDP-S, Sumil izer BBM-S, SumizerzGM, SumizerilGS (F), SumizerzGP, and the like.
  • THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like can be mentioned as manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but with respect to the total weight of the curable resin composition of the present invention, It is in the range of 0.005 to 5.0% by weight.
  • a curable resin composition of the present invention additives such as a curing catalyst having a melting point of 40 to 200 ° C., an epoxy resin, an epoxy resin curing agent, a coupling agent, an antioxidant, and a light stabilizer are sufficiently mixed.
  • a curable resin composition can be prepared and used as a sealing material.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens.
  • the curable resin composition of this invention can be used for this sealing material.
  • an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance.
  • a compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
  • the injection method include a dispenser.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • For the purpose of reducing internal stress generated during heat-curing for example, after pre-curing at 80 to 120 ° C.
  • X to Y indicates a range from X to Y, and the range includes X and Y.
  • Synthesis Example 1 (Synthesis Example of Silicone Skeleton Epoxy Resin (B) in which Silanol-Terminated Silicone Oil (e) and Epoxy Group-Containing Silicon Compound (f) are Manufactured Through Two-Step Manufacturing Process) (Manufacturing process 1) 394 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group with a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 475 Part, 4 parts of 0.5% KOH methanol solution and 36 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C.
  • Synthesis Example 2 (Synthesis Example of Silicone Skeleton Epoxy Resin (B) in which Silanol-Terminated Silicone Oil (e) and Epoxy Group-Containing Silicon Compound (f) are Manufactured Through Two-Step Manufacturing Process)
  • Manufacturing process 1 444 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group with a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 400 Part, 3.6 parts of 0.5% KOH methanol solution and 32.4 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C.
  • Synthesis example 4 (Obtained by addition reaction of a carbinol-modified silicone oil (a) at both ends, a hydrocarbon polyhydric alcohol compound (j), and a compound (c) having two or more carboxylic anhydride groups in the molecule)
  • Synthesis Example of Polycarboxylic Acid Resin (A) In a glass separable flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 589 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), tricyclode which is a hydrocarbon polyhydric alcohol compound 74 parts of candimethanol and 337 parts of Ricacid MH (methylhexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) were added and reacted at 90 ° C.
  • the acid value of the obtained compound was 111.1 mgKOH / g, the weight average molecular weight was 1216, the viscosity was 7870 mPa ⁇ s, and the appearance was a colorless and transparent liquid.
  • Example 1 40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and stearic acid as a curing catalyst 1.1 parts of zinc (melting point: 120 to 126 ° C.) was added, mixed and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
  • Example 2 40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and undecylenic acid as a curing catalyst 1.1 parts of zinc (melting point: 115 to 125 ° C.) was added, mixed, and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
  • Example 3 40 parts of the silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of the silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and 12- 1.6 parts of zinc hydroxystearate (melting point: 145 to 155 ° C.) was added, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
  • Example 4 40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and 12- 1.1 parts of zinc hydroxystearate (melting point: 145 to 155 ° C.) was added, mixed and defoamed for 5 minutes to obtain a curable resin composition for sealing an optical semiconductor of the present invention.
  • Example 5 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, 5 parts of ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical), epoxy As a resin curing agent, 59.9 parts of the polyvalent carboxylic acid resin (A-2) obtained in Synthesis Example 4 and 1.1 parts of zinc stearate (melting point: 120 to 126 ° C.) as a curing catalyst were mixed and mixed for 5 minutes. Defoaming was performed to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
  • Comparative Example 1 40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and octylic acid as a curing catalyst 0.5 parts of zinc (liquid at room temperature (25 ° C.)) was added, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
  • Comparative Example 2 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, 5 parts of ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical), epoxy 59.9 parts of the polyvalent carboxylic acid resin (A-2) obtained in Synthesis Example 4 as a resin curing agent and 1.1 parts of zinc octylate (liquid at room temperature (25 ° C.)) as a curing catalyst were mixed and mixed. Defoaming was performed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
  • Spectrophotometer measurement conditions Manufacturer Hitachi High-Technologies Corporation Model: U-3300 Slit width: 2.0nm Scan speed: 300 nm / min
  • the durometer hardness is moderate hardness, the cured product transmittance is excellent, and it is suitable as a resin composition for optical semiconductor encapsulation.
  • This application is based on a Japanese patent application filed on September 9, 2011 (Japanese Patent Application No. 2011-196936), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
  • the curable resin composition of the present invention is extremely useful as a sealing material for optical semiconductor elements (LEDs) because it is extremely excellent in sulfidation resistance and pot life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a resin composition that is extremely useful as a sealant for an optical semiconductor (such as an LED product) having excellent pot life and sulfur resistance. The curable resin composition for sealing an optical semiconductor comprises a curing catalyst having a melting point between 40 and 200ºC and an epoxy resin and/or epoxy resin curing agent. Preferably the epoxy resin curing agent is, for instance, polyvalent carboxylic acid resin (A)obtained by addition reaction of a dual end-type carbinol-modified silicone oil represented by formula (1), a polyhydric alcohol compound having two or more hydroxyl groups per molecule, and a compound having one carboxylic anhydride group per molecule. (In formula (1), R1 is an alkylene group, and the like, R2 is an alkyl group, and the like, and m is an average value and is between 1 and 100.)

Description

光半導体素子封止用硬化性樹脂組成物およびその硬化物Curable resin composition for optical semiconductor element sealing and cured product thereof
 本発明は光半導体素子封止用途に好適な硬化性樹脂組成物、及びその硬化物に関する。 The present invention relates to a curable resin composition suitable for optical semiconductor element sealing applications, and a cured product thereof.
 LED(Light Emitting Diode、発光ダイオード)等の光半導体素子封止用の樹脂として、機械強度、接着力に優れることからビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂等を用いた液状のエポキシ樹脂組成物が用いられていた(特許文献1を参照)。近年、LEDは自動車用ヘッドランプや照明用途など高い輝度が求められる分野で使用されるようになってきており、それに伴い、光半導体素子を封止する樹脂には、UV耐性、耐熱性が特に要求されるようになってきた。しかし、前述したような、ビスフェノール型エポキシ樹脂や脂環式エポキシ樹脂等では充分なUV耐性、耐熱性があるとはいい難く、高輝度が求められる分野では使用できない場合があった。そこで、高いUV耐性、耐熱性等を有する封止材として、不飽和炭化水素基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンを用いたシリコーン樹脂封止材が用いられている(特許文献2を参照)。しかしながら、このようなシリコーン樹脂を用いてなる封止材は、UV耐性、耐熱性が優れているものの、封止表面がべた付いてしまったり、ガス透過性が高かったりする問題をかかえていた。
 ガス透過性が高いという問題は、特に硫黄系のガスの透過によりLEDに用いられている銀メッキ表面が腐食され、硫化銀となることで黒化し、LEDの照度を減少させてしまうという事象を引き起こすため、対策(耐硫化性の向上)が急がれている。これにはシリコーン樹脂硬化物の架橋密度を高めたり、分子内にフェニル基などの芳香族有機基を増加させたりして対策しているが、必然的に硬化物の硬度が高くなってしまうため、ヒートサイクル(熱サイクル)耐性が劣り、クラック(ひび割れ)や基材からの剥離といった悪影響や、芳香族有機基を増加させるためUV耐性が劣るといった懸念がされている。また、未だ満足できる耐硫化性を達成できていない。
 これらの問題を解決すべく、エポキシ基やフェニル基を有するケイ素化合物の縮合物と、エポキシ樹脂硬化剤を用いた封止材の検討がされているが、未だ満足できるものではない。さらには、それら二液を混合した後の粘度上昇(ポットライフ)が早いため、作業性に劣るといった問題を抱えている。
Liquid epoxy resin composition using bisphenol-type epoxy resin, alicyclic epoxy resin, etc. as a resin for sealing optical semiconductor elements such as LED (Light Emitting Diode), because of its excellent mechanical strength and adhesive strength Has been used (see Patent Document 1). In recent years, LEDs have been used in fields that require high brightness, such as automotive headlamps and lighting applications. Accordingly, resins that encapsulate optical semiconductor elements are particularly resistant to UV and heat. It has come to be required. However, it is difficult to say that bisphenol-type epoxy resins and alicyclic epoxy resins have sufficient UV resistance and heat resistance as described above, and may not be used in fields where high luminance is required. Therefore, as a sealing material having high UV resistance, heat resistance, etc., a silicone resin sealing material using an unsaturated hydrocarbon group-containing organopolysiloxane and an organohydrogenpolysiloxane is used (see Patent Document 2). ). However, although a sealing material using such a silicone resin is excellent in UV resistance and heat resistance, it has a problem that the sealing surface becomes sticky or gas permeability is high.
The problem of high gas permeability is the phenomenon that the silver plating surface used in the LED is corroded by the permeation of sulfur-based gas and becomes blackened by becoming silver sulfide, which reduces the illuminance of the LED. Therefore, countermeasures (improvement of sulfidation resistance) are urgently required. This is done by increasing the crosslink density of the cured silicone resin or increasing the aromatic organic groups such as phenyl groups in the molecule, but inevitably increases the hardness of the cured product. There is a concern that heat cycle (thermal cycle) resistance is inferior, adverse effects such as cracking and peeling from the substrate, and UV resistance is inferior because aromatic organic groups are increased. In addition, satisfactory sulfidation resistance has not yet been achieved.
In order to solve these problems, a condensate using a silicon compound condensate having an epoxy group or a phenyl group and an epoxy resin curing agent has been studied, but it is still not satisfactory. Furthermore, since the viscosity increase (pot life) after mixing these two liquids is fast, there is a problem that workability is inferior.
日本国特開2003-277473号公報Japanese Unexamined Patent Publication No. 2003-277473 日本国特許第4636242号公報Japanese Patent No. 4636242
 本発明は、ポットライフ、耐硫化性に優れる光半導体素子封止用硬化性樹脂組成物およびその硬化物を提供することを目的とする。 An object of the present invention is to provide a curable resin composition for sealing an optical semiconductor element having excellent pot life and sulfidation resistance, and a cured product thereof.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、融点が40~200℃である硬化触媒と、エポキシ樹脂および/またはエポキシ樹脂硬化剤を含有する硬化性樹脂組成物が上記課題を解決することを見出し、本発明を完成させるに至った。
 すなわち本発明は、
As a result of intensive studies in view of the above-described actual circumstances, the present inventors have found a curable resin composition containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent. Has been found to solve the problem, and the present invention has been completed.
That is, the present invention
(1)融点が40~200℃である硬化触媒と、エポキシ樹脂および/またはエポキシ樹脂硬化剤を含有する光半導体封止用硬化性樹脂組成物。
(2)エポキシ樹脂硬化剤が、式(1)で表される両末端カルビノール変性シリコーンオイル(a)と分子内に一つのカルボン酸無水物基を有する化合物(d)との付加反応物と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と分子内に一つのカルボン酸無水物基を有する化合物(d)との付加反応物を含む多価カルボン酸樹脂(A)である(1)に記載の光半導体封止用硬化性樹脂組成物。
(1) A curable resin composition for encapsulating an optical semiconductor containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent.
(2) an epoxy resin curing agent is an addition reaction product of a carbinol-modified silicone oil (a) having both ends represented by the formula (1) and a compound (d) having one carboxylic anhydride group in the molecule; A polycarboxylic acid resin (A) comprising an addition reaction product of a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule and a compound (d) having one carboxylic anhydride group in the molecule The curable resin composition for optical semiconductor encapsulation according to (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(1)において、Rはそれぞれ独立して炭素数1~10のアルキレン基又は炭素数1~10のエーテル結合を含むアルキレン基を、Rはそれぞれ独立して炭素数1~3のアルキル基又はフェニル基を、mは平均値で1~100をそれぞれ表す。)
(3)エポキシ樹脂硬化剤が、式(1)で表される両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に一つのカルボン酸無水物基を有する化合物(d)とを付加反応することで得られる、多価カルボン酸樹脂(A)である、(1)に記載の光半導体封止用硬化性樹脂組成物。
(In Formula (1), R 1 is each independently an alkylene group having 1 to 10 carbon atoms or an alkylene group containing an ether bond having 1 to 10 carbon atoms, and R 2 is each independently having 1 to 3 carbon atoms. (M represents an average value of 1 to 100 for an alkyl group or a phenyl group.)
(3) The epoxy resin curing agent is a carbinol-modified silicone oil (a) having both ends represented by the formula (1), a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, A curable resin composition for encapsulating an optical semiconductor according to (1), which is a polyvalent carboxylic acid resin (A) obtained by addition reaction with a compound (d) having one carboxylic acid anhydride group object.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1)において、Rはそれぞれ独立して炭素数1~10のアルキレン基又は炭素数1~10のエーテル結合を含むアルキレン基を、Rはそれぞれ独立して炭素数1~3のアルキル基又はフェニル基を、mは平均値で1~100をそれぞれ表す。)
(4)多価カルボン酸樹脂(A)が、反応原料として、さらに分子内に二つ以上のカルボン酸無水物基を有する化合物(c)を含めて付加反応することで得られるものである、(3)に記載の光半導体封止用硬化性樹脂組成物。
(5)分子内に二つ以上の水酸基を有する多価アルコール化合物(i)が式(2)で表される末端アルコールポリエステル化合物である、(2)~(4)のいずれかに記載の光半導体封止用硬化性樹脂組成物。
(In Formula (1), R 1 is each independently an alkylene group having 1 to 10 carbon atoms or an alkylene group containing an ether bond having 1 to 10 carbon atoms, and R 2 is each independently having 1 to 3 carbon atoms. (M represents an average value of 1 to 100 for an alkyl group or a phenyl group.)
(4) The polyvalent carboxylic acid resin (A) is obtained by addition reaction including a compound (c) having two or more carboxylic acid anhydride groups in the molecule as a reaction raw material. (3) The curable resin composition for optical semiconductor sealing.
(5) The light according to any one of (2) to (4), wherein the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule is a terminal alcohol polyester compound represented by the formula (2): A curable resin composition for semiconductor encapsulation.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(2)において、R、Rはそれぞれ独立して炭素数1~10のアルキレン基を、mは平均値で1~100をそれぞれ表す。)
(6)エポキシ樹脂がシリコーン骨格エポキシ樹脂(B)である(1)~(5)のいずれかに記載の光半導体封止用硬化性樹脂組成物。
(7)前記シリコーン骨格エポキシ樹脂(B)が、下記製造工程1、2を経て得られた、式(3)で表されるシラノール末端シリコーンオイルと式(4)で表されるエポキシ基含有ケイ素化合物の重合物であり、JIS K-7236に記載の方法で測定したエポキシ当量が300~1500g/eqである、(6)に記載の光半導体素子封止用硬化性樹脂組成物。
製造工程1
 シラノール末端シリコーンオイルのシラノール基と、エポキシ基含有ケイ素化合物のアルコキシ基を縮合させ、変性シリコーンオイルを得る工程。
製造工程2
 製造工程1の後に、水を加え、残存するアルコキシ基の加水分解縮合を行なう工程。
(In Formula (2), R 3 and R 4 each independently represent an alkylene group having 1 to 10 carbon atoms, and m represents an average value of 1 to 100)
(6) The curable resin composition for optical semiconductor encapsulation according to any one of (1) to (5), wherein the epoxy resin is a silicone skeleton epoxy resin (B).
(7) Silanol-terminated silicone oil represented by formula (3) and epoxy group-containing silicon represented by formula (4), wherein the silicone skeleton epoxy resin (B) is obtained through the following production steps 1 and 2. The curable resin composition for optical semiconductor element encapsulation according to (6), which is a polymer of the compound and has an epoxy equivalent of 300 to 1500 g / eq measured by the method described in JIS K-7236.
Manufacturing process 1
A step of condensing a silanol group of a silanol-terminated silicone oil and an alkoxy group of an epoxy group-containing silicon compound to obtain a modified silicone oil.
Manufacturing process 2
A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(3)において、Rは炭素数1~3のアルキル基又はフェニル基を、pは平均値で3~200をそれぞれ表す。式中、複数存在するRは互いに同一であっても異なっていても良い) (In Formula (3), R 5 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and p represents an average value of 3 to 200. In the formula, a plurality of R 5 may be the same as each other. May be different)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(4)において、Xはエポキシ基を含有する有機基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、qは整数で0~2を、rは整数で(3-q)をそれぞれ表す。)
(8)融点が40~200℃である硬化触媒が、金属石鹸系硬化触媒である(1)~(7)のいずれか一項に記載の光半導体封止用硬化性樹脂組成物。
(9)金属石鹸類がカルボン酸化合物からなる亜鉛塩である(8)に記載の光半導体封止用硬化性樹脂組成物。
(10)カルボン酸化合物からなる亜鉛塩が、水酸基を有する炭素数10~30のモノカルボン酸化合物からなる亜鉛塩である(9)に記載の光半導体封止用硬化性樹脂組成物。
(11)水酸基を有する炭素数10~30のモノカルボン酸化合物が、12-ヒドロキシステアリン酸である(10)に記載の光半導体封止用硬化性樹脂組成物。
(12)水酸基を有する炭素数10~30のモノカルボン酸化合物が、ステアリン酸である(10)に記載の光半導体封止用硬化性樹脂組成物。
(13)(1)~(12)のいずれか一項に記載の光半導体封止用硬化性樹脂組成物を硬化してなる硬化物。
(14)(13)に記載の硬化物を具備するLED。
(In the formula (4), X represents an organic group containing an epoxy group, R 6 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. R 7 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, q represents an integer of 0 to 2, and r represents an integer and represents (3-q).)
(8) The curable resin composition for optical semiconductor encapsulation according to any one of (1) to (7), wherein the curing catalyst having a melting point of 40 to 200 ° C. is a metal soap-based curing catalyst.
(9) The curable resin composition for optical semiconductor encapsulation according to (8), wherein the metal soap is a zinc salt comprising a carboxylic acid compound.
(10) The curable resin composition for optical semiconductor encapsulation according to (9), wherein the zinc salt composed of a carboxylic acid compound is a zinc salt composed of a monocarboxylic acid compound having 10 to 30 carbon atoms having a hydroxyl group.
(11) The curable resin composition for optical semiconductor encapsulation according to (10), wherein the monocarboxylic acid compound having 10 to 30 carbon atoms having a hydroxyl group is 12-hydroxystearic acid.
(12) The curable resin composition for optical semiconductor encapsulation according to (10), wherein the monocarboxylic acid compound having 10 to 30 carbon atoms having a hydroxyl group is stearic acid.
(13) A cured product obtained by curing the curable resin composition for sealing an optical semiconductor according to any one of (1) to (12).
(14) An LED comprising the cured product according to (13).
 本発明によれば、融点が40~200℃である硬化触媒と、エポキシ樹脂および/またはエポキシ樹脂硬化剤を含有する硬化性樹脂組成物は、耐硫化性、ポットライフに極めて優れるため光半導体素子(LED)封止材としてきわめて有用である。 According to the present invention, since a curable resin composition containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent is extremely excellent in sulfidation resistance and pot life, an optical semiconductor device (LED) Very useful as a sealing material.
 本発明の光半導体素子封止材用硬化性樹脂組成物は、融点が40~200℃である硬化触媒と、エポキシ樹脂および/またはエポキシ樹脂硬化剤を含有することを特徴とする。 The curable resin composition for an optical semiconductor element sealing material of the present invention is characterized by containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent.
 本発明における硬化触媒とは、エポキシ基同士、エポキシ基とカルボキシル基、エポキシ基とカルボン酸無水物基、エポキシ基とアミン基、エポキシ基とチオール基、エポキシ基とアミド基等の硬化を開始または促進する化合物である。
 本発明の光半導体封止用樹脂組成物は、前記硬化触媒の中でも融点が40~200℃である硬化触媒を含有することを特徴とする。
 一般に、光半導体封止用樹脂組成物は室温にて液状であり、その成形方式としては、光半導体素子が固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された光半導体素子を浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー等が用いられている。
 注入された封止樹脂は加熱し硬化させる。硬化のための加熱は、熱風循環式、赤外線、高周波等の方法が用いられている。加熱条件は例えば80~200℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃で30分~5時間予備硬化させた後に、120~180℃で30分~10時間の条件で後硬化させることが一般的である。
 光半導体封止用硬化性樹脂組成物は、室温(25℃)において固体である触媒を選択した場合、硬化物が白濁などしてLEDの照度が劣る問題があるため、液状触媒を選択することが一般的となっている。しかし、室温(25℃)にて液状である硬化触媒を用いると硬化物外観は優れるが、室温(25℃)にて液状であるエポキシ樹脂およびエポキシ樹脂硬化剤となじむため、それらを混合後、加熱硬化前においても硬化触媒として機能し過度な粘度上昇を引き起こし、作業性に劣ってしまうことが問題視されていた。
 しかし、室温(25℃)にて固体である触媒は、室温(25℃)においては、エポキシ樹脂およびエポキシ樹脂硬化剤には完全にはなじまないため、過度な粘度上昇は引き起さない。また、加熱硬化の際にはそれら固体状触媒が融解することで触媒能を発現し、そのまま硬化するので硬化物の外観も問題とならない。
 室温(25℃)にて固体である触媒は、その融点が40~200℃であるものが作業性、加熱硬化の際に融解し触媒能を発現するという観点から好ましい。この場合において、過度な粘度上昇を抑える観点から、融点が100~160℃の硬化触媒を使用することがより好ましく、120~160℃の硬化触媒を使用することが特に好ましい。
The curing catalyst in the present invention starts curing of epoxy groups, epoxy groups and carboxyl groups, epoxy groups and carboxylic anhydride groups, epoxy groups and amine groups, epoxy groups and thiol groups, epoxy groups and amide groups, or the like. It is a compound that promotes.
