WO2013047620A1 - Curable resin composition for sealing optical semiconductor element, and cured material of same - Google Patents

Curable resin composition for sealing optical semiconductor element, and cured material of same Download PDF

Info

Publication number
WO2013047620A1
WO2013047620A1 PCT/JP2012/074789 JP2012074789W WO2013047620A1 WO 2013047620 A1 WO2013047620 A1 WO 2013047620A1 JP 2012074789 W JP2012074789 W JP 2012074789W WO 2013047620 A1 WO2013047620 A1 WO 2013047620A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
epoxy
resin composition
optical semiconductor
Prior art date
Application number
PCT/JP2012/074789
Other languages
French (fr)
Japanese (ja)
Inventor
直房 宮川
智江 佐々木
義浩 川田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2013047620A1 publication Critical patent/WO2013047620A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/12Polycondensates containing more than one epoxy group per molecule of polycarboxylic acids with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable resin composition suitable for optical semiconductor element sealing applications, and a cured product thereof.
  • LEDs Light Emitting Diode
  • resins that encapsulate optical semiconductor elements are particularly resistant to UV and heat. It has come to be required.
  • bisphenol-type epoxy resins and alicyclic epoxy resins have sufficient UV resistance and heat resistance as described above, and may not be used in fields where high luminance is required.
  • a silicone resin sealing material using an unsaturated hydrocarbon group-containing organopolysiloxane and an organohydrogenpolysiloxane is used (see Patent Document 2). ).
  • a sealing material using such a silicone resin is excellent in UV resistance and heat resistance, it has a problem that the sealing surface becomes sticky or gas permeability is high.
  • the problem of high gas permeability is the phenomenon that the silver plating surface used in the LED is corroded due to the permeation of sulfur-based gas, resulting in blackening due to silver sulfide, and reducing the illuminance of the LED. Therefore, the countermeasure is urgent.
  • An object of the present invention is to provide a curable resin composition for encapsulating an optical semiconductor element that is extremely excellent in heat cycle resistance.
  • the present inventors have found that the cured product has a glass transition temperature (Tg) measured by the DMA method in the range of ⁇ 10 to 10 ° C., and is 0 measured by the DMA method.
  • Tg glass transition temperature
  • a curable resin composition using an epoxy resin having a specific skeleton that gives a cured product having a storage elastic modulus in the range of 0 to 150 MPa at 0 ° C. solves the above-mentioned problems. It came.
  • the optical semiconductor device encapsulated product has a glass transition temperature (Tg) measured by DMA method in the range of ⁇ 10 to 10 ° C. and a storage elastic modulus at 0 ° C. measured in DMA range of 0 to 150 MPa.
  • Tg glass transition temperature
  • Curable resin composition for stopping (2) The curable resin composition for optical semiconductor element sealing according to (1), comprising an epoxy resin (A) and an epoxy resin curing agent (B), (3) The curable resin composition for optical semiconductor element encapsulation according to (2), wherein the epoxy resin (A) is a silicone skeleton epoxy resin, (4) The silicone skeleton epoxy resin is a polymer of a silanol-terminated silicone oil represented by formula (1) and an epoxy group-containing silicon compound represented by formula (2) obtained through the following production steps 1 and 2, The curable resin composition for sealing an optical semiconductor element according to (3), wherein the epoxy equivalent measured by the method described in JIS K-7236 is 300 to 1500 g / eq, Manufacturing process 1 A step of condensing a silanol group of a silanol-terminated silicone oil and an alkoxy group of an epoxy group-containing silicon compound to obtain a modified silicone oil. Manufacturing process 2 A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 5 to 10 carbon atoms, and m represents an average value of 3 to 200. In the formula, a plurality of R 1 are present. They may be the same or different)
  • X represents an organic group containing an epoxy group
  • R 2 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms
  • R 3 represents a straight chain having 1 to 10 carbon atoms.
  • a chain, branched or cyclic alkyl group, p is an integer from 0 to 2, and r is an integer and represents (3-p).
  • the epoxy resin curing agent (B) is a carboxylic acid resin obtained by modifying a carboxylic acid anhydride and / or a carboxylic acid anhydride with an alcoholic hydroxyl group.
  • Resin composition (6) Furthermore, as a curing accelerator, zinc carboxylate is contained, (4) or (5) curable resin composition for optical semiconductor element sealing according to (5), (7) The curable resin composition for sealing an optical semiconductor element according to (6), wherein the zinc carboxylate is one or more selected from zinc 2-ethylhexanoate, zinc stearate, zinc behenate, and zinc myristylate, (8) (1) to a cured product obtained by curing the curable resin composition for sealing an optical semiconductor element according to any one of (7), (9) LED comprising the cured product according to (8), About.
  • the cured product obtained by curing the curable resin composition of the present invention has a glass transition temperature (Tg) measured by DMA method in the range of ⁇ 10 to 10 ° C., and 0 ° C. measured by DMA method.
  • Tg glass transition temperature
  • a curable resin composition using an epoxy resin having a specific skeleton, which gives a cured product having a storage elastic modulus in the range of 0 to 150 MPa, is extremely excellent in heat cycle resistance, so that it is encapsulated in an optical semiconductor device (LED) It is extremely useful as a material.
  • the curable resin composition for an optical semiconductor element sealing material of the present invention has a glass transition temperature (Tg) measured by the DMA method in the range of ⁇ 10 to 10 ° C., and 0 ° C. measured by the DMA method. Is preferably in the range of 0 to 150 MPa, particularly a glass transition point of ⁇ 5 to 8 ° C. and a storage modulus of 0 to 100 MPa.
  • Tg glass transition temperature
  • the DMA (Dynamic Mechanical Analysis) method in the present invention is a measurement of dynamic viscoelasticity (tensile vibration) described in JIS K7244 and JIS K7244-4 using the test piece prepared as follows. It is a method to do. ⁇ Method for making DMA test piece> After carrying out the vacuum defoaming for 5 minutes, the optical semiconductor element sealing material is gently cast on a glass substrate on which a dam is created with a heat-resistant tape so as to be 30 mm ⁇ 20 mm ⁇ height 0.8 mm. The casting is cured under predetermined conditions (specifically, conditions of curing at 120 ° C. for 1 hour and then curing at 150 ° C.
  • the cured product of the curable resin composition for optical semiconductor encapsulating material of the present invention has a glass transition temperature (Tg) measured by DMA method of ⁇ 10 to 10 ° C., particularly preferably ⁇ 5 to 8 ° C. If it is lower than ⁇ 10 ° C., it may be inferior in sulfidation resistance, and if it is higher than 10 ° C., it may be inferior in heat cycle resistance.
  • the cured product of the curable resin composition for an optical semiconductor element sealing material of the present invention has a storage elastic modulus at 0 ° C. measured by the DMA method of 0 to 150 MPa, particularly preferably 0 to 100 MPa. If it exceeds 150 MPa, cracks may occur during the heat cycle test.
  • the heat cycle test (also referred to as a thermal shock test or a heat shock test) is a test piece in a low temperature region of about ⁇ 50 to ⁇ 30 ° C. and a high temperature region of about 80 to 120 ° C. for about 5 to 30 minutes in each region. Is repeatedly used, and is widely used as a reliability confirmation test for optical semiconductor encapsulants.
  • the curable resin composition of the present invention is a curable resin composition for sealing an optical semiconductor element, and the cured product has a glass transition temperature (Tg) measured by DMA method of ⁇ 10 to 10 ° C., The storage elastic modulus at 0 ° C. measured by the DMA method is 0 to 150 MPa.
  • the curable resin composition include a silicone resin composition and an epoxy resin composition.
  • the curable resin composition of the present invention is preferably a curable resin composition (epoxy resin composition) containing an epoxy resin (A) from the viewpoint of resistance to sulfide.
  • the epoxy resin (A) of this invention is demonstrated.
  • the epoxy resin (A) is a compound having two or more epoxy groups in the same molecule, such as a silicone skeleton epoxy resin, an epoxy resin that is a glycidyl etherified product of a phenol compound, and a glycidyl etherified product of various novolac resins.
  • epoxy resins cycloaliphatic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, polymerization with epoxy groups
  • a copolymer of a polymerizable unsaturated compound and another polymerizable unsaturated compound, and the like, and a silicone skeleton epoxy resin is preferable because of its heat resistance and light resistance.
  • the silicone skeleton epoxy resin is a resin having an epoxy group having a silicone bond (Si—O bond) as a main skeleton, and can be obtained, for example, by polymerizing an epoxy group-containing silicon compound and other silicon compounds.
  • examples thereof include a hydrolytic condensation polymer of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, and a condensation polymer of an alkoxysilane compound having an epoxy group and a silanol-terminated silicone oil.
  • an addition polymerization product of a silicone resin having a hydrosilyl group (SiH group) and an epoxy compound having an unsaturated hydrocarbon group such as a vinyl group can be exemplified.
  • the epoxy resin (A) in the present invention is made from a silanol-terminated silicone oil (a) and an epoxy group-containing silicon compound (b) (and, if necessary, an alkoxysilicon compound (c)) among the silicone skeleton epoxy resins.
  • a silicone skeleton epoxy resin obtained through a two-stage production process described later is most preferable.
  • silanol-terminated silicone oil (a), the epoxy group-containing silicon compound (b), and the alkoxysilicon compound (c) will be described.
  • silanol-terminated silicone oil (a) examples include a silicone resin represented by the following formula (1) and having silanol groups at both ends.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group or a hexyl group, or a carbon number of 5 to 5 such as a phenyl group, a benzyl group or a naphthyl group. 10 aryl groups are shown.
  • a plurality of R 1 may be the same or different, but preferably contain a phenyl group from the viewpoint of compatibility with other resins, high refractive index, and improvement in sulfur resistance. From the viewpoint of reducing the glass transition temperature of the cured product and the storage elastic modulus at 0 ° C., it preferably contains a methyl group.
  • the proportion of the phenyl group contained is preferably 0.05 to 2.0 mol, more preferably 0.1 to 1.0 mol, and still more preferably 0.15 to 0.3 mol, per 1 mol of the substituted methyl group. Particularly preferred is 0.15 to 0.2 mol. If the amount is less than 0.05 mol, the compatibility with other raw materials in the composition may decrease, the refractive index of the cured product may decrease, the light extraction efficiency of the LED may decrease, and the sulfidation resistance may decrease. When the amount exceeds 2.0 mol, the light resistance (UV resistance) of the cured product may decrease, the storage elastic modulus at 0 ° C. in the DMA method may increase excessively, or the heat cycle resistance may decrease. .
  • m represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • m represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • the weight average molecular weight (Mw) of the silanol-terminated silicone oil (a) is preferably in the range of 400 to 3000 (GPC). If the weight average molecular weight is less than 400, the silicone part is less likely to exhibit the characteristics of heat resistance and light resistance, and if it exceeds 3000, it has a severe layer separation structure, so that it can be used for optical semiconductor element sealing. May be less permeable.
  • the molecular weight of the silanol-terminated silicone oil (a) is a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography). means.
  • Silanol-terminated silicone oil (a) is produced, for example, by hydrolyzing and condensing dimethyl dialkoxysilane, methylphenyldichlorosilane, diphenylalkoxysilane, dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane. it can.
  • preferable silanol-terminated silicone oil (a) include the following product names.
  • PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd. X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive Co., Ltd.
  • the epoxy group-containing silicon compound (b) in the present invention is an alkoxy silicon compound represented by the formula (2).
  • X is not particularly limited as long as X is an organic group having an epoxy group.
  • an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, ⁇ -glycidoxybutyl, glycidyl group, ⁇ - (3,4-epoxy Cyclohexyl) ethyl group, ⁇ - (3,4-epoxycyclohexyl) propyl group, ⁇ - (3,4-epoxycycloheptyl) ethyl group, 4- (3,4-epoxycyclohexyl) butyl group, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group.
  • a glycidoxy group such as
  • alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group and an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group for example, ⁇ -Glycidoxyethyl group, ⁇ -glycidoxypropyl group, ⁇ - (3,4-epoxycyclohexyl) ethyl group are preferable, and since ⁇ - (3,4-epoxycyclohexyl) ethyl group can be particularly suppressed in coloration Is preferred.
  • R 2 in the formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms such as a methyl group, a cyclohexyl group, etc. And an alkyl group having 5 to 8 carbon atoms having an alicyclic structure and an alkyl group having 5 to 8 carbon atoms having an aromatic ring structure such as a phenyl group.
  • R 3 in the formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • R 3 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.
  • p is an integer representing 0, 1, 2 and r represents (3-p). From the viewpoint of the viscosity of the silicone skeleton epoxy resin and the mechanical strength of the cured product, p is preferably 0 or 1.
  • epoxy group-containing silicon compound (b) examples include ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxy.
  • an alkoxysilicon compound (c) represented by the following formula (3) can be used in combination with the epoxy group-containing silicon compound (b).
  • the viscosity, refractive index, Tg in the DMA method of the cured product, and storage elastic modulus of the silicone skeleton epoxy resin can be adjusted.
  • R 2 , R 3 , p and r in the formula (3) have the same contents as described above.
  • Preferred examples of the alkoxysilicon compound (c) that can be used in combination include methyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diphenyl. Examples include dimethoxysilane and diphenyldidiethoxysilane. Among these, methyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diphenyldimethoxysilane are preferable.
  • At least one of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and optionally the alkoxysilicon compound (c)) to be used has an aromatic skeleton. It is preferable to use a compound having a phenyl group from the viewpoint of an increase in refractive index and a reduction in sulfur resistance, and a compound having a phenyl group is particularly preferable.
  • the silanol-terminated silicone oil (a) preferably has a phenyl group.
  • silanol-terminated silicone oil (a) introduced with a phenyl group can suppress an excessive increase in viscosity of the silicone skeleton epoxy resin, while an epoxy group-containing silicon compound with a phenyl group (b) ) (And if necessary, the alkoxysilicon compound (c)), the increase in viscosity becomes large and workability may be inferior.
  • the alkoxy group-containing silicon compound (b) (and, if necessary, the alkoxy group of the alkoxysilicon compound (c)) is added to 1 equivalent of the silanol group of the silanol-terminated silicone oil (a).
  • the alkoxy group-containing silicon compound (b) (and, if necessary, the alkoxy group of the alkoxysilicon compound (c)) is added to 1 equivalent of the silanol group of the silanol-terminated silicone oil (a).
  • two or more alkoxy groups in the epoxy group-containing silicon compound (b) (and optionally the alkoxysilicon compound (c)) are terminated with silanol-terminated silicone oil (a )
  • the silanol group the polymer becomes too high at the end of the production step 1 and gelation may occur.
  • (Manufacturing process 1) A step of obtaining a modified silicone oil (d) by condensing a silanol group of a silanol-terminated silicone oil (a) and an alkoxy group of an epoxy group-containing silicon compound (b) (and, if necessary, an alkoxysilicon compound (c)). .
  • (Manufacturing process 2) A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups. Through the production steps 1 and 2, the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and the alkoxysilicon compound (c) as necessary) are polymerized.
  • the silanol group of the silanol-terminated silicone oil (a) and the alkoxy group of the epoxy group-containing silicon compound (b) (and the alkoxy silicon compound (c) if necessary) are surely obtained.
  • the modified silicone oil (d) is obtained by reacting with the above, it is possible to obtain a uniform and stable product by subjecting the remaining alkoxy groups to dealcoholic hydrolysis and condensation.
  • the condensation reaction between the silanol group and the alkoxy group and the polymerization reaction between the alkoxysilanes become a competitive reaction, resulting in a difference in the reaction rate between the products and the compatibility of the products. Due to the difference, a heterogeneous compound can be obtained, or a large amount of silanol-terminated silicone oil (a) having no epoxy group can be adversely affected.
  • the reaction is preferably performed in the presence of a solvent, and alcohol is particularly preferable among the solvents from the viewpoint of reaction control.
  • alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc.
  • primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols.
  • Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like.
  • Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture.
  • the amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
  • the amount of alcohol used is 2% by weight or more based on the total weight of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and, if necessary, the alkoxysilicon compound (c)). It is preferable to contain. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight. When the amount exceeds 100% by weight, the progress of the reaction becomes extremely slow. When the amount is less than 2% by weight, the reaction other than the target reaction proceeds, the molecular weight increases, gelation, increase in viscosity, and use as a cured product.
  • solvents may be used in combination as necessary.
  • solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene, and xylene. Can be illustrated.
  • the reaction in the production process 1 can be carried out without a catalyst, the reaction proceeds slowly with no catalyst, so that it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time.
  • the catalyst that can be used any compound that exhibits acidity or basicity can be used.
  • the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of basic catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal hydroxides such as cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc.
  • Inorganic bases such as alkali metal carbonates and organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • a basic catalyst is particularly preferable, and an inorganic base is preferable in terms of easy catalyst removal from the product.
  • alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, particularly hydroxides are preferable.
  • the amount of the catalyst added is usually 0.001 to 5% by weight based on the total weight of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and the alkoxysilicon compound (c) if necessary). Preferably, it is 0.01 to 2% by weight.
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol.
  • the reaction product produced thereby may not be compatible with the silanol-terminated silicone oil (a) and may become cloudy.
  • the allowable range of moisture is preferably 0.5% by weight based on the total weight of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and, if necessary, the alkoxysilicon compound (c)). % Or less, more preferably 0.3% by weight or less, and it is more preferable that there is as little water as possible.
  • the reaction temperature in the production step 1 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the modified silicone oil (d) obtained by the manufacturing process 1 has a structure as shown in the following formula (4) as a main component (it is difficult to confirm the structure and accurately Cannot be identified.)
  • R 1 and m have the same meaning as described above.
  • R 4 represents X and / or R 2 described above, and R 5 represents R 2 and / or —OR 3 .
  • the manufacturing process 2 After completion of the reaction in the production step 1, water is added, and the alkoxy groups remaining in the resulting modified silicone oil (d) are polymerized (sol-gel reaction). At this time, the silicon compound (b) containing the above-described epoxy group (and the alkoxysilicon compound (c) if necessary) and the catalyst may be added within the above-mentioned amount as necessary. This reaction is performed between (1) the modified silicone oils (d) and / or (2) the silicon compound (b) containing an epoxy group (and the alkoxysilicon compound (c) if used).
  • the polymerization reactions (1) to (4) are considered to proceed simultaneously in parallel.
  • a basic inorganic catalyst is preferable as the catalyst, and a necessary amount may be added in the production process 1 in advance. However, it is not preferable to exceed the range described as a preferred embodiment in the production process 1.
  • alcohol is preferably used as the solvent in the production process 2.
  • examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc.
  • primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. The presence of these alcohols contributes to molecular weight control and stability.
  • the silanol-terminated silicone oil (a) and the silicon compound (b) containing an epoxy group (and, if necessary, the alkoxysilicon compound (c)) charged in the production process 1 as the addition amount of the alcohol, Usually 20 to 200% by weight, preferably 20 to 150% by weight, particularly preferably 30 to 120% by weight.
  • water is added (ion exchange water, distilled water, or clean water can be used).
  • the amount of water used is preferably 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. is there.
  • the amount of water is less than 0.5 equivalent, the progress of the reaction is slow and the silicon compound (b) containing an epoxy group (and the alkoxysilicon compound (c) if necessary) remains without reacting.
  • a problem such as the above will occur, a sufficient network may not be formed, and a curing failure will occur even after the subsequent curing of the curable resin composition.
  • the molecular weight control is not effective, and the molecular weight may be higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the silicone skeleton epoxy resin.
  • the reaction temperature in production step 2 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the catalyst is removed by quenching and / or washing with water as necessary.
  • a solvent that can be separated from water.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • the catalyst may be removed only by washing with water, but the reaction is carried out under acidic or basic conditions. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using Any compound that is acidic or basic can be used for the neutralization reaction.
  • the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate.
  • Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphates such as polyphosphoric acid, sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • an inorganic base or an inorganic acid is particularly preferable because it can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.
  • adsorbent examples include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
  • activated clay for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168 are manufactured by Mizusawa Chemical Co., Ltd. Galeon Earth, Mizuka Ace, etc. are listed.
  • activated carbon for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like.
  • zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa.
  • a synthetic adsorbent for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd. 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, manufactured by Dow Chemical Company, Dowex 66, HCR-S, HCR-W2, MAC-3, etc. may be mentioned.
  • the adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
  • the reaction After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration.
  • the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
  • reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
  • the silicone skeleton epoxy resin of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
  • the appearance of the silicone skeleton epoxy resin of the present invention is usually colorless and transparent and is a liquid having fluidity at 25 ° C.
  • the molecular weight is preferably 800 to 3000, more preferably 1000 to 3000, and particularly preferably 1500 to 2800 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 3000, the encapsulant may be peeled off from the substrate at the time of solder reflow of the LED element encapsulated using the weight average molecular weight.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
  • the epoxy equivalent (measured by the method described in JIS K-7236) of the silicone skeleton epoxy resin of the present invention is 300 to 1500 g / eq.
  • the silicone skeleton epoxy resin of the present invention may be a single silicone skeleton epoxy resin or a mixture of two or more silicone skeleton epoxy resins.
  • the epoxy equivalent of the epoxy resin is a single silicone skeleton epoxy resin, two or more types of silicone skeleton epoxy resins are used.
  • the total epoxy equivalent of the epoxy equivalent of the specific silicone skeleton epoxy resin ⁇ (content of the specific silicone skeleton epoxy resin / total amount of the silicone skeleton epoxy resin) is 300 to 1500 g / eq. It is preferably 350 to 1000 g / eq.
  • the viscosity of the silicone skeleton epoxy resin of the present invention is preferably 50 to 20,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, particularly 800 to 5 1,000 mPa ⁇ s is preferred.
  • the viscosity is less than 50 mPa ⁇ s, the viscosity is too low and may not be suitable as an optical semiconductor sealing material.
  • it exceeds 20,000 mPa ⁇ s the viscosity is too high and workability is reduced. There is.
  • the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, and particularly preferably 6 to 15 mol%. preferable.
  • the ratio of silicon atoms bonded to three oxygen atoms derived from silsesquioxane with respect to all silicon atoms is less than 3 mol%, the cured product tends to be too soft as a characteristic of the chain silicone segment, and the surface Tack and scratches may occur.
  • it exceeds 50 mol% the properties of the silicone oil are liable to be impaired, and the cured product becomes too hard.
  • the proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the epoxy resin.
  • the epoxy resin (A) in the present invention a silicon compound containing a silanol-terminated silicone oil (a) and an epoxy group, which is a silicone skeleton epoxy resin, obtained through production steps 1 and 2 ( b) (and condensates with alkoxysilicon compounds (c) if necessary) have been described.
  • the above silanol-terminated silicone oil (a) is not used, but a condensation polymer of a silicon compound (b) containing an epoxy group (and an alkoxy silicon compound (c) if necessary), Can also be illustrated.
  • the silicon compound (b) containing an epoxy group represented by the above formula (2) (and optionally represented by the above formula (3) can be produced by a one-step reaction.
  • the alkoxysilicon compound (c)) can be obtained by adding water dropwise in the presence of a catalyst and a solvent as described above and condensing under the conditions of a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 24 hours.
  • a condensate of the silicon compound (b) containing an epoxy group (and, if necessary, the alkoxysilicon compound (c)) can be obtained by quenching, removing, washing with water, and concentrating as described above. .
  • An embodiment of the silicone skeleton epoxy resin that is particularly preferable from the viewpoint that the glass transition temperature and the storage elastic modulus at 0 ° C. of the present invention satisfy the required characteristics and has excellent sulfidation resistance is as follows.
  • (Iii) The silicone skeleton epoxy resin according to any one of (i) and (ii), wherein a ratio of silicon atoms to which three oxygen atoms are bonded to all silicon atoms is 3 to 50 mol%.
  • (Iv) The silicone skeleton epoxy resin according to any one of (i) and (ii), wherein a ratio of silicon atoms to which three oxygen atoms are bonded to all silicon atoms is 6 to 15 mol%.
  • (V) The silicone skeleton epoxy resin according to any one of (i) to (iv), wherein an epoxy equivalent is 350 to 1000 g / eq.
  • the epoxy equivalent of the specific silicone skeleton epoxy resin ⁇ (the content of the specific silicone skeleton epoxy resin / the total amount of the silicone skeleton epoxy resin)
  • the silicone skeleton epoxy resin mixture according to any one of (i) to (iv), wherein an epoxy equivalent is 350 to 1000 g / eq.
  • epoxy resins include epoxy resins that are glycidyl etherification products of phenolic compounds, epoxy resins that are glycidyl etherification products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, glycidyl esters.
  • Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-methylene -Bis (4-methyl-6-tert-butylphenol), 4,4'-butylidene-bis (3-methyl-6
  • epoxy resins that are glycidyl etherified products of various novolak resins include phenols, cresols, ethylphenols, butylphenols, octylphenols, bisphenols such as bisphenol A, bisphenol F and bisphenol S, and naphthols.
  • examples include novolak resins made from various phenols, xylylene skeleton-containing phenol novolak resins, dicyclopentadiene skeleton-containing phenol novolak resins, biphenyl skeleton-containing phenol novolak resins, fluorene skeleton-containing phenol novolak resins, and other glycidyl etherified products. It is done.
  • Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate. And a formula epoxy resin.
  • Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
  • heterocyclic epoxy resin examples include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
  • examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
  • examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
  • epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • An epoxy resin obtained by glycidylating any of the halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • Marproof G-0115S, G-0130S and G-0250S are commercially available products.
  • the polymerizable unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, 4 -Vinyl-1-cyclohexene-1,2-epoxide and the like.
  • Examples of other polymerizable unsaturated compounds include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, vinylcyclohexane and the like.
  • the aforementioned epoxy resin (A) may be used alone or in combination of two or more.
  • a silicone skeleton epoxy resin is the most preferable example from the viewpoints of transparency, heat-resistant transparency, light-resistant transparency, heat cycle resistance, and the like.
  • an alicyclic epoxy is used.
  • the combined use of the resin is preferable from the viewpoint of adjusting the mechanical strength of the cured product.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc.
  • Diols Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, and tetraols such as pentaerythritol and ditrimethylolpropane.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to them (reference: review epoxy resin basic edition I p76-85, the entire contents of which are incorporated herein by reference).
  • the ratio of the silicone skeleton epoxy resin to the total epoxy resin composition is preferably 60 to 99 parts by weight, particularly 90 to 97 parts by weight. preferable. If it is less than 60 parts by weight, the light resistance (UV resistance) of the cured product may be inferior.
  • epoxy resin curing agent (B) examples include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and polycarboxylic acids.
  • acid anhydride (Ba) and polyvalent carboxylic acid (Bb) are particularly preferable from the viewpoints of hardness, workability (being liquid at room temperature), and transparency of the cured product. preferable.
  • the acid anhydride (Ba) include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, Hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2 , 3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and the like.
  • methyltetrahydrophthalic anhydride methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid Acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, It is preferable from the viewpoint of workability.
  • the polyvalent carboxylic acid (Bb) is a compound having at least two carboxyl groups.
  • the polyvalent carboxylic acid (Bb) is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, Linear alkyl diacids such as malic acid, alkyltricarboxylic acids such as 1,3,5-pentanetricarboxylic acid, citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid , Cycloaliphatic tricarboxylic acid, nadic acid, aliphatic cyclic polyvalent carboxylic acid such
  • the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable from a transparency viewpoint.
  • the bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol.
  • Diols such as methanol and norbornene diol
  • triols such as glycerin, trimethylol ethane, trimethylol propane, tri
  • Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, From the viewpoint of transparency, In particular, tricyclodecane
  • Examples of acid anhydrides to be reacted with polyhydric alcohols include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2, 2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4- Anhydrides and the like are preferable, and methylhexahydrophthalic anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride are particularly preferable from the viewpoints of heat resistance, transparency, and workability.
  • the conditions for the addition reaction can be used without any particular limitation as long as they are known methods.
  • Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent.
  • a method of reacting at 150 ° C. and heating, and taking out as it is after completion of the reaction can be mentioned.
  • both terminal carbinol-modified silicone oil (e) (and, if necessary, terminal alcohol polyester (f)) and one or more carboxylic anhydride groups in the molecule.
  • a polyvalent carboxylic acid (Bb) produced by a reaction with the compound (g) having the above can also be used.
  • both-end carbinol-modified silicone oil (e) the following formula (5)
  • R 6 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 5 to 10 carbon atoms
  • R 7 represents an alkylene group having 1 to 10 carbon atoms in total, an alkylene group having an ether bond
  • n Represents an average value of 1 to 100.
  • R 6 examples include a methyl group, an ethyl group, an isopropyl group, a butyl group, a hexyl group, a cyclohexyl group, a phenyl group, a benzyl group, and a naphthyl group.
  • the polyvalent carboxylic acid (Bb) obtained by the addition reaction of the both-end carbinol-modified silicone oil (e) and the compound (g) having one or more carboxylic anhydride groups in the molecule is liquid at room temperature.
  • a methyl group is preferred.
  • R 7 examples include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, ethoxyethylene group, propoxyethylene group,
  • Examples include an alkylene group having an ether bond such as a propoxypropylene group and an ethoxypropylene group. Particularly preferred are propoxyethylene group and ethoxypropylene group.
  • n is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
  • the both-end carbinol-modified silicone oil (e) represented by the formula (5) is, for example, X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004.
  • SF8427 both manufactured by Toray Dow Corning Co., Ltd.
  • XF42-B0970, XF42-C3294 both manufactured by Momentive Performance Materials Japan GK
  • These two terminal carbinol-modified silicone oils can be used alone or in combination.
  • X-22-160AS, KF6001, KF6002, BY16-201, and XF42-B0970 are preferable.
  • the terminal alcohol polyester (f) represented by the following formula (6) can be used in combination with the above-mentioned both-end carbinol-modified silicone oil (e) as necessary.
  • R 8 and R 9 each independently represents an alkylene group having 1 to 10 carbon atoms, and k represents an average value of 1 to 100
  • R 8 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, an alkylene group having a branched chain having 1 to 10 carbon atoms or an alkylene group having a cyclic structure is preferable. It is preferable from the viewpoint.
  • R 9 examples include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene.
  • a linear alkylene group having 1 to 10 carbon atoms is preferable, and propylene, butylene, pentylene, and hexylene are particularly preferable from the viewpoint of adhesion of a cured product to a substrate.
  • k is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
  • the weight average molecular weight (Mw) of the terminal alcohol polyester (f) is usually 500 to 20000, preferably 500 to 5000, and more preferably 500 to 3000. If the weight average molecular weight is less than 500, the cured product hardness of the curable resin composition of the present invention may be too high and cracks may occur in a heat cycle test or the like, and if the weight average molecular weight is more than 20000, the cured product becomes sticky. May occur.
  • the weight average molecular weight means a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography).
  • Examples of the terminal alcohol polyester (f) represented by the formula (6) include polyester polyols having an alcoholic hydroxyl group at the terminal. Specific examples thereof are polyester polyols, Kyowapol 1000 PA, 2000 PA, 3000 PA, 2000 BA (all manufactured by Kyowa Hakko Chemical Co., Ltd.); Adeka New Ace Y9-10, YT-101 (all ADEKA ( Plaxel 220EB, 220EC (both manufactured by Daicel Chemical Industries); Polylite OD-X-286, OD-X-102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, OD-X-2554, OD-X-2108, OD-X-2376, OD-X-2044, OD-X-688, OD-X-2068, OD-X-2547, OD-X-2420, OD-X-2523, OD-X-2555 (all IC Co., Ltd.); HS2H-201AP, HS2H-3
  • the amount of terminal alcohol polyester (f) used is usually 0.5 to 200 parts by weight, preferably 5 to 50 parts by weight, more preferably 100 parts by weight of carbinol-modified silicone oil (e) at both ends. Is 10 to 30 parts by weight. If the amount is less than 0.5 part by weight, the mechanical strength of the cured product may be reduced. If the amount is more than 200 parts by weight, the heat-resistant transparency of the cured product is lowered and the viscosity of the polyvalent carboxylic acid (Bb) to be obtained is significantly increased. Sometimes. From the viewpoint of lowering the glass transition temperature and lowering the storage elastic modulus at 0 ° C., 15 to 30 parts by weight is preferable.
  • the compound (g) having one or more carboxylic anhydride groups in the molecule includes, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, 2,3-butanedicarboxylic anhydride, 2,4 -Saturated aliphatic carboxylic anhydrides such as pentanedicarboxylic anhydride, 3,5-heptanedicarboxylic anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, maleic anhydride, dodecyl succinic acid Unsaturated aliphatic carboxylic anhydrides such as anhydrides, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methyl Norbornane-2,3-dicarboxylic acid anhydride, nadic acid
  • the compound (g) having one or more carboxylic acid anhydride groups in the molecule can be used alone or in combination.
  • the polyvalent carboxylic acid (Bb) is liquid at room temperature and the cured product obtained by curing the polyvalent carboxylic acid (Bb) and the epoxy resin is excellent in transparency
  • hexahydrophthalic anhydride, methyl Hexahydrophthalic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 1,2 3,4-butanetetracarboxylic dianhydride is preferred. More preferred are methylhexahydrophthalic anhydride and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and particularly preferred is methylhexahydrophthalic anhydride.
  • the reaction between the both-end carbinol-modified silicone oil (e) (and optionally the terminal alcohol polyester (f)) and the compound (g) having one or more carboxylic acid anhydride groups in the molecule is not conducted in a solvent. It can also be performed with a solvent.
  • the both-end carbinol-modified silicone oil (e) represented by the formula (5) (and the terminal alcohol polyester (f) if necessary) and one or more carboxylic anhydride groups in the molecule Any solvent that does not react with the compound (g) can be used without particular limitation.
  • solvents examples include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile
  • ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable.
  • These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is not particularly limited, but the above-mentioned carbinol-modified silicone oil (e) (and optionally terminal alcohol polyester (f) if necessary) and a compound having one or more carboxylic anhydride groups ( It is usually preferable to use 0.1 to 300 parts by weight per 100 parts by weight of the total weight of g).
  • a catalyst may be used for the reaction.
  • usable catalysts include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, water Metal hydroxides such as sodium oxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.
  • heterocyclic compounds such as undec-7-ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, Methyl ethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium Examples include quaternary ammonium salts such as acetate and trioctylmethylammonium acetate. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine
  • two or more acid anhydrides (Ba) and polyvalent carboxylic acids (Bb) may be used in combination.
  • solid polycarboxylic acid (Bb) when solid polycarboxylic acid (Bb) is used in applications where liquid is required at room temperature (25 ° C.) such as sealing of optical semiconductors, liquid acid anhydride (Ba) is used in combination as a liquid mixture. It is desirable to do.
  • the acid anhydride (Ba) can be used in a proportion of 0.5 to 99.5% by weight of the total of the acid anhydride (Ba) and the polyvalent carboxylic acid (Bb).
  • the acid anhydride (Ba) and / or the polyvalent carboxylic acid (Bb) are used in combination as the epoxy resin curing agent, the acid anhydride (Ba) and / or the polyvalent carboxylic acid (Bb)
  • the proportion of the total amount in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
  • the curing agent that can be used in combination include amine compounds, amide compounds, phenol compounds, and the like.
  • curing agents that can be used include amines and polyamide compounds (diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and dimer of linolenic acid, etc.)
  • Polyphenols bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fe (Phenol, alkyl-substituted
  • halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols, etc. Imidazole, trifluoroborane -. Amine complex, guanidine derivatives, etc.) and the like, but the invention is not limited to these may be used alone, or two or more may be used.
  • the blending ratio of the epoxy resin (A) and the epoxy resin curing agent (B) is 0.5 to 1.2 equivalents of the curing agent with respect to 1 equivalent of the epoxy groups of all epoxy resins. It is preferable to use it.
  • the curing agent is less than 0.5 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • a curing accelerator can be used together with the epoxy resin curing agent (B). Since the curing accelerator is excellent in transparency, an ammonium salt-based curing accelerator, a phosphonium salt-based curing accelerator, and a metal soap-based curing accelerator are particularly excellent.
  • the ammonium salt curing accelerator include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide.
  • Trimethylcetylammonium hydroxide Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like.
  • the phosphonium salt-based curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like.
  • the metal soap-based curing accelerator examples include tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, and potassium octylate. These curing accelerators may be used alone or in combination of two or more. Among these curing accelerators, trimethyl cetyl ammonium hydroxide, methyl tributyl phosphonium dimethyl phosphate, tin octylate, zinc octylate, and manganese octylate are preferable.
  • calcium stearate in order to obtain a cured product excellent in transparency and sulfidation resistance, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristylate) and zinc phosphate ester ( Zinc compounds such as zinc octyl phosphate and zinc stearyl phosphate are preferably used.
  • the curing accelerator is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
  • the curable resin composition of the present invention it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product by using a coupling agent as necessary.
  • a coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Trimethoxysilane N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate
  • the curable resin composition of the present invention it is possible to supplement mechanical strength without impairing transparency by using a nano-order level inorganic filler as necessary.
  • a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less.
  • examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more.
  • the content of these inorganic fillers is preferably an amount occupying 0 to 95% by weight in the curable resin composition of the present invention.
  • a phosphor can be added to the curable resin composition of the present invention as necessary.
  • the phosphor has, for example, a function of forming white light by absorbing a part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light.
  • the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, the rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m.
  • the amount added is usually 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • a thixotropic imparting agent such as fine silica powder (also referred to as “aerosil” or “aerosol”) can be added for the purpose of preventing sedimentation of various phosphors during curing.
  • silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
  • the curable resin composition of the present invention can contain an amine compound as a light stabilizer, or a phosphorus compound and a phenol compound as an antioxidant.
  • the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2
  • the following commercially available products can be used as the amine compound as the light stabilizer.
  • the commercially available amine compound is not particularly limited.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited.
  • the commercially available phosphorus compounds are not particularly limited.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • the commercially available phenolic compounds are not particularly limited. , ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd. , Sumilizer MDP-S, Sumil izer BBM-S, SumizerzGM, SumizerilGS (F), SumizerGP, and the like.
  • THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like can be mentioned as manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but with respect to the total weight of the curable resin composition of the present invention, It is in the range of 0.005 to 5.0% by weight.
  • the curable resin composition of the present invention is obtained by sufficiently mixing additives such as an epoxy resin (A), an epoxy resin curing agent (B), a curing accelerator, a coupling agent, an antioxidant, and a light stabilizer.
  • a curable resin composition can be prepared and used as a sealing material.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens.
  • the curable resin composition of this invention can be used for this sealing material.
  • an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance.
  • a compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • the purpose of reducing internal stress generated during heat-curing for example, after pre-curing at 80 to 120 ° C.