The resin composition for encapsulating an optical semiconductor of the present invention is characterized by containing a curing catalyst having a melting point of 40 to 200 ° C. among the curing catalysts.
In general, a resin composition for optical semiconductor encapsulation is liquid at room temperature, and the molding method is to heat cure after injecting a sealing material into a mold in which a substrate to which an optical semiconductor element is fixed is inserted. An injection method for molding, a compression molding method in which a sealing material is pre-injected onto a mold, an optical semiconductor element fixed on the substrate is immersed in the mold, and then heat-cured and then released from the mold are used. ing.
A dispenser or the like is used as an injection method.
The injected sealing resin is heated and cured. For heating for curing, methods such as hot air circulation, infrared rays, and high frequency are used. For example, the heating conditions are preferably 80 to 200 ° C. and about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours and then post-curing at 120 to 180 ° C. for 30 minutes to 10 hours. It is common.
When a curable resin composition for sealing an optical semiconductor is a solid catalyst at room temperature (25 ° C.), there is a problem that the cured product becomes cloudy and the illuminance of the LED is inferior, so select a liquid catalyst. Has become commonplace. However, when a curing catalyst that is liquid at room temperature (25 ° C.) is used, the appearance of the cured product is excellent, but since it is compatible with the epoxy resin and epoxy resin curing agent that are liquid at room temperature (25 ° C.), after mixing them, It has been regarded as a problem that it functions as a curing catalyst even before heat curing, causing an excessive increase in viscosity and inferior workability.
However, a catalyst that is solid at room temperature (25 ° C.) does not completely adapt to the epoxy resin and the epoxy resin curing agent at room temperature (25 ° C.), and thus does not cause an excessive increase in viscosity. Moreover, in the case of heat-curing, those solid catalysts melt | dissolve, express catalytic ability, and since it hardens | cures as it is, the external appearance of hardened | cured material does not become a problem.
A catalyst which is solid at room temperature (25 ° C.) is preferably one having a melting point of 40 to 200 ° C. from the viewpoint of workability and melting during heat curing to exhibit catalytic ability. In this case, from the viewpoint of suppressing an excessive increase in viscosity, it is more preferable to use a curing catalyst having a melting point of 100 to 160 ° C., and it is particularly preferable to use a curing catalyst having a melting point of 120 to 160 ° C.
 融点が40~200℃である触媒は、透明性が優れることからアンモニウム塩系硬化触媒、ホスホニウム塩系硬化触媒、金属石鹸系硬化触媒が特に好ましい。アンモニウム塩系硬化触媒としては、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等が挙げられる。ホスホニウム塩系硬化触媒としては、例えばエチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムジメチルホスフェート、メチルトリブチルホスホニウムジエチルホスフェート等が挙げられる。金属石鹸系硬化触媒としては、例えばステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、12-ヒドロキシリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸アルミニウム、12-ヒドロキシステアリン酸バリウム、12-ヒドロキシステアリン酸リチウム、12-ヒドロキシステアリン酸ナトリウム、モンタン酸カルシウム、モンタン酸亜鉛、モンタン酸マグネシウム、モンタン酸アルミニウム、モンタン酸リチウム、モンタン酸ナトリウム、ベヘン酸カルシウム、ベヘン酸亜鉛、ベヘン酸マグネシウム、ベヘン酸リチウム、ベヘン酸ナトリウム、ベヘン酸銀、ラウリン酸カルシウム、ラウリン酸亜鉛、ラウリン酸バリウム、ラウリン酸リチウム、ウンデシレン酸亜鉛、リシノール酸亜鉛、リシノール酸バリウム、ミリスチン酸亜鉛、パルミチン酸亜鉛等が挙げられる。これら触媒は1種又は2種以上を混合して用いても良い。
 硬化触媒の融点が高く、透明性、耐硫化性に優れる硬化物を得るために、特にステアリン酸亜鉛、モンタン酸亜鉛、ベヘン酸亜鉛、ラウリン酸亜鉛、ウンデシレン酸亜鉛、リシノール酸亜鉛、ミリスチン酸亜鉛、パルミチン酸亜鉛等の炭素数10~30のカルボン酸亜鉛、12-ヒドロキシステアリン酸亜鉛等の水酸基を有する炭素数10~30のモノカルボン酸化合物からなる亜鉛塩が好ましく使用できる。これらの中でも特に、ポットライフ、耐硫化性に優れる観点から、ステアリン酸亜鉛、ウンデシレン酸亜鉛等の炭素数10~20のモノカルボン酸化合物からなる亜鉛塩、12-ヒドロキシステアリン酸亜鉛等の水酸基を有する炭素数15~20のモノカルボン酸化合物からなる亜鉛塩が好ましく使用でき、さらに好ましくはステアリン酸亜鉛、ウンデシレン酸亜鉛、12-ヒドロキシステアリン酸亜鉛が使用でき、特に好ましくはステアリン酸亜鉛、12-ヒドロキシステアリン酸亜鉛が使用できる。
 融点が40~200℃である硬化触媒は、後述するエポキシ樹脂100重量部に対し通常0.001~15重量部の範囲で使用される。
 融点が40~200℃である硬化触媒は粉砕して用いることもできる。その粉砕方法としては、ジェットミル、遊星ボールミル、スパイラルミル等を用いることができる。
As the catalyst having a melting point of 40 to 200 ° C., an ammonium salt-based curing catalyst, a phosphonium salt-based curing catalyst, and a metal soap-based curing catalyst are particularly preferable because of excellent transparency. Examples of the ammonium salt-based curing catalyst include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, Examples include trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, and trioctylmethylammonium acetate. Examples of the phosphonium salt-based curing catalyst include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like. Examples of metal soap-based curing catalysts include calcium stearate, zinc stearate, magnesium stearate, aluminum stearate, barium stearate, lithium stearate, sodium stearate, potassium stearate, 12-hydroxycalcium phosphate, 12-hydroxystearic acid. Zinc, magnesium 12-hydroxystearate, aluminum 12-hydroxystearate, barium 12-hydroxystearate, lithium 12-hydroxystearate, sodium 12-hydroxystearate, calcium montanate, zinc montanate, magnesium montanate, montan Aluminum oxide, lithium montanate, sodium montanate, calcium behenate, zinc behenate, magnesium behenate , Lithium behenate, sodium behenate, silver behenate, calcium laurate, zinc laurate, barium laurate, lithium laurate, zinc undecylenate, zinc ricinoleate, barium ricinoleate, zinc myristate, zinc palmitate, etc. It is done. These catalysts may be used alone or in combination of two or more.
In order to obtain a cured product with a high melting point of the curing catalyst and excellent transparency and sulfidation resistance, especially zinc stearate, zinc montanate, zinc behenate, zinc laurate, zinc undecylenate, zinc ricinoleate, zinc myristate Zinc salts made of a monocarboxylic acid compound having 10 to 30 carbon atoms such as zinc carboxylate having 10 to 30 carbon atoms such as zinc palmitate and zinc 12-hydroxystearate can be preferably used. Among these, from the viewpoint of excellent pot life and sulfidation resistance, a zinc salt composed of a monocarboxylic acid compound having 10 to 20 carbon atoms such as zinc stearate and zinc undecylenate, and a hydroxyl group such as zinc 12-hydroxystearate. A zinc salt composed of a monocarboxylic acid compound having 15 to 20 carbon atoms can be preferably used, more preferably zinc stearate, zinc undecylenate and zinc 12-hydroxystearate, particularly preferably zinc stearate, 12- Zinc hydroxystearate can be used.
The curing catalyst having a melting point of 40 to 200 ° C. is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin described later.
A curing catalyst having a melting point of 40 to 200 ° C. can be pulverized for use. As the pulverization method, a jet mill, a planetary ball mill, a spiral mill or the like can be used.
 本発明の硬化性樹脂組成物においては、エポキシ樹脂および/またはエポキシ樹脂硬化剤を使用する。 In the curable resin composition of the present invention, an epoxy resin and / or an epoxy resin curing agent is used.
 ここからはエポキシ樹脂硬化剤について説明する。
 エポキシ樹脂硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、多価カルボン酸などが挙げられる。
 本発明においてエポキシ樹脂硬化剤としては硬度、作業性(室温にて液状であること)、硬化物の透明性という観点から特に酸無水物、多価カルボン酸が好ましく、その中でも後述する、両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に一つのカルボン酸無水物基を有する化合物(d)と、必要に応じて分子内に二つ以上のカルボン酸無水物基を有する化合物(c)とを付加反応することで得られる、多価カルボン酸樹脂(A)が最も好ましい。
From here, the epoxy resin curing agent will be described.
Examples of the epoxy resin curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and polycarboxylic acids.
In the present invention, the epoxy resin curing agent is particularly preferably an acid anhydride or a polyvalent carboxylic acid from the viewpoints of hardness, workability (being liquid at room temperature), and transparency of the cured product. Carbinol-modified silicone oil (a), polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, compound (d) having one carboxylic anhydride group in the molecule, and as necessary The polyvalent carboxylic acid resin (A) obtained by addition reaction of the compound (c) having two or more carboxylic anhydride groups in the molecule is most preferable.
 酸無水物としては具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物が挙げられる。
 特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが、耐光性、透明性、作業性の観点から好ましい。
Specific examples of acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride Acid, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2,3- And acid anhydrides such as dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride.
In particular, methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid Acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, It is preferable from the viewpoint of workability.
 多価カルボン酸は少なくとも2つのカルボキシル基を有することを特徴とする化合物である。
 多価カルボン酸としては、2~6官能のカルボン酸が好ましく、例えば、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、リンゴ酸等の直鎖アルキル二酸類、1,3,5-ペンタントリカルボン酸、クエン酸等のアルキルトリカルボン酸類、フタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、シクロヘキサントリカルボン酸、ナジック酸、メチルナジック酸等の脂肪族環状多価カルボン酸類、リノレン酸やオレイン酸などの不飽和脂肪酸の多量体およびそれらの還元物であるダイマー酸類、2~6官能の多価アルコールと酸無水物との反応により得られた化合物類が挙げられ、2~6官能の多価アルコールと酸無水物との反応により得られた化合物類が、耐熱性、作業性の観点からより好ましい。さらには上記酸無水物が飽和脂肪族環状酸無水物である多価カルボン酸が透明性の観点から好ましい。
 2~6官能の多価アルコールとしてはアルコール性水酸基を有する化合物であれば特に限定されないが、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類などが挙げられる。
The polyvalent carboxylic acid is a compound having at least two carboxyl groups.
The polyvalent carboxylic acid is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, malic acid, etc. Linear alkyl diacids, alkyl tricarboxylic acids such as 1,3,5-pentanetricarboxylic acid, citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid An aliphatic cyclic polycarboxylic acid such as acid, nadic acid and methyl nadic acid; a multimer of unsaturated fatty acids such as linolenic acid and oleic acid; and dimer acids which are reduced products thereof; Examples include compounds obtained by reaction with acid anhydrides, bifunctional to hexafunctional polyhydric alcohols and acid anhydrides Compounds obtained by the reaction of, heat resistance, and more preferable from the viewpoint of workability. Furthermore, the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable from a transparency viewpoint.
The bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecanedi Diols such as methanol and norbornene diol, triols such as glycerin, trimethylol ethane, trimethylol propane, trimethylol butane, 2-hydroxymethyl-1,4-butanediol, and teto such as pentaerythritol and ditrimethylol propane Ols, and the like hexa-ols, such as dipentaerythritol.
 好ましい多価アルコールとしては炭素数が5以上のアルコールであり、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,4-ジエチルペンタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類が、耐熱性、透明性の観点から好ましく、特に、トリシクロデカンジメタノールが好ましい。 Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, From the viewpoint of transparency, In particular, tricyclodecane dimethanol is preferable.
 多価アルコールと反応させる酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が、耐熱性、透明性、作業性の観点から好ましい。
 付加反応の条件としては公知の方法であれば特に限定なく用いることができるが、具体的な反応条件としては、例えば、酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃で反応させ加熱し、反応終了後、そのまま取り出す手法が挙げられる。
Examples of acid anhydrides to be reacted with polyhydric alcohols include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2, 2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4- Anhydrides and the like are preferable, and methylhexahydrophthalic anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride are particularly preferable from the viewpoints of heat resistance, transparency, and workability.
The conditions for the addition reaction can be used without any particular limitation as long as they are known methods. Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent. A method of reacting at 150 ° C. and heating, and taking out as it is after completion of the reaction can be mentioned.
 本発明の光半導体封止用硬化性樹脂組成物に用いるエポキシ樹脂硬化剤として、好ましい多価カルボン酸樹脂(A)は、両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に一つの酸無水物基を有する化合物(d)と、必要に応じて分子内に二つ以上の酸無水物基を有する化合物(c)とを付加反応を行なうことで得られる多価カルボン酸樹脂(A)である。
 通常、低分子量のC、H、Oの原子のみからなる多価カルボン酸は室温(25℃)にて固体状態であることが多く、そのままではエポキシ樹脂からなる光半導体封止用硬化性樹脂組成物の硬化剤としては使用し難い。しかし、その成分中にSi-O結合の繰り返し単位を有するポリシロキサン化合物を含有すると、その分子間力の低さから室温(25℃)にて液状にて存在することができる。本発明の光半導体封止用硬化性樹脂組成物に用いるエポキシ樹脂硬化剤として好ましい多価カルボン酸樹脂(A)も反応原料として両末端カルビノール変性シリコーンオイル(a)を使用することで、室温(25℃)にて液状で存在することができる。
 両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に一つの酸無水物基を有する化合物(d)とを付加反応することで、両末端カルビノール変性シリコーンオイル(a)のカルビノールの水酸基と分子内に一つの酸無水物基を有する化合物(d)の酸無水物基が、また、多価アルコール化合物(i)の水酸基と酸無水物基を有する化合物(d)の酸無水物基が酸無水物基の開環を伴う付加反応し、それぞれ両末端にカルボキシル基を有する多価カルボン酸の混合物である多価カルボン酸樹脂(A)が得られる。
 また、反応原料としてさらに分子内に二つ以上の酸無水物基を有する化合物(c)を使用することにより、両末端カルビノール変性シリコーンオイル(a)同士、および/又は分子内に二つ以上の水酸基を有する多価アルコール化合物(i)同士、および/又は両末端カルビノール変性シリコーンオイル(a)と分子内に二つ以上の水酸基を有する多価アルコール化合物(i)が同一分子として重合する。
 特に、両末端カルビノール変性シリコーンオイル(a)の両末端酸無水物付加物と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)の酸無水物付加物との相溶性が悪く、分離してしまう場合、分子内に二つ以上の酸無水物基を有する化合物(c)を用いることで、両末端カルビノール変性シリコーンオイル(a)と分子内に二つ以上の水酸基を有する多価アルコール化合物(i)が同一分子として重合し、室温(25℃)にて均一の液状物質として得ることもできる。
As the epoxy resin curing agent used in the curable resin composition for encapsulating an optical semiconductor of the present invention, a preferable polyvalent carboxylic acid resin (A) includes two or more carbinol-modified silicone oils (a) and two or more in the molecule. A polyhydric alcohol compound (i) having a hydroxyl group, a compound (d) having one acid anhydride group in the molecule, and a compound (c) having two or more acid anhydride groups in the molecule as necessary. ) And a polyvalent carboxylic acid resin (A) obtained by performing an addition reaction.
Usually, polyvalent carboxylic acids composed of only low molecular weight C, H, and O atoms are often in a solid state at room temperature (25 ° C.), and as it is, a curable resin composition for sealing an optical semiconductor composed of an epoxy resin. It is difficult to use as a curing agent for objects. However, when the component contains a polysiloxane compound having a repeating unit of Si—O bond, it can exist in a liquid state at room temperature (25 ° C.) due to its low intermolecular force. A polyvalent carboxylic acid resin (A) that is preferable as an epoxy resin curing agent used in the curable resin composition for encapsulating an optical semiconductor of the present invention can also be used at room temperature by using the both-end carbinol-modified silicone oil (a) as a reaction material. It can exist in liquid form at (25 ° C.).
Addition reaction of both ends carbinol-modified silicone oil (a), polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, and compound (d) having one acid anhydride group in the molecule Thus, the hydroxyl group of the carbinol of the both-end carbinol-modified silicone oil (a) and the acid anhydride group of the compound (d) having one acid anhydride group in the molecule can be converted into a polyhydric alcohol compound (i The acid anhydride group of the compound (d) having a hydroxyl group and an acid anhydride group is subjected to an addition reaction involving ring opening of the acid anhydride group, and is a mixture of polyvalent carboxylic acids each having a carboxyl group at both ends. A carboxylic acid resin (A) is obtained.
Further, by using a compound (c) having two or more acid anhydride groups in the molecule as a reaction raw material, two or more carbinol-modified silicone oils (a) and / or two or more in the molecule are used. The polyhydric alcohol compounds (i) having two hydroxyl groups and / or the carbinol-modified silicone oil (a) at both ends and the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule are polymerized as the same molecule. .
In particular, the compatibility between both terminal acid anhydride adducts of both ends carbinol-modified silicone oil (a) and acid anhydride adducts of polyhydric alcohol compounds (i) having two or more hydroxyl groups in the molecule is present. If it is badly separated, by using the compound (c) having two or more acid anhydride groups in the molecule, the carbinol-modified silicone oil (a) at both ends and two or more hydroxyl groups in the molecule are used. The polyhydric alcohol compound (i) possessed can be polymerized as the same molecule and can be obtained as a uniform liquid substance at room temperature (25 ° C.).
 ここからは、多価カルボン酸樹脂(A)の原料となる、両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に二つ以上の酸無水物基を有する化合物(c)と、分子内に一つの酸無水物基を有する化合物(d)について説明する。 From here, the both-terminal carbinol-modified silicone oil (a), which is a raw material for the polycarboxylic acid resin (A), a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, The compound (c) having two or more acid anhydride groups and the compound (d) having one acid anhydride group in the molecule will be described.
 まず、両末端カルビノール変性シリコーンオイル(a)について説明する。
 両末端カルビノール変性シリコーンオイル(a)の例としては下記式(1)で示される両末端にアルコール性水酸基を有するシリコーン化合物である。
First, the both terminal carbinol-modified silicone oil (a) will be described.
An example of the both-end carbinol-modified silicone oil (a) is a silicone compound having an alcoholic hydroxyl group at both ends represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(1)において、Rは炭素総数1~10のアルキレン基、エーテル結合を有するアルキレン基を、Rは炭素数1~3のアルキル基又はフェニル基を、mは平均値で1~100をそれぞれ表す。) (In the formula (1), R 1 represents an alkylene group having 1 to 10 carbon atoms and an alkylene group having an ether bond, R 2 represents an alkyl group or phenyl group having 1 to 3 carbon atoms, and m represents an average value of 1 to 1) 100 represents each.)
 式(1)において、Rの具体例としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、イソペンチレン、へキシレン、ヘプチレン、オクチレン等のアルキレン基、エトキシエチレン基、プロポキシエチレン基、プロポキシプロピレン基、エトキシプロピレン基等のエーテル結合を有するアルキレン基などが挙げられる。特に好ましいものとしては、プロポキシエチレン基、エトキシプロピレン基である。 In the formula (1), specific examples of R 1 include alkylene groups such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene, ethoxyethylene group, propoxyethylene group, Examples include an alkylene group having an ether bond such as a propoxypropylene group and an ethoxypropylene group. Particularly preferred are propoxyethylene group and ethoxypropylene group.