  • X to Y indicates a range from X to Y, and the range includes X and Y.
  • Synthesis Example 1 (Synthesis example of a silicone skeleton epoxy resin in which silanol-terminated silicone oil (a) and epoxy group-containing silicon compound (b) are produced through a two-stage production process) (Manufacturing process 1) 394 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group with a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 475 Part, 4 parts of 0.5% KOH methanol solution and 36 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C.
  • Synthesis Example 2 (Synthesis Example of Silicone Skeleton Epoxy Resin Produced by Silanol-Terminated Silicone Oil (a) and Epoxy Group-Containing Silicon Compound (b) Through Two-Step Manufacturing Process) (Manufacturing process 1) 197 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 534 Part, 4 parts of 0.5% KOH methanol solution and 36 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C.
  • Synthesis Example 3 (Synthesis Example of Silicone Skeleton Epoxy Resin Made from Silanol-Terminated Silicone Oil (a) and Epoxy Group-Containing Silicon Compound (b) Through Two-Step Manufacturing Process)
  • Synthesis Example 4 (Synthesis example of polyvalent carboxylic acid having silicone skeleton)
  • 50 parts of both-end carbinol-modified silicone X22-160AS manufactured by Shin-Etsu Chemical Co., Ltd.
  • Ricacid MH methyl hexahydrophthalic anhydride, 15.4 parts (manufactured by Shin Nippon Rika Co., Ltd.) were charged into a reaction vessel, heated to 80 ° C., and GPC was measured after 4 hours. The peak of Ricacid MH disappeared.
  • Synthesis Example 5 (Synthesis example of polyvalent carboxylic acid having silicone skeleton and polyester skeleton) A glass separable flask equipped with a stirrer, a Dimroth condenser and a thermometer, 47.1 parts carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Adeka New Ace Y9- which is a polyester polyol 10 (polyester polyol manufactured by ADEKA Corporation, wherein R 8 is a neopentylene group and R 9 is a butylene group in the above formula (6)), Ricacid BT-100 (1,2,3,4-butanetetra) Carrying out 2.5 parts of carboxylic dianhydride (manufactured by Shin Nippon Rika Co., Ltd.) and 16.6 parts of Jamaicacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) at 140 ° C.
  • Synthesis Example 6 (Synthesis Example of Mixture of Acid Anhydride and Multivalent Carboxylic Acid) A glass separable flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 12 parts of tricyclodecane dimethanol (TCD-AL, manufactured by Oxea), RIKACID MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) )) 73 parts were charged into a reaction vessel (a glass four-necked flask equipped with a stirrer, Dimroth, and thermometer), heated to 40 ° C. for 1 hour, and then reacted at 60 ° C. for 1 hour, and GPC was measured.
  • TCD-AL tricyclodecane dimethanol
  • RIKACID MH methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.
  • a curing agent (B-3) which is a mixture of a polyvalent carboxylic acid having a cyclic aliphatic hydrocarbon group (tricyclodecanedimethyl) as a main skeleton and an acid anhydride (methylhexahydrophthalic anhydride).
  • the functional group equivalent of the obtained curing agent (B-3) was 171 g / eq.
  • the carboxylic acid and acid anhydride groups are each considered as one functional group).
  • the viscosity was 15000 mPa ⁇ s, and the appearance was a colorless and transparent liquid.
  • Example 1 100 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 5 parts of ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical), epoxy 74 parts of polyvalent carboxylic acid (B-1) obtained in Synthesis Example 4 as a resin curing agent, 8 parts of PRIPOL 1009 (dimer acid which is a reduced product of unsaturated fatty acid multimer, manufactured by Claude Japan Co., Ltd.), curing 1 part of zinc 2-ethylhexanoate was added as an accelerator, mixed and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
  • A-1 silicone skeleton epoxy resin obtained in Synthesis Example 1
  • ERL-4221 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical
  • Example 2 70 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 30 parts of silicone skeleton epoxy resin (A-3) obtained in Synthesis Example 3, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 71 parts of polycarboxylic acid (B-2) obtained in Synthesis Example 5 as an epoxy resin curing agent, 2-ethylhexane as a curing accelerator 0.5 parts of zinc acid was added, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
  • Comparative Example 1 40 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (A-3) obtained in Synthesis Example 3, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 87 parts of polycarboxylic acid (B-2) obtained in Synthesis Example 5 as an epoxy resin curing agent, PRIPOL 1009 (multimer of unsaturated fatty acids) 10 parts of dimer acid, a product of Cloda Japan Co., Ltd.) and 1.2 parts of zinc 2-ethylhexanoate as a curing accelerator, mixed and degassed for 5 minutes to cure for optical semiconductor encapsulation A functional resin composition was obtained.
  • Comparative Example 2 50 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 50 parts of silicone skeleton epoxy resin (A-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 23 parts of a mixture of acid anhydride and polycarboxylic acid obtained in Synthesis Example 6 as an epoxy resin curing agent (B-3), curing acceleration 0.2 parts of 2-ethylhexanoic acid zinc was added as an agent, mixed and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
  • Comparative Example 3 50 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 50 parts of silicone skeleton epoxy resin (A-2) obtained in Synthesis Example 2, obtained in Synthesis Example 6 as an epoxy resin curing agent 26 parts of the resulting acid anhydride and polycarboxylic acid mixture (B-3) and 0.8 part of zinc 2-ethylhexanoate as a curing accelerator were added, mixed and degassed for 5 minutes to seal the optical semiconductor. A curable resin composition was obtained.
  • casting was performed so that the opening was a flat surface.
  • pre-curing at 120 ° C. for 1 hour, it was cured at 150 ° C. for 3 hours to seal the surface-mounted LED.
  • the heat cycle test shown below was performed, and the change in the appearance was observed.
  • the curable resin composition of the present invention has a glass transition temperature (Tg) measured by DMA method in the range of ⁇ 10 to 10 ° C. and a storage elastic modulus at 0 ° C. measured by DMA method in the range of 0 to 150 MPa.
  • Tg glass transition temperature
  • DMA method a storage elastic modulus at 0 ° C. measured by DMA method in the range of 0 to 150 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided is a curable resin composition having excellent heat cycle resistance, for sealing an optical semiconductor element. The present invention is characterized in that the glass transition temperature (Tg) of the cured material as measured by the DMA method ranges from −10 to 10°C, and the storage modulus at 0°C as measured by the DMA method ranges form 0 to 150 MPa; the present invention contains an epoxy resin (A) and an epoxy resin curing agent, and the epoxy resin (A) is preferably a silicone backbone epoxy resin.

Description

光半導体素子封止用硬化性樹脂組成物およびその硬化物Curable resin composition for optical semiconductor element sealing and cured product thereof
 本発明は光半導体素子封止用途に好適な硬化性樹脂組成物、及びその硬化物に関する。 The present invention relates to a curable resin composition suitable for optical semiconductor element sealing applications, and a cured product thereof.
 LED(Light Emitting Diode、発光ダイオード)等の光半導体素子封止用の樹脂として、機械強度、接着力に優れることからビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂等を用いた液状のエポキシ樹脂組成物が用いられていた(特許文献1を参照)。近年、LEDは自動車用ヘッドランプや照明用途など高い輝度が求められる分野で使用されるようになってきており、それに伴い、光半導体素子を封止する樹脂には、UV耐性、耐熱性が特に要求されるようになってきた。しかし、前述したような、ビスフェノール型エポキシ樹脂や脂環式エポキシ樹脂等では充分なUV耐性、耐熱性があるとはいい難く、高輝度が求められる分野では使用できない場合があった。そこで、高いUV耐性、耐熱性等を有する封止材として、不飽和炭化水素基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンを用いたシリコーン樹脂封止材が用いられている(特許文献2を参照)。しかしながら、このようなシリコーン樹脂を用いてなる封止材は、UV耐性、耐熱性が優れているものの、封止表面がべた付いてしまったり、ガス透過性が高かったりする問題をかかえていた。
 ガス透過性が高いという問題は、特に硫黄系のガスの透過によりLEDに用いられている銀メッキ表面が腐食され、硫化銀となることで黒化し、LEDの照度を減少させているという事象を引き起こすため、その対策が急がれている。これには硬化物の架橋密度を高めたり、分子内にフェニル基などの芳香族有機基を増加させたりして対策しているが、必然的に硬化物の低温時の弾性率が高くなるため、ヒートサイクル(熱サイクル)耐性が劣り、クラックや基材からの剥離といった悪影響が懸念されている。
Liquid epoxy resin composition using bisphenol-type epoxy resin, alicyclic epoxy resin, etc. as a resin for sealing optical semiconductor elements such as LED (Light Emitting Diode), because of its excellent mechanical strength and adhesive strength Has been used (see Patent Document 1). In recent years, LEDs have been used in fields that require high brightness, such as automotive headlamps and lighting applications. Accordingly, resins that encapsulate optical semiconductor elements are particularly resistant to UV and heat. It has come to be required. However, it is difficult to say that bisphenol-type epoxy resins and alicyclic epoxy resins have sufficient UV resistance and heat resistance as described above, and may not be used in fields where high luminance is required. Therefore, as a sealing material having high UV resistance, heat resistance, etc., a silicone resin sealing material using an unsaturated hydrocarbon group-containing organopolysiloxane and an organohydrogenpolysiloxane is used (see Patent Document 2). ). However, although a sealing material using such a silicone resin is excellent in UV resistance and heat resistance, it has a problem that the sealing surface becomes sticky or gas permeability is high.
The problem of high gas permeability is the phenomenon that the silver plating surface used in the LED is corroded due to the permeation of sulfur-based gas, resulting in blackening due to silver sulfide, and reducing the illuminance of the LED. Therefore, the countermeasure is urgent. This is done by increasing the crosslink density of the cured product or increasing the aromatic organic groups such as phenyl groups in the molecule, but inevitably increases the elastic modulus at low temperatures of the cured product. The heat cycle (thermal cycle) resistance is inferior, and there are concerns about adverse effects such as cracks and peeling from the substrate.
 これらの問題を解決すべく、エポキシ基とフェニル基を有するケイ素化合物の縮合物と液状酸無水物を用いて、耐硫化性に優れた封止材の検討がなされている(特許文献3を参照)。しかし、ヒートサイクル耐性、耐硫黄系ガス腐食性(耐硫化性)に満足できる封止材は未だ完成されていない。 In order to solve these problems, a sealing material excellent in sulfidation resistance has been studied using a condensate of a silicon compound having an epoxy group and a phenyl group and a liquid acid anhydride (see Patent Document 3). ). However, a sealing material satisfying heat cycle resistance and sulfur gas corrosion resistance (sulfur resistance) has not yet been completed.
日本国特開2003-277473号公報Japanese Unexamined Patent Publication No. 2003-277473 日本国特許第4636242号公報Japanese Patent No. 4636242 日本国特開2011-063799号公報Japanese Unexamined Patent Publication No. 2011-063799
 本発明は、ヒートサイクル耐性に極めて優れる光半導体素子封止用硬化性樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a curable resin composition for encapsulating an optical semiconductor element that is extremely excellent in heat cycle resistance.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、硬化物の、DMA法により測定したガラス転移温度(Tg)が-10~10℃の範囲であり、DMA法により測定した0℃での貯蔵弾性率が0~150MPaの範囲である硬化物を与える、特定の骨格を有するエポキシ樹脂を用いた硬化性樹脂組成物が上記課題を解決することを見出し、本発明を完成させるに至った。 As a result of intensive studies in view of the above-described actual situation, the present inventors have found that the cured product has a glass transition temperature (Tg) measured by the DMA method in the range of −10 to 10 ° C., and is 0 measured by the DMA method. In order to complete the present invention, it has been found that a curable resin composition using an epoxy resin having a specific skeleton that gives a cured product having a storage elastic modulus in the range of 0 to 150 MPa at 0 ° C. solves the above-mentioned problems. It came.
 すなわち本発明は、
(1)
 硬化物の、DMA法により測定したガラス転移温度(Tg)が-10~10℃の範囲であり、DMA法により測定した0℃での貯蔵弾性率が0~150MPaの範囲である光半導体素子封止用硬化性樹脂組成物、
(2)
 エポキシ樹脂(A)及びエポキシ樹脂硬化剤(B)を含有する、(1)に記載の光半導体素子封止用硬化性樹脂組成物、
(3)
 エポキシ樹脂(A)が、シリコーン骨格エポキシ樹脂である、(2)に記載の光半導体素子封止用硬化性樹脂組成物、
(4)
 シリコーン骨格エポキシ樹脂が、下記製造工程1、2を経て得られた、式(1)で表されるシラノール末端シリコーンオイルと式(2)で表されるエポキシ基含有ケイ素化合物の重合物であり、JIS K-7236に記載の方法で測定したエポキシ当量が300~1500g/eqである、(3)に記載の光半導体素子封止用硬化性樹脂組成物、
製造工程1
 シラノール末端シリコーンオイルのシラノール基と、エポキシ基含有ケイ素化合物のアルコキシ基を縮合させ、変性シリコーンオイルを得る工程。
製造工程2
 製造工程1の後に、水を加え、残存するアルコキシ基の加水分解縮合を行なう工程。
That is, the present invention
(1)
The optical semiconductor device encapsulated product has a glass transition temperature (Tg) measured by DMA method in the range of −10 to 10 ° C. and a storage elastic modulus at 0 ° C. measured in DMA range of 0 to 150 MPa. Curable resin composition for stopping,
(2)
The curable resin composition for optical semiconductor element sealing according to (1), comprising an epoxy resin (A) and an epoxy resin curing agent (B),
(3)
The curable resin composition for optical semiconductor element encapsulation according to (2), wherein the epoxy resin (A) is a silicone skeleton epoxy resin,
(4)
The silicone skeleton epoxy resin is a polymer of a silanol-terminated silicone oil represented by formula (1) and an epoxy group-containing silicon compound represented by formula (2) obtained through the following production steps 1 and 2, The curable resin composition for sealing an optical semiconductor element according to (3), wherein the epoxy equivalent measured by the method described in JIS K-7236 is 300 to 1500 g / eq,
Manufacturing process 1
A step of condensing a silanol group of a silanol-terminated silicone oil and an alkoxy group of an epoxy group-containing silicon compound to obtain a modified silicone oil.
Manufacturing process 2
A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)において、Rは炭素数1~6のアルキル基又は炭素数5~10のアリール基を、mは平均値で3~200をそれぞれ表す。式中、複数存在するRは互いに同一であっても異なっていても良い) (In Formula (1), R 1 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 5 to 10 carbon atoms, and m represents an average value of 3 to 200. In the formula, a plurality of R 1 are present. They may be the same or different)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)において、Xはエポキシ基を含有する有機基を、Rは炭素数1~10の直鎖状、分岐状または環状のアルキル基を、Rは炭素数1~10の直鎖状、分岐状または環状のアルキル基を、pは整数で0~2を、rは整数で(3-p)をそれぞれ表す。)
(5)
 エポキシ樹脂硬化剤(B)が、カルボン酸無水物及び/又はカルボン酸無水物をアルコール性水酸基で変性して得られるカルボン酸樹脂である、(2)に記載の光半導体素子封止用硬化性樹脂組成物、
(6)
 さらに、硬化促進剤として、カルボン酸亜鉛を含むことを特徴とする(4)又は(5)に記載の光半導体素子封止用硬化性樹脂組成物、
(7)
 カルボン酸亜鉛が、2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛から選ばれる一種以上である、(6)に記載の光半導体素子封止用硬化性樹脂組成物、
(8)
 (1)~(7)のいずれか一項に記載の光半導体素子封止用硬化性樹脂組成物を硬化してなる硬化物、
(9)
 (8)に記載の硬化物を具備するLED、
に関する。
(In the formula (2), X represents an organic group containing an epoxy group, R 2 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and R 3 represents a straight chain having 1 to 10 carbon atoms. A chain, branched or cyclic alkyl group, p is an integer from 0 to 2, and r is an integer and represents (3-p).)
(5)
Curing property for optical semiconductor elements according to (2), wherein the epoxy resin curing agent (B) is a carboxylic acid resin obtained by modifying a carboxylic acid anhydride and / or a carboxylic acid anhydride with an alcoholic hydroxyl group. Resin composition,
(6)
Furthermore, as a curing accelerator, zinc carboxylate is contained, (4) or (5) curable resin composition for optical semiconductor element sealing according to (5),
(7)
The curable resin composition for sealing an optical semiconductor element according to (6), wherein the zinc carboxylate is one or more selected from zinc 2-ethylhexanoate, zinc stearate, zinc behenate, and zinc myristylate,
(8)
(1) to a cured product obtained by curing the curable resin composition for sealing an optical semiconductor element according to any one of (7),
(9)
LED comprising the cured product according to (8),
About.
 本発明によれば、本発明の硬化性樹脂組成物を硬化した硬化物の、DMA法により測定したガラス転移温度(Tg)が-10~10℃の範囲であり、DMA法により測定した0℃での貯蔵弾性率が0~150MPaの範囲である硬化物を与える、特定の骨格を有するエポキシ樹脂を用いた硬化性樹脂組成物は、ヒートサイクル耐性に極めて優れるため光半導体素子(LED)封止材としてきわめて有用である。 According to the present invention, the cured product obtained by curing the curable resin composition of the present invention has a glass transition temperature (Tg) measured by DMA method in the range of −10 to 10 ° C., and 0 ° C. measured by DMA method. A curable resin composition using an epoxy resin having a specific skeleton, which gives a cured product having a storage elastic modulus in the range of 0 to 150 MPa, is extremely excellent in heat cycle resistance, so that it is encapsulated in an optical semiconductor device (LED) It is extremely useful as a material.
 本発明の光半導体素子封止材用硬化性樹脂組成物は、硬化物の、DMA法により測定したガラス転移温度(Tg)が-10~10℃の範囲であり、DMA法により測定した0℃での貯蔵弾性率(E’)が0~150MPaの範囲であり、特にガラス転移点が-5~8℃、貯蔵弾性率が0~100MPaであることが好ましい。 The curable resin composition for an optical semiconductor element sealing material of the present invention has a glass transition temperature (Tg) measured by the DMA method in the range of −10 to 10 ° C., and 0 ° C. measured by the DMA method. Is preferably in the range of 0 to 150 MPa, particularly a glass transition point of −5 to 8 ° C. and a storage modulus of 0 to 100 MPa.
 本発明におけるDMA(Dynamic Mechanical Analysis)法とは、下記のように作成した試験片を用いて、JIS K7244、JIS K7244-4に記載の動的粘弾性測定(引張振動)を、下記条件で測定する方法である。
<DMA試験片作成方法>
 光半導体素子封止材を真空脱泡5分間実施後、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型する。その注型物を、所定の条件(具体的には、120℃で1時間硬化させた後に150℃で3時間硬化させる条件)で硬化させ、厚さ0.8mmの硬化物を得る。得られた硬化物を幅5mm長さ25mmに成形し、DMA試験片を得る。
<DMA測定条件>
測定温度;-50℃~150℃
昇温速度;2℃/min
周波数;10Hz
測定モード;引張振動
The DMA (Dynamic Mechanical Analysis) method in the present invention is a measurement of dynamic viscoelasticity (tensile vibration) described in JIS K7244 and JIS K7244-4 using the test piece prepared as follows. It is a method to do.