 次に、Rはメチル基等の炭素数1~3のアルキル基又はフェニル基を表し同一又は異種のいずれでもよいが、両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に一つの酸無水物基を有する化合物(d)と、必要に応じて分子内に二つ以上の酸無水物基を有する化合物(c)とを付加反応させることにより得られる多価カルボン酸樹脂(A)が室温で液状であるためにはフェニル基と比較し、メチル基が好ましい。 Next, R 2 represents an alkyl group having 1 to 3 carbon atoms such as a methyl group or a phenyl group, and may be the same or different, but both ends carbinol-modified silicone oil (a), A polyhydric alcohol compound (i) having a hydroxyl group, a compound (d) having one acid anhydride group in the molecule, and a compound (c) having two or more acid anhydride groups in the molecule as necessary. In order to make the polyvalent carboxylic acid resin (A) obtained by the addition reaction of (A) with a liquid at room temperature, a methyl group is preferable compared to a phenyl group.
 式(1)においてmは平均値で1~100であるが、好ましくは2~80、より好ましくは5~30である。 In the formula (1), m is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
 式(1)で示される両末端カルビノール変性シリコーンオイル(a)は、例えば、X-22-160AS、KF6001、KF6002、KF6003(いずれも信越化学工業(株)製)BY16-201、BY16-004、SF8427(いずれも東レ・ダウコーニング(株)製)XF42-B0970、XF42-C3294(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられ、いずれも市場から入手できる。これら両末端カルビノール変性シリコーンオイルは1種又は2種以上を混合して用いることが出来る。これらの中でもX-22-160AS、KF6001、KF6002、BY16-201、XF42-B0970が好ましい。 The both-end carbinol-modified silicone oil (a) represented by the formula (1) is, for example, X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004. SF8427 (both manufactured by Toray Dow Corning Co., Ltd.) XF42-B0970, XF42-C3294 (both manufactured by Momentive Performance Materials Japan Godo Kaisha), etc., are all available from the market. These two terminal carbinol-modified silicone oils can be used alone or in combination. Among these, X-22-160AS, KF6001, KF6002, BY16-201, and XF42-B0970 are preferable.
 次に分子内に二つ以上の水酸基を有する多価アルコール化合物(i)について説明する。
 分子内に二つ以上の水酸基を有する多価アルコール化合物(i)としては、例えば、末端アルコールポリエステル化合物(b)、炭化水素多価アルコール化合物(j)、末端アルコールポリカーボネート化合物が挙げられる。
Next, the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule will be described.
Examples of the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule include a terminal alcohol polyester compound (b), a hydrocarbon polyhydric alcohol compound (j), and a terminal alcohol polycarbonate compound.
 末端アルコールポリエステル化合物(b)としては、特に限定されないが、例えば下記式(2)で示される、末端に水酸基を有するポリエステル化合物等が挙げられる。 Although it does not specifically limit as a terminal alcohol polyester compound (b), For example, the polyester compound etc. which have a hydroxyl group at the terminal shown by following formula (2) are mentioned.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(2)において、R、Rはそれぞれ独立して炭素数1~10のアルキレン基を、nは平均値で1~100をそれぞれ表す。) (In Formula (2), R 3 and R 4 each independently represent an alkylene group having 1 to 10 carbon atoms, and n represents an average value of 1 to 100)
 式(2)において、Rの具体例としては、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、炭素数1~10の分岐鎖を有するアルキレン基又は環状構造を有するアルキレン基が好ましく、特にエチルブチルプロピレン、イソブチレン、ネオペンチレン、ジエチルペンチレン、シクロヘキサンジメチレンが、硬化物の耐熱透明性の観点から好ましい。 In Formula (2), specific examples of R 3 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain of 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, an alkylene group having a branched chain having 1 to 10 carbon atoms or an alkylene group having a cyclic structure is preferable. It is preferable from the viewpoint.
 式(2)において、Rの具体例としては、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、炭素数1~10の直鎖アルキレン基が好ましく、プロピレン、ブチレン、ペンチレン、へキシレンが、硬化物の基材等への密着性の観点から特に好ましい。 In the formula (2), specific examples of R 4 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, a linear alkylene group having 1 to 10 carbon atoms is preferable, and propylene, butylene, pentylene, and hexylene are particularly preferable from the viewpoint of adhesion of a cured product to a substrate or the like.
 式(2)においてnは平均値で1~100であるが、好ましくは2~40、より好ましくは3~30である。 In the formula (2), n is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
 末端アルコールポリエステル化合物(b)の重量平均分子量(Mw)は、500~20000であるが、好ましくは500~5000、より好ましくは、500~3000である。重量平均分子量が500未満であると、本発明の硬化性樹脂組成物の硬化物硬度が高くなり過ぎヒートサイクル試験等でクラックが入ることがあり、重量平均分子量が20000より大きいと硬化物のベトツキが発生することがある。本発明において重量平均分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。 The terminal alcohol polyester compound (b) has a weight average molecular weight (Mw) of 500 to 20000, preferably 500 to 5000, and more preferably 500 to 3000. When the weight average molecular weight is less than 500, the cured product hardness of the curable resin composition of the present invention becomes too high, and cracks may occur in a heat cycle test or the like. May occur. In the present invention, the weight average molecular weight means a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography).
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 式(2)で示される末端アルコールポリエステル化合物(b)は、例えば、末端にアルコール性水酸基を有するポリエステルポリオール類が挙げられる。その具体例としてはポリエステルポリオールである、キョーワポール1000PA、同2000PA、同3000PA、同2000BA(いずれも協和発酵ケミカル(株)製);アデカニューエースY9-10、同YT-101(いずれもADEKA(株)製);プラクセル220EB、同220EC(いずれもダイセル化学工業(株)製);ポリライトOD-X-286、同OD-X-102、同OD-X-355、同OD-X-2330、同OD-X-240、同OD-X-668、同OD-X-2554、同OD-X-2108、同OD-X-2376、同OD-X-2044、同OD-X-688、同OD-X-2068、同OD-X-2547、同OD-X-2420、同OD-X-2523、同OD-X-2555(いずれもDIC(株)製);HS2H-201AP、HS2H-351A、HS2H-451A、HS2H-851A、HS2N-221A、HS2N-521A、HS2H-220S、HS2N-220S、HS2N-226P、HS2B-222A、HOKOKUOL HT-110、同HT-210、同HT-12、同HT-250、同HT-310、同HT-40M(いずれも豊国製油(株)製)等が挙げられ、いずれも市場から入手できる。これらポリエステル化合物は1種又は2種以上を混合して用いることが出来る。これらの中でもキョーワポール1000PA、アデカニューエースY9-10、HS2N-221Aが好ましい。 Examples of the terminal alcohol polyester compound (b) represented by the formula (2) include polyester polyols having an alcoholic hydroxyl group at the terminal. Specific examples thereof are polyester polyols such as Kyowapol 1000PA, 2000PA, 3000PA, 2000BA (all manufactured by Kyowa Hakko Chemical Co., Ltd.); Adeka New Ace Y9-10, YT-101 (all ADEKA ( Plaxel 220EB, 220EC (both manufactured by Daicel Chemical Industries); Polylite OD-X-286, OD-X-102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, OD-X-2554, OD-X-2108, OD-X-2376, OD-X-2044, OD-X-688, OD-X-2068, OD-X-2547, OD-X-2420, OD-X-2523, OD-X-2555 (all D Manufactured by C Corporation); HS2H-201AP, HS2H-351A, HS2H-451A, HS2H-851A, HS2N-221A, HS2N-521A, HS2H-220S, HS2N-220S, HS2N-226P, HS2B-222A, HOKOKULOL 110, HT-210, HT-12, HT-250, HT-310, HT-40M (all manufactured by Toyokuni Oil Co., Ltd.), etc., all of which are commercially available. These polyester compounds can be used alone or in combination of two or more. Of these, Kyowapol 1000PA, Adeka New Ace Y9-10, and HS2N-221A are preferable.
 次に炭化水素多価アルコール化合物(j)について説明する。
 炭化水素多価アルコール化合物(j)は分子中に二つ以上の水酸基を有する炭化水素化合物であり、例えば、エチレングリコール、プロピレングリコール、プロパンジオール、ブタンジオール、ジメチルエタノール、ペンタンジオール、ネオペンチルグリコール、ヘキサンジオール、ジメチルブタンジオール、ヘプタンジオール、ジメチルペンタンジオール、ジエチルプロパンジオール、オクタンジオール、ジメチルヘキサンジオール、ジエチルブタンジオール、ノナンジオール、ジメチルヘプタンジオール、ジエチルペンタンジオール、デカンジオール、ジメチルオクタンジオール、ジエチルヘキサンジオール、エチルブチルプロパンジオール、3-メチロール-1,5-ペンタンジオール、ジグリセリン、ジペンタエリスリトール、トリメチロールプロパン、ジトリメチロールプロパン等の鎖状炭化水素多価アルコール化合物や、シクロペンタンジオール、シクロペンタンジメタノール、シクロヘキサンジオール、シクロヘキサンジメタノール、トリシクロデカンジオール、トリシクロデカンジメタノール、ノルボルナンジオール、ノルボルナンジメタノール等の環状炭化水素多価アルコール化合物が挙げられる。これら炭化水素多価アルコール化合物(j)は1種又は2種以上を混合して用いることが出来る。これらの中でもトリシクロデカンジメタノール、ジトリメチロールプロパン、ジグリセリンが硬化物の強度、硬化物の透明性の観点から好ましい。
Next, the hydrocarbon polyhydric alcohol compound (j) will be described.
The hydrocarbon polyhydric alcohol compound (j) is a hydrocarbon compound having two or more hydroxyl groups in the molecule, such as ethylene glycol, propylene glycol, propanediol, butanediol, dimethylethanol, pentanediol, neopentyl glycol, Hexanediol, dimethylbutanediol, heptanediol, dimethylpentanediol, diethylpropanediol, octanediol, dimethylhexanediol, diethylbutanediol, nonanediol, dimethylheptanediol, diethylpentanediol, decanediol, dimethyloctanediol, diethylhexanediol , Ethylbutylpropanediol, 3-methylol-1,5-pentanediol, diglycerin, dipentaerythritol, tri Chain hydrocarbon polyhydric alcohol compounds such as tyrolpropane and ditrimethylolpropane, cyclopentanediol, cyclopentanedimethanol, cyclohexanediol, cyclohexanedimethanol, tricyclodecanediol, tricyclodecane dimethanol, norbornanediol, norbornane Examples thereof include cyclic hydrocarbon polyhydric alcohol compounds such as methanol. These hydrocarbon polyhydric alcohol compounds (j) can be used alone or in combination of two or more. Among these, tricyclodecane dimethanol, ditrimethylolpropane, and diglycerin are preferable from the viewpoint of the strength of the cured product and the transparency of the cured product.
 次に末端アルコールポリカーボネート化合物について説明する。
 末端アルコールポリカーボネート化合物としては、特に限定されないが、例えば下記式(7)で示される、末端に水酸基を有するポリカーボネート化合物等が挙げられる。
Next, the terminal alcohol polycarbonate compound will be described.
Although it does not specifically limit as a terminal alcohol polycarbonate compound, For example, the polycarbonate compound etc. which are shown by following formula (7) and have a hydroxyl group at the terminal are mentioned.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(7)において、R8は炭素数1~10のアルキレン基を、sは平均値で1~100をそれぞれ表す。) (In the formula (7), R 8 represents an alkylene group having 1 to 10 carbon atoms, and s represents an average value of 1 to 100)
 式(7)において、Rの具体例としては、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、ブチレン、ペンチレン、へキシレン、ヘプチレン等の炭素数4~7の直鎖アルキレン基が、末端アルコールポリカーボネート化合物の粘度が高すぎず、作業性の観点から好ましい。 In the formula (7), specific examples of R 8 include straight-chain alkylene groups having 1 to 10 carbon atoms such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, Examples thereof include alkylene groups having a branched chain of 1 to 10 carbon atoms such as isobutylene, isopentylene, neopentylene, diethylpentylene, and the like, and alkylene groups having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, linear alkylene groups having 4 to 7 carbon atoms such as butylene, pentylene, hexylene and heptylene are preferable from the viewpoint of workability because the viscosity of the terminal alcohol polycarbonate compound is not too high.
 式(7)中に複数存在するR8は同一であっても、異なっても構わない。 A plurality of R 8 present in the formula (7) may be the same or different.
 式(7)においてsは平均値で1~100であるが、好ましくは2~40、より好ましくは3~30である。 In the formula (7), s is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
 末端アルコールポリカーボネート化合物の重量平均分子量(Mw)は、好ましくは500~20000であるが、より好ましくは500~5000、さらに好ましくは500~3000である。重量平均分子量が500以上であれば、本発明の光半導体封止用硬化性樹脂組成物の硬化物硬度が高くなり過ぎることがなくヒートサイクル試験等でクラックが入る懸念がなく好ましい。また、重量平均分子量が20000以下であれば硬化物のベトツキが発生する懸念がなく好ましい。本発明において重量平均分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。 The weight average molecular weight (Mw) of the terminal alcohol polycarbonate compound is preferably 500 to 20000, more preferably 500 to 5000, and still more preferably 500 to 3000. If the weight average molecular weight is 500 or more, the cured product hardness of the curable resin composition for encapsulating an optical semiconductor of the present invention is not excessively high, and there is no concern that cracks may occur in a heat cycle test or the like. Moreover, if a weight average molecular weight is 20000 or less, there is no fear that stickiness of hardened | cured material will generate | occur | produce, and it is preferable. In the present invention, the weight average molecular weight means a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography).
 GPCの各種条件
 メーカー:島津製作所
 カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
 流速:1.0ml/min.
 カラム温度:40℃
 使用溶剤:THF(テトラヒドロフラン)
 検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 分子内に二つ以上の水酸基を有する多価アルコール化合物(i)の使用量は、特に限定されないが、両末端カルビノール変性シリコーンオイル(a)100重量部に対し、好ましくは0.5~200重量部、より好ましくは5~50重量部、さらに好ましくは10~30重量部である。0.5重量部以上であれば硬化物の機械強度がより向上するため好ましく、200重量部以下であれば硬化物の耐熱透明性がより向上したり得られる多価カルボン酸樹脂(A)の粘度がより適切になるため好ましい。 The amount of the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule is not particularly limited, but is preferably 0.5 to 200 with respect to 100 parts by weight of the carbinol-modified silicone oil (a) at both ends. Parts by weight, more preferably 5 to 50 parts by weight, still more preferably 10 to 30 parts by weight. If it is 0.5 parts by weight or more, it is preferable because the mechanical strength of the cured product is further improved, and if it is 200 parts by weight or less, the heat-resistant transparency of the cured product is further improved or obtained polyvalent carboxylic acid resin (A). This is preferable because the viscosity becomes more appropriate.
 次に分子内に二つ以上のカルボン酸無水物基をもつ化合物(c)について説明する。
 分子内に二つ以上のカルボン酸無水物基をもつ化合物(c)は、例えば、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ピロメリット酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等が挙げられる。
 分子内にカルボン酸無水物基を二つ以上もつ化合物(c)は1種又は2種以上混合して用いることができる。この中でも、多価カルボン酸樹脂(A)と後述するエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物が好ましく、特に1,2,3,4-ブタンテトラカルボン酸二無水物が好ましい。
Next, the compound (c) having two or more carboxylic anhydride groups in the molecule will be described.
The compound (c) having two or more carboxylic acid anhydride groups in the molecule is, for example, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid. Dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromellitic anhydride, 5- (2,5- Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene- Examples thereof include 1,2-dicarboxylic acid anhydride.
The compound (c) having two or more carboxylic acid anhydride groups in the molecule can be used alone or in combination. Among these, since the transparency of a cured product obtained by curing the polyvalent carboxylic acid resin (A) and an epoxy resin described later is excellent, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2 4,4-cyclohexanetetracarboxylic dianhydride and 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride are preferred. In particular, 1,2,3,4-butanetetracarboxylic dianhydride is preferred.
 次に分子内に一つのカルボン酸無水物基をもつ化合物(d)について説明する。
 分子内に一つのカルボン酸無水物基をもつ化合物(d)は、コハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、2,3-ブタンジカルボン酸無水物、2,4-ペンタンジカルボン酸無水物、3,5-ヘプタンジカルボン酸無水物等の飽和脂肪族カルボン酸無水物、マレイン酸無水物、ドデシルコハク酸無水物等の不飽和脂肪族カルボン酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、1,3-シクロヘキサンジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物等の環状飽和脂肪族カルボン酸無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物等の環状不飽和脂肪族カルボン酸無水物、フタル酸無水物、イソフタル酸無水物、テレフタル酸無水物、トリメリット酸無水物等の芳香族カルボン酸無水物等が挙げられる。
 分子内に一つのカルボン酸無水物基をもつ化合物(d)は1種又は2種以上混合して用いることができる。この中でも、多価カルボン酸樹脂(A)とエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物が好ましい。より好ましくはメチルヘキサヒドロフタル酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物であり、特に好ましくはメチルヘキサヒドロフタル酸無水物である。
Next, the compound (d) having one carboxylic anhydride group in the molecule will be described.
Compound (d) having one carboxylic acid anhydride group in the molecule includes succinic acid anhydride, methyl succinic acid anhydride, ethyl succinic acid anhydride, 2,3-butanedicarboxylic acid anhydride, 2,4-pentanedicarboxylic acid. Anhydrides, saturated aliphatic carboxylic acid anhydrides such as 3,5-heptanedicarboxylic acid anhydride, maleic acid anhydrides, unsaturated aliphatic carboxylic acid anhydrides such as dodecyl succinic acid anhydride, hexahydrophthalic acid anhydrides, Methylhexahydrophthalic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, nadic acid anhydride, methylnadic acid anhydride , Bicyclo [2,2,2] octane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2 -Cyclic saturated aliphatic carboxylic acid anhydride such as anhydride, tetrahydrophthalic acid anhydride, methyltetrahydrophthalic acid anhydride, nadic acid anhydride, methyl nadic acid anhydride, 4,5-dimethyl-4-cyclohexene-1, 2-dicarboxylic acid anhydride, cyclic unsaturated aliphatic carboxylic acid anhydride such as bicyclo [2.2.2] -5-octene-2,3-dicarboxylic acid anhydride, phthalic acid anhydride, isophthalic acid anhydride, Examples thereof include aromatic carboxylic acid anhydrides such as terephthalic acid anhydride and trimellitic acid anhydride.
The compound (d) having one carboxylic anhydride group in the molecule can be used alone or in combination. Among these, since the transparency of the cured product obtained by curing the polyvalent carboxylic acid resin (A) and the epoxy resin is excellent, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, Norbornane-2,3-dicarboxylic acid anhydride, methylnorbornane-2,3-dicarboxylic acid anhydride, and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride are preferred. More preferred are methylhexahydrophthalic anhydride and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and particularly preferred is methylhexahydrophthalic anhydride.
 使用する場合、分子内に二つのカルボン酸無水物基をもつ化合物(c)の使用量は分子内に一つのカルボン酸無水物基をもつ化合物(d)100重量部に対し、通常5~1000重量部、好ましくは10~500重量部、さらに好ましくは15~300重量部である。300重量部より大きいと、多価カルボン酸樹脂(A)が高分子量化しすぎて作業性が劣ることがある。 When used, the amount of the compound (c) having two carboxylic anhydride groups in the molecule is usually 5 to 1000 per 100 parts by weight of the compound (d) having one carboxylic anhydride group in the molecule. Part by weight, preferably 10 to 500 parts by weight, more preferably 15 to 300 parts by weight. When it is larger than 300 parts by weight, the polyvalent carboxylic acid resin (A) may have a too high molecular weight, resulting in poor workability.
 両末端カルビノール変性シリコーンオイル(a)、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)、分子内に二つ以上のカルボン酸無水物基を有する化合物(c)、分子内に一つのカルボン酸無水物基を有する化合物(d)の使用量は、両末端カルビノール変性シリコーンオイル(a)と分子内に二つ以上の水酸基を有する多価アルコール化合物(e)の総アルコール性水酸基1当量に対し、分子内に一つのカルボン酸無水物基を有する化合物(d)と使用する場合に分子内に二つ以上のカルボン酸無水物基を有する化合物(c)との総カルボン酸無水物基が0.5~2.0当量であることが好ましく、より好ましくは0.8~1.5当量である。0.5当量以上であれば硬化物の機械強度が良好になるため好ましく、2.0当量以下であればカルボン酸無水物基が多く残存することがなく保管安定性が良好になり好ましい。 Both ends carbinol-modified silicone oil (a), polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, compound (c) having two or more carboxylic anhydride groups in the molecule, intramolecular The amount of the compound (d) having one carboxylic acid anhydride group is the total alcohol of the carbinol-modified silicone oil (a) at both ends and the polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule. When the compound (d) having one carboxylic acid anhydride group in the molecule is used per 1 equivalent of the functional hydroxyl group, the total carboxylic acid with the compound (c) having two or more carboxylic acid anhydride groups in the molecule The acid anhydride group is preferably 0.5 to 2.0 equivalents, more preferably 0.8 to 1.5 equivalents. If it is 0.5 equivalent or more, it is preferable because the mechanical strength of the cured product is good, and if it is 2.0 equivalent or less, a large amount of carboxylic acid anhydride groups do not remain and storage stability becomes good.
 多価カルボン酸樹脂(A)の製造は、溶剤中でも無溶剤でも行うことができる。溶剤としては、両末端カルビノール変性シリコーンオイル(a)、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)、分子内に一つのカルボン酸無水物基をもつ化合物(d)、使用する場合に分子内に二つ以上のカルボン酸無水物基をもつ化合物(c)と反応しない溶剤であれば特に制限なく使用できる。使用しうる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルの様な非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンのようなケトン類、トルエン、キシレンのような芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤を用いる場合、その使用量は、両末端カルビノール変性シリコーンオイル(a)、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)、分子内に一つのカルボン酸無水物基をもつ化合物(d)、使用する場合に分子内に二つ以上のカルボン酸無水物基をもつ化合物(c)の合計100重量部に対して、0.5~300重量部が好ましい。 The production of the polyvalent carboxylic acid resin (A) can be performed in a solvent or without a solvent. As the solvent, carbinol-modified silicone oil (a) at both ends, a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, a compound (d) having one carboxylic anhydride group in the molecule, Any solvent that does not react with the compound (c) having two or more carboxylic acid anhydride groups in the molecule can be used without particular limitation. Examples of solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene. An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable. These solvents may be used alone or in combination of two or more. When a solvent is used, the amount used is that the carbinol-modified silicone oil (a) at both ends, a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, and one carboxylic anhydride group in the molecule. 0.5 to 300 parts by weight is preferable with respect to 100 parts by weight in total of the compound (d) having the compound (d) and the compound (c) having two or more carboxylic anhydride groups in the molecule.
 多価カルボン酸樹脂(A)は、無触媒でも、触媒を用いても製造する事ができる。触媒を用いる場合、用い得る触媒は、塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩、オルトチタン酸テトラエチル、オルトチタン酸テトラメチル等のオルトチタン酸類、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム等の金属石鹸類が挙げられる。
 触媒を用いる場合、1種または2種以上を混合して用いることもできる。
 触媒を用いる場合、その使用量は、両末端カルビノール変性シリコーンオイル(a)、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)、分子内に一つのカルボン酸無水物基をもつ化合物(d)、使用する場合に分子内に二つ以上のカルボン酸無水物基をもつ化合物(c)、の合計100重量部に対して、0.05~10重量部が好ましい。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。この際、メタノール、エタノール等のアルコール性の溶媒や水を用いることは、未反応の、分子内に二つ以上のカルボン酸無水物基を持つ化合物(c)や分子内に一つのカルボン酸無水物基を持つ化合物(d)と反応してしまうため、避けることが好ましい。
The polyvalent carboxylic acid resin (A) can be produced without a catalyst or with a catalyst. When a catalyst is used, usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium Roxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctyl Quaternary ammonium salts such as methylammonium acetate, orthotitanates such as tetraethyl orthotitanate and tetramethyl orthotitanate, tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, Examples include metal soaps such as potassium octylate.
When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
When a catalyst is used, the amount used thereof is as follows: carbinol-modified silicone oil (a) at both ends, polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, one carboxylic anhydride group in the molecule. 0.05 to 10 parts by weight is preferable with respect to 100 parts by weight in total of the compound (d) having, and the compound (c) having two or more carboxylic anhydride groups in the molecule when used.
As a method for adding the catalyst, it is added directly or used in a state dissolved in a soluble solvent or the like. At this time, using an alcoholic solvent such as methanol or ethanol or water means that the unreacted compound (c) having two or more carboxylic acid anhydride groups in the molecule or one carboxylic acid anhydride in the molecule. Since it reacts with the compound (d) having a physical group, it is preferable to avoid it.
 多価カルボン酸樹脂(A)の製造時の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは50~150℃、特に好ましくは60~145℃である。又、反応時間の総計は通常1~20時間、好ましくは3~12時間である。反応は2段階以上で行なっても良く、例えば20~100℃で1~8時間反応させた後に、100~160℃で1~12時間などと反応させても良い。これは特に分子内に一つのカルボン酸無水物基を持つ化合物(d)は揮発性の高いものが多く、そのようなものを用いる場合、あらかじめ20~100℃で反応させた後に、100~160℃で反応させることで、揮発を抑えることができる。これにより、大気中への有害物質の拡散を抑制するだけでなく、設計どおりの多価カルボン酸樹脂(A)を得ることができる。 The reaction temperature during the production of the polyvalent carboxylic acid resin (A) is usually 20 to 160 ° C., preferably 50 to 150 ° C., particularly preferably 60 to 145 ° C., although it depends on the amount of catalyst and the solvent used. The total reaction time is usually 1 to 20 hours, preferably 3 to 12 hours. The reaction may be carried out in two or more stages. For example, the reaction may be carried out at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours. In particular, the compound (d) having one carboxylic anhydride group in the molecule is often highly volatile. When such a compound is used, it is reacted at 20 to 100 ° C. in advance, and then 100 to 160 By reacting at ℃, volatilization can be suppressed. Thereby, not only can the diffusion of harmful substances into the atmosphere be suppressed, but also the polyvalent carboxylic acid resin (A) as designed can be obtained.
 触媒を用いて製造を行なった場合は必要に応じてクエンチ、および/又は水洗を行なうことで触媒を除くことができるが、そのまま残存させ、本発明の硬化性樹脂組成物の硬化促進剤として利用することもできる。
 水洗工程を行なう場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
 反応や水洗に溶剤を用いた場合、減圧濃縮などによって除くことができる。
In the case of production using a catalyst, the catalyst can be removed by quenching and / or washing with water as necessary, but it is left as it is and used as a curing accelerator for the curable resin composition of the present invention. You can also
When performing a water washing process, it is preferable to add the solvent which can be isolate | separated from water depending on the kind of solvent currently used. Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
When a solvent is used for the reaction or washing with water, it can be removed by vacuum concentration or the like.
 このようにして得られる多価カルボン酸樹脂(A)は、通常25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800~80000のものが好ましく、1000~10000のものがより好ましく、特に1500~8000のものが好ましい。重量平均分子量が800を下回る場合は25℃における流動性が低下することがあり、80000を上回る場合は、これを用いた硬化性樹脂組成物とした際に、後述するエポキシ樹脂との相溶性が劣ることがある。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
The polycarboxylic acid resin (A) thus obtained is normally a liquid having fluidity at 25 ° C. The molecular weight is preferably from 800 to 80000, more preferably from 1000 to 10000, particularly preferably from 1500 to 8000, as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the fluidity at 25 ° C. may be lowered. May be inferior.
The weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 製造された多価カルボン酸樹脂(A)の酸価(JIS K-2501に記載の方法で測定した)は35~200mgKOH/gのものが好ましく、50~180mgKOH/gのものがより好ましく、特に60~150mgKOH/gのものが好ましい。官能基当量が35mgKOH/gを下回る場合は硬化物の機械特性が悪化する傾向があり、150mgKOH/gを上回る場合はその硬化物が硬く、弾性率が高くなりすぎる傾向がある。 The acid value (measured by the method described in JIS K-2501) of the produced polycarboxylic acid resin (A) is preferably 35 to 200 mgKOH / g, more preferably 50 to 180 mgKOH / g, particularly 60-150 mgKOH / g is preferred. When the functional group equivalent is less than 35 mgKOH / g, the mechanical properties of the cured product tend to deteriorate, and when it exceeds 150 mgKOH / g, the cured product tends to be hard and the elastic modulus tends to be too high.
 多価カルボン酸樹脂(A)の粘度(E型粘度計、25℃で測定)は50~800,000mPa・sのものが好ましく、500~100,000mPa・sのものがより好ましく、特に800~30,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さないことがあり、800,000mPa・sを上回る場合は、粘度が高すぎて作業性に劣る場合がある。 The viscosity of the polyvalent carboxylic acid resin (A) (E-type viscometer, measured at 25 ° C.) is preferably from 50 to 800,000 mPa · s, more preferably from 500 to 100,000 mPa · s, particularly from 800 to Those having a viscosity of 30,000 mPa · s are preferred. When the viscosity is less than 50 mPa · s, the viscosity may be too low to be suitable as an optical semiconductor encapsulant, and when it exceeds 800,000 mPa · s, the viscosity may be too high and workability may be poor. is there.
 本発明の硬化性樹脂組成物において、酸無水物と、多価カルボン酸と、多価カルボン酸樹脂(A)をそれぞれ、2種以上併用することもできる。特に光半導体の封止など室温(25℃)にて液状が求められる用途において固体の多価カルボン酸を用いる場合、液状の酸無水物および/または多価カルボン酸樹脂(A)を併用し、液状の混合物として使用することが望ましい。併用する場合、酸無水物および/又は多価カルボン酸樹脂(A)は、エポキシ樹脂硬化剤合計の0.5~99.5重量%の割合で使用できる。 In the curable resin composition of the present invention, two or more acid anhydrides, polyvalent carboxylic acids, and polyvalent carboxylic acid resins (A) may be used in combination. In particular, when using a solid polyvalent carboxylic acid in an application where a liquid state is required at room temperature (25 ° C.) such as sealing of an optical semiconductor, a liquid acid anhydride and / or a polyvalent carboxylic acid resin (A) is used in combination, It is desirable to use it as a liquid mixture. When used in combination, the acid anhydride and / or the polyvalent carboxylic acid resin (A) can be used in a proportion of 0.5 to 99.5% by weight of the total epoxy resin curing agent.
 エポキシ樹脂硬化剤として、前述の酸無水物および/または多価カルボン酸および/または多価カルボン酸樹脂(A)以外の硬化剤を併用する場合、酸無水物および/または多価カルボン酸および/または多価カルボン酸樹脂(A)の総量が、全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 併用できる硬化剤としては、例えばアミン系化合物、アミド系化合物、フェノール系化合物などが挙げられる。使用できる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物、その他(イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
When the curing agent other than the above-mentioned acid anhydride and / or polyvalent carboxylic acid and / or polyvalent carboxylic acid resin (A) is used in combination as the epoxy resin curing agent, the acid anhydride and / or the polyvalent carboxylic acid and / or Alternatively, the proportion of the total amount of the polyvalent carboxylic acid resin (A) in the total curing agent is preferably 30% by weight or more, and particularly preferably 40% by weight or more.
Examples of the curing agent that can be used in combination include amine compounds, amide compounds, phenol compounds, and the like. Specific examples of curing agents that can be used include amines and polyamide compounds (diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and dimer of linolenic acid, etc.) Polyphenols (bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fe (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, Dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloro Methyl) benzene, polycondensates with 1,4′-bis (methoxymethyl) benzene, etc. and their modified products, halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols, etc. Imidazole, trifluoroborane -. Amine complex, guanidine derivatives, etc.) and the like, but the invention is not limited to these may be used alone, or two or more may be used.
 ここからは本発明の光半導体封止用硬化性樹脂組成物に含有されるエポキシ樹脂について説明する。前記エポキシ樹脂としては、例えばフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。この中でも、硬化物の透明性、耐熱透明性の観点からエポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物の一つの態様であるシリコーン骨格エポキシ樹脂(B)が好ましい。 Hereafter, the epoxy resin contained in the curable resin composition for optical semiconductor encapsulation of the present invention will be described. Examples of the epoxy resin include an epoxy resin that is a glycidyl etherified product of a phenol compound, an epoxy resin that is a glycidyl etherified product of various novolak resins, an alicyclic epoxy resin, an aliphatic epoxy resin, a heterocyclic epoxy resin, and a glycidyl ester. Epoxy resins, glycidylamine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, condensates of silicon compounds having epoxy groups with other silicon compounds, polymerizable unsaturated compounds having epoxy groups and others And other copolymers with other polymerizable unsaturated compounds. Among these, the silicone skeleton epoxy resin (B) which is one embodiment of the condensate of the silicon compound having an epoxy group and the other silicon compound is preferable from the viewpoint of transparency of the cured product and heat-resistant transparency.
 ここからシリコーン骨格エポキシ樹脂(B)について説明する。
 本発明のシリコーン骨格エポキシ樹脂(B)は、シリコーン結合(Si-O結合)を主骨格としたエポキシ基を有する樹脂であり、例えばエポキシ基含有ケイ素化合物とそれ以外のケイ素化合物を重合することで得ることができ、エポキシ基をもつアルコキシシラン化合物とメチル基やフェニル基を持つアルコキシシランとの加水分解縮合重合物や、エポキシ基をもつアルコキシシラン化合物とシラノール末端シリコーンオイルとの縮合重合物などが挙げられる。またヒドロシリル基(SiH基)を有するシリコーン樹脂とビニル基などの不飽和炭化水素基を有するエポキシ化合物との付加重合物なども例示できる。
From here, the silicone skeleton epoxy resin (B) will be described.
The silicone skeleton epoxy resin (B) of the present invention is a resin having an epoxy group having a silicone bond (Si—O bond) as a main skeleton. For example, by polymerizing an epoxy group-containing silicon compound and other silicon compounds. Hydrolysis condensation polymer of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, or a condensation polymer of an alkoxysilane compound having an epoxy group and a silanol-terminated silicone oil can be obtained. Can be mentioned. Moreover, an addition polymerization product of a silicone resin having a hydrosilyl group (SiH group) and an epoxy compound having an unsaturated hydrocarbon group such as a vinyl group can also be exemplified.
 本発明におけるシリコーン骨格エポキシ樹脂(B)は、その中でも、シラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))を原料として、後記する2段階の製造工程を経て得られるシリコーン骨格エポキシ樹脂が最も好ましい。 Among them, the silicone skeleton epoxy resin (B) in the present invention includes, as raw materials, a silanol-terminated silicone oil (e) and an epoxy group-containing silicon compound (f) (and, if necessary, an alkoxysilicon compound (g)). The silicone skeleton epoxy resin obtained through the two-stage manufacturing process is most preferable.
 ここからシラノール末端シリコーンオイル(e)、エポキシ基含有ケイ素化合物(f)、アルコキシケイ素化合物(g)について説明する。
 まず、シラノール末端シリコーンオイル(e)について説明する。
 シラノール末端シリコーンオイル(e)は下記式(3)で表される、シラノール基を両末端に有するシリコーン樹脂のことである。
From here, the silanol-terminated silicone oil (e), the epoxy group-containing silicon compound (f), and the alkoxysilicon compound (g) will be described.
First, the silanol-terminated silicone oil (e) will be described.
The silanol-terminated silicone oil (e) is a silicone resin represented by the following formula (3) and having silanol groups at both ends.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(3)においてRはメチル基等の炭素数1~3のアルキル基又はフェニル基を示す。複数存在するRは同一であっても異なっていても構わないが、他の樹脂との相溶性、高屈折率、耐硫化性向上の観点から、フェニル基を含有することが好ましい。
 シリコーン骨格エポキシ樹脂(B)の粘度調整の観点からは、メチル基を含有することが好ましい。
In the formula (3), R 5 represents an alkyl group having 1 to 3 carbon atoms such as a methyl group or a phenyl group. A plurality of R 5 may be the same or different, but it is preferable to contain a phenyl group from the viewpoint of compatibility with other resins, high refractive index, and improvement in sulfur resistance.
From the viewpoint of adjusting the viscosity of the silicone skeleton epoxy resin (B), it is preferable to contain a methyl group.
 含有するフェニル基の割合は、置換メチル基1モルに対し、0.05~2.0モルが好ましく、より好ましくは0.1~1.0モル、さらに好ましくは0.15~0.3モル、特に好ましくは0.15~0.2モルである。0.05モルを下回ると組成物中の他の原料との相溶性が劣るだけでなく、硬化物の屈折率が低く、LEDの光取り出し効率が悪化したり、耐硫化性に劣ることがあり、2.0モルを上回ると、硬化物の耐光性(耐UV性)が劣ったり、ヒートサイクル耐性に劣ることがある。 The proportion of the phenyl group contained is preferably 0.05 to 2.0 mol, more preferably 0.1 to 1.0 mol, and still more preferably 0.15 to 0.3 mol, per 1 mol of the substituted methyl group. Particularly preferred is 0.15 to 0.2 mol. If it is less than 0.05 mol, not only the compatibility with other raw materials in the composition is inferior, but also the refractive index of the cured product is low, the light extraction efficiency of the LED may deteriorate, and the sulfidation resistance may be inferior. If the amount exceeds 2.0 mol, the light resistance (UV resistance) of the cured product may be inferior or the heat cycle resistance may be inferior.
 式(3)において、pは平均値で3~200を示し、好ましくは3~100、より好ましくは3~50である。pが3を下回ると硬化物が硬くなりすぎ、ヒートサイクル耐性が低くなることがある。pが200を上回ると硬化物の機械強度が低下することがある。 In the formula (3), p represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50. When p is less than 3, the cured product becomes too hard and the heat cycle resistance may be lowered. When p exceeds 200, the mechanical strength of the cured product may decrease.
 シラノール末端シリコーンオイル(e)の重量平均分子量(Mw)は400~3000(GPC)の範囲のものが好ましい。重量平均分子量が400を下回る場合、シリコーン部分の特性が出にくく耐熱性、耐光性が劣る懸念があり、3000を超えると激しい層分離構造を持つ事で、光半導体素子封止に使用するには透過性が低くなることがある。
 本発明においてシラノール末端シリコーンオイル(e)の分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。
The silanol-terminated silicone oil (e) preferably has a weight average molecular weight (Mw) in the range of 400 to 3000 (GPC). When the weight average molecular weight is less than 400, there is a concern that the properties of the silicone part are difficult to be obtained and heat resistance and light resistance are inferior, and when it exceeds 3000, it has a severe layer separation structure, so that it can be used for sealing an optical semiconductor element. Permeability may be reduced.
In the present invention, the molecular weight of the silanol-terminated silicone oil (e) is the weight average molecular weight (Mw) calculated in terms of polystyrene based on the value measured under the following conditions using GPC (gel permeation chromatography). means.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 シラノール末端シリコーンオイル(e)は、例えば、ジメチルジアルコキシシラン、メチルフェニルジクロルシラン、ジフェニルアルコキシシラン、ジメチルジクロルシラン、メチルフェニルジクロルシラン、ジフェニルジクロルシランを加水分解、縮合することによって製造できる。 Silanol-terminated silicone oil (e) is produced, for example, by hydrolyzing and condensing dimethyldialkoxysilane, methylphenyldichlorosilane, diphenylalkoxysilane, dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane. it can.
 シラノール末端シリコーンオイル(e)として好ましい具体例としては、以下の製品名を挙げることができる。例えば、東レダウコーニング社製としては、PRX413、BY16-873、信越化学工業社製としては、X-21-5841、KF-9701、モメンティブ社製としては、XC96-723、TSR160、YR3370、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897,YF3804、XF3905、Gelest社製としては、DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S42、DMS-S45、DMS-S51、PDS-0332、PDS-1615、PDS-9931などが挙げられる。上記の中でも、分子量、動粘度の観点からPRX413、BY16-873、X-21-5841、KF-9701、XC96-723,YF3800、YF3804、DMS-S12、DMS-S14、DMS-S15、DMS-S21、PDS-1615が好ましい。これらの中でも分子量の観点から、X-21-5841、XC96-723、YF3800,YF3804、DMS-S14、PDS-1615が特に好ましい。これらシラノール末端シリコーンオイル(a)は、単独で用いてもよく、2種以上を併用して用いてもよい。 Specific examples of preferable silanol-terminated silicone oil (e) include the following product names. For example, PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd., X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive Co., Ltd. XF3905, YF3057, YF3807, YF3802, YF3897, YF3804, XF3905, manufactured by Gelest, DMS-S12, DMS-S14, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS- S33, DMS-S35, DMS-S42, DMS-S45, DMS-S51, PDS-0332, PDS-1615, PDS-9931 and the like. Among these, from the viewpoint of molecular weight and kinematic viscosity, PRX413, BY16-873, X-21-5841, KF-9701, XC96-723, YF3800, YF3804, DMS-S12, DMS-S14, DMS-S15, DMS-S21 PDS-1615 is preferred. Among these, X-21-5841, XC96-723, YF3800, YF3804, DMS-S14, and PDS-1615 are particularly preferable from the viewpoint of molecular weight. These silanol-terminated silicone oils (a) may be used alone or in combination of two or more.