<Method for making DMA test piece>
After carrying out the vacuum defoaming for 5 minutes, the optical semiconductor element sealing material is gently cast on a glass substrate on which a dam is created with a heat-resistant tape so as to be 30 mm × 20 mm × height 0.8 mm. The casting is cured under predetermined conditions (specifically, conditions of curing at 120 ° C. for 1 hour and then curing at 150 ° C. for 3 hours) to obtain a cured product having a thickness of 0.8 mm. The obtained cured product is molded into a width of 5 mm and a length of 25 mm to obtain a DMA test piece.
<DMA measurement conditions>
Measurement temperature: -50 ° C to 150 ° C
Temperature increase rate: 2 ° C / min
Frequency: 10Hz
Measurement mode: Tensile vibration
 本発明においてガラス転移温度(Tg)は、前記DMA法において測定した貯蔵弾性率(E´)と損失弾性率(E´´)の商で表される損失係数(tanδ=E´´/E´)の極大点を示す際の温度を示す。
 本発明の光半導体封止材用硬化性樹脂組成物の硬化物は、DMA法により測定したガラス転移温度(Tg)が-10~10℃であり、特に-5~8℃が好ましい。-10℃を下回ると耐硫化性に劣る恐れがあり、10℃を上回るとヒートサイクル耐性に劣る恐れがある。
 本発明の光半導体素子封止材用硬化性樹脂組成物の硬化物は、DMA法により測定した0℃での貯蔵弾性率が0~150MPaであり、0~100MPaが特に好ましい。150MPaを上回るとヒートサイクル試験時にクラックが入る恐れがある。
In the present invention, the glass transition temperature (Tg) is a loss coefficient (tan δ = E ″ / E ′) represented by a quotient of storage elastic modulus (E ′) and loss elastic modulus (E ″) measured by the DMA method. ) Is the temperature at which the maximum point is shown.
The cured product of the curable resin composition for optical semiconductor encapsulating material of the present invention has a glass transition temperature (Tg) measured by DMA method of −10 to 10 ° C., particularly preferably −5 to 8 ° C. If it is lower than −10 ° C., it may be inferior in sulfidation resistance, and if it is higher than 10 ° C., it may be inferior in heat cycle resistance.
The cured product of the curable resin composition for an optical semiconductor element sealing material of the present invention has a storage elastic modulus at 0 ° C. measured by the DMA method of 0 to 150 MPa, particularly preferably 0 to 100 MPa. If it exceeds 150 MPa, cracks may occur during the heat cycle test.
 前記ヒートサイクル試験(冷熱衝撃試験、ヒートショック試験とも呼ばれる)とは、-50~-30℃程度の低温領域と、80~120℃程度の高温領域に、各領域5~30分程度、試験片を繰り返し曝す試験であり、光半導体封止材の信頼性確認試験として広く用いられている。 The heat cycle test (also referred to as a thermal shock test or a heat shock test) is a test piece in a low temperature region of about −50 to −30 ° C. and a high temperature region of about 80 to 120 ° C. for about 5 to 30 minutes in each region. Is repeatedly used, and is widely used as a reliability confirmation test for optical semiconductor encapsulants.
 ここからは、本発明の硬化性樹脂組成物について説明する。
 本発明の硬化性樹脂組成物は、光半導体素子封止用の硬化性樹脂組成物であり、その硬化物が、DMA法により測定したガラス転移温度(Tg)が-10~10℃であり、DMA法により測定した0℃での貯蔵弾性率が0~150MPaであるものを示す。
 硬化性樹脂組成物としては、例えばシリコーン樹脂組成物、エポキシ樹脂組成物等が挙げられる。
 本発明の硬化性樹脂組成物中に、エポキシ樹脂(A)を含有する硬化性樹脂組成物(エポキシ樹脂組成物)であることが耐硫化性の観点から好ましい。
From here, the curable resin composition of this invention is demonstrated.
The curable resin composition of the present invention is a curable resin composition for sealing an optical semiconductor element, and the cured product has a glass transition temperature (Tg) measured by DMA method of −10 to 10 ° C., The storage elastic modulus at 0 ° C. measured by the DMA method is 0 to 150 MPa.
Examples of the curable resin composition include a silicone resin composition and an epoxy resin composition.
The curable resin composition of the present invention is preferably a curable resin composition (epoxy resin composition) containing an epoxy resin (A) from the viewpoint of resistance to sulfide.
 ここからは本発明のエポキシ樹脂(A)について説明する。
 エポキシ樹脂(A)は、同一分子内にエポキシ基を二つ以上有している化合物であり、例えばシリコーン骨格エポキシ樹脂、フェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられ、その耐熱性、耐光性からシリコーン骨格エポキシ樹脂が好ましい。
From here, the epoxy resin (A) of this invention is demonstrated.
The epoxy resin (A) is a compound having two or more epoxy groups in the same molecule, such as a silicone skeleton epoxy resin, an epoxy resin that is a glycidyl etherified product of a phenol compound, and a glycidyl etherified product of various novolac resins. Certain epoxy resins, cycloaliphatic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, polymerization with epoxy groups A copolymer of a polymerizable unsaturated compound and another polymerizable unsaturated compound, and the like, and a silicone skeleton epoxy resin is preferable because of its heat resistance and light resistance.
 前記シリコーン骨格エポキシ樹脂は、シリコーン結合(Si-O結合)を主骨格としたエポキシ基を有する樹脂であり、例えばエポキシ基含有ケイ素化合物とそれ以外のケイ素化合物を重合することで得ることができ、エポキシ基をもつアルコキシシラン化合物とメチル基やフェニル基を持つアルコキシシランとの加水分解縮合重合物や、エポキシ基をもつアルコキシシラン化合物とシラノール末端シリコーンオイルとの縮合重合物などが挙げられる。またヒドロシリル基(SiH基)を有するシリコーン樹脂とビニル基などの不飽和炭化水素基を有するエポキシ化合物との付加重合物なども例示できる。 The silicone skeleton epoxy resin is a resin having an epoxy group having a silicone bond (Si—O bond) as a main skeleton, and can be obtained, for example, by polymerizing an epoxy group-containing silicon compound and other silicon compounds. Examples thereof include a hydrolytic condensation polymer of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, and a condensation polymer of an alkoxysilane compound having an epoxy group and a silanol-terminated silicone oil. Moreover, an addition polymerization product of a silicone resin having a hydrosilyl group (SiH group) and an epoxy compound having an unsaturated hydrocarbon group such as a vinyl group can be exemplified.
 本発明におけるエポキシ樹脂(A)は、シリコーン骨格エポキシ樹脂の中でも、シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))を原料として、後記する2段階の製造工程を経て得られるシリコーン骨格エポキシ樹脂が最も好ましい。 The epoxy resin (A) in the present invention is made from a silanol-terminated silicone oil (a) and an epoxy group-containing silicon compound (b) (and, if necessary, an alkoxysilicon compound (c)) among the silicone skeleton epoxy resins. A silicone skeleton epoxy resin obtained through a two-stage production process described later is most preferable.
 ここからシラノール末端シリコーンオイル(a)、エポキシ基含有ケイ素化合物(b)、アルコキシケイ素化合物(c)について説明する。
 まず、シラノール末端シリコーンオイル(a)について説明する。
 本発明におけるシラノール末端シリコーンオイル(a)は、例えば、下記式(1)で表される、シラノール基を両末端に有するシリコーン樹脂が挙げられる。
From here, the silanol-terminated silicone oil (a), the epoxy group-containing silicon compound (b), and the alkoxysilicon compound (c) will be described.
First, the silanol-terminated silicone oil (a) will be described.
Examples of the silanol-terminated silicone oil (a) in the present invention include a silicone resin represented by the following formula (1) and having silanol groups at both ends.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)においてRはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基等の炭素数1~6のアルキル基又はフェニル基、ベンジル基、ナフチル基等の炭素数5~10のアリール基を示す。複数存在するRは同一であっても異なっていても構わないが、他の樹脂との相溶性、高屈折率、耐硫化性向上の観点から、フェニル基を含有することが好ましい。
 硬化物のガラス転移温度、0℃の貯蔵弾性率を減少させる観点からは、メチル基を含有することが好ましい。
In the formula (1), R 1 represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group or a hexyl group, or a carbon number of 5 to 5 such as a phenyl group, a benzyl group or a naphthyl group. 10 aryl groups are shown. A plurality of R 1 may be the same or different, but preferably contain a phenyl group from the viewpoint of compatibility with other resins, high refractive index, and improvement in sulfur resistance.
From the viewpoint of reducing the glass transition temperature of the cured product and the storage elastic modulus at 0 ° C., it preferably contains a methyl group.
 含有するフェニル基の割合は、置換メチル基1モルに対し、0.05~2.0モルが好ましく、より好ましくは0.1~1.0モル、さらに好ましくは0.15~0.3モル、特に好ましくは0.15~0.2モルである。0.05モルを下回ると組成物中の他の原料との相溶性が低下したり、硬化物の屈折率が低くなったり、LEDの光取り出し効率が低下したり、耐硫化性が低下することがあり、2.0モルを上回ると、硬化物の耐光性(耐UV性)が低下したり、DMA法における0℃の貯蔵弾性率が上昇しすぎたり、ヒートサイクル耐性が低下することがある。 The proportion of the phenyl group contained is preferably 0.05 to 2.0 mol, more preferably 0.1 to 1.0 mol, and still more preferably 0.15 to 0.3 mol, per 1 mol of the substituted methyl group. Particularly preferred is 0.15 to 0.2 mol. If the amount is less than 0.05 mol, the compatibility with other raw materials in the composition may decrease, the refractive index of the cured product may decrease, the light extraction efficiency of the LED may decrease, and the sulfidation resistance may decrease. When the amount exceeds 2.0 mol, the light resistance (UV resistance) of the cured product may decrease, the storage elastic modulus at 0 ° C. in the DMA method may increase excessively, or the heat cycle resistance may decrease. .
 式(1)において、mは平均値で3~200を示し、好ましくは3~100、より好ましくは3~50である。mが3を下回ると硬化物が硬くなりすぎ、DMA法における0℃の貯蔵弾性率が上昇することがある。mが200を上回ると硬化物の機械強度が低下する傾向にある。 In the formula (1), m represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50. When m is less than 3, the cured product becomes too hard, and the storage elastic modulus at 0 ° C. in the DMA method may increase. When m exceeds 200, the mechanical strength of the cured product tends to decrease.
 シラノール末端シリコーンオイル(a)の重量平均分子量(Mw)は400~3000(GPC)の範囲のものが好ましい。重量平均分子量が400を下回る場合、シリコーン部分の特性が出にくく耐熱性、耐光性が低下する懸念があり、3000を超えると激しい層分離構造を持つ事で、光半導体素子封止に使用するには透過性が低くなることがある。
 本発明においてシラノール末端シリコーンオイル(a)の分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。
The weight average molecular weight (Mw) of the silanol-terminated silicone oil (a) is preferably in the range of 400 to 3000 (GPC). If the weight average molecular weight is less than 400, the silicone part is less likely to exhibit the characteristics of heat resistance and light resistance, and if it exceeds 3000, it has a severe layer separation structure, so that it can be used for optical semiconductor element sealing. May be less permeable.
In the present invention, the molecular weight of the silanol-terminated silicone oil (a) is a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography). means.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 シラノール末端シリコーンオイル(a)は、例えば、ジメチルジアルコキシシラン、メチルフェニルジクロルシラン、ジフェニルアルコキシシラン、ジメチルジクロルシラン、メチルフェニルジクロルシラン、ジフェニルジクロルシランを加水分解、縮合することによって製造できる。 Silanol-terminated silicone oil (a) is produced, for example, by hydrolyzing and condensing dimethyl dialkoxysilane, methylphenyldichlorosilane, diphenylalkoxysilane, dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane. it can.
 シラノール末端シリコーンオイル(a)として好ましい具体例としては、以下の製品名を挙げることができる。例えば、東レダウコーニング社製としては、PRX413、BY16-873、信越化学工業社製としては、X-21-5841、KF-9701、モメンティブ社製としては、XC96-723、TSR160、YR3370、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897,YF3804、XF3905、Gelest社製としては、DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S42、DMS-S45、DMS-S51、PDS-0332、PDS-1615、PDS-9931などが挙げられる。上記の中でも、分子量、動粘度の観点からPRX413、BY16-873、X-21-5841、KF-9701、XC96-723,YF3800、YF3804、DMS-S12、DMS-S14、DMS-S15、DMS-S21、PDS-1615が好ましい。これらの中でもシリコーンセグメントの柔軟性の特徴を持たせるため、分子量が大きい観点から、X-21-5841、XC96-723、YF3800、YF3804、DMS-S14、PDS-1615が特に好ましい。これらシラノール末端シリコーンオイル(a)は、単独で用いてもよく、2種以上を併用して用いてもよい。 Specific examples of preferable silanol-terminated silicone oil (a) include the following product names. For example, PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd., X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive Co., Ltd. XF3905, YF3057, YF3807, YF3802, YF3897, YF3804, XF3905, manufactured by Gelest, DMS-S12, DMS-S14, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS- S33, DMS-S35, DMS-S42, DMS-S45, DMS-S51, PDS-0332, PDS-1615, PDS-9931 and the like. Among these, from the viewpoint of molecular weight and kinematic viscosity, PRX413, BY16-873, X-21-5841, KF-9701, XC96-723, YF3800, YF3804, DMS-S12, DMS-S14, DMS-S15, DMS-S21 PDS-1615 is preferred. Among these, X-21-5841, XC96-723, YF3800, YF3804, DMS-S14, and PDS-1615 are particularly preferable from the viewpoint of a large molecular weight in order to give the silicone segment flexibility characteristics. These silanol-terminated silicone oils (a) may be used alone or in combination of two or more.
 次に、エポキシ基含有ケイ素化合物(b)について説明する。
 本発明におけるエポキシ基含有ケイ素化合物(b)は式(2)で表されるアルコキシケイ素化合物である。
Next, the epoxy group-containing silicon compound (b) will be described.
The epoxy group-containing silicon compound (b) in the present invention is an alkoxy silicon compound represented by the formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Xはエポキシ基を有する有機基であれば特に制限はない。
 例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等のグリシドオキシ基で置換された炭素数1~4のアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、4-(3,4-エポキシシクロヘキシル)ブチル基、5-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数1~5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1~3のアルキル基、エポキシ基を有する炭素数5~8のシクロアルキル基で置換された炭素数1~3のアルキル基として、例えば、β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基が好ましく、特に着色を抑えることができることからβ-(3,4-エポキシシクロヘキシル)エチル基が好ましい。
In formula (2), X is not particularly limited as long as X is an organic group having an epoxy group.
For example, an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as β-glycidoxyethyl, γ-glycidoxypropyl, γ-glycidoxybutyl, glycidyl group, β- (3,4-epoxy Cyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycycloheptyl) ethyl group, 4- (3,4-epoxycyclohexyl) butyl group, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group. Among these, as an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group and an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group, for example, β -Glycidoxyethyl group, γ-glycidoxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group are preferable, and since β- (3,4-epoxycyclohexyl) ethyl group can be particularly suppressed in coloration Is preferred.
 式(2)中のRとしては、炭素数1~10の直鎖状、分岐状または環状のアルキル基を示し、好ましくは、メチル基等の炭素数1~3のアルキル基、シクロヘキシル基等の脂環式構造を有する炭素数5~8のアルキル基、フェニル基等の芳香環構造を有する炭素数5~8のアルキル基を示す。 R 2 in the formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms such as a methyl group, a cyclohexyl group, etc. And an alkyl group having 5 to 8 carbon atoms having an alicyclic structure and an alkyl group having 5 to 8 carbon atoms having an aromatic ring structure such as a phenyl group.
 式(2)中のRとしては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらRは、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基が好ましく、特にメチル基が好ましい。 R 3 in the formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, etc. Can be mentioned. R 3 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.
 式(2)中のpは整数で0、1、2を表し、rは(3-p)をそれぞれ表す。シリコーン骨格エポキシ樹脂の粘度、硬化物の機械強度の観点からpは0又は1が好ましい。 In the formula (2), p is an integer representing 0, 1, 2 and r represents (3-p). From the viewpoint of the viscosity of the silicone skeleton epoxy resin and the mechanical strength of the cured product, p is preferably 0 or 1.
 エポキシ基含有ケイ素化合物(b)として好ましい具体例としては、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルシクロヘキシルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルフェニルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルシクロヘキシルジメトキシシラン等が挙げられ、特に2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。これらエポキシ基含有ケイ素化合物(b)は、単独又は2種以上で用いてもよく、以下に示すアルコキケイ素化合物(c)と併用することもできる。 Specific preferred examples of the epoxy group-containing silicon compound (b) include β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycidoxy. Propyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylphenyldimethoxysilane, γ-glycidoxypropylcyclohexyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylphenyldimethoxysilane, 2- (3 4- Po carboxymethyl) ethyl cyclohexyl dimethoxysilane, and the like, especially 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane are preferable. These epoxy group-containing silicon compounds (b) may be used alone or in combination of two or more, and may be used in combination with the alkoxysilicon compound (c) shown below.
 本発明のシリコーン骨格エポキシ樹脂において、エポキシ基含有ケイ素化合物(b)と共に、下記式(3)で表わされるアルコキシケイ素化合物(c)を併用することができる。アルコキシケイ素化合物(c)を併用することで、シリコーン骨格エポキシ樹脂の、粘度、屈折率、硬化物のDMA法におけるTg、貯蔵弾性率を調整することができる。 In the silicone skeleton epoxy resin of the present invention, an alkoxysilicon compound (c) represented by the following formula (3) can be used in combination with the epoxy group-containing silicon compound (b). By using the alkoxysilicon compound (c) in combination, the viscosity, refractive index, Tg in the DMA method of the cured product, and storage elastic modulus of the silicone skeleton epoxy resin can be adjusted.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(3)中の、R、R、p、rは前記したものと同じ内容を示す。 R 2 , R 3 , p and r in the formula (3) have the same contents as described above.
 併用できるアルコキシケイ素化合物(c)として好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、シクロヘキシルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジジエトキシシラン等が挙げられる。上記の中でもメチルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシランが好ましい。 Preferred examples of the alkoxysilicon compound (c) that can be used in combination include methyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diphenyl. Examples include dimethoxysilane and diphenyldidiethoxysilane. Among these, methyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diphenyldimethoxysilane are preferable.
 本発明において、使用するシラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))のうち、少なくともいずれか1種には芳香族骨格を有する化合物を使用することが屈折率の上昇、耐硫化性の低減の観点から好ましく、特にフェニル基を有する化合物を使用することが好ましい。特に、シラノール末端シリコーンオイル(a)がフェニル基を有することが好ましい。これは、フェニル基が導入されたシラノール末端シリコーンオイル(a)を用いるとことで、シリコーン骨格エポキシ樹脂の過度な粘度上昇を抑えることができる一方、フェニル基のついたエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))を用いると、粘度上昇が大きくなって、作業性が劣る場合があるからである。 In the present invention, at least one of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and optionally the alkoxysilicon compound (c)) to be used has an aromatic skeleton. It is preferable to use a compound having a phenyl group from the viewpoint of an increase in refractive index and a reduction in sulfur resistance, and a compound having a phenyl group is particularly preferable. In particular, the silanol-terminated silicone oil (a) preferably has a phenyl group. This is because the silanol-terminated silicone oil (a) introduced with a phenyl group can suppress an excessive increase in viscosity of the silicone skeleton epoxy resin, while an epoxy group-containing silicon compound with a phenyl group (b) ) (And if necessary, the alkoxysilicon compound (c)), the increase in viscosity becomes large and workability may be inferior.