 次に、エポキシ基含有ケイ素化合物(f)について説明する。
 本発明におけるエポキシ基含有ケイ素化合物(f)は式(4)で表されるアルコキシケイ素化合物である。
Next, the epoxy group-containing silicon compound (f) will be described.
The epoxy group-containing silicon compound (f) in the present invention is an alkoxysilicon compound represented by the formula (4).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(4)中、Xはエポキシ基を有する有機基であれば特に制限はない。
 例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等のグリシドオキシ基で置換された炭素数1~4のアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、4-(3,4-エポキシシクロヘキシル)ブチル基、5-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数1~5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1~3のアルキル基、エポキシ基を有する炭素数5~8のシクロアルキル基で置換された炭素数1~3のアルキル基として、例えば、β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基が好ましく、特に着色を抑えることができることからβ-(3,4-エポキシシクロヘキシル)エチル基が好ましい。
In formula (4), X is not particularly limited as long as X is an organic group having an epoxy group.
For example, an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as β-glycidoxyethyl, γ-glycidoxypropyl, γ-glycidoxybutyl, glycidyl group, β- (3,4-epoxy Cyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycycloheptyl) ethyl group, 4- (3,4-epoxycyclohexyl) butyl group, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group. Among these, as an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group and an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group, for example, β -Glycidoxyethyl group, γ-glycidoxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group are preferable, and since β- (3,4-epoxycyclohexyl) ethyl group can be particularly suppressed in coloration Is preferred.
 式(4)中、Rとしては、炭素数1~10の直鎖状、分岐状、環状のアルキル基又は炭素数6~10の芳香族炭化水素基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基等が挙げられる。これらRは、相溶性、硬化物の耐熱透明性の観点から、メチル基、フェニル基が好ましい。 In the formula (4), R 6 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, phenyl Group, naphthyl group and the like. R 6 is preferably a methyl group or a phenyl group from the viewpoints of compatibility and heat-resistant transparency of the cured product.
 式(4)中のRとしては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらRは、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基が好ましく、特にメチル基が好ましい。 R 7 in the formula (4) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, etc. Can be mentioned. R 7 is preferably a methyl group or an ethyl group, particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.
 式(4)中のqは整数で0、1、2を表し、rは(3-q)をそれぞれ表す。シリコーン骨格エポキシ樹脂(B)の粘度、硬化物の機械強度の観点からqは0又は1が好ましい。 Q in the formula (4) is an integer representing 0, 1, 2 and r represents (3-q). In view of the viscosity of the silicone skeleton epoxy resin (B) and the mechanical strength of the cured product, q is preferably 0 or 1.
 エポキシ基含有ケイ素化合物(f)として好ましい具体例としては、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルシクロヘキシルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルフェニルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルシクロヘキシルジメトキシシラン等が挙げられ、特に2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。これらエポキシ基含有ケイ素化合物(f)は、単独又は2種以上で用いてもよく、以下に示すアルコキケイ素化合物(g)と併用することもできる。 Specific preferred examples of the epoxy group-containing silicon compound (f) include β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycidoxy. Propyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylphenyldimethoxysilane, γ-glycidoxypropylcyclohexyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylphenyldimethoxysilane, 2- (3 4- Po carboxymethyl) ethyl cyclohexyl dimethoxysilane, and the like, especially 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane are preferable. These epoxy group-containing silicon compounds (f) may be used alone or in combination of two or more, and may be used in combination with the alkoxysilicon compound (g) shown below.
 シリコーン骨格エポキシ樹脂(B)において、エポキシ基含有ケイ素化合物(f)と共に、下記式(5)で表わされるアルコキシケイ素化合物(g)を併用することができる。アルコキシケイ素化合物(g)を併用することで、シリコーン骨格エポキシ樹脂の、粘度、屈折率等を調整することができる。 In the silicone skeleton epoxy resin (B), the alkoxy silicon compound (g) represented by the following formula (5) can be used together with the epoxy group-containing silicon compound (f). By using the alkoxysilicon compound (g) in combination, the viscosity, refractive index and the like of the silicone skeleton epoxy resin can be adjusted.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(5)中の、R、Rは前記したものと同じ内容を、sは整数で0、1、2、3を、tは(4-s)をそれぞれ示す。 In the formula (5), R 6 and R 7 have the same contents as described above, s is an integer, 0, 1, 2, 3 and t is (4-s).
 併用できるアルコキシケイ素化合物(g)として好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、シクロヘキシルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジジエトキシシラン等が挙げられる。上記の中でもメチルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシランが好ましい。 Specific examples of preferred alkoxysilicon compounds (g) that can be used in combination include methyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diphenyl. Examples include dimethoxysilane and diphenyldidiethoxysilane. Among these, methyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diphenyldimethoxysilane are preferable.
 本発明において、使用するシラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))のうち、少なくともいずれか1種には芳香族骨格を有する化合物を使用することが屈折率の上昇、耐硫化性の低減の観点から好ましく、特にフェニル基を有する化合物を使用することが好ましい。特に、シラノール末端シリコーンオイル(e)がフェニル基を有することが好ましい。これは、フェニル基が導入されたシラノール末端シリコーンオイル(e)を用いるとことで、シリコーン骨格エポキシ樹脂(B)の過度な粘度上昇を抑えることができる一方、フェニル基のついたエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))を用いると、粘度上昇が大きくなって、作業性が劣る場合があるからである。 In the present invention, at least one of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and the alkoxysilicon compound (g) if necessary) has an aromatic skeleton. It is preferable to use a compound having a phenyl group from the viewpoint of an increase in refractive index and a reduction in sulfur resistance, and it is particularly preferable to use a compound having a phenyl group. In particular, the silanol-terminated silicone oil (e) preferably has a phenyl group. This is because by using a silanol-terminated silicone oil (e) having a phenyl group introduced, an excessive increase in viscosity of the silicone skeleton epoxy resin (B) can be suppressed, while an epoxy group-containing silicon having a phenyl group is attached. This is because when the compound (f) (and the alkoxysilicon compound (g) if necessary) is used, the increase in viscosity becomes large and workability may be deteriorated.
 シリコーン骨格エポキシ樹脂(B)の製造において、シラノール末端シリコーンオイル(e)のシラノール基1当量に対して、エポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))のアルコキシ基を1.5当量より小さい量で反応させるとエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))中の2つ以上のアルコキシ基が末端にシラノール末端シリコーンオイル(e)のシラノール基と反応することになり、後述する製造工程1終了時に高分子になりすぎてゲル化がおきてしまう。このため、シラノール基1当量に対して、アルコキシ基を1.5当量以上で反応させる必要がある。反応制御の観点からは2.0当量以上が好ましい。 In the production of the silicone skeleton epoxy resin (B), the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)) with respect to 1 equivalent of the silanol group of the silanol-terminated silicone oil (e). When the alkoxy group is reacted in an amount less than 1.5 equivalents, two or more alkoxy groups in the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxy silicon compound (g)) are terminated with a silanol-terminated silicone. It will react with the silanol group of oil (e), and it will become a polymer | macromolecule at the end of the manufacturing process 1 mentioned later, and will gelatinize. For this reason, it is necessary to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or more are preferable.
 次に、製造工程1、2について説明する。
(製造工程1)
 シラノール末端シリコーンオイル(e)のシラノール基と、エポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))のアルコキシ基を縮合させ、変性シリコーンオイル(h)を得る工程。
(製造工程2)
 製造工程1の後に、水を加え、残存するアルコキシ基の加水分解縮合を行なう工程。
 本発明では、上記製造工程1,2を経て、変性シリコーンオイル(h)とエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の重合を行なうことを特徴とする。
Next, manufacturing steps 1 and 2 will be described.
(Manufacturing process 1)
A step of obtaining a modified silicone oil (h) by condensing the silanol group of the silanol-terminated silicone oil (e) and the alkoxy group of the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)). .
(Manufacturing process 2)
A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
In the present invention, the modified silicone oil (h) and the epoxy group-containing silicon compound (f) (and the alkoxysilicon compound (g) as required) are polymerized through the production steps 1 and 2 described above. To do.
 製造工程を二段階に分けることで、シラノール末端シリコーンオイル(e)のシラノール基と、エポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))のアルコキシ基とを確実に反応させて変性シリコーンオイル(h)を得た後に、残存するアルコキシ基の脱アルコール加水分解縮合を行ない、均一な安定した製品を得ることができる。 By dividing the production process into two stages, the silanol group of the silanol-terminated silicone oil (e) and the alkoxy group of the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxy silicon compound (g)) are ensured. To obtain a modified silicone oil (h), and then subjecting the remaining alkoxy group to dealcohol hydrolysis hydrolysis, a uniform and stable product can be obtained.
 製造工程を一段階として、製造の始めから水を加えると、シラノール基とアルコキシ基との縮合反応と、アルコキシシラン同士の重合反応が競争反応となり、お互いの反応速度の差、生成物の相溶性の差により、不均一な化合物が得られたり、エポキシ基を有さないシラノール末端シリコーンオイル(e)が大量に残存することにより製品に悪影響を及ぼしたりする。 When water is added from the beginning of the manufacturing process in one step, the condensation reaction between the silanol group and the alkoxy group and the polymerization reaction between the alkoxysilanes become a competitive reaction, resulting in a difference in the reaction rate between the products and the compatibility of the products. Due to the difference, a heterogeneous compound can be obtained, or a large amount of silanol-terminated silicone oil (e) having no epoxy group can be adversely affected.
 製造工程1においては溶剤存在下で反応させることが好ましく、溶剤の中でも反応制御の観点からアルコールが特に好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては1級アルコール、2級アルコールが好ましく、特に1級アルコール、もしくは1級アルコールと2級アルコールを混合して用いることが好ましい。1級アルコールの例としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、プロピレングリコール等が挙げられ、また、2級アルコールの例としては、イソプロパノール、シクロヘキサノール、プロピレングリコール等が挙げられる。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わず、混合する場合、1級アルコール、2級アルコールから選択される二種以上であることが好ましく、少なくとも1成分に1級アルコールが含有されることが、後述する触媒の溶解性に優れることから好ましい。好ましい1級アルコールの量は全アルコール量の5重量%以上、より好ましくは10重量%以上である。
 本反応に2級アルコールを併用することで製造工程1の反応系の単位時間あたりの重量平均分子量の変化量が、1級アルコールのみを用いた場合よりも小さくなるため、反応の制御がより容易である。一般的に工業生産など大スケールの反応の際には、反応時間、反応温度の厳密な制御が困難になるため、2級アルコールの併用は反応制御の観点から特に工業生産など大スケール反応の際に有用である。
 製造工程1においてアルコールの使用量は、シラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の総重量に対し、2重量%以上含有することが好ましい。より好ましくは2~100重量%、さらに好ましくは3~50重量%、特に好ましくは4~40重量%である。
 100重量%を越えると反応の進みが極度に遅くなり、2重量%未満の場合、目的とする反応以外の反応が進行し、高分子量化が進み、ゲル化、粘度の上昇、硬化物としての弾性率の増加が生じることがある。
 本反応においては必要に応じて他の溶剤を併用しても構わない。
 併用できる溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
In the production process 1, the reaction is preferably performed in the presence of a solvent, and alcohol is particularly preferable among the solvents from the viewpoint of reaction control. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols. Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like. Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc. In view of the problem of removal performance later, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. When they are mixed, they are preferably two or more selected from primary alcohols and secondary alcohols, and at least one component contains primary alcohols. It is preferable because the solubility of the catalyst described later is excellent. The amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
By using a secondary alcohol in combination with this reaction, the amount of change in the weight average molecular weight per unit time in the reaction system of production process 1 is smaller than when only the primary alcohol is used, so the reaction is more easily controlled. It is. In general, in the case of large-scale reactions such as industrial production, it becomes difficult to strictly control the reaction time and reaction temperature, so the combined use of secondary alcohols is particularly important for large-scale reactions such as industrial production from the viewpoint of reaction control. Useful for.
In the production process 1, the amount of alcohol used is 2% by weight or more based on the total weight of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)). It is preferable to contain. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight.
When the amount exceeds 100% by weight, the progress of the reaction is extremely slow, and when it is less than 2% by weight, the reaction other than the intended reaction proceeds, the molecular weight increases, gelation, increase in viscosity, An increase in modulus may occur.
In this reaction, other solvents may be used in combination as necessary.
Examples of solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene, and xylene. Can be illustrated.
 製造工程1における反応は無触媒でも行なえるが、無触媒だと反応進行が遅いので、反応時間短縮の観点から触媒存在下で行なうことが好ましい。用い得る触媒としては、酸性または塩基性を示す化合物であれば使用する事ができる。酸性触媒の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性触媒の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。
 これらの中でも、特に塩基性触媒が好ましく、生成物からの触媒除去が容易である点で無機塩基が好ましい。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属塩、あるいはアルカリ土類金属塩、特に水酸化物が好ましい。
 触媒の添加量は、シラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の総重量に対し、通常0.001~5重量%、好ましくは0.01~2重量%である。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、目的とする反応以外のゾル-ゲル反応が競争的に進行してしまい、エポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))のアルコキシ基の重縮合を一方的に進行させ、それにより生成した反応物と、シラノール末端シリコーンオイル(e)とが相溶せず白濁する可能性があるので注意が必要である。
 この際の水分の許容範囲はシラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の総重量に対し通常0.5重量%以下、より好ましくは0.3重量%以下であり、水分が可能な限り無いほうがより好ましい。
Although the reaction in the production process 1 can be carried out without a catalyst, the reaction proceeds slowly with no catalyst, so that it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time. As the catalyst that can be used, any compound that exhibits acidity or basicity can be used. Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Examples of basic catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal hydroxides such as cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc. Inorganic bases such as alkali metal carbonates and organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
Among these, a basic catalyst is particularly preferable, and an inorganic base is preferable in terms of easy catalyst removal from the product. Specifically, alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, particularly hydroxides are preferable.
The amount of the catalyst added is usually 0.001 to 5% by weight based on the total weight of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and the alkoxysilicon compound (g) if necessary). Preferably, it is 0.01 to 2% by weight.
As a method for adding the catalyst, it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol. At this time, addition as an aqueous solution using water or the like causes a sol-gel reaction other than the intended reaction to proceed competitively, and the epoxy group-containing silicon compound (f) (and, if necessary, Since the polycondensation of the alkoxy group of the alkoxysilicon compound (g)) proceeds unilaterally, the reaction product produced thereby may not be compatible with the silanol-terminated silicone oil (e) and may become cloudy. is necessary.
In this case, the allowable range of moisture is usually 0.5% by weight or less based on the total weight of the silanol-terminated silicone oil (e) and the epoxy group-containing silicon compound (f) (and, if necessary, the alkoxysilicon compound (g)). More preferably, it is 0.3% by weight or less, and it is more preferable that there is as little moisture as possible.
 製造工程1の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。 The reaction temperature in the production step 1 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used. The reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
 このようにして製造工程1で得られる変性シリコーンオイル(h)は下記式(6)で示されるような構造を主たる成分として有していると考えられる(構造の確認が困難であり正確には同定することができない。)。 Thus, the modified silicone oil (h) obtained in the production process 1 is considered to have a structure represented by the following formula (6) as a main component (the confirmation of the structure is difficult and accurate Cannot be identified.)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(6)中、R、pは前記と同様の意味を示す。Rは前記したX、R、-ORのいずれかを、RはRおよび/または-ORをそれぞれ示す。 In the formula (6), R 5 and p have the same meaning as described above. R 8 represents any one of the aforementioned X, R 6 , and —OR 7 , and R 9 represents R 6 and / or —OR 7 , respectively.
 次に、製造工程2について詳細に記載する。
 製造工程1の反応終了後、水を添加し、得られた変性シリコーンオイル(h)に残存するアルコキシ基同士の重合(ゾルーゲル反応)を行なう。この際、必要に応じて前述のエポキシ基を含有するケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))、触媒を前述の量の範囲内で添加しても構わない。この反応は、(1)変性シリコーンオイル(h)同士、および/または、(2)エポキシ基を含有するケイ素化合物(f)(および、使用する場合にはアルコキシケイ素化合物(g))との間、および/または、(3)エポキシ基を含有するケイ素化合物(f)(および、使用する場合にはアルコキシケイ素化合物(g))、および、(4)エポキシ基を含有するケイ素化合物(f)(および、使用する場合にはアルコキシケイ素化合物(g))の部分重合物と変性シリコーンオイル(h)との間で重合反応を行う工程である。上記(1)~(4)の重合反応は、同時に平行して進行していると考えられる。
 特に製造工程2においても先と同様、触媒としては塩基性無機触媒が好ましいことは代わりがなく、製造工程1の段階で必要な量を先に添加しておいても構わない。ただし、製造工程1で好ましい態様として記載した範囲を越えることは好ましくない。
Next, the manufacturing process 2 will be described in detail.
After completion of the reaction in the production step 1, water is added, and the alkoxy groups remaining in the resulting modified silicone oil (h) are polymerized (sol-gel reaction). At this time, the silicon compound (f) containing the above-mentioned epoxy group (and the alkoxysilicon compound (g) if necessary) and the catalyst may be added within the above-mentioned amounts as necessary. This reaction is performed between (1) the modified silicone oils (h) and / or (2) the silicon compound (f) containing an epoxy group (and the alkoxysilicon compound (g) if used). And / or (3) a silicon compound (f) containing an epoxy group (and an alkoxy silicon compound (g) if used), and (4) a silicon compound (f) containing an epoxy group ( And when using, it is the process of performing a polymerization reaction between the partial polymerization product of an alkoxy silicon compound (g)), and modified silicone oil (h). The polymerization reactions (1) to (4) are considered to proceed simultaneously in parallel.
In particular, in the production process 2, as described above, a basic inorganic catalyst is preferable as the catalyst, and a necessary amount may be added in the production process 1 in advance. However, it is not preferable to exceed the range described as a preferred embodiment in the production process 1.
 製造工程2においては溶剤を添加することが好ましい。
 製造工程2において溶剤として、製造工程1と同様にアルコールを用いることが好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては特に1級アルコール、2級アルコールが好ましく、特に1級アルコールが好ましい。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わない。これらアルコールの存在が分子量制御、およびその安定性に寄与する。
 アルコールの添加量としては製造工程1において仕込んだシラノール末端シリコーンオイル(e)とエポキシ基を含有するケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の総重量に対し、20~200重量%、好ましくは20~150重量%、特に好ましくは30~120重量%である。
In the production process 2, it is preferable to add a solvent.
As in the production process 1, alcohol is preferably used as the solvent in the production process 2. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred. In view of the problem of removal performance later, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. The presence of these alcohols contributes to molecular weight control and stability.
As the addition amount of the alcohol, the total weight of the silanol-terminated silicone oil (e) and the silicon compound (f) containing an epoxy group (and the alkoxysilicon compound (g) if necessary) charged in the production process 1, It is 20 to 200% by weight, preferably 20 to 150% by weight, particularly preferably 30 to 120% by weight.
 製造工程2においては水を加える(イオン交換水、蒸留水、上水、何れも使用できる)。水の使用量としては、残存するアルコキシ基量に対し、通常0.5~8.0当量、より好ましくは0.6~5.0当量、特に好ましくは0.65~2.0当量である。
 水の量が0.5当量を下回る場合、反応の進行が遅くなり、エポキシ基を含有するケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))が反応せずに残存する等の問題が生じたり、十分なネットワークを組めず、後の硬化性樹脂組成物とした後の硬化後も硬化不良を起こしたりする可能性がある。また8.0当量を越える場合、分子量制御が効かず、必要以上に高分子量となる。さらに、シリコーン骨格エポキシ樹脂(B)の安定性を阻害する可能性がある。
In the production process 2, water is added (ion exchange water, distilled water, or clean water can be used). The amount of water used is usually 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. .
When the amount of water is less than 0.5 equivalent, the progress of the reaction is slow, and the silicon compound (f) containing an epoxy group (and the alkoxysilicon compound (g) if necessary) remains without reacting. There is a possibility that a problem such as the above will occur, a sufficient network cannot be formed, and a curing failure will occur even after the subsequent curing of the curable resin composition. On the other hand, if it exceeds 8.0 equivalents, the molecular weight control is not effective and the molecular weight becomes higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the silicone skeleton epoxy resin (B).
 製造工程2の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。 The reaction temperature in production step 2 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used. The reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
 反応終了後、必要に応じてクエンチ、および/又は水洗によって触媒を除去する。水洗を行う場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。 After completion of the reaction, the catalyst is removed by quenching and / or washing with water as necessary. When washing with water, depending on the type of solvent used, it is preferable to add a solvent that can be separated from water. Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
 本反応は水洗のみで触媒の除去を行っても構わないが、酸性、塩基性条件、いずれかの条件で反応を行うことから、中和反応によりクエンチを行った後に水洗を行うか、吸着剤を用いて触媒を吸着した後にろ過により吸着剤を除くことが好ましい。
 中和反応には酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸トリナトリウム、ポリ燐酸、トリポリ燐酸ナトリウムのようなリン酸塩類等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの除去が容易である点で無機塩基もしくは無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
In this reaction, the catalyst may be removed only by washing with water, but the reaction is carried out under acidic or basic conditions. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using
Any compound that is acidic or basic can be used for the neutralization reaction. Examples of the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate. Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphates such as polyphosphoric acid, sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used. Among these, an inorganic base or an inorganic acid is particularly preferable because it can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.
 吸着剤としては活性白土、活性炭、ゼオライト、無機・有機系の合成吸着剤、イオン交換樹脂等が例示でき、具体例としては下記の製品が挙げられる。
 活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R-15、E、ニッカナイトG-36、G-153、G-168が、水沢化学工業社製として、ガレオンアース、ミズカエースなどが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL-H、Y-10S、Y-10SFが、フタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト15JWET、15DRY、16WET、31WET、A21、アンバーライトIRA400JCl、IRA403BLCl、IRA404JCl、ダウケミカル社製として、ダウエックス66、HCR-S、HCR-W2、MAC-3などが挙げられる。
 吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
Examples of the adsorbent include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
As the activated clay, for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168 are manufactured by Mizusawa Chemical Co., Ltd. Galeon Earth, Mizuka Ace, etc. are listed. Examples of the activated carbon include CL-H, Y-10S, and Y-10SF manufactured by Ajinomoto Fine Techno Co., and S, Y, FC, DP, SA1000, K, A, KA, M, manufactured by Phutamura Chemical Co., Ltd. Examples thereof include CW130BR, CW130AR, and GM130A. Examples of zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa. As a synthetic adsorbent, for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd. 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, manufactured by Dow Chemical Company, Dowex 66, HCR-S, HCR-W2, MAC-3, etc. may be mentioned.
The adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
 反応終了後またはクエンチ後は水洗、ろ過の他慣用の分離精製手段によって精製することができる。精製手段としては例えば、カラムクロマトグラフィー、減圧濃縮、蒸留、抽出等が挙げられる。これらの精製手段は単独で行なってもよいし、複数を組み合わせて行なってもかまわない。 After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration. Examples of the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
 反応溶媒として水と混合する溶媒を用いて反応した場合には、クエンチ後に蒸留または減圧濃縮によって水と混合する反応溶媒を系中から除いた後に、水と分離可能な溶剤を用いて水洗を行なうことが好ましい。 When the reaction is performed using a solvent mixed with water as a reaction solvent, the reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
 水洗後は減圧濃縮等により溶剤を除去することで、本発明のシリコーン骨格エポキシ樹脂(B)を得ることができる。 After washing with water, the silicone skeleton epoxy resin (B) of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
 このようにして得られるシリコーン骨格エポキシ樹脂(B)の外観は、通常無色透明で25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800~3000のものが好ましく、1000~3000のものがより好ましく、特に1500~2800のものが好ましい。重量平均分子量が800より下回る場合は耐熱性が低下することがあり、3000を上回る場合は、これを用いて封止したLED素子のはんだリフロー時に基板から封止材が剥離することがある。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
The appearance of the silicone skeleton epoxy resin (B) thus obtained is usually a colorless and transparent liquid having a fluidity at 25 ° C. Further, the molecular weight is preferably 800 to 3000, more preferably 1000 to 3000, and particularly preferably 1500 to 2800 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 3000, the encapsulant may be peeled off from the substrate at the time of solder reflow of the LED element encapsulated using the weight average molecular weight.
The weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 シリコーン骨格エポキシ樹脂(B)のエポキシ当量(JIS K-7236に記載の方法で測定)は300~1500g/eq.のものが好ましく、320~1400g/eqのものがより好ましく、さらに350~1200g/eq、特に350~1000g/eqのものが好ましい。エポキシ当量が300g/eqを下回る場合はその硬化物が硬くなりすぎる傾向があり、1500g/eqを上回る場合は硬化物の機械特性が悪化する傾向にある。
 シリコーン骨格エポキシ樹脂(B)は、単一のシリコーン骨格エポキシ樹脂(B)であっても良いし、2種以上のシリコーン骨格エポキシ樹脂(B)の混合物であっても構わない。ここで、硬化物の適度な機械強度の観点からは、単一のシリコーン骨格エポキシ樹脂(B)であれば当該エポキシ樹脂が、2種以上のシリコーン骨格エポキシ樹脂(B)の混合物である場合は、特定のシリコーン骨格エポキシ樹脂(B)のエポキシ当量×(当該特定のシリコーン骨格エポキシ樹脂(B)の含有量/シリコーン骨格エポキシ樹(B)脂の総量)の総和のエポキシ当量が、300~1500g/eqであることが好ましく、350~1000g/eqであることが特に好ましい。
The epoxy equivalent (measured by the method described in JIS K-7236) of the silicone skeleton epoxy resin (B) is 300 to 1500 g / eq. Preferably 320 to 1400 g / eq, more preferably 350 to 1200 g / eq, and particularly preferably 350 to 1000 g / eq. When the epoxy equivalent is less than 300 g / eq, the cured product tends to be too hard, and when it exceeds 1500 g / eq, the mechanical properties of the cured product tend to deteriorate.
The silicone skeleton epoxy resin (B) may be a single silicone skeleton epoxy resin (B) or a mixture of two or more kinds of silicone skeleton epoxy resins (B). Here, from the viewpoint of appropriate mechanical strength of the cured product, if the epoxy resin is a single silicone skeleton epoxy resin (B), the epoxy resin is a mixture of two or more types of silicone skeleton epoxy resins (B). The epoxy equivalent of the sum of the epoxy equivalent of the specific silicone skeleton epoxy resin (B) × (content of the specific silicone skeleton epoxy resin (B) / total amount of the silicone skeleton epoxy resin (B) fat) is 300 to 1500 g. / Eq, preferably 350 to 1000 g / eq.
 シリコーン骨格エポキシ樹脂(B)の粘度(E型粘度計、25℃で測定)は50~20,000mPa・sのものが好ましく、500~10,000mPa・sのものがより好ましく、特に800~5,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さないことがあり、20,000mPa・sを上回る場合は、粘度が高すぎて作業性が低下する場合がある。 The viscosity of the silicone skeleton epoxy resin (B) (E-type viscometer, measured at 25 ° C.) is preferably 50 to 20,000 mPa · s, more preferably 500 to 10,000 mPa · s, particularly 800 to 5 1,000 mPa · s is preferred. When the viscosity is less than 50 mPa · s, the viscosity is too low and may not be suitable as an optical semiconductor sealing material. When it exceeds 20,000 mPa · s, the viscosity is too high and workability is reduced. There is.
 シリコーン骨格エポキシ樹脂(B)において3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は3~50モル%が好ましく、5~30モル%がより好ましく、特に6~15モル%が好ましい。シルセスキオキサン由来の、3つの酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合が3モル%を下回ると、硬化物がやわらかくなりすぎる傾向にあり、表面タックや傷つきが生じることある。また50モル%を上回ると硬化物が硬くなりすぎてしまうことがある。
 存在するケイ素原子の割合は、シリコーン骨格エポキシ樹脂(B)のH NMR、29Si NMR、元素分析等によって求めることができる。
In the silicone skeleton epoxy resin (B), the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, and particularly preferably 6 to 15 mol%. preferable. When the ratio of silicon atoms bonded to three oxygen atoms derived from silsesquioxane with respect to all silicon atoms is less than 3 mol%, the cured product tends to be too soft and may cause surface tack and scratches. . Moreover, when it exceeds 50 mol%, hardened | cured material may become hard too much.
The proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the silicone skeleton epoxy resin (B).
 以上、本発明におけるシリコーン骨格エポキシ樹脂(B)の好ましい態様である、製造工程1、2を経て得られた、シラノール末端シリコーンオイル(e)とエポキシ基を含有するケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))との縮合物について説明した。 As described above, the silanol-terminated silicone oil (e) obtained through the production steps 1 and 2, which is a preferable embodiment of the silicone skeleton epoxy resin (B) in the present invention, and the silicon compound (f) containing an epoxy group (and The condensate with the alkoxysilicon compound (g)) was described as necessary.
 シリコーン骨格エポキシ樹脂(B)としては、上記のシラノール末端シリコーンオイル(e)を使用せず、エポキシ基を含有するケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の縮合重合物、も例示できる。 As the silicone skeleton epoxy resin (B), the above silanol-terminated silicone oil (e) is not used, and a silicon compound (f) containing an epoxy group (and an alkoxy silicon compound (g) if necessary) is condensed. Polymers can also be exemplified.
 この場合は、一段階の反応で製造することができ、前記式(4)で表されるエポキシ基を含有するケイ素化合物(f)(および、必要に応じて前記式(5)で表されるアルコキシケイ素化合物(g))を前記した、触媒、溶剤の存在下、水を滴下し、反応温度40~100℃、反応時間1~24時間の条件で縮合して得ることができる。 In this case, the silicon compound (f) containing an epoxy group represented by the above formula (4) (and optionally represented by the above formula (5) can be produced by a one-step reaction. The alkoxysilicon compound (g)) can be obtained by adding water dropwise in the presence of a catalyst and a solvent as described above and condensing under the conditions of a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 24 hours.
 縮合後は、前記したような触媒のクエンチ、除去、水洗、濃縮によってエポキシ基を含有するケイ素化合物(f)(および、必要に応じてアルコキシケイ素化合物(g))の縮合物を得ることができる。 After the condensation, a condensate of the silicon compound (f) containing an epoxy group (and, if necessary, the alkoxysilicon compound (g)) can be obtained by quenching, removing, washing with water, and concentrating as described above. .
 本発明の、優れた耐硫化性と優れたポットライフを有する観点から特に好ましいシリコーン骨格エポキシ樹脂(B)の実施形態としては、下記の通りである。
(i)ケイ素に連結する置換基におけるフェニル基の割合が、置換メチル基1モルに対し、0.05~2.0モルであるシリコーン骨格エポキシ樹脂(B)。
(ii)ケイ素に連結する置換基におけるフェニル基の割合が、置換メチル基1モルに対し、0.15~0.2モルであるシリコーン骨格エポキシ樹脂(B)。
(iii)3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は3~50モル%である(i)または(ii)に記載のシリコーン骨格エポキシ樹脂(B)。
(iv)3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は6~15モル%である(i)または(ii)に記載のシリコーン骨格エポキシ樹脂(B)。
(v)エポキシ当量が350~1000g/eqである(i)~(iv)のいずれか一項に記載のシリコーン骨格エポキシ樹脂(B)。
(vi)2種以上のシリコーン骨格エポキシ樹脂(B)の混合物である場合において、特定のシリコーン骨格エポキシ樹脂のエポキシ当量×(当該特定のシリコーン骨格エポキシ樹脂(B)の含有量/シリコーン骨格エポキシ樹脂(B)の総量)の総和のエポキシ当量が350~1000g/eqである(i)~(iv)のいずれか一項に記載のシリコーン骨格エポキシ樹脂(B)混合物。
An embodiment of the silicone skeleton epoxy resin (B) that is particularly preferable from the viewpoint of excellent sulfidation resistance and excellent pot life of the present invention is as follows.
(I) A silicone skeleton epoxy resin (B) in which the ratio of the phenyl group in the substituent linked to silicon is 0.05 to 2.0 mol with respect to 1 mol of the substituted methyl group.
(Ii) A silicone skeleton epoxy resin (B) in which the ratio of the phenyl group in the substituent linked to silicon is 0.15 to 0.2 mol with respect to 1 mol of the substituted methyl group.
(Iii) The silicone skeleton epoxy resin (B) according to (i) or (ii), wherein the ratio of silicon atoms to which three oxygen atoms are bonded to all silicon atoms is 3 to 50 mol%.
(Iv) The silicone skeleton epoxy resin (B) according to (i) or (ii), wherein the ratio of silicon atoms to which three oxygen atoms are bonded to all silicon atoms is 6 to 15 mol%.
(V) The silicone skeleton epoxy resin (B) according to any one of (i) to (iv), wherein an epoxy equivalent is 350 to 1000 g / eq.
(Vi) In the case of a mixture of two or more kinds of silicone skeleton epoxy resins (B), the epoxy equivalent of the specific silicone skeleton epoxy resin × (content of the specific silicone skeleton epoxy resin (B) / silicone skeleton epoxy resin) The silicone skeleton epoxy resin (B) mixture according to any one of (i) to (iv), wherein the total epoxy equivalent of (the total amount of (B)) is 350 to 1000 g / eq.
 本発明の光半導体封止用樹脂組成物には、前述したシリコーン骨格エポキシ樹脂(B)の他にエポキシ樹脂を単独で、または混合して用いることができる。
 用いうる他のエポキシ樹脂としては、フェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。
In the resin composition for encapsulating an optical semiconductor of the present invention, an epoxy resin can be used alone or in combination with the silicone skeleton epoxy resin (B) described above.
Other epoxy resins that can be used include epoxy resins that are glycidyl etherified products of phenolic compounds, epoxy resins that are glycidyl etherified products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, Glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, copolymers of polymerizable unsaturated compounds having an epoxy group and other polymerizable unsaturated compounds, etc. Can be mentioned.
 前記フェノール類化合物のグリシジルエーテル化物であるエポキシ樹脂としては、例えば2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-ヒドロキシ)フェニル]エチル]フェニル]プロパン、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4'-ビフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4'-ビフェノール、ジメチル-4,4'-ビフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2'-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、フロログリシノール、ジイソプロピリデン骨格を有するフェノール類、1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン等のポリフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂等が挙げられる。 Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-methylene -Bis (4-methyl-6-tert-butylphenol), 4,4'-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resorcinol, hydroquinone, pyrogallol, phloroglucinol, di Examples thereof include phenols having an isopropylidene skeleton, phenols having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene, and epoxy resins which are glycidyl etherified products of polyphenol compounds such as phenolized polybutadiene.
 前記各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂としては、例えばフェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF及びビスフェノールS等のビスフェノール類、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂のグリシジルエーテル化物等が挙げられる。 Examples of epoxy resins that are glycidyl etherified products of various novolak resins include phenols, cresols, ethylphenols, butylphenols, octylphenols, bisphenols such as bisphenol A, bisphenol F and bisphenol S, and various phenols such as naphthols. And glycidyl etherified products of various novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
 前記脂環式エポキシ樹脂としては、例えば3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等の脂肪族環骨格を有する脂環式エポキシ樹脂が挙げられる。
 前記脂肪族系エポキシ樹脂としては、例えば1,4-ブタンジオール、1,6-ヘキサンジオール、ポリエチレングリコール、ペンタエリスリトール等の多価アルコールのグリシジルエーテル類が挙げられる。
 複素環式エポキシ樹脂としては、例えばイソシアヌル環、ヒダントイン環等の複素環を有する複素環式エポキシ樹脂が挙げられる。
 前記グリシジルエステル系エポキシ樹脂としては、例えばヘキサヒドロフタル酸ジグリシジルエステル等のカルボン酸エステル類からなるエポキシ樹脂が挙げられる。
 グリシジルアミン系エポキシ樹脂としては、例えばアニリン、トルイジン等のアミン類をグリシジル化したエポキシ樹脂が挙げられる。
 前記ハロゲン化フェノール類をグリシジル化したエポキシ樹脂としては、例えばブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類をグリシジル化したエポキシ樹脂が挙げられる。
Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate. And a formula epoxy resin.
Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
Examples of the heterocyclic epoxy resin include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
Examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
Examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
Examples of epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like. An epoxy resin obtained by glycidylating any of the halogenated phenols.
 エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体としては、市場から入手可能な製品ではマープルーフG-0115S、同G-0130S、同G-0250S、同G-1010S、同G-0150M、同G-2050M (日油(株)製)等が挙げられ、エポキシ基を持つ重合性不飽和化合物としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、4-ビニル-1-シクロヘキセン-1,2-エポキシド等が挙げられる。また他の重合性不飽和化合物の共重合体としては、例えばメチル(メタ)アクリレート、エーテル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、スチレン、ビニルシクロヘキサンなどが挙げられる。 As a copolymer of a polymerizable unsaturated compound having an epoxy group and other polymerizable unsaturated compounds, Marproof G-0115S, G-0130S and G-0250S are commercially available products. G-1010S, G-0150M, G-2050M (manufactured by NOF Corporation), and the like. Examples of the polymerizable unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, 4 -Vinyl-1-cyclohexene-1,2-epoxide and the like. Examples of other polymerizable unsaturated compound copolymers include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, and vinylcyclohexane.
 前記したエポキシ樹脂は1種又は2種以上を混合して用いても良い。 The above epoxy resins may be used alone or in combination of two or more.
 前記したエポキシ樹脂の中でも、透明性、耐熱透明性、耐光透明性の観点から、脂環式エポキシ樹脂の併用が好ましい。脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる(これらの引例の全内容はここに参照として取り込まれる)。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないが、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
Among the above-mentioned epoxy resins, the combined use of an alicyclic epoxy resin is preferable from the viewpoints of transparency, heat-resistant transparency, and light-resistant transparency. In the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
These epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and transesterification of cyclohexene carboxylic acid ester (Japan) Examples thereof include a product obtained by oxidizing a compound that can be produced by a method described in Japanese Patent Laid-Open No. 2006-052187, etc. (the entire contents of these references are incorporated herein by reference).
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc. Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, and tetraols such as pentaerythritol and ditrimethylolpropane. And the like. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
 さらには、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)およびジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85、その全内容はここに参照として取り込まれる))。
Furthermore, the acetal compound by the acetal reaction of a cyclohexene aldehyde derivative and an alcohol body is mentioned.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to them (reference: review epoxy resin basic edition I p76-85, the entire contents of which are incorporated herein by reference).
 シリコーン骨格エポキシ樹脂(B)と他のエポキシ樹脂を併用する場合には、全エポキシ樹脂組成物に対して、シリコーン骨格エポキシ樹脂(B)の割合は60~99重量部であることが好ましく、90~97重量部が特に好ましい。60重量部を下回ると、硬化物の耐光性(耐UV性)が低下することがある。 When the silicone skeleton epoxy resin (B) is used in combination with another epoxy resin, the ratio of the silicone skeleton epoxy resin (B) to the total epoxy resin composition is preferably 60 to 99 parts by weight, -97 parts by weight are particularly preferred. If it is less than 60 parts by weight, the light resistance (UV resistance) of the cured product may be lowered.
 本発明の硬化性樹脂組成物においてシリコーン骨格エポキシ樹脂(B)を含む全エポキシ樹脂と、エポキシ樹脂硬化剤の配合比率は、全エポキシ樹脂のエポキシ基1当量に対して0.5~1.2当量の硬化剤を使用することが好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られないことがある。 In the curable resin composition of the present invention, the blending ratio of the total epoxy resin containing the silicone skeleton epoxy resin (B) and the epoxy resin curing agent is 0.5 to 1.2 with respect to 1 equivalent of the epoxy groups of the total epoxy resin. It is preferred to use an equivalent amount of curing agent. When the amount is less than 0.5 equivalent or 1 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
 本発明の硬化性樹脂組成物において、融点が40~200℃の硬化触媒とともに室温(25℃)にて液状である硬化触媒を、硬化性樹脂組成物のポットライフ特性を損なわない範囲で使用することができる。室温(25℃)にて液状である硬化触媒としては透明性、耐硫化性が優れることから、オクチル酸亜鉛が挙げられる。
 室温(25℃)にて液状の硬化触媒を、融点が40~200℃の触媒と混合して使用する場合、全硬化触媒中、融点が40~200℃の硬化触媒は60~99重量部であることが好ましい。60重量部を下回ると、ポットライフが低下することがある。また、全硬化触媒は、全エポキシ樹脂100重量部に対し通常0.001~15重量部の範囲で使用される。
In the curable resin composition of the present invention, a curing catalyst having a melting point of 40 to 200 ° C. and a curing catalyst that is liquid at room temperature (25 ° C.) are used as long as the pot life characteristics of the curable resin composition are not impaired. be able to. As a curing catalyst which is liquid at room temperature (25 ° C.), zinc octylate is mentioned because of its excellent transparency and sulfidation resistance.