 シリコーン骨格エポキシ樹脂の製造において、シラノール末端シリコーンオイル(a)のシラノール基1当量に対して、エポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))のアルコキシ基を1.5当量より小さい量で反応させるとエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))中の2つ以上のアルコキシ基が末端にシラノール末端シリコーンオイル(a)のシラノール基と反応することになり、製造工程1終了時に高分子になりすぎてゲル化がおきてしまうことがある。このため、シラノール基1当量に対して、アルコキシ基を1.5当量以上で反応させることが好ましい。反応制御の観点からは2.0当量以上が好ましい。 In the production of the silicone skeleton epoxy resin, the alkoxy group-containing silicon compound (b) (and, if necessary, the alkoxy group of the alkoxysilicon compound (c)) is added to 1 equivalent of the silanol group of the silanol-terminated silicone oil (a). When reacted in an amount less than 1.5 equivalents, two or more alkoxy groups in the epoxy group-containing silicon compound (b) (and optionally the alkoxysilicon compound (c)) are terminated with silanol-terminated silicone oil (a ) And the silanol group, the polymer becomes too high at the end of the production step 1 and gelation may occur. For this reason, it is preferable to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or more are preferable.
 次に、製造工程1、2について説明する。
(製造工程1)
 シラノール末端シリコーンオイル(a)のシラノール基と、エポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))のアルコキシ基を縮合させ、変性シリコーンオイル(d)を得る工程。
(製造工程2)
 製造工程1の後に、水を加え、残存するアルコキシ基の加水分解縮合を行なう工程。
 上記製造工程1,2を経て、シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の重合を行なう。
Next, manufacturing steps 1 and 2 will be described.
(Manufacturing process 1)
A step of obtaining a modified silicone oil (d) by condensing a silanol group of a silanol-terminated silicone oil (a) and an alkoxy group of an epoxy group-containing silicon compound (b) (and, if necessary, an alkoxysilicon compound (c)). .
(Manufacturing process 2)
A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
Through the production steps 1 and 2, the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and the alkoxysilicon compound (c) as necessary) are polymerized.
 製造工程を二段階に分けることで、シラノール末端シリコーンオイル(a)のシラノール基と、エポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))のアルコキシ基とを確実に反応させて変性シリコーンオイル(d)を得た後に、残存するアルコキシ基の脱アルコール加水分解縮合を行ない、均一な安定した製品を得ることができる。 By dividing the production process into two stages, the silanol group of the silanol-terminated silicone oil (a) and the alkoxy group of the epoxy group-containing silicon compound (b) (and the alkoxy silicon compound (c) if necessary) are surely obtained. After the modified silicone oil (d) is obtained by reacting with the above, it is possible to obtain a uniform and stable product by subjecting the remaining alkoxy groups to dealcoholic hydrolysis and condensation.
 製造工程を一段階として、製造の始めから水を加えると、シラノール基とアルコキシ基との縮合反応と、アルコキシシラン同士の重合反応が競争反応となり、お互いの反応速度の差、生成物の相溶性の差により、不均一な化合物が得られたり、エポキシ基を有さないシラノール末端シリコーンオイル(a)が大量に残存することにより製品に悪影響を及ぼしたりする。 When water is added from the beginning of the manufacturing process in one step, the condensation reaction between the silanol group and the alkoxy group and the polymerization reaction between the alkoxysilanes become a competitive reaction, resulting in a difference in the reaction rate between the products and the compatibility of the products. Due to the difference, a heterogeneous compound can be obtained, or a large amount of silanol-terminated silicone oil (a) having no epoxy group can be adversely affected.
 製造工程1においては溶剤存在下で反応させることが好ましく、溶剤の中でも反応制御の観点からアルコールが特に好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては1級アルコール、2級アルコールが好ましく、特に1級アルコール、もしくは1級アルコールと2級アルコールを混合して用いることが好ましい。1級アルコールの例としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、プロピレングリコール等が挙げられ、また、2級アルコールの例としては、イソプロパノール、シクロヘキサノール、プロピレングリコール等が挙げられる。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わず、混合する場合、1級アルコール、2級アルコールから選択される二種以上であることが好ましく、少なくとも1成分に1級アルコールが含有されることが、後述する触媒の溶解性に優れることから好ましい。好ましい1級アルコールの量は全アルコール量の5重量%以上、より好ましくは10重量%以上である。
 本反応に2級アルコールを併用することで製造工程1の反応系の単位時間あたりの重量平均分子量の変化量が、1級アルコールのみを用いた場合よりも小さくなるため、反応の制御がより容易である。一般的に工業生産など大スケールの反応の際には、反応時間、反応温度の厳密な制御が困難になるため、2級アルコールの併用は反応制御の観点から特に工業生産など大スケール反応の際に有用である。
 製造工程1においてアルコールの使用量は、シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の総重量に対し、2重量%以上含有することが好ましい。より好ましくは2~100重量%、さらに好ましくは3~50重量%、特に好ましくは4~40重量%である。
 100重量%を越えると反応の進みが極度に遅くなり、2重量%未満の場合、目的とする反応以外の反応が進行し、高分子量化が進み、ゲル化、粘度の上昇、硬化物として使用が困難となるほどの弾性率の増加、といった問題が生じることがある。
 本反応においては必要に応じて他の溶剤を併用しても構わない。
 併用できる溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
In the production process 1, the reaction is preferably performed in the presence of a solvent, and alcohol is particularly preferable among the solvents from the viewpoint of reaction control. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols. Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like. Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc. In view of the problem of removal performance later, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. When they are mixed, they are preferably two or more selected from primary alcohols and secondary alcohols, and at least one component contains primary alcohols. It is preferable because the solubility of the catalyst described later is excellent. The amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
By using a secondary alcohol in combination with this reaction, the amount of change in the weight average molecular weight per unit time in the reaction system of production process 1 is smaller than when only the primary alcohol is used, so the reaction is more easily controlled. It is. In general, in the case of large-scale reactions such as industrial production, it becomes difficult to strictly control the reaction time and reaction temperature, so the combined use of secondary alcohols is particularly important for large-scale reactions such as industrial production from the viewpoint of reaction control. Useful for.
In the production process 1, the amount of alcohol used is 2% by weight or more based on the total weight of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and, if necessary, the alkoxysilicon compound (c)). It is preferable to contain. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight.
When the amount exceeds 100% by weight, the progress of the reaction becomes extremely slow. When the amount is less than 2% by weight, the reaction other than the target reaction proceeds, the molecular weight increases, gelation, increase in viscosity, and use as a cured product. In some cases, the problem of an increase in the elastic modulus that makes it difficult to achieve the problem occurs.
In this reaction, other solvents may be used in combination as necessary.
Examples of solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene, and xylene. Can be illustrated.
 製造工程1における反応は無触媒でも行なえるが、無触媒だと反応進行が遅いので、反応時間短縮の観点から触媒存在下で行なうことが好ましい。用い得る触媒としては、酸性または塩基性を示す化合物であれば使用する事ができる。酸性触媒の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性触媒の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。
 これらの中でも、特に塩基性触媒が好ましく、生成物からの触媒除去が容易である点で無機塩基が好ましい。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属塩、あるいはアルカリ土類金属塩、特に水酸化物が好ましい。
 触媒の添加量は、シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の総重量に対し、通常0.001~5重量%、好ましくは0.01~2重量%である。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、目的とする反応以外のゾル-ゲル反応が競争的に進行してしまい、エポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))のアルコキシ基の重縮合を一方的に進行させ、それにより生成した反応物と、シラノール末端シリコーンオイル(a)とが相溶せず白濁する可能性があるので注意が必要である。
 この際の水分の許容範囲はシラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の総重量に対し、好ましくは0.5重量%以下、より好ましくは0.3重量%以下であり、水分が可能な限り無いほうがより好ましい。
Although the reaction in the production process 1 can be carried out without a catalyst, the reaction proceeds slowly with no catalyst, so that it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time. As the catalyst that can be used, any compound that exhibits acidity or basicity can be used. Examples of the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Examples of basic catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal hydroxides such as cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc. Inorganic bases such as alkali metal carbonates and organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
Among these, a basic catalyst is particularly preferable, and an inorganic base is preferable in terms of easy catalyst removal from the product. Specifically, alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, particularly hydroxides are preferable.
The amount of the catalyst added is usually 0.001 to 5% by weight based on the total weight of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and the alkoxysilicon compound (c) if necessary). Preferably, it is 0.01 to 2% by weight.
As a method for adding the catalyst, it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol. In this case, addition as an aqueous solution using water or the like causes a sol-gel reaction other than the target reaction to proceed competitively, and the epoxy group-containing silicon compound (b) (and, if necessary, Since the polycondensation of the alkoxy group of the alkoxysilicon compound (c)) proceeds unilaterally, the reaction product produced thereby may not be compatible with the silanol-terminated silicone oil (a) and may become cloudy. is necessary.
In this case, the allowable range of moisture is preferably 0.5% by weight based on the total weight of the silanol-terminated silicone oil (a) and the epoxy group-containing silicon compound (b) (and, if necessary, the alkoxysilicon compound (c)). % Or less, more preferably 0.3% by weight or less, and it is more preferable that there is as little water as possible.
 製造工程1の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。 The reaction temperature in the production step 1 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used. The reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
 このようにして製造工程1で得られる変性シリコーンオイル(d)は下記式(4)で示されるような構造を主たる成分として有していると考えられる(構造の確認が困難であり正確には同定することができない。)。 Thus, it is thought that the modified silicone oil (d) obtained by the manufacturing process 1 has a structure as shown in the following formula (4) as a main component (it is difficult to confirm the structure and accurately Cannot be identified.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)中、R、mは前記と同様の意味を示す。Rは前記したXおよび/またはRを、RはRおよび/または-ORをそれぞれ示す。 In the formula (4), R 1 and m have the same meaning as described above. R 4 represents X and / or R 2 described above, and R 5 represents R 2 and / or —OR 3 .
 次に、製造工程2について詳細に記載する。
 製造工程1の反応終了後、水を添加し、得られた変性シリコーンオイル(d)に残存するアルコキシ基同士の重合(ゾルーゲル反応)を行なう。この際、必要に応じて前述のエポキシ基を含有するケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))、触媒を前述の量の範囲内で添加しても構わない。この反応は、(1)変性シリコーンオイル(d)同士、および/または、(2)エポキシ基を含有するケイ素化合物(b)(および、使用する場合にはアルコキシケイ素化合物(c))との間、および/または、(3)エポキシ基を含有するケイ素化合物(b)(および、使用する場合にはアルコキシケイ素化合物(c))、および、(4)エポキシ基を含有するケイ素化合物(b)(および、使用する場合にはアルコキシケイ素化合物(c))の部分重合物と変性シリコーンオイル(d)との間で重合反応を行う工程である。上記(1)~(4)の重合反応は、同時に平行して進行していると考えられる。
 特に製造工程2においても先と同様、触媒としては塩基性無機触媒が好ましいことは代わりがなく、製造工程1の段階で必要な量を先に添加しておいても構わない。ただし、製造工程1で好ましい態様として記載した範囲を越えることは好ましくない。
Next, the manufacturing process 2 will be described in detail.
After completion of the reaction in the production step 1, water is added, and the alkoxy groups remaining in the resulting modified silicone oil (d) are polymerized (sol-gel reaction). At this time, the silicon compound (b) containing the above-described epoxy group (and the alkoxysilicon compound (c) if necessary) and the catalyst may be added within the above-mentioned amount as necessary. This reaction is performed between (1) the modified silicone oils (d) and / or (2) the silicon compound (b) containing an epoxy group (and the alkoxysilicon compound (c) if used). And / or (3) a silicon compound (b) containing an epoxy group (and an alkoxy silicon compound (c), if used), and (4) a silicon compound (b) containing an epoxy group ( And when using, it is the process of performing a polymerization reaction between the partial polymer of an alkoxy silicon compound (c)) and modified silicone oil (d). The polymerization reactions (1) to (4) are considered to proceed simultaneously in parallel.
In particular, in the production process 2, as described above, a basic inorganic catalyst is preferable as the catalyst, and a necessary amount may be added in the production process 1 in advance. However, it is not preferable to exceed the range described as a preferred embodiment in the production process 1.
 製造工程2においては溶剤を添加することが好ましい。
 製造工程2において溶剤として、製造工程1と同様にアルコールを用いることが好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては特に1級アルコール、2級アルコールが好ましく、特に1級アルコールが好ましい。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わない。これらアルコールの存在が分子量制御、およびその安定性に寄与する。
 アルコールの添加量としては製造工程1において仕込んだシラノール末端シリコーンオイル(a)とエポキシ基を含有するケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の総重量に対し、通常20~200重量%、好ましくは20~150重量%、特に好ましくは30~120重量%である。
In the production process 2, it is preferable to add a solvent.
As in the production process 1, alcohol is preferably used as the solvent in the production process 2. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred. In view of the problem of removal performance later, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. The presence of these alcohols contributes to molecular weight control and stability.
With respect to the total amount of the silanol-terminated silicone oil (a) and the silicon compound (b) containing an epoxy group (and, if necessary, the alkoxysilicon compound (c)) charged in the production process 1 as the addition amount of the alcohol, Usually 20 to 200% by weight, preferably 20 to 150% by weight, particularly preferably 30 to 120% by weight.
 製造工程2においては水を加える(イオン交換水、蒸留水、上水、何れも使用できる)。水の使用量としては、残存するアルコキシ基量に対し、好ましくは0.5~8.0当量、より好ましくは0.6~5.0当量、特に好ましくは0.65~2.0当量である。
 水の量が0.5当量を切る場合、反応の進行が遅くなり、エポキシ基を含有するケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))が反応せずに残存する等の問題が生じたり、十分なネットワークを組めず、後の硬化性樹脂組成物とした後の硬化後も硬化不良を起こしたりする可能性がある。また8.0当量を越える場合、分子量制御が効かず、必要以上に高分子量となる可能性がある。さらに、シリコーン骨格エポキシ樹脂の安定性を阻害する可能性がある。
In the production process 2, water is added (ion exchange water, distilled water, or clean water can be used). The amount of water used is preferably 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. is there.
When the amount of water is less than 0.5 equivalent, the progress of the reaction is slow and the silicon compound (b) containing an epoxy group (and the alkoxysilicon compound (c) if necessary) remains without reacting. There is a possibility that a problem such as the above will occur, a sufficient network may not be formed, and a curing failure will occur even after the subsequent curing of the curable resin composition. On the other hand, if it exceeds 8.0 equivalents, the molecular weight control is not effective, and the molecular weight may be higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the silicone skeleton epoxy resin.
 製造工程2の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。 The reaction temperature in production step 2 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used. The reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
 反応終了後、必要に応じてクエンチ、および/又は水洗によって触媒を除去する。水洗を行う場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。 After completion of the reaction, the catalyst is removed by quenching and / or washing with water as necessary. When washing with water, depending on the type of solvent used, it is preferable to add a solvent that can be separated from water. Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
 本反応は水洗のみで触媒の除去を行っても構わないが、酸性、塩基性条件、いずれかの条件で反応を行うことから、中和反応によりクエンチを行った後に水洗を行うか、吸着剤を用いて触媒を吸着した後にろ過により吸着剤を除くことが好ましい。
 中和反応には酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸トリナトリウム、ポリ燐酸、トリポリ燐酸ナトリウムのようなリン酸塩類等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの除去が容易である点で無機塩基もしくは無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
In this reaction, the catalyst may be removed only by washing with water, but the reaction is carried out under acidic or basic conditions. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using
Any compound that is acidic or basic can be used for the neutralization reaction. Examples of the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate. Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphates such as polyphosphoric acid, sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used. Among these, an inorganic base or an inorganic acid is particularly preferable because it can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.
 吸着剤としては活性白土、活性炭、ゼオライト、無機・有機系の合成吸着剤、イオン交換樹脂等が例示でき、具体例としては下記の製品が挙げられる。
 活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R-15、E、ニッカナイトG-36、G-153、G-168が、水沢化学工業社製として、ガレオンアース、ミズカエースなどが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL-H、Y-10S、Y-10SFがフタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト15JWET、15DRY、16WET、31WET、A21、アンバーライトIRA400JCl、IRA403BLCl、IRA404JCl、ダウケミカル社製として、ダウエックス66、HCR-S、HCR-W2、MAC-3などが挙げられる。
 吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
Examples of the adsorbent include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
As the activated clay, for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168 are manufactured by Mizusawa Chemical Co., Ltd. Galeon Earth, Mizuka Ace, etc. are listed. As the activated carbon, for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like. Examples of zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa. As a synthetic adsorbent, for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd. 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, manufactured by Dow Chemical Company, Dowex 66, HCR-S, HCR-W2, MAC-3, etc. may be mentioned.
The adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
 反応終了後またはクエンチ後は水洗、ろ過の他慣用の分離精製手段によって精製することができる。精製手段としては例えば、カラムクロマトグラフィー、減圧濃縮、蒸留、抽出等が挙げられる。これらの精製手段は単独で行なってもよいし、複数を組み合わせて行なってもかまわない。 After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration. Examples of the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
 反応溶媒として水と混合する溶媒を用いて反応した場合には、クエンチ後に蒸留または減圧濃縮によって水と混合する反応溶媒を系中から除いた後に、水と分離可能な溶剤を用いて水洗を行なうことが好ましい。 When the reaction is performed using a solvent mixed with water as a reaction solvent, the reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
 水洗後は減圧濃縮等により溶剤を除去することで、本発明のシリコーン骨格エポキシ樹脂を得ることができる。 After washing with water, the silicone skeleton epoxy resin of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
 このようにして得られる本発明のシリコーン骨格エポキシ樹脂の外観は、通常無色透明で25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800~3000のものが好ましく、1000~3000のものがより好ましく、特に1500~2800のものが好ましい。重量平均分子量が800より下回る場合は耐熱性が低下することがあり、3000を上回る場合は、これを用いて封止したLED素子のはんだリフロー時に基板から封止材が剥離することがある。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
The appearance of the silicone skeleton epoxy resin of the present invention thus obtained is usually colorless and transparent and is a liquid having fluidity at 25 ° C. Further, the molecular weight is preferably 800 to 3000, more preferably 1000 to 3000, and particularly preferably 1500 to 2800 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 3000, the encapsulant may be peeled off from the substrate at the time of solder reflow of the LED element encapsulated using the weight average molecular weight.
The weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 本発明のシリコーン骨格エポキシ樹脂のエポキシ当量(JIS K-7236に記載の方法で測定)は300~1500g/eq.のものが好ましく、320~1400g/eqのものがより好ましく、さらに350~1200g/eq、特に350~1000g/eqのものが好ましい。エポキシ当量が300g/eqを下回る場合はその硬化物が硬く、弾性率、ガラス転移温度が高くなりすぎる傾向があり、1500g/eqを上回る場合は硬化物の機械特性が低下する傾向にある。
 本発明のシリコーン骨格エポキシ樹脂は、単一のシリコーン骨格エポキシ樹脂であっても良いし、2種以上のシリコーン骨格エポキシ樹脂の混合物であっても構わない。ここで、硬化物に低いガラス転移温度、0℃の貯蔵弾性率を付与する観点からは、単一のシリコーン骨格エポキシ樹脂であれば当該エポキシ樹脂のエポキシ当量が、2種以上のシリコーン骨格エポキシ樹脂の混合物である場合は、特定のシリコーン骨格エポキシ樹脂のエポキシ当量×(当該特定のシリコーン骨格エポキシ樹脂の含有量/シリコーン骨格エポキシ樹脂の総量)の総和のエポキシ当量が、300~1500g/eqであることが好ましく、350~1000g/eqであることが特に好ましい。
The epoxy equivalent (measured by the method described in JIS K-7236) of the silicone skeleton epoxy resin of the present invention is 300 to 1500 g / eq. Preferably 320 to 1400 g / eq, more preferably 350 to 1200 g / eq, and particularly preferably 350 to 1000 g / eq. When the epoxy equivalent is less than 300 g / eq, the cured product is hard and the elastic modulus and the glass transition temperature tend to be too high, and when it exceeds 1500 g / eq, the mechanical properties of the cured product tend to decrease.