When using a liquid curing catalyst at room temperature (25 ° C) mixed with a catalyst having a melting point of 40 to 200 ° C, the curing catalyst having a melting point of 40 to 200 ° C is 60 to 99 parts by weight. Preferably there is. If it is less than 60 parts by weight, the pot life may be reduced. The total curing catalyst is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the total epoxy resin.
 本発明の硬化性樹脂組成物には、必要に応じてカップリング剤を使用することで、組成物の粘度調整、硬化物の硬度を補完することが可能である。
 使用できるカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
 これらカップリング剤は1種又は2種以上を混合して用いても良い。
 カップリング剤は、本発明の硬化性樹脂組成物において通常0.05~20重量部、好ましくは0.1~10重量部が必要に応じて含有される。
In the curable resin composition of the present invention, it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product by using a coupling agent as necessary.
Examples of coupling agents that can be used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate, Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneodeca Noyl zirconate, neoalkoxy tris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxy tris (ethylenediaminoethyl) zirconate, neoalco Examples thereof include zitris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al-acetylacetonate, zirconium such as Al-methacrylate, Al-propionate, and aluminum coupling agents.
These coupling agents may be used alone or in combination of two or more.
In the curable resin composition of the present invention, the coupling agent is usually contained in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight as required.
本発明の硬化性樹脂組成物には、必要に応じてナノオーダーレベルの無機充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。 In the curable resin composition of the present invention, it is possible to supplement mechanical strength and the like without impairing transparency by using a nano-order level inorganic filler as necessary. As a standard for the nano-order level, it is preferable from the viewpoint of transparency to use a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
 本発明の硬化性樹脂組成物には、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、通常1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、通常1~80重量部、好ましくは5~60重量部である。 A phosphor can be added to the curable resin composition of the present invention as necessary. The phosphor has, for example, a function of forming white light by absorbing a part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, the rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of such a phosphor, those known in this field are used, but the average particle size is usually 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the amount added is usually 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
 本発明の硬化性樹脂組成物に各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。 In the curable resin composition of the present invention, a thixotropic imparting agent such as fine silica powder (also referred to as “aerosil” or “aerosol”) can be added for the purpose of preventing sedimentation of various phosphors during curing. Examples of such silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
 本発明の硬化性樹脂組成物に着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物およびフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
For the purpose of preventing coloration, the curable resin composition of the present invention can contain an amine compound as a light stabilizer, or a phosphorus compound and a phenol compound as an antioxidant.
Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6, -tetrame Ru-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] bu Lumalonate, bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester decanedioate, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl)- 4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexa Polycondensate of methylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-Triazine- , 4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], dimethyl succinate And 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol polymer, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa- 3,20-Diazadispiro [5 ・ 1 ・ 11 ・ 2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7-oxa 3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11,2] -Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) ester, 2,2,6,6-Tetramethyl-4-piperidinol higher fatty acid ester, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl) Hindered amine compounds such as octabenzone, benzophenone compounds such as octabenzone, 2- (2H-benzotriazol-2-yl) -4- (1,1,3, -Tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimide-methyl) -5-methylphenyl Benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-pentylphenyl) benzotriazole, Reaction product of methyl 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol, 2- (2H-benzotriazol-2-yl)- Benzotriazole compounds such as 6-dodecyl-4-methylphenol, 2,4 Benzoates such as di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- Examples include triazine compounds such as [(hexyl) oxy] phenol, and hindered amine compounds are particularly preferable.
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、ADEKA製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
The following commercially available products can be used as the amine compound as the light stabilizer.
The commercially available amine compound is not particularly limited. For example, TINUVIN765, TINUVIN770DF, TINUVIN144, TINUVIN123, TINUVIN622LD, TINUVIN152, CHIMASSORB944, and ADEKA manufactured by Ciba Specialty Chemicals, LA-52, LA-57, LA- 62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like.
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。 The phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) Hos Ite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Phenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butyl) Phenyl) (2-tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4, '-Biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'- Biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3'-biphenylenedi Phosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butyl) Ruphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl -Phenylphosphonite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl Examples include phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, etc. .
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、ADEKA製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPP等が挙げられる。 Commercially available products can also be used as the phosphorus compound. The commercially available phosphorus compounds are not particularly limited. For example, as ADEKA, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, Adekas tab TPP and the like.
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2'-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。 The phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,4-di-tert-butyl-6-methylphenol, 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, pentae Srityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis- [2- [3- (3-tert-butyl-4-hydroxy-5- Methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol-bis [3- (3-t-butyl-5 -Methyl-4-hydroxyphenyl) propionate], 2,2′-butylidenebis (4,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 2,2 '-Methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol) 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenol acrylate, 2- [1- (2-hydroxy-3,5-di) -Tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, 4,4'-thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl- 6-tert-butylphenol), 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 4,4′-thiobis (3-methyl- 6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), vinyl -[3,3-bis- (4'-hydroxy-3'-tert-butylphenyl) -butanoic acid] -glycol ester, 2,4-di-tert-butylphenol, 2,4-di-tert- Pentylphenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, bis- [3,3-bis- (4 And '-hydroxy-3'-tert-butylphenyl) -butanoic acid] -glycol ester.
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114、IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、SumilizerGA-80、Sumilizer  MDP-S、Sumilizer  BBM-S、Sumilizer  GM、Sumilizer  GS(F)、Sumilizer GPなどが挙げられる。 Commercially available products can also be used as the phenolic compound. The commercially available phenolic compounds are not particularly limited. , ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd. , Sumilizer MDP-S, Sumil izer BBM-S, SumizerzGM, SumizerilGS (F), SumizerzGP, and the like.
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN328、THINUVIN234、THINUVIN326、THINUVIN120、THINUVIN477、THINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。 In addition, commercially available additives can be used as resin coloring inhibitors. For example, THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like can be mentioned as manufactured by Ciba Specialty Chemicals.
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、本発明の硬化性樹脂組成物の全重量に対して、0.005~5.0重量%の範囲である。 It is preferable to contain at least one or more of the phosphorus compounds, amine compounds, and phenol compounds, and the amount of the compound is not particularly limited, but with respect to the total weight of the curable resin composition of the present invention, It is in the range of 0.005 to 5.0% by weight.
 本発明の硬化性樹脂組成物は、融点が40~200℃である硬化触媒、エポキシ樹脂、エポキシ樹脂硬化剤、カップリング剤、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製し、封止材として使用できる。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。  In the curable resin composition of the present invention, additives such as a curing catalyst having a melting point of 40 to 200 ° C., an epoxy resin, an epoxy resin curing agent, a coupling agent, an antioxidant, and a light stabilizer are sufficiently mixed. Thus, a curable resin composition can be prepared and used as a sealing material. As a mixing method, a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明の硬化性樹脂組成物はこの封止材に用いることができる。 Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens. The curable resin composition of this invention can be used for this sealing material.
 封止材の成形方式としては、光半導体素子が固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された光半導体素子を浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 本明細書において、比率、パーセント、部などは、特に断りのない限り、重量に基づくものである。本明細書において、「X~Y」という表現は、XからYまでの範囲を示し、その範囲はX、Yを含む。
As a molding method of the sealing material, an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance. A compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
Examples of the injection method include a dispenser.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used. For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
In the present specification, ratios, percentages, parts and the like are based on weight unless otherwise specified. In this specification, the expression “X to Y” indicates a range from X to Y, and the range includes X and Y.
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、合成例中の各物性値は以下の方法で測定した。
○重量平均分子量:GPC法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples. The present invention is not limited to these synthesis examples and examples. In addition, each physical-property value in a synthesis example was measured with the following method.
○ Weight average molecular weight: Polystyrene conversion and weight average molecular weight measured under the following conditions were calculated by the GPC method.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
○エポキシ当量:JIS K-7236に記載の方法で測定した。
○酸価:JIS K-2501に記載の方法で測定した。
○粘度:25℃においてE型粘度計を使用して測定した。
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
○ Epoxy equivalent: Measured by the method described in JIS K-7236.
○ Acid value: measured by the method described in JIS K-2501.
○ Viscosity: Measured using an E-type viscometer at 25 ° C.
合成例1(シラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)を2段階の製造工程を経て製造したシリコーン骨格エポキシ樹脂(B)の合成例)
(製造工程1)
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン394部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン(メチル基1モルに対し、フェニル基を0.18モル有する)475部、0.5%KOHメタノール溶液4部、イソプロピルアルコール36部を反応容器に仕込み、75℃に昇温した。昇温後、還流下にて10時間反応させた。
(製造工程2)
 メタノールを656部追加後、50%蒸留水メタノール溶液172.8部を60分かけて滴下し、還流下さらに10時間反応させた。
 反応終了後、5%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、MIBK780部を添加後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりシリコーン骨格エポキシ樹脂(B-1)731部を得た。得られた樹脂のエポキシ当量は491g/eq、重量平均分子量は2090、粘度は3530mPa・s、外観は無色透明の液状であった。
Synthesis Example 1 (Synthesis Example of Silicone Skeleton Epoxy Resin (B) in which Silanol-Terminated Silicone Oil (e) and Epoxy Group-Containing Silicon Compound (f) are Manufactured Through Two-Step Manufacturing Process)
(Manufacturing process 1)
394 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group with a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 475 Part, 4 parts of 0.5% KOH methanol solution and 36 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C. After raising the temperature, the reaction was carried out under reflux for 10 hours.
(Manufacturing process 2)
After adding 656 parts of methanol, 172.8 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted for 10 hours under reflux.
After completion of the reaction, the reaction mixture was neutralized with a 5% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 780 parts of MIBK was added for washing, and washing with water was repeated three times. Next, the solvent was removed from the organic phase at 100 ° C. under reduced pressure to obtain 731 parts of a silicone skeleton epoxy resin (B-1). The epoxy equivalent of the obtained resin was 491 g / eq, the weight average molecular weight was 2090, the viscosity was 3530 mPa · s, and the appearance was a colorless and transparent liquid.
合成例2(シラノール末端シリコーンオイル(e)とエポキシ基含有ケイ素化合物(f)を2段階の製造工程を経て製造したシリコーン骨格エポキシ樹脂(B)の合成例)
(製造工程1)
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン444部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン(メチル基1モルに対し、フェニル基を0.18モル有する)400部、0.5%KOHメタノール溶液3.6部、イソプロピルアルコール32.4部を反応容器に仕込み、75℃に昇温した。昇温後、還流下にて10時間反応させた。
(製造工程2)
 メタノールを480部追加後、50%蒸留水メタノール溶液194.4部を60分かけて滴下し、還流下さらに10時間反応させた。
 反応終了後、5%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、MIBK724部を添加後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりシリコーン骨格エポキシ樹脂(B-2)658部を得た。得られた樹脂のエポキシ当量は410g/eq、重量平均分子量は2713、粘度は15680mPa・s、外観は無色透明の液状であった。
Synthesis Example 2 (Synthesis Example of Silicone Skeleton Epoxy Resin (B) in which Silanol-Terminated Silicone Oil (e) and Epoxy Group-Containing Silicon Compound (f) are Manufactured Through Two-Step Manufacturing Process)
(Manufacturing process 1)
444 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group with a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 400 Part, 3.6 parts of 0.5% KOH methanol solution and 32.4 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C. After raising the temperature, the reaction was carried out under reflux for 10 hours.
(Manufacturing process 2)
After adding 480 parts of methanol, 194.4 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted for 10 hours under reflux.
After completion of the reaction, the reaction mixture was neutralized with a 5% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 724 parts of MIBK was added for washing, and washing with water was repeated three times. Next, the organic phase was removed under reduced pressure at 100 ° C. to obtain 658 parts of a silicone skeleton epoxy resin (B-2). The epoxy equivalent of the obtained resin was 410 g / eq, the weight average molecular weight was 2713, the viscosity was 15680 mPa · s, and the appearance was a colorless and transparent liquid.
合成例3(両末端カルビノール変性シリコーンオイル(a)と、末端アルコールポリエステル化合物(b)と、分子内に二つ以上のカルボン酸無水物基を有する化合物(c)と、分子内に一つのカルボン酸無水物基を有する化合物(d)とを、付加反応することで得られる多価カルボン酸樹脂(A)の合成例)
 撹拌装置、ジムロートコンデンサ、温度計を設置したガラス製セパラブルフラスコに、両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)47.1部、ポリエステルポリオールであるアデカニューエースY9-10(ADEKA(株)製、上記式(2)においてRがネオペンチレン基でRがブチレン基であるポリエステルポリオール)11.8部、リカシッドBT-100(1,2,3,4-ブタンテトラカルボン酸二無水物、新日本理化(株)製)2.5部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)16.6部を仕込み、140℃で10時間反応させ、多価カルボン酸樹脂(A-1)77.5部を得た。この時にGPC測定において、リカシッドBT-100および、リカシッドMHのピークは消失していた。この多価カルボン酸樹脂は、反応終了時は無色透明の液体であったが、反応液の温度が下がるにつれて白濁した液体になった。得られた化合物の酸価は88.8mgKOH/g、重量平均分子量は3452、粘度は5730mPa・s、外観は白色液体の液状であった。
Synthesis Example 3 (both ends carbinol-modified silicone oil (a), terminal alcohol polyester compound (b), compound (c) having two or more carboxylic anhydride groups in the molecule, and one in the molecule Synthesis Example of Polycarboxylic Acid Resin (A) Obtained by Addition Reaction with Compound (d) Having Carboxylic Anhydride Group)
A glass separable flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 47.1 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Adeka New Ace Y9- which is a polyester polyol 10 (made by ADEKA Corporation, polyester polyol in which R 3 is a neopentylene group and R 4 is a butylene group in the above formula (2)), 11.8 parts, Ricacid BT-100 (1,2,3,4-butanetetra Carrying out 2.5 parts of carboxylic dianhydride (manufactured by Shin Nippon Rika Co., Ltd.) and 16.6 parts of Ricacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) at 140 ° C. for 10 hours The reaction was performed to obtain 77.5 parts of a polyvalent carboxylic acid resin (A-1). At this time, the peaks of Ricacid BT-100 and Ricacid MH disappeared in the GPC measurement. This polycarboxylic acid resin was a colorless and transparent liquid at the end of the reaction, but became a cloudy liquid as the temperature of the reaction liquid decreased. The acid value of the obtained compound was 88.8 mgKOH / g, the weight average molecular weight was 3452, the viscosity was 5730 mPa · s, and the appearance was a white liquid.
合成例4
(両末端カルビノール変性シリコーンオイル(a)と、炭化水素多価アルコール化合物(j)と、分子内に二つ以上のカルボン酸無水物基を有する化合物(c)とを付加反応することで得られる多価カルボン酸樹脂(A)の合成例)
 撹拌装置、ジムロートコンデンサ、温度計を設置したガラス製セパラブルフラスコに、両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)589部、炭化水素多価アルコール化合物であるトリシクロデカンジメタノール74部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)337部を仕込み、90℃で10時間反応させ、多価カルボン酸樹脂(A-2)部を得た。この時にGPC測定において、リカシッドMHのピークは消失していた。得られた化合物の酸価は111.1mgKOH/g、重量平均分子量は、1216、粘度は7870mPa・s、外観は無色透明の液状であった。
Synthesis example 4
(Obtained by addition reaction of a carbinol-modified silicone oil (a) at both ends, a hydrocarbon polyhydric alcohol compound (j), and a compound (c) having two or more carboxylic anhydride groups in the molecule) Synthesis Example of Polycarboxylic Acid Resin (A)
In a glass separable flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 589 parts of both ends carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), tricyclode which is a hydrocarbon polyhydric alcohol compound 74 parts of candimethanol and 337 parts of Ricacid MH (methylhexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) were added and reacted at 90 ° C. for 10 hours to obtain a polyvalent carboxylic acid resin (A-2) part. It was. At this time, the peak of Ricacid MH disappeared in the GPC measurement. The acid value of the obtained compound was 111.1 mgKOH / g, the weight average molecular weight was 1216, the viscosity was 7870 mPa · s, and the appearance was a colorless and transparent liquid.
実施例1
 合成例1で得られたシリコーン骨格エポキシ樹脂(B-1)40部、合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例3で得られた多価カルボン酸樹脂(A-1)72.4部、硬化触媒としてステアリン酸亜鉛(融点120~126℃)1.1部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 1
40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and stearic acid as a curing catalyst 1.1 parts of zinc (melting point: 120 to 126 ° C.) was added, mixed and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
実施例2
 合成例1で得られたシリコーン骨格エポキシ樹脂(B-1)40部、合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例3で得られた多価カルボン酸樹脂(A-1)72.4部、硬化触媒としてウンデシレン酸亜鉛(融点115~125℃)1.1部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 2
40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and undecylenic acid as a curing catalyst 1.1 parts of zinc (melting point: 115 to 125 ° C.) was added, mixed, and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
実施例3
 合成例1で得られたシリコーン骨格エポキシ樹脂(B-1)40部、合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例3で得られた多価カルボン酸樹脂(A-1)72.4部、硬化触媒として12-ヒドロキシステアリン酸亜鉛(融点145~155℃)1.6部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 3
40 parts of the silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of the silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and 12- 1.6 parts of zinc hydroxystearate (melting point: 145 to 155 ° C.) was added, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
実施例4
 合成例1で得られたシリコーン骨格エポキシ樹脂(B-1)40部、合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例3で得られた多価カルボン酸樹脂(A-1)72.4部、硬化触媒として12-ヒドロキシステアリン酸亜鉛(融点145~155℃)1.1部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 4
40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and 12- 1.1 parts of zinc hydroxystearate (melting point: 145 to 155 ° C.) was added, mixed and defoamed for 5 minutes to obtain a curable resin composition for sealing an optical semiconductor of the present invention.
実施例5
 合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例4で得られた多価カルボン酸樹脂(A-2)59.9部、硬化触媒としてステアリン酸亜鉛(融点120~126℃)1.1部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 5
60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, 5 parts of ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical), epoxy As a resin curing agent, 59.9 parts of the polyvalent carboxylic acid resin (A-2) obtained in Synthesis Example 4 and 1.1 parts of zinc stearate (melting point: 120 to 126 ° C.) as a curing catalyst were mixed and mixed for 5 minutes. Defoaming was performed to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
比較例1
 合成例1で得られたシリコーン骨格エポキシ樹脂(B-1)40部、合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例3で得られた多価カルボン酸樹脂(A-1)72.4部、硬化触媒としてオクチル酸亜鉛(室温(25℃)において液状)0.5部を入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。
Comparative Example 1
40 parts of silicone skeleton epoxy resin (B-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 72.4 parts of polycarboxylic acid resin (A-1) obtained in Synthesis Example 3 as an epoxy resin curing agent, and octylic acid as a curing catalyst 0.5 parts of zinc (liquid at room temperature (25 ° C.)) was added, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
比較例2
 合成例2で得られたシリコーン骨格エポキシ樹脂(B-2)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例4で得られた多価カルボン酸樹脂(A-2)59.9部、硬化触媒としてオクチル酸亜鉛(室温(25℃)において液状)1.1部を入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。
Comparative Example 2
60 parts of silicone skeleton epoxy resin (B-2) obtained in Synthesis Example 2, 5 parts of ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical), epoxy 59.9 parts of the polyvalent carboxylic acid resin (A-2) obtained in Synthesis Example 4 as a resin curing agent and 1.1 parts of zinc octylate (liquid at room temperature (25 ° C.)) as a curing catalyst were mixed and mixed. Defoaming was performed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
評価試験
 実施例1~5、比較例1~2で得られた光半導体封止用硬化性樹脂組成物の配合比とその硬化物の、ポットライフ試験、耐硫化試験、デュロメータ硬さ、硬化物透過率の結果を表1に示す。表1における試験は以下のように行った。
(1)ポットライフ試験;
 実施例1~5、比較例1~2で得られた光半導体封止用硬化性樹脂組成物をポリプロピレン製10ccのシリンジに充填し、2分間の真空脱泡後25℃65%RHの環境下に放置し、0時間、8時間、24時間後にE型粘度計を用いて25℃での粘度を測定した。得られた各放置時間での粘度の初期粘度からの増加率を算出した。
(2)耐硫化試験;
 実施例1~5、比較例1~2で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、シリンジに充填し精密吐出装置を使用して、発光波長450nmを持つ発光素子を搭載した表面実装型LEDに開口部が平面になるように注型した。120℃×1時間の予備硬化の後、150℃×3時間で硬化し、表面実装型LEDを封止した。表面実装型LEDを、20%硫化アンモニウム水溶液6mlを入れた開口部直径2cm、高さ1.5cmのポリエチレン製容器2つ(蓋は開放)と共に約3.2リッターのポリプロピレン製密閉容器に入れ、室温(20~27℃)にて放置した。放置後に底面の銀メッキ部分の変色を目視にて確認した。表中、◎;6時間放置しても変色が全くないもの、○;4時間放置しても変色が全くないもの、△;4時間放置してやや変色しているもの、×;4時間放置して酷く変色しているもの。
(3)デュロメータ硬さ;
実施例1~5、比較例1~2で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、直径30mm、高さ70mmになるように、アルミフォイルを用いた型に注型した。その注型物を、その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ7mmのデュロメータ硬さ用試験片を得た。得られた試験片をJIS K-6253に記載の方法でデュロメータ硬さ(タイプA)を測定した。
(4)硬化物透過率;
実施例1~5、比較例1~2で得られたエポキシ樹脂組成物を真空脱泡5分間実施後、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ0.8mmの透過率用試験片を得た。得られた試験片を下記条件にて400nmの光線透過率を測定した。
Evaluation test The blending ratio of the curable resin composition for optical semiconductor encapsulation obtained in Examples 1 to 5 and Comparative Examples 1 and 2 and the cured product thereof, pot life test, sulfidation test, durometer hardness, cured product The transmittance results are shown in Table 1. The test in Table 1 was performed as follows.