The silicone skeleton epoxy resin of the present invention may be a single silicone skeleton epoxy resin or a mixture of two or more silicone skeleton epoxy resins. Here, from the viewpoint of imparting a low glass transition temperature and a storage elastic modulus of 0 ° C. to the cured product, if the epoxy equivalent of the epoxy resin is a single silicone skeleton epoxy resin, two or more types of silicone skeleton epoxy resins are used. In this case, the total epoxy equivalent of the epoxy equivalent of the specific silicone skeleton epoxy resin × (content of the specific silicone skeleton epoxy resin / total amount of the silicone skeleton epoxy resin) is 300 to 1500 g / eq. It is preferably 350 to 1000 g / eq.
 本発明のシリコーン骨格エポキシ樹脂の粘度(E型粘度計、25℃で測定)は50~20,000mPa・sのものが好ましく、500~10,000mPa・sのものがより好ましく、特に800~5,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さないことがあり、20,000mPa・sを上回る場合は、粘度が高すぎて作業性が低下する場合がある。 The viscosity of the silicone skeleton epoxy resin of the present invention (E-type viscometer, measured at 25 ° C.) is preferably 50 to 20,000 mPa · s, more preferably 500 to 10,000 mPa · s, particularly 800 to 5 1,000 mPa · s is preferred. When the viscosity is less than 50 mPa · s, the viscosity is too low and may not be suitable as an optical semiconductor sealing material. When it exceeds 20,000 mPa · s, the viscosity is too high and workability is reduced. There is.
 本発明のシリコーン骨格エポキシ樹脂において3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は3~50モル%が好ましく、5~30モル%がより好ましく、特に6~15モル%が好ましい。シルセスキオキサン由来の、3つの酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合が3モル%を下回ると、鎖状シリコーンセグメントの特徴として硬化物がやわらかくなりすぎる傾向にあり、表面タックや傷つきが生じることがある。また50モル%を上回るとシリコーンオイルの特性が損なわれやすくなり、硬化物が硬くなりすぎてしまうため、好ましくない。
 存在するケイ素原子の割合は、エポキシ樹脂のH NMR、29Si NMR、元素分析等によって求めることができる。
In the silicone skeleton epoxy resin of the present invention, the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, and particularly preferably 6 to 15 mol%. preferable. When the ratio of silicon atoms bonded to three oxygen atoms derived from silsesquioxane with respect to all silicon atoms is less than 3 mol%, the cured product tends to be too soft as a characteristic of the chain silicone segment, and the surface Tack and scratches may occur. On the other hand, if it exceeds 50 mol%, the properties of the silicone oil are liable to be impaired, and the cured product becomes too hard.
The proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the epoxy resin.
 以上、本発明におけるエポキシ樹脂(A)の最も好ましい例として、シリコーン骨格エポキシ樹脂である、製造工程1、2を経て得られた、シラノール末端シリコーンオイル(a)とエポキシ基を含有するケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))との縮合物について説明した。 As described above, as the most preferable example of the epoxy resin (A) in the present invention, a silicon compound containing a silanol-terminated silicone oil (a) and an epoxy group, which is a silicone skeleton epoxy resin, obtained through production steps 1 and 2 ( b) (and condensates with alkoxysilicon compounds (c) if necessary) have been described.
 シリコーン骨格エポキシ樹脂としては、上記のシラノール末端シリコーンオイル(a)を使用せず、エポキシ基を含有するケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の縮合重合物、も例示できる。 As the silicone skeleton epoxy resin, the above silanol-terminated silicone oil (a) is not used, but a condensation polymer of a silicon compound (b) containing an epoxy group (and an alkoxy silicon compound (c) if necessary), Can also be illustrated.
 この場合は、一段階の反応で製造することができ、前記式(2)で表されるエポキシ基を含有するケイ素化合物(b)(および、必要に応じて前記式(3)で表されるアルコキシケイ素化合物(c))を前記した、触媒、溶剤の存在下、水を滴下し、反応温度40~100℃、反応時間1~24時間の条件で縮合して得ることができる。 In this case, the silicon compound (b) containing an epoxy group represented by the above formula (2) (and optionally represented by the above formula (3) can be produced by a one-step reaction. The alkoxysilicon compound (c)) can be obtained by adding water dropwise in the presence of a catalyst and a solvent as described above and condensing under the conditions of a reaction temperature of 40 to 100 ° C. and a reaction time of 1 to 24 hours.
 縮合後は、前記したような触媒のクエンチ、除去、水洗、濃縮によってエポキシ基を含有するケイ素化合物(b)(および、必要に応じてアルコキシケイ素化合物(c))の縮合物を得ることができる。 After the condensation, a condensate of the silicon compound (b) containing an epoxy group (and, if necessary, the alkoxysilicon compound (c)) can be obtained by quenching, removing, washing with water, and concentrating as described above. .
 本発明のガラス転移温度、0℃での貯蔵弾性率が要求特性を満たし、さらに、優れた耐硫化性を有する観点から特に好ましいシリコーン骨格エポキシ樹脂の実施形態としては、下記の通りである。
(i)ケイ素に連結する置換基におけるフェニル基の割合が、置換メチル基1モルに対し、0.05~2.0モルであるシリコーン骨格エポキシ樹脂。
(ii)ケイ素に連結する置換基におけるフェニル基の割合が、置換メチル基1モルに対し、0.15~0.2モルであるシリコーン骨格エポキシ樹脂。
(iii)3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は3~50モル%である(i)または(ii)のいずれか一項に記載のシリコーン骨格エポキシ樹脂。
(iv)3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は6~15モル%である(i)または(ii)のいずれか一項に記載のシリコーン骨格エポキシ樹脂。
(v)エポキシ当量が350~1000g/eqである(i)~(iv)のいずれか一項に記載のシリコーン骨格エポキシ樹脂。
(vi)2種以上のシリコーン骨格エポキシ樹脂の混合物である場合において、特定のシリコーン骨格エポキシ樹脂のエポキシ当量×(当該特定のシリコーン骨格エポキシ樹脂の含有量/シリコーン骨格エポキシ樹脂の総量)の総和のエポキシ当量が350~1000g/eqである(i)~(iv)のいずれか一項に記載のシリコーン骨格エポキシ樹脂混合物。
An embodiment of the silicone skeleton epoxy resin that is particularly preferable from the viewpoint that the glass transition temperature and the storage elastic modulus at 0 ° C. of the present invention satisfy the required characteristics and has excellent sulfidation resistance is as follows.
(I) A silicone skeleton epoxy resin in which the ratio of the phenyl group in the substituent linked to silicon is 0.05 to 2.0 mol with respect to 1 mol of the substituted methyl group.
(Ii) A silicone skeleton epoxy resin in which the ratio of the phenyl group in the substituent linked to silicon is 0.15 to 0.2 mol with respect to 1 mol of the substituted methyl group.
(Iii) The silicone skeleton epoxy resin according to any one of (i) and (ii), wherein a ratio of silicon atoms to which three oxygen atoms are bonded to all silicon atoms is 3 to 50 mol%.
(Iv) The silicone skeleton epoxy resin according to any one of (i) and (ii), wherein a ratio of silicon atoms to which three oxygen atoms are bonded to all silicon atoms is 6 to 15 mol%.
(V) The silicone skeleton epoxy resin according to any one of (i) to (iv), wherein an epoxy equivalent is 350 to 1000 g / eq.
(Vi) In the case of a mixture of two or more types of silicone skeleton epoxy resins, the epoxy equivalent of the specific silicone skeleton epoxy resin × (the content of the specific silicone skeleton epoxy resin / the total amount of the silicone skeleton epoxy resin) The silicone skeleton epoxy resin mixture according to any one of (i) to (iv), wherein an epoxy equivalent is 350 to 1000 g / eq.
 次に、他のエポキシ樹脂について説明する。
 他のエポキシ樹脂としては、フェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。
Next, other epoxy resins will be described.
Other epoxy resins include epoxy resins that are glycidyl etherification products of phenolic compounds, epoxy resins that are glycidyl etherification products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, glycidyl esters. Epoxy resins, glycidylamine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, copolymers of polymerizable unsaturated compounds having an epoxy group and other polymerizable unsaturated compounds, etc. .
 前記フェノール類化合物のグリシジルエーテル化物であるエポキシ樹脂としては、例えば2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-ヒドロキシ)フェニル]エチル]フェニル]プロパン、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4'-ビフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4'-ビフェノール、ジメチル-4,4'-ビフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2'-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、フロログリシノール、ジイソプロピリデン骨格を有するフェノール類、1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン等のポリフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂等が挙げられる。 Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-methylene -Bis (4-methyl-6-tert-butylphenol), 4,4'-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resorcinol, hydroquinone, pyrogallol, phloroglucinol, di Examples thereof include phenols having an isopropylidene skeleton, phenols having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene, and epoxy resins which are glycidyl etherified products of polyphenol compounds such as phenolized polybutadiene.
 前記各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂としては、例えば、フェノール類、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF及びビスフェノールS等のビスフェノール類、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂のグリシジルエーテル化物等が挙げられる。 Examples of epoxy resins that are glycidyl etherified products of various novolak resins include phenols, cresols, ethylphenols, butylphenols, octylphenols, bisphenols such as bisphenol A, bisphenol F and bisphenol S, and naphthols. Examples include novolak resins made from various phenols, xylylene skeleton-containing phenol novolak resins, dicyclopentadiene skeleton-containing phenol novolak resins, biphenyl skeleton-containing phenol novolak resins, fluorene skeleton-containing phenol novolak resins, and other glycidyl etherified products. It is done.
 前記脂環式エポキシ樹脂としては、例えば3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等の脂肪族環骨格を有する脂環式エポキシ樹脂が挙げられる。
 前記脂肪族系エポキシ樹脂としては、例えば1,4-ブタンジオール、1,6-ヘキサンジオール、ポリエチレングリコール、ペンタエリスリトール等の多価アルコールのグリシジルエーテル類が挙げられる。
 複素環式エポキシ樹脂としては、例えばイソシアヌル環、ヒダントイン環等の複素環を有する複素環式エポキシ樹脂が挙げられる。
 前記グリシジルエステル系エポキシ樹脂としては、例えばヘキサヒドロフタル酸ジグリシジルエステル等のカルボン酸エステル類からなるエポキシ樹脂が挙げられる。
 グリシジルアミン系エポキシ樹脂としては、例えばアニリン、トルイジン等のアミン類をグリシジル化したエポキシ樹脂が挙げられる。
 前記ハロゲン化フェノール類をグリシジル化したエポキシ樹脂としては、例えばブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類をグリシジル化したエポキシ樹脂が挙げられる。
Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate. And a formula epoxy resin.
Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
Examples of the heterocyclic epoxy resin include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
Examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
Examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
Examples of epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like. An epoxy resin obtained by glycidylating any of the halogenated phenols.
 エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体としては、市場から入手可能な製品ではマープルーフG-0115S、同G-0130S、同G-0250S、同G-1010S、同G-0150M、同G-2050M (日油(株)製)等が挙げられ、エポキシ基を持つ重合性不飽和化合物としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、4-ビニル-1-シクロヘキセン-1,2-エポキシド等が挙げられる。また他の重合性不飽和化合物としては、例えばメチル(メタ)アクリレート、エーテル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、スチレン、ビニルシクロヘキサンなどが挙げられる。 As a copolymer of a polymerizable unsaturated compound having an epoxy group and other polymerizable unsaturated compounds, Marproof G-0115S, G-0130S and G-0250S are commercially available products. G-1010S, G-0150M, G-2050M (manufactured by NOF Corporation), and the like. Examples of the polymerizable unsaturated compound having an epoxy group include glycidyl acrylate, glycidyl methacrylate, 4 -Vinyl-1-cyclohexene-1,2-epoxide and the like. Examples of other polymerizable unsaturated compounds include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, vinylcyclohexane and the like.
 前記したエポキシ樹脂(A)は1種又は2種以上を混合して用いても良い。 The aforementioned epoxy resin (A) may be used alone or in combination of two or more.
 前記したエポキシ樹脂(A)の中でも、透明性、耐熱透明性、耐光透明性、耐ヒートサイクル性等の観点から、シリコーン骨格エポキシ樹脂が最も好ましい例として挙げられるが、本発明において脂環式エポキシ樹脂の併用は、硬化物の機械強度調整の観点から好ましい。脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる(これらの引例の全内容はここに参照として取り込まれる)。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないが、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
Among the above-described epoxy resins (A), a silicone skeleton epoxy resin is the most preferable example from the viewpoints of transparency, heat-resistant transparency, light-resistant transparency, heat cycle resistance, and the like. In the present invention, an alicyclic epoxy is used. The combined use of the resin is preferable from the viewpoint of adjusting the mechanical strength of the cured product. In the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
These epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and transesterification of cyclohexene carboxylic acid ester (Japan) Examples thereof include a product obtained by oxidizing a compound that can be produced by a method described in Japanese Patent Laid-Open No. 2006-052187, etc. (the entire contents of these references are incorporated herein by reference).
The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc. Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, and tetraols such as pentaerythritol and ditrimethylolpropane. And the like. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
 さらには、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)およびジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85、その全内容はここに参照として取り込まれる))。
Furthermore, the acetal compound by the acetal reaction of a cyclohexene aldehyde derivative and an alcohol body is mentioned.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to them (reference: review epoxy resin basic edition I p76-85, the entire contents of which are incorporated herein by reference).
 シリコーン骨格エポキシ樹脂と他のエポキシ樹脂を併用する場合には、全エポキシ樹脂組成物に対して、シリコーン骨格エポキシ樹脂の割合は60~99重量部であることが好ましく、90~97重量部が特に好ましい。60重量部を下回ると、硬化物の耐光性(耐UV性)が劣ることがある。 When the silicone skeleton epoxy resin is used in combination with another epoxy resin, the ratio of the silicone skeleton epoxy resin to the total epoxy resin composition is preferably 60 to 99 parts by weight, particularly 90 to 97 parts by weight. preferable. If it is less than 60 parts by weight, the light resistance (UV resistance) of the cured product may be inferior.
 次にエポキシ樹脂硬化剤(B)について説明する。
 エポキシ樹脂硬化剤(B)としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、多価カルボン酸などが挙げられる。
 本発明においてエポキシ樹脂硬化剤(B)としては硬度、作業性(室温にて液状であること)、硬化物の透明性という観点から特に酸無水物(Ba)、多価カルボン酸(Bb)が好ましい。
Next, the epoxy resin curing agent (B) will be described.
Examples of the epoxy resin curing agent (B) include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and polycarboxylic acids.
In the present invention, as the epoxy resin curing agent (B), acid anhydride (Ba) and polyvalent carboxylic acid (Bb) are particularly preferable from the viewpoints of hardness, workability (being liquid at room temperature), and transparency of the cured product. preferable.
 酸無水物(Ba)としては具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物が挙げられる。
 特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが、耐光性、透明性、作業性の観点から好ましい。
Specific examples of the acid anhydride (Ba) include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, Hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2 , 3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and the like.
In particular, methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid Acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, It is preferable from the viewpoint of workability.
 多価カルボン酸(Bb)は少なくとも2つのカルボキシル基を有することを特徴とする化合物である。
 多価カルボン酸(Bb)としては、2~6官能のカルボン酸が好ましく、例えば、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、リンゴ酸等の直鎖アルキル二酸類、1,3,5-ペンタントリカルボン酸、クエン酸等のアルキルトリカルボン酸類、フタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、シクロヘキサントリカルボン酸、ナジック酸、メチルナジック酸等の脂肪族環状多価カルボン酸類、リノレン酸やオレイン酸などの不飽和脂肪酸の多量体およびそれらの還元物であるダイマー酸類、2~6官能の多価アルコールと酸無水物との反応により得られた化合物類が挙げられ、2~6官能の多価アルコールと酸無水物との反応により得られた化合物類が、耐熱性、作業性の観点からより好ましい。さらには上記酸無水物が飽和脂肪族環状酸無水物である多価カルボン酸が透明性の観点から好ましい。
 2~6官能の多価アルコールとしてはアルコール性水酸基を有する化合物であれば特に限定されないが、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類などが挙げられる。
The polyvalent carboxylic acid (Bb) is a compound having at least two carboxyl groups.
The polyvalent carboxylic acid (Bb) is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, Linear alkyl diacids such as malic acid, alkyltricarboxylic acids such as 1,3,5-pentanetricarboxylic acid, citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid , Cycloaliphatic tricarboxylic acid, nadic acid, aliphatic cyclic polyvalent carboxylic acid such as methyl nadic acid, multimers of unsaturated fatty acids such as linolenic acid and oleic acid, and dimer acids that are reduced products thereof, bifunctional to hexafunctional polyfunctional And compounds obtained by the reaction of a monohydric alcohol and an acid anhydride. Compounds obtained by reaction with anhydrides, heat resistance, and more preferable from the viewpoint of workability. Furthermore, the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable from a transparency viewpoint.
The bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecanedi Diols such as methanol and norbornene diol, triols such as glycerin, trimethylol ethane, trimethylol propane, trimethylol butane, 2-hydroxymethyl-1,4-butanediol, and teto such as pentaerythritol and ditrimethylol propane Ols, and the like hexa-ols, such as dipentaerythritol.
 好ましい多価アルコールとしては炭素数が5以上のアルコールであり、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,4-ジエチルペンタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類が、耐熱性、透明性の観点から好ましく、特に、トリシクロデカンジメタノールが好ましい。 Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, From the viewpoint of transparency, In particular, tricyclodecane dimethanol is preferable.
 多価アルコールと反応させる酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が、耐熱性、透明性、作業性の観点から好ましい。
 付加反応の条件としては公知の方法であれば特に限定なく用いることができるが、具体的な反応条件としては、例えば、酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃で反応させ加熱し、反応終了後、そのまま取り出す手法が挙げられる。
Examples of acid anhydrides to be reacted with polyhydric alcohols include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2, 2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4- Anhydrides and the like are preferable, and methylhexahydrophthalic anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride are particularly preferable from the viewpoints of heat resistance, transparency, and workability.
The conditions for the addition reaction can be used without any particular limitation as long as they are known methods. Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent. A method of reacting at 150 ° C. and heating, and taking out as it is after completion of the reaction can be mentioned.