(1) Pot life test;
The curable resin composition for sealing an optical semiconductor obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was filled in a 10 cc syringe made of polypropylene, and after vacuum degassing for 2 minutes, in an environment of 25 ° C. and 65% RH. And the viscosity at 25 ° C. was measured using an E-type viscometer after 0 hours, 8 hours, and 24 hours. The increase rate from the initial viscosity of the obtained viscosity at each standing time was calculated.
(2) Sulfur resistance test;
The curable resin composition for sealing an optical semiconductor obtained in Examples 1 to 5 and Comparative Examples 1 to 2 was vacuum degassed for 5 minutes, and then filled into a syringe and a light emission wavelength of 450 nm was obtained using a precision discharge device. The surface-mounted LED on which the light-emitting element having the same was mounted was cast so that the opening was flat. After pre-curing at 120 ° C. for 1 hour, it was cured at 150 ° C. for 3 hours to seal the surface-mounted LED. Place the surface-mount type LED in a sealed polyethylene container of about 3.2 liters together with two polyethylene containers (open lid) with a diameter of 2 cm and a height of 2 cm containing 6 ml of 20% ammonium sulfide aqueous solution. It was left at room temperature (20-27 ° C.). After standing, the discoloration of the silver-plated portion on the bottom surface was visually confirmed. In the table, ◎: No discoloration even after standing for 6 hours, ○: No discoloration after standing for 4 hours, △; Those that are discolored severely.
(3) durometer hardness;
An aluminum foil was used so that the diameter was 30 mm and the height was 70 mm after vacuum defoaming for 5 minutes for the curable resin composition for optical semiconductor encapsulation obtained in Examples 1 to 5 and Comparative Examples 1 and 2. Cast into mold. The cast was cured at 120 ° C. for 3 hours after pre-curing at 120 ° C. for 1 hour to obtain a test piece for durometer hardness having a thickness of 7 mm. The durometer hardness (type A) of the obtained test piece was measured by the method described in JIS K-6253.
(4) cured product transmittance;
Glass substrates on which dams were made with heat-resistant tape so that the epoxy resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 2 were vacuum degassed for 5 minutes and then 30 mm × 20 mm × height 0.8 mm Cast gently on top. The cast was cured at 120 ° C. for 3 hours after pre-curing at 120 ° C. for 1 hour to obtain a test piece for transmittance having a thickness of 0.8 mm. The obtained specimen was measured for light transmittance at 400 nm under the following conditions.
分光光計測定条件
メーカー:株式会社日立ハイテクノロジーズ
機種:U-3300
スリット幅:2.0nm
スキャン速度:300nm/分
Spectrophotometer measurement conditions Manufacturer: Hitachi High-Technologies Corporation Model: U-3300
Slit width: 2.0nm
Scan speed: 300 nm / min
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1に示す結果から明らかなように、室温(25℃)にて液状である硬化触媒オクチル酸亜鉛を使用した比較例1~2は、耐硫化性に優れるものの、ポットライフ試験において8時間放置後に初期粘度から1.7倍~2.0倍増粘し、作業性に劣る。一方で、融点が40~200℃の間である室温(25℃)にて固体である各硬化触媒を使用した実施例1~5は耐硫化性に優れるだけでなく、ポットライフ試験において8時間放置後に初期粘度から1.2~1.4倍の増粘にとどまるため作業性に優れる。さらにはデュロメータ硬さが適度な硬さであり、硬化物透過率が優れ、光半導体封止用樹脂組成物として好適である。
 なお、本出願は、2011年9月9日付で出願された日本特許出願(特願2011-196936)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
As is apparent from the results shown in Table 1, Comparative Examples 1 and 2 using the curing catalyst zinc octylate which is liquid at room temperature (25 ° C.) are excellent in sulfidation resistance, but are allowed to stand for 8 hours in the pot life test. Later, the initial viscosity increased from 1.7 times to 2.0 times, resulting in poor workability. On the other hand, Examples 1 to 5 using each curing catalyst which is solid at room temperature (25 ° C.) having a melting point of 40 to 200 ° C. are not only excellent in sulfidation resistance but also 8 hours in the pot life test. The workability is excellent since the viscosity remains 1.2 to 1.4 times the initial viscosity after standing. Furthermore, the durometer hardness is moderate hardness, the cured product transmittance is excellent, and it is suitable as a resin composition for optical semiconductor encapsulation.
This application is based on a Japanese patent application filed on September 9, 2011 (Japanese Patent Application No. 2011-196936), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明の硬化性樹脂組成物は、耐硫化性、ポットライフに極めて優れるため光半導体素子(LED)封止材としてきわめて有用である。 The curable resin composition of the present invention is extremely useful as a sealing material for optical semiconductor elements (LEDs) because it is extremely excellent in sulfidation resistance and pot life.

Claims (14)

  1.  融点が40~200℃である硬化触媒と、エポキシ樹脂および/またはエポキシ樹脂硬化剤を含有する光半導体封止用硬化性樹脂組成物。 A curable resin composition for optical semiconductor encapsulation containing a curing catalyst having a melting point of 40 to 200 ° C. and an epoxy resin and / or an epoxy resin curing agent.
  2.  エポキシ樹脂硬化剤が、式(1)で表される両末端カルビノール変性シリコーンオイル(a)と分子内に一つのカルボン酸無水物基を有する化合物(d)との付加反応物と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と分子内に一つのカルボン酸無水物基を有する化合物(d)との付加反応物を含む多価カルボン酸樹脂(A)である請求項1に記載の光半導体封止用硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Rはそれぞれ独立して炭素数1~10のアルキレン基又は炭素数1~10のエーテル結合を含むアルキレン基を、Rはそれぞれ独立して炭素数1~3のアルキル基又はフェニル基を、mは平均値で1~100をそれぞれ表す。)
    An epoxy resin curing agent comprises an addition reaction product of a carbinol-modified silicone oil (a) having both ends represented by formula (1) and a compound (d) having one carboxylic anhydride group in the molecule, A polycarboxylic acid resin (A) comprising an addition reaction product of a polyhydric alcohol compound (i) having two or more hydroxyl groups and a compound (d) having one carboxylic anhydride group in the molecule. Item 10. A curable resin composition for optical semiconductor encapsulation according to Item 1.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 is each independently an alkylene group having 1 to 10 carbon atoms or an alkylene group containing an ether bond having 1 to 10 carbon atoms, and R 2 is each independently having 1 to 3 carbon atoms. (M represents an average value of 1 to 100 for an alkyl group or a phenyl group.)
  3.  エポキシ樹脂硬化剤が、式(1)で表される両末端カルビノール変性シリコーンオイル(a)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(i)と、分子内に一つのカルボン酸無水物基を有する化合物(d)とを付加反応することで得られる、多価カルボン酸樹脂(A)である、請求項1に記載の光半導体封止用硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)において、Rはそれぞれ独立して炭素数1~10のアルキレン基又は炭素数1~10のエーテル結合を含むアルキレン基を、Rはそれぞれ独立して炭素数1~3のアルキル基又はフェニル基を、mは平均値で1~100をそれぞれ表す。)
    The epoxy resin curing agent comprises a carbinol-modified silicone oil (a) having both ends represented by the formula (1), a polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule, and one in the molecule. The curable resin composition for optical semiconductor sealing of Claim 1 which is a polyhydric carboxylic acid resin (A) obtained by addition-reacting with the compound (d) which has a carboxylic anhydride group.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (1), R 1 is each independently an alkylene group having 1 to 10 carbon atoms or an alkylene group containing an ether bond having 1 to 10 carbon atoms, and R 2 is each independently having 1 to 3 carbon atoms. (M represents an average value of 1 to 100 for an alkyl group or a phenyl group.)
  4.  多価カルボン酸樹脂(A)が、反応原料として、さらに分子内に二つ以上のカルボン酸無水物基を有する化合物(c)を含めて付加反応することで得られるものである、請求項3に記載の光半導体封止用硬化性樹脂組成物。 The polyvalent carboxylic acid resin (A) is obtained by addition reaction including a compound (c) having two or more carboxylic acid anhydride groups in the molecule as a reaction raw material. The curable resin composition for optical semiconductor encapsulation according to 1.
  5.  分子内に二つ以上の水酸基を有する多価アルコール化合物(i)が式(2)で表される末端アルコールポリエステル化合物である、請求項2~4のいずれかに記載の光半導体封止用硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)において、R、Rはそれぞれ独立して炭素数1~10のアルキレン基を、mは平均値で1~100をそれぞれ表す。)
    The curing for optical semiconductor encapsulation according to any one of claims 2 to 4, wherein the polyhydric alcohol compound (i) having two or more hydroxyl groups in the molecule is a terminal alcohol polyester compound represented by the formula (2): Resin composition.
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (2), R 3 and R 4 each independently represent an alkylene group having 1 to 10 carbon atoms, and m represents an average value of 1 to 100)
  6.  エポキシ樹脂がシリコーン骨格エポキシ樹脂(B)である請求項1~5のいずれかに記載の光半導体封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor encapsulation according to claim 1, wherein the epoxy resin is a silicone skeleton epoxy resin (B).
  7.  前記シリコーン骨格エポキシ樹脂(B)が、下記製造工程1、2を経て得られた、式(3)で表されるシラノール末端シリコーンオイルと式(4)で表されるエポキシ基含有ケイ素化合物の重合物であり、JIS K-7236に記載の方法で測定したエポキシ当量が300~1500g/eqである、請求項6に記載の光半導体素子封止用硬化性樹脂組成物。
    製造工程1
     シラノール末端シリコーンオイルのシラノール基と、エポキシ基含有ケイ素化合物のアルコキシ基を縮合させ、変性シリコーンオイルを得る工程。
    製造工程2
     製造工程1の後に、水を加え、残存するアルコキシ基の加水分解縮合を行なう工程。
    Figure JPOXMLDOC01-appb-C000004
    (式(3)において、Rは炭素数1~3のアルキル基又はフェニル基を、pは平均値で3~200をそれぞれ表す。式中、複数存在するRは互いに同一であっても異なっていても良い)
    Figure JPOXMLDOC01-appb-C000005
    (式(4)において、Xはエポキシ基を含有する有機基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、qは整数で0~2を、rは整数で(3-q)をそれぞれ表す。)
    Polymerization of the silanol-terminated silicone oil represented by the formula (3) and the epoxy group-containing silicon compound represented by the formula (4), wherein the silicone skeleton epoxy resin (B) is obtained through the following production steps 1 and 2. The curable resin composition for sealing an optical semiconductor element according to claim 6, wherein the epoxy equivalent measured by the method described in JIS K-7236 is 300 to 1500 g / eq.
    Manufacturing process 1
    A step of condensing a silanol group of a silanol-terminated silicone oil and an alkoxy group of an epoxy group-containing silicon compound to obtain a modified silicone oil.
    Manufacturing process 2
    A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (3), R 5 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and p represents an average value of 3 to 200. In the formula, a plurality of R 5 may be the same as each other. May be different)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (4), X represents an organic group containing an epoxy group, R 6 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. R 7 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, q represents an integer of 0 to 2, and r represents an integer and represents (3-q).)
  8.  融点が40~200℃である硬化触媒が、金属石鹸系硬化触媒である請求項1~7のいずれか一項に記載の光半導体封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor encapsulation according to any one of claims 1 to 7, wherein the curing catalyst having a melting point of 40 to 200 ° C is a metal soap-based curing catalyst.
  9.  金属石鹸類がカルボン酸化合物からなる亜鉛塩である請求項8に記載の光半導体封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor encapsulation according to claim 8, wherein the metal soap is a zinc salt comprising a carboxylic acid compound.
  10.  カルボン酸化合物からなる亜鉛塩が、水酸基を有する炭素数10~30のモノカルボン酸化合物からなる亜鉛塩である請求項9に記載の光半導体封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor encapsulation according to claim 9, wherein the zinc salt comprising a carboxylic acid compound is a zinc salt comprising a monocarboxylic acid compound having 10 to 30 carbon atoms having a hydroxyl group.
  11.  水酸基を有する炭素数10~30のモノカルボン酸化合物が、12-ヒドロキシステアリン酸である請求項10に記載の光半導体封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor encapsulation according to claim 10, wherein the monocarboxylic acid compound having 10 to 30 carbon atoms having a hydroxyl group is 12-hydroxystearic acid.
  12.  水酸基を有する炭素数10~30のモノカルボン酸化合物が、ステアリン酸である請求項10に記載の光半導体封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor encapsulation according to claim 10, wherein the monocarboxylic acid compound having 10 to 30 carbon atoms having a hydroxyl group is stearic acid.
  13.  請求項1~12のいずれか一項に記載の光半導体封止用硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition for optical semiconductor encapsulation according to any one of claims 1 to 12.
  14.  請求項13に記載の硬化物を具備するLED。 LED which comprises the hardened | cured material of Claim 13.
PCT/JP2012/072617 2011-09-09 2012-09-05 Curable resin composition for sealing optical semiconductor element and cured product thereof WO2013035740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280043965.8A CN103781815A (en) 2011-09-09 2012-09-05 Curable resin composition for sealing optical semiconductor element and cured product thereof
JP2013532624A JP6006725B2 (en) 2011-09-09 2012-09-05 Curable resin composition for optical semiconductor element sealing and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-196936 2011-09-09
JP2011196936 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035740A1 true WO2013035740A1 (en) 2013-03-14

Family

ID=47832185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072617 WO2013035740A1 (en) 2011-09-09 2012-09-05 Curable resin composition for sealing optical semiconductor element and cured product thereof

Country Status (4)

Country Link
JP (1) JP6006725B2 (en)
CN (1) CN103781815A (en)
TW (1) TW201313772A (en)
WO (1) WO2013035740A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
WO2014163122A1 (en) * 2013-04-03 2014-10-09 日本化薬株式会社 Curable resin composition for coating/protecting materials for light-emitting semiconductors
JP2015098524A (en) * 2013-11-19 2015-05-28 日本化薬株式会社 Silicone modified epoxy resin and composition thereof
JP2020098684A (en) * 2018-12-17 2020-06-25 協立化学産業株式会社 Cationic polymerization curing type inkjet resin composition for sealing organic el element
CN112608600A (en) * 2019-10-04 2021-04-06 日铁化学材料株式会社 Curable resin composition containing silicone resin, cured product thereof, and method for producing silicone resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866098B2 (en) * 2016-10-04 2021-04-28 サンスター技研株式会社 Curable composition
JP6711468B1 (en) * 2018-08-10 2020-06-17 東レ株式会社 Polysiloxane-polyalkylene glycol block copolymer and method for producing the same
CN114846088B (en) * 2019-12-11 2023-06-27 三键有限公司 Curable resin composition, method for producing same, and cured product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019350A (en) * 2006-07-13 2008-01-31 Yokohama Rubber Co Ltd:The Curable resin composition
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same
WO2011043400A1 (en) * 2009-10-06 2011-04-14 日本化薬株式会社 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
WO2011108588A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Curable resin composition and cured article thereof
WO2011155613A1 (en) * 2010-06-11 2011-12-15 日本化薬株式会社 Curable resin composition and substance obtained by curing same
JP2011256326A (en) * 2010-06-11 2011-12-22 Nippon Kayaku Co Ltd Curable resin composition and its cured product
WO2012002404A1 (en) * 2010-06-30 2012-01-05 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing polyvalent carboxylic acid composition or curing agent composition as curing agent for epoxy resin
JP2012087248A (en) * 2010-10-21 2012-05-10 Nippon Kayaku Co Ltd Curing resin composition, and cured material thereof
JP2012087249A (en) * 2010-10-21 2012-05-10 Nippon Kayaku Co Ltd Curable resin composition and cured product thereof
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019350A (en) * 2006-07-13 2008-01-31 Yokohama Rubber Co Ltd:The Curable resin composition
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same
WO2011043400A1 (en) * 2009-10-06 2011-04-14 日本化薬株式会社 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
WO2011108588A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Curable resin composition and cured article thereof
WO2011155613A1 (en) * 2010-06-11 2011-12-15 日本化薬株式会社 Curable resin composition and substance obtained by curing same
JP2011256326A (en) * 2010-06-11 2011-12-22 Nippon Kayaku Co Ltd Curable resin composition and its cured product
WO2012002404A1 (en) * 2010-06-30 2012-01-05 日本化薬株式会社 Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing polyvalent carboxylic acid composition or curing agent composition as curing agent for epoxy resin
JP2012087248A (en) * 2010-10-21 2012-05-10 Nippon Kayaku Co Ltd Curing resin composition, and cured material thereof
JP2012087249A (en) * 2010-10-21 2012-05-10 Nippon Kayaku Co Ltd Curable resin composition and cured product thereof
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157552A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Optical semiconductor encapsulating epoxy resin composition, cured product thereof and optical semiconductor device
WO2014163122A1 (en) * 2013-04-03 2014-10-09 日本化薬株式会社 Curable resin composition for coating/protecting materials for light-emitting semiconductors
JP2014201631A (en) * 2013-04-03 2014-10-27 日本化薬株式会社 Curable resin composition for light-emitting semiconductor coating protective material
JP2015098524A (en) * 2013-11-19 2015-05-28 日本化薬株式会社 Silicone modified epoxy resin and composition thereof
JP2020098684A (en) * 2018-12-17 2020-06-25 協立化学産業株式会社 Cationic polymerization curing type inkjet resin composition for sealing organic el element
JP7115744B2 (en) 2018-12-17 2022-08-09 協立化学産業株式会社 Cationic polymerizable ink-jet resin composition for encapsulating organic EL elements
CN112608600A (en) * 2019-10-04 2021-04-06 日铁化学材料株式会社 Curable resin composition containing silicone resin, cured product thereof, and method for producing silicone resin
CN112608600B (en) * 2019-10-04 2024-05-14 日铁化学材料株式会社 Curable resin composition containing silicone resin, cured product thereof, and method for producing silicone resin

Also Published As

Publication number Publication date
CN103781815A (en) 2014-05-07
JP6006725B2 (en) 2016-10-12
TW201313772A (en) 2013-04-01
JPWO2013035740A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP6006725B2 (en) Curable resin composition for optical semiconductor element sealing and cured product thereof
TWI538959B (en) Hardened resin composition and hardened product thereof
JP5730852B2 (en) Method for producing organopolysiloxane, organopolysiloxane obtained by the production method, and composition containing the organopolysiloxane
JP5626856B2 (en) Curable resin composition and cured product thereof
JP6456836B2 (en) Curable resin composition and cured product thereof
JP5433705B2 (en) Curable resin composition and cured product thereof
TWI564318B (en) Epoxy resin composition
JP6150415B2 (en) Curable resin composition and cured product thereof
JP2014145073A (en) Curable resin composition and cured product of the same
JP6239616B2 (en) Epoxy group-containing polyorganosiloxane and curable resin composition containing the same
JP5472924B2 (en) Curable resin composition and cured product thereof
JP6279830B2 (en) Curable resin composition and cured product thereof
JP2015165013A (en) Epoxy resin curing agent composition and epoxy resin composition
JPWO2014157552A1 (en) Epoxy resin composition for optical semiconductor encapsulation, cured product thereof and optical semiconductor device
JP5832601B2 (en) Curable resin composition and cured product thereof
JP6016697B2 (en) Curable resin composition for light-emitting semiconductor coating protective material
JP2018030999A (en) Curable resin composition and cured product of the same
JP2014177531A (en) Epoxy resin composition including hydrotalcite compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830268

Country of ref document: EP

Kind code of ref document: A1