 本発明のエポキシ樹脂硬化剤(B)としては、両末端カルビノール変性シリコーンオイル(e)(及び必要に応じて、末端アルコールポリエステル(f))と分子内に1個以上のカルボン酸無水物基を有する化合物(g)との反応により製造される多価カルボン酸(Bb)も使用することができる。
 両末端カルビノール変性シリコーンオイル(e)としては下記式(5)
As the epoxy resin curing agent (B) of the present invention, both terminal carbinol-modified silicone oil (e) (and, if necessary, terminal alcohol polyester (f)) and one or more carboxylic anhydride groups in the molecule. A polyvalent carboxylic acid (Bb) produced by a reaction with the compound (g) having the above can also be used.
As both-end carbinol-modified silicone oil (e), the following formula (5)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(5)において、Rは炭素数1~6のアルキル基又は炭素数5~10のアリール基を、Rは炭素総数1~10のアルキレン基、エーテル結合を有するアルキレン基を、nは平均値で1~100をそれぞれ表す。)
に示される化合物が好ましい。
(In Formula (5), R 6 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 5 to 10 carbon atoms, R 7 represents an alkylene group having 1 to 10 carbon atoms in total, an alkylene group having an ether bond, and n Represents an average value of 1 to 100.)
The compound shown by these is preferable.
 式(5)において、Rの具体例としては、メチル基、エチル基、イソプロピル基、ブチル基、ヘキシル基、シクロヘキシル基、フェニル基、ベンジル基、ナフチル基などが挙げられる。両末端カルビノール変性シリコーンオイル(e)と分子内に1個以上のカルボン酸無水物基を有する化合物(g)とを付加反応させることにより得られる多価カルボン酸(Bb)が室温で液状であるためにはメチル基が好ましい。 In the formula (5), specific examples of R 6 include a methyl group, an ethyl group, an isopropyl group, a butyl group, a hexyl group, a cyclohexyl group, a phenyl group, a benzyl group, and a naphthyl group. The polyvalent carboxylic acid (Bb) obtained by the addition reaction of the both-end carbinol-modified silicone oil (e) and the compound (g) having one or more carboxylic anhydride groups in the molecule is liquid at room temperature. For this purpose, a methyl group is preferred.
 式(5)において、Rの具体例としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、イソペンチレン、へキシレン、ヘプチレン、オクチレン等のアルキレン基、エトキシエチレン基、プロポキシエチレン基、プロポキシプロピレン基、エトキシプロピレン基等のエーテル結合を有するアルキレン基などが挙げられる。特に好ましいものとしては、プロポキシエチレン基、エトキシプロピレン基である。 In formula (5), specific examples of R 7 include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, ethoxyethylene group, propoxyethylene group, Examples include an alkylene group having an ether bond such as a propoxypropylene group and an ethoxypropylene group. Particularly preferred are propoxyethylene group and ethoxypropylene group.
 式(5)においてnは平均値で1~100であるが、好ましくは2~80、より好ましくは5~30である。 In the formula (5), n is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
 式(5)で示される両末端カルビノール変性シリコーンオイル(e)は、例えば、X-22-160AS、KF6001、KF6002、KF6003(いずれも信越化学工業(株)製)BY16-201、BY16-004、SF8427(いずれも東レ・ダウコーニング(株)製)XF42-B0970、XF42-C3294(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられ、いずれも市場から入手できる。これら両末端カルビノール変性シリコーンオイルは1種又は2種以上を混合して用いることが出来る。これらの中でもX-22-160AS、KF6001、KF6002、BY16-201、XF42-B0970が好ましい。 The both-end carbinol-modified silicone oil (e) represented by the formula (5) is, for example, X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004. SF8427 (both manufactured by Toray Dow Corning Co., Ltd.) XF42-B0970, XF42-C3294 (both manufactured by Momentive Performance Materials Japan GK), and the like are all available from the market. These two terminal carbinol-modified silicone oils can be used alone or in combination. Among these, X-22-160AS, KF6001, KF6002, BY16-201, and XF42-B0970 are preferable.
 上記、両末端カルビノール変性シリコーンオイル(e)と共に、下記式(6)で示される末端アルコールポリエステル(f)を必要に応じて併用することができる。 The terminal alcohol polyester (f) represented by the following formula (6) can be used in combination with the above-mentioned both-end carbinol-modified silicone oil (e) as necessary.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(6)において、R、Rはそれぞれ独立して炭素数1~10のアルキレン基を、kは平均値で1~100をそれぞれ表す。) (In Formula (6), R 8 and R 9 each independently represents an alkylene group having 1 to 10 carbon atoms, and k represents an average value of 1 to 100)
 式(6)において、Rの具体例としては、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、炭素数1~10の分岐鎖を有するアルキレン基又は環状構造を有するアルキレン基が好ましく、特にエチルブチルプロピレン、イソブチレン、ネオペンチレン、ジエチルペンチレン、シクロヘキサンジメチレンが、硬化物の耐熱透明性の観点から好ましい。 In the formula (6), specific examples of R 8 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, an alkylene group having a branched chain having 1 to 10 carbon atoms or an alkylene group having a cyclic structure is preferable. It is preferable from the viewpoint.
 式(6)において、Rの具体例としては、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、炭素数1~10の直鎖アルキレン基が好ましく、プロピレン、ブチレン、ペンチレン、へキシレンが、硬化物の基材への密着性の観点から特に好ましい。 In the formula (6), specific examples of R 9 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, a linear alkylene group having 1 to 10 carbon atoms is preferable, and propylene, butylene, pentylene, and hexylene are particularly preferable from the viewpoint of adhesion of a cured product to a substrate.
 式(6)においてkは平均値で1~100であるが、好ましくは2~40、より好ましくは3~30である。 In the formula (6), k is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
 末端アルコールポリエステル(f)の重量平均分子量(Mw)は、通常500~20000であるが、好ましくは500~5000、より好ましくは、500~3000である。重量平均分子量が500未満であると、本発明の硬化性樹脂組成物の硬化物硬度が高くなり過ぎヒートサイクル試験等でクラックが入ることがあり、重量平均分子量が20000より大きいと硬化物のベトツキが発生することがある。本発明において重量平均分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
The weight average molecular weight (Mw) of the terminal alcohol polyester (f) is usually 500 to 20000, preferably 500 to 5000, and more preferably 500 to 3000. If the weight average molecular weight is less than 500, the cured product hardness of the curable resin composition of the present invention may be too high and cracks may occur in a heat cycle test or the like, and if the weight average molecular weight is more than 20000, the cured product becomes sticky. May occur. In the present invention, the weight average molecular weight means a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography).
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 式(6)で示される末端アルコールポリエステル(f)は、例えば、末端にアルコール性水酸基を有するポリエステルポリオール類が挙げられる。その具体例としてはポリエステルポリオールである、キョーワポール1000PA、同2000PA、同3000PA、同2000BA(いずれも協和発酵ケミカル(株)製);アデカニューエースY9-10、同YT-101 (いずれもADEKA(株)製);プラクセル220EB、同220EC(いずれもダイセル化学工業(株)製);ポリライトOD-X-286、同OD-X-102、同OD-X-355、同OD-X-2330、同OD-X-240、同OD-X-668、同OD-X-2554、同OD-X-2108、同OD-X-2376、同OD-X-2044、同OD-X-688、同OD-X-2068、同OD-X-2547、同OD-X-2420、同OD-X-2523、同OD-X-2555(いずれもDIC(株)製);HS2H-201AP、HS2H-351A、HS2H-451A、HS2H-851A、HS2N-221A、HS2N-521A、HS2H-220S、HS2N-220S、HS2N-226P、HS2B-222A、HOKOKUOL HT-110、同HT-210、同HT-12、同HT-250、同HT-310、同HT-40M(いずれも豊国製油(株)製)等が挙げられ、いずれも市場から入手できる。これらポリエステル化合物は1種又は2種以上を混合して用いることが出来る。これらの中でもキョーワポール1000PA、アデカニューエースY9-10、HS2N-221Aが好ましい。 Examples of the terminal alcohol polyester (f) represented by the formula (6) include polyester polyols having an alcoholic hydroxyl group at the terminal. Specific examples thereof are polyester polyols, Kyowapol 1000 PA, 2000 PA, 3000 PA, 2000 BA (all manufactured by Kyowa Hakko Chemical Co., Ltd.); Adeka New Ace Y9-10, YT-101 (all ADEKA ( Plaxel 220EB, 220EC (both manufactured by Daicel Chemical Industries); Polylite OD-X-286, OD-X-102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, OD-X-2554, OD-X-2108, OD-X-2376, OD-X-2044, OD-X-688, OD-X-2068, OD-X-2547, OD-X-2420, OD-X-2523, OD-X-2555 (all IC Co., Ltd.); HS2H-201AP, HS2H-351A, HS2H-451A, HS2H-851A, HS2N-221A, HS2N-521A, HS2H-220S, HS2N-220S, HS2N-226P, HS2B-222A, HOKOKU-OL 110, HT-210, HT-12, HT-250, HT-310, HT-40M (all manufactured by Toyokuni Oil Co., Ltd.), etc., all of which are commercially available. These polyester compounds can be used alone or in combination of two or more. Of these, Kyowapol 1000PA, Adeka New Ace Y9-10, and HS2N-221A are preferable.
 併用する場合の末端アルコールポリエステル(f)の使用量は、両末端カルビノール変性シリコーンオイル(e)100重量部に対し、通常0.5~200重量部、好ましくは5~50重量部、より好ましくは10~30重量部である。0.5重量部を下回ると硬化物の機械強度が低下することがあり、200重量部を上回ると硬化物の耐熱透明性の低下や得られる多価カルボン酸(Bb)の粘度が著しく高くなることがある。
 ガラス転移温度を下げ、0℃での貯蔵弾性率を下げる観点からは、15~30重量部が好ましい。
When used in combination, the amount of terminal alcohol polyester (f) used is usually 0.5 to 200 parts by weight, preferably 5 to 50 parts by weight, more preferably 100 parts by weight of carbinol-modified silicone oil (e) at both ends. Is 10 to 30 parts by weight. If the amount is less than 0.5 part by weight, the mechanical strength of the cured product may be reduced. If the amount is more than 200 parts by weight, the heat-resistant transparency of the cured product is lowered and the viscosity of the polyvalent carboxylic acid (Bb) to be obtained is significantly increased. Sometimes.
From the viewpoint of lowering the glass transition temperature and lowering the storage elastic modulus at 0 ° C., 15 to 30 parts by weight is preferable.
 分子内に1個以上のカルボン酸無水物基をもつ化合物(g)は、例えば、コハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、2,3-ブタンジカルボン酸無水物、2,4-ペンタンジカルボン酸無水物、3,5-ヘプタンジカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等の飽和脂肪族カルボン酸無水物、マレイン酸無水物、ドデシルコハク酸無水物等の不飽和脂肪族カルボン酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、1,3-シクロヘキサンジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等の環状飽和脂肪族カルボン酸無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物等の環状不飽和脂肪族カルボン酸無水物、フタル酸無水物、イソフタル酸無水物、テレフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物等の芳香族カルボン酸無水物等が挙げられ、その他、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等の同一化合物内に飽和脂肪族カルボン酸無水物、環状飽和カルボン酸無水物、環状不飽和カルボン酸無水物を持つポリカルボン酸化合物等も挙げられる。
 分子内にカルボン酸無水物基を1個以上もつ化合物(g)は1種又は2種以上混合して用いることができる。この中でも、多価カルボン酸(Bb)が室温で液状であり、多価カルボン酸(Bb)とエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、1,2,3,4-ブタンテトラカルボン酸二無水物が好ましい。より好ましくはメチルヘキサヒドロフタル酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物であり、特に好ましくはメチルヘキサヒドロフタル酸無水物である。
The compound (g) having one or more carboxylic anhydride groups in the molecule includes, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, 2,3-butanedicarboxylic anhydride, 2,4 -Saturated aliphatic carboxylic anhydrides such as pentanedicarboxylic anhydride, 3,5-heptanedicarboxylic anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, maleic anhydride, dodecyl succinic acid Unsaturated aliphatic carboxylic anhydrides such as anhydrides, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methyl Norbornane-2,3-dicarboxylic acid anhydride, nadic acid anhydride, methyl nadic acid anhydride, bicyclo [2,2,2] octane-2,3-dicar Acid anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic Acid dianhydrides, cyclic saturated aliphatic carboxylic acid anhydrides such as 1,2,4,5-cyclohexanetetracarboxylic dianhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic acid anhydride, methyl Cyclic unsaturation such as nadic acid anhydride, 4,5-dimethyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, bicyclo [2.2.2] -5-octene-2,3-dicarboxylic acid anhydride Aromatic carboxylic anhydrides such as aliphatic carboxylic anhydride, phthalic anhydride, isophthalic anhydride, terephthalic anhydride, trimellitic anhydride, pyromellitic anhydride In addition, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl ) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride and the like, saturated aliphatic carboxylic acid anhydride, cyclic saturated carboxylic acid anhydride, cyclic unsaturated carboxylic acid anhydride Examples thereof include polycarboxylic acid compounds possessed.
The compound (g) having one or more carboxylic acid anhydride groups in the molecule can be used alone or in combination. Among these, since the polyvalent carboxylic acid (Bb) is liquid at room temperature and the cured product obtained by curing the polyvalent carboxylic acid (Bb) and the epoxy resin is excellent in transparency, hexahydrophthalic anhydride, methyl Hexahydrophthalic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 1,2 3,4-butanetetracarboxylic dianhydride is preferred. More preferred are methylhexahydrophthalic anhydride and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and particularly preferred is methylhexahydrophthalic anhydride.
 両末端カルビノール変性シリコーンオイル(e)(および必要に応じて末端アルコールポリエステル(f))と分子内に1個以上のカルボン酸無水物基をもつ化合物(g)との反応は、溶剤中でも無溶剤でも行うことができる。溶剤としては、式(5)で表される両末端カルビノール変性シリコーンオイル(e)(および必要に応じて末端アルコールポリエステル(f))と分子内に1個以上のカルボン酸無水物基をもつ化合物(g)と反応しない溶剤であれば特に制限なく使用できる。使用しうる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルの様な非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンのようなケトン類、トルエン、キシレンのような芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤の使用量には、特に制限はないが、前記両末端カルビノール変性シリコーンオイル(e)(および必要に応じて末端アルコールポリエステル(f))及びカルボン酸無水物基を1個以上もつ化合物(g)の合計重量100重量部に対して、通常0.1~300重量部使用するのが好ましい。 The reaction between the both-end carbinol-modified silicone oil (e) (and optionally the terminal alcohol polyester (f)) and the compound (g) having one or more carboxylic acid anhydride groups in the molecule is not conducted in a solvent. It can also be performed with a solvent. As the solvent, the both-end carbinol-modified silicone oil (e) represented by the formula (5) (and the terminal alcohol polyester (f) if necessary) and one or more carboxylic anhydride groups in the molecule Any solvent that does not react with the compound (g) can be used without particular limitation. Examples of solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene. An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable. These solvents may be used alone or in combination of two or more. The amount of the solvent used is not particularly limited, but the above-mentioned carbinol-modified silicone oil (e) (and optionally terminal alcohol polyester (f) if necessary) and a compound having one or more carboxylic anhydride groups ( It is usually preferable to use 0.1 to 300 parts by weight per 100 parts by weight of the total weight of g).
 反応には触媒を使用してもよく、使用できる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。 A catalyst may be used for the reaction. Examples of usable catalysts include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, water Metal hydroxides such as sodium oxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4. 0] heterocyclic compounds such as undec-7-ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, Methyl ethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium Examples include quaternary ammonium salts such as acetate and trioctylmethylammonium acetate. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine, and dimethylaminopyridine are preferred.
 触媒の使用量には、特に制限はないが、式(5)で表される両末端カルビノール変性シリコーンオイル(e)(および必要に応じて末端アルコールポリエステル(f))および分子内に1個以上のカルボン酸無水物基をもつ化合物(g)の合計重量100重量部に対して、通常0.1~100重量部を必要により使用するのが好ましい。 There are no particular restrictions on the amount of catalyst used, but both terminal carbinol-modified silicone oil (e) represented by formula (5) (and terminal alcohol polyester (f) if necessary) and one in the molecule. It is usually preferable to use 0.1 to 100 parts by weight as necessary with respect to 100 parts by weight of the total weight of the compound (g) having a carboxylic acid anhydride group.
 本発明の硬化性樹脂組成物において、酸無水物(Ba)と多価カルボン酸(Bb)を、それぞれ、2種以上併用することもできる。特に光半導体の封止など室温(25℃)にて液状が求められる用途において固体の多価カルボン酸(Bb)を用いる場合、液状の酸無水物(Ba)を併用し、液状の混合物として使用することが望ましい。併用する場合、酸無水物(Ba)は、酸無水物(Ba)と多価カルボン酸(Bb)の合計の0.5~99.5重量%の割合で使用できる。 In the curable resin composition of the present invention, two or more acid anhydrides (Ba) and polyvalent carboxylic acids (Bb) may be used in combination. In particular, when solid polycarboxylic acid (Bb) is used in applications where liquid is required at room temperature (25 ° C.) such as sealing of optical semiconductors, liquid acid anhydride (Ba) is used in combination as a liquid mixture. It is desirable to do. When used in combination, the acid anhydride (Ba) can be used in a proportion of 0.5 to 99.5% by weight of the total of the acid anhydride (Ba) and the polyvalent carboxylic acid (Bb).
 エポキシ樹脂硬化剤として、前述の酸無水物(Ba)および/または多価カルボン酸(Bb)以外の硬化剤を併用する場合、酸無水物(Ba)および/または多価カルボン酸(Bb)の総量が、全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 併用できる硬化剤としては、例えばアミン系化合物、アミド系化合物、フェノール系化合物などが挙げられる。使用できる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物、その他(イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
When a curing agent other than the aforementioned acid anhydride (Ba) and / or polyvalent carboxylic acid (Bb) is used in combination as the epoxy resin curing agent, the acid anhydride (Ba) and / or the polyvalent carboxylic acid (Bb) The proportion of the total amount in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
Examples of the curing agent that can be used in combination include amine compounds, amide compounds, phenol compounds, and the like. Specific examples of curing agents that can be used include amines and polyamide compounds (diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and dimer of linolenic acid, etc.) Polyphenols (bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 ', 5,5'-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fe (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, Dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloro Methyl) benzene, polycondensates with 1,4′-bis (methoxymethyl) benzene, etc. and their modified products, halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols, etc. Imidazole, trifluoroborane -. Amine complex, guanidine derivatives, etc.) and the like, but the invention is not limited to these may be used alone, or two or more may be used.
 本発明の硬化性樹脂組成物においてエポキシ樹脂(A)とエポキシ樹脂硬化剤(B)の配合比率は、全エポキシ樹脂のエポキシ基1当量に対して0.5~1.2当量の硬化剤を使用することが好ましい。エポキシ基1当量に対して、硬化剤が0.5当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られないことがある。 In the curable resin composition of the present invention, the blending ratio of the epoxy resin (A) and the epoxy resin curing agent (B) is 0.5 to 1.2 equivalents of the curing agent with respect to 1 equivalent of the epoxy groups of all epoxy resins. It is preferable to use it. When the curing agent is less than 0.5 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
 本発明の硬化性樹脂組成物においては、エポキシ樹脂硬化剤(B)とともに硬化促進剤を使用することができる。硬化促進剤としては透明性が優れることから、アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤、金属石鹸系硬化促進剤が特に優れる。アンモニウム塩系硬化促進剤としては、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等が挙げられる。ホスホニウム塩系硬化促進剤としては、例えばエチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムジメチルホスフェート、メチルトリブチルホスホニウムジエチルホスフェート等が挙げられる。金属石鹸系硬化促進剤としては、例えばオクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム等が挙げられる。これら硬化促進剤は1種又は2種以上を混合して用いても良い。これら硬化促進剤の中でもトリメチルセチルアンモニウムヒドロキシド、メチルトリブチルホスホニウムジメチルホスフェート、オクチル酸スズ、オクチル酸亜鉛、オクチル酸マンガンが好ましい。
 中でも、透明性、耐硫化性に優れる硬化物を得るために、特にステアリン酸カルシウム、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛)やリン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛等)等の亜鉛化合物が好ましく使用できる。
 硬化促進剤は、エポキシ樹脂(A)100重量部に対し通常0.001~15重量部の範囲で使用される。
In the curable resin composition of the present invention, a curing accelerator can be used together with the epoxy resin curing agent (B). Since the curing accelerator is excellent in transparency, an ammonium salt-based curing accelerator, a phosphonium salt-based curing accelerator, and a metal soap-based curing accelerator are particularly excellent. Examples of the ammonium salt curing accelerator include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide. , Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like. Examples of the phosphonium salt-based curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like. Examples of the metal soap-based curing accelerator include tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, and potassium octylate. These curing accelerators may be used alone or in combination of two or more. Among these curing accelerators, trimethyl cetyl ammonium hydroxide, methyl tributyl phosphonium dimethyl phosphate, tin octylate, zinc octylate, and manganese octylate are preferable.
Among them, in order to obtain a cured product excellent in transparency and sulfidation resistance, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristylate) and zinc phosphate ester ( Zinc compounds such as zinc octyl phosphate and zinc stearyl phosphate are preferably used.
The curing accelerator is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
 本発明の硬化性樹脂組成物には、必要に応じてカップリング剤を使用することで、組成物の粘度調整、硬化物の硬度を補完することが可能である。
 使用できるカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
 これらカップリング剤は1種又は2種以上を混合して用いても良い。
 カップリング剤は、本発明の硬化性樹脂組成物において通常0.05~20重量部、好ましくは0.1~10重量部が必要に応じて含有される。
In the curable resin composition of the present invention, it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product by using a coupling agent as necessary.
Examples of coupling agents that can be used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate, Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneodeca Noyl zirconate, neoalkoxy tris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxy tris (ethylenediaminoethyl) zirconate, neoalco Examples thereof include zitris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al-acetylacetonate, zirconium such as Al-methacrylate, Al-propionate, and aluminum coupling agents.
These coupling agents may be used alone or in combination of two or more.
In the curable resin composition of the present invention, the coupling agent is usually contained in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight as required.
 本発明の硬化性樹脂組成物には、必要に応じてナノオーダーレベルの無機充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が好ましい。 In the curable resin composition of the present invention, it is possible to supplement mechanical strength without impairing transparency by using a nano-order level inorganic filler as necessary. As a standard for the nano-order level, it is preferable from the viewpoint of transparency to use a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is preferably an amount occupying 0 to 95% by weight in the curable resin composition of the present invention.
 本発明の硬化性樹脂組成物には、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μmが好ましく、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分100重量部に対して、通常1~80重量部、好ましくは5~60重量部である。 A phosphor can be added to the curable resin composition of the present invention as necessary. The phosphor has, for example, a function of forming white light by absorbing a part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, the rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of the phosphor, those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the amount added is usually 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
 本発明の硬化性樹脂組成物に各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。 In the curable resin composition of the present invention, a thixotropic imparting agent such as fine silica powder (also referred to as “aerosil” or “aerosol”) can be added for the purpose of preventing sedimentation of various phosphors during curing. Examples of such silica fine powder include Aerosil 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR202, AerosilR202, AerosilR202 Aerosil R805, RY200, RX200 (made by Nippon Aerosil Co., Ltd.), etc. are mentioned.
 本発明の硬化性樹脂組成物に着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物およびフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン、N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド、〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
For the purpose of preventing coloration, the curable resin composition of the present invention can contain an amine compound as a light stabilizer, or a phosphorus compound and a phenol compound as an antioxidant.
Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, decanedioic acid bis (2,2,6 , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6, -tetrame Ru-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] bu Lumalonate, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl)- 4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexa Polycondensate of methylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3 , 5-Triazine- , 4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], dimethyl succinate And 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol polymer, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa- 3,20-diazadispiro [5 ・ 1 ・ 11 ・ 2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7-oxa 3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11,2] -Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) ester, Higher fatty acid ester of 2,2,6,6-tetramethyl-4-piperidinol, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl) Hindered amines such as octabenzone, benzophenone compounds such as octabenzone, 2- (2H-benzotriazol-2-yl) -4- (1,1,3, -Tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimide-methyl) -5-methylphenyl Benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-pentylphenyl) benzotriazole, Reaction product of methyl 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol, 2- (2H-benzotriazol-2-yl)- Benzotriazole compounds such as 6-dodecyl-4-methylphenol, 2,4 Benzoates such as di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- Examples include triazine compounds such as [(hexyl) oxy] phenol, and hindered amine compounds are particularly preferable.
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、ADEKA製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
The following commercially available products can be used as the amine compound as the light stabilizer.
The commercially available amine compound is not particularly limited. For example, TINUVIN765, TINUVIN770DF, TINUVIN144, TINUVIN123, TINUVIN622LD, TINUVIN152, CHIMASSORB944, and ADEKA manufactured by Ciba Specialty Chemicals, LA-52, LA-57, LA- 62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like.
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。 The phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) Hos Ite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Phenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butyl) Phenyl) (2-tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4, '-Biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'- Biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3'-biphenylenedi Phosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butyl) Ruphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl -Phenylphosphonite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl Examples include phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, etc. .
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、ADEKA製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPP等が挙げられる。 Commercially available products can also be used as the phosphorus compound. The commercially available phosphorus compounds are not particularly limited. For example, as ADEKA, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, Adekas tab TPP and the like.
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2'-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。 The phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,4-di-tert-butyl-6-methylphenol, 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, pentae Srityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis- [2- [3- (3-tert-butyl-4-hydroxy-5- Methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol-bis [3- (3-t-butyl-5 -Methyl-4-hydroxyphenyl) propionate], 2,2′-butylidenebis (4,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 2,2 '-Methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol) 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenol acrylate, 2- [1- (2-hydroxy-3,5-di) -Tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, 4,4'-thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl- 6-tert-butylphenol), 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 4,4′-thiobis (3-methyl- 6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), vinyl -[3,3-bis- (4'-hydroxy-3'-tert-butylphenyl) -butanoic acid] -glycol ester, 2,4-di-tert-butylphenol, 2,4-di-tert- Pentylphenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, bis- [3,3-bis- (4 And '-hydroxy-3'-tert-butylphenyl) -butanoic acid] -glycol ester.
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114、IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、SumilizerGA-80、Sumilizer  MDP-S、Sumilizer  BBM-S、Sumilizer  GM、Sumilizer  GS(F)、SumilizerGPなどが挙げられる。 Commercially available products can also be used as the phenolic compound. The commercially available phenolic compounds are not particularly limited. , ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd. , Sumilizer MDP-S, Sumil izer BBM-S, SumizerzGM, SumizerilGS (F), SumizerGP, and the like.
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN328、THINUVIN234、THINUVIN326、THINUVIN120、THINUVIN477、THINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。 In addition, commercially available additives can be used as resin coloring inhibitors. For example, THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like can be mentioned as manufactured by Ciba Specialty Chemicals.
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、本発明の硬化性樹脂組成物の全重量に対して、0.005~5.0重量%の範囲である。 It is preferable to contain at least one or more of the phosphorus compounds, amine compounds, and phenol compounds, and the amount of the compound is not particularly limited, but with respect to the total weight of the curable resin composition of the present invention, It is in the range of 0.005 to 5.0% by weight.
 本発明の硬化性樹脂組成物は、エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、硬化促進剤、カップリング剤、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製し、封止材として使用できる。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。  The curable resin composition of the present invention is obtained by sufficiently mixing additives such as an epoxy resin (A), an epoxy resin curing agent (B), a curing accelerator, a coupling agent, an antioxidant, and a light stabilizer. A curable resin composition can be prepared and used as a sealing material. As a mixing method, a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明の硬化性樹脂組成物はこの封止材に用いることができる。 Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens. The curable resin composition of this invention can be used for this sealing material.
 封止材の成形方式としては、光半導体素子が固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された光半導体素子を浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 本明細書において、比率、パーセント、部などは、特に断りのない限り、重量に基づくものである。本明細書において、「X~Y」という表現は、XからYまでの範囲を示し、その範囲はX、Yを含む。
As a molding method of the sealing material, an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance. A compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
Examples of the injection method include dispenser, transfer molding, injection molding and the like.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used. For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
In the present specification, ratios, percentages, parts and the like are based on weight unless otherwise specified. In this specification, the expression “X to Y” indicates a range from X to Y, and the range includes X and Y.
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、合成例中の各物性値は以下の方法で測定した。
○重量平均分子量:GPC法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples. The present invention is not limited to these synthesis examples and examples. In addition, each physical-property value in a synthesis example was measured with the following method.
○ Weight average molecular weight: Polystyrene conversion and weight average molecular weight measured under the following conditions were calculated by the GPC method.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
○エポキシ当量:JIS K-7236に記載の方法で測定した。
○酸価:JIS K-2501に記載の方法で測定した。
○粘度:25℃においてE型粘度計を使用して測定した。
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
○ Epoxy equivalent: Measured by the method described in JIS K-7236.
○ Acid value: measured by the method described in JIS K-2501.
○ Viscosity: Measured using an E-type viscometer at 25 ° C.
合成例1(シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)を2段階の製造工程を経て製造したシリコーン骨格エポキシ樹脂の合成例)
(製造工程1)
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン394部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン(メチル基1モルに対し、フェニル基を0.18モル有する)475部、0.5%KOHメタノール溶液4部、イソプロピルアルコール36部を反応容器に仕込み、75℃に昇温した。昇温後、還流下にて10時間反応させた。
(製造工程2)
 メタノールを656部追加後、50%蒸留水メタノール溶液172.8部を60分かけて滴下し、還流下さらに10時間反応させた。
 反応終了後、5%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、MIBK780部を添加後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりシリコーン骨格エポキシ樹脂(A-1)731部を得た。得られた樹脂のエポキシ当量は491g/eq、重量平均分子量は2090、粘度は3530mPa・s、外観は無色透明の液状であった。
Synthesis Example 1 (Synthesis example of a silicone skeleton epoxy resin in which silanol-terminated silicone oil (a) and epoxy group-containing silicon compound (b) are produced through a two-stage production process)
(Manufacturing process 1)
394 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group with a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 475 Part, 4 parts of 0.5% KOH methanol solution and 36 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C. After raising the temperature, the reaction was carried out under reflux for 10 hours.
(Manufacturing process 2)
After adding 656 parts of methanol, 172.8 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted for 10 hours under reflux.
After completion of the reaction, the reaction mixture was neutralized with a 5% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 780 parts of MIBK was added for washing, and washing with water was repeated three times. Subsequently, the organic phase was removed at 100 ° C. under reduced pressure to obtain 731 parts of a silicone skeleton epoxy resin (A-1). The epoxy equivalent of the obtained resin was 491 g / eq, the weight average molecular weight was 2090, the viscosity was 3530 mPa · s, and the appearance was a colorless and transparent liquid.
合成例2(シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)を2段階の製造工程を経て製造したシリコーン骨格エポキシ樹脂の合成例)
(製造工程1)
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン197部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン(メチル基1モルに対し、フェニル基を0.18モル有する)534部、0.5%KOHメタノール溶液4部、イソプロピルアルコール36部を反応容器に仕込み、75℃に昇温した。昇温後、還流下にて10時間反応させた。
(製造工程2) 
 メタノールを576部追加後、50%蒸留水メタノール溶液86.4部を60分かけて滴下し、還流下さらに10時間反応させた。
 反応終了後、5%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、MIBK660部を添加後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりシリコーン骨格エポキシ樹脂(A-2)648部を得た。得られた樹脂のエポキシ当量は857g/eq、重量平均分子量は1860、粘度は390mPa・s、外観は無色透明の液状であった。
Synthesis Example 2 (Synthesis Example of Silicone Skeleton Epoxy Resin Produced by Silanol-Terminated Silicone Oil (a) and Epoxy Group-Containing Silicon Compound (b) Through Two-Step Manufacturing Process)
(Manufacturing process 1)
197 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 534 Part, 4 parts of 0.5% KOH methanol solution and 36 parts of isopropyl alcohol were charged into a reaction vessel, and the temperature was raised to 75 ° C. After raising the temperature, the reaction was carried out under reflux for 10 hours.
(Manufacturing process 2)
After adding 576 parts of methanol, 86.4 parts of a 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted for 10 hours under reflux.
After completion of the reaction, the reaction mixture was neutralized with a 5% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 660 parts of MIBK was added for washing, and washing with water was repeated three times. Next, the organic phase was removed under reduced pressure at 100 ° C. to obtain 648 parts of a silicone skeleton epoxy resin (A-2). The epoxy equivalent of the obtained resin was 857 g / eq, the weight average molecular weight was 1860, the viscosity was 390 mPa · s, and the appearance was a colorless and transparent liquid.
合成例3(シラノール末端シリコーンオイル(a)とエポキシ基含有ケイ素化合物(b)を2段階の製造工程を経て製造したシリコーン骨格エポキシ樹脂の合成例)
(製造工程1)
 2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン74部、分子量1700(GPC測定値)のシラノール基をもつポリジメチルジフェニルシロキサン(メチル基1モルに対し、フェニル基を0.18モル有する)52部、0.5%KOHメタノール溶液1部、イソプロピルアルコール9部を反応容器に仕込み、75℃に昇温した。昇温後、還流下にて10時間反応させた。
(製造工程2)
 メタノールを83部追加後、50%蒸留水メタノール溶液60.5部を60分かけて滴下し、還流下さらに10時間反応させた。
 反応終了後、5%第1水素ナトリウムリン酸水溶液で中和後、80℃でメタノールの蒸留回収を行った。その後、洗浄のために、MIBK120部を添加後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりシリコーン骨格エポキシ樹脂(A-3)100部を得た。得られた樹脂のエポキシ当量は364g/eq、重量平均分子量は2310、粘度は67070mPa・s、外観は無色透明の液状であった。
Synthesis Example 3 (Synthesis Example of Silicone Skeleton Epoxy Resin Made from Silanol-Terminated Silicone Oil (a) and Epoxy Group-Containing Silicon Compound (b) Through Two-Step Manufacturing Process)
(Manufacturing process 1)
2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 74 parts, polydimethyldiphenylsiloxane having a silanol group having a molecular weight of 1700 (measured by GPC) (having 0.18 mol of phenyl group per 1 mol of methyl group) 52 Part, 0.5 part of a KOH methanol solution and 9 parts of isopropyl alcohol were charged into a reaction vessel and heated to 75 ° C. After raising the temperature, the reaction was carried out under reflux for 10 hours.
(Manufacturing process 2)
After adding 83 parts of methanol, 60.5 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was further reacted for 10 hours under reflux.
After completion of the reaction, the reaction mixture was neutralized with a 5% aqueous sodium hydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. Thereafter, 120 parts of MIBK was added for washing, and washing with water was repeated three times. Next, the organic phase was removed under reduced pressure at 100 ° C. to obtain 100 parts of a silicone skeleton epoxy resin (A-3). The epoxy equivalent of the obtained resin was 364 g / eq, the weight average molecular weight was 2310, the viscosity was 67070 mPa · s, and the appearance was a colorless and transparent liquid.
合成例4(シリコーン骨格を有する多価カルボン酸の合成例)
 撹拌装置、ジムロートコンデンサ、温度計を設置したガラス製セパラブルフラスコに、両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)50部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)15.4部を反応容器に仕込み、80℃に昇温し、4時間後にGPCを測定したところリカシッドMHのピークが消失していた。その後さらに2時間反応させることにより多価カルボン酸(B-1)65.0部を得た。得られた化合物の酸価は80.0mgKOH/g、重量平均分子量は1700、粘度は750mPa・s、外観は無色透明の液状であった。
Synthesis Example 4 (Synthesis example of polyvalent carboxylic acid having silicone skeleton)
In a glass separable flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 50 parts of both-end carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Ricacid MH (methyl hexahydrophthalic anhydride, 15.4 parts (manufactured by Shin Nippon Rika Co., Ltd.) were charged into a reaction vessel, heated to 80 ° C., and GPC was measured after 4 hours. The peak of Ricacid MH disappeared. Thereafter, the mixture was further reacted for 2 hours to obtain 65.0 parts of polyvalent carboxylic acid (B-1). The acid value of the obtained compound was 80.0 mgKOH / g, the weight average molecular weight was 1700, the viscosity was 750 mPa · s, and the appearance was a colorless and transparent liquid.
合成例5 (シリコーン骨格とポリエステル骨格を有する多価カルボン酸の合成例)
 撹拌装置、ジムロートコンデンサ、温度計を設置したガラス製セパラブルフラスコに、両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)47.1部、ポリエステルポリオールであるアデカニューエースY9-10(ADEKA(株)製、上記式(6)においてRがネオペンチレン基でRがブチレン基であるポリエステルポリオール)11.8部、リカシッドBT-100(1,2,3,4-ブタンテトラカルボン酸二無水物、新日本理化(株)製)2.5部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)16.6部を仕込み、140℃で10時間反応させ、本発明の多価カルボン酸樹脂(B-2)77.5部を得た。この時にGPC測定において、リカシッドBT-100および、リカシッドMHのピークは消失していた。この多価カルボン酸樹脂は、反応終了時は無色透明の液体であったが、反応液の温度が下がるにつれて白濁した液体になった。得られた化合物の酸価は88.8mgKOH/g、重量平均分子量は3452、粘度は5730mPa・s、外観は白色液体の液状であった。
Synthesis Example 5 (Synthesis example of polyvalent carboxylic acid having silicone skeleton and polyester skeleton)
A glass separable flask equipped with a stirrer, a Dimroth condenser and a thermometer, 47.1 parts carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Adeka New Ace Y9- which is a polyester polyol 10 (polyester polyol manufactured by ADEKA Corporation, wherein R 8 is a neopentylene group and R 9 is a butylene group in the above formula (6)), Ricacid BT-100 (1,2,3,4-butanetetra) Carrying out 2.5 parts of carboxylic dianhydride (manufactured by Shin Nippon Rika Co., Ltd.) and 16.6 parts of Ricacid MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) at 140 ° C. for 10 hours By reacting, 77.5 parts of the polyvalent carboxylic acid resin (B-2) of the present invention was obtained. At this time, the peaks of Ricacid BT-100 and Ricacid MH disappeared in the GPC measurement. This polycarboxylic acid resin was a colorless and transparent liquid at the end of the reaction, but became a cloudy liquid as the temperature of the reaction liquid decreased. The acid value of the obtained compound was 88.8 mgKOH / g, the weight average molecular weight was 3452, the viscosity was 5730 mPa · s, and the appearance was a white liquid.
合成例6 (酸無水物と多価カルボン酸の混合物の合成例)
 撹拌装置、ジムロートコンデンサ、温度計を設置したガラス製セパラブルフラスコに、トリシクロデカンジメタノール(オクセア社製 TCD-AL)12部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)73部を反応容器(撹拌装置、ジムロート、温度計を設置したガラス製4つ口フラスコ)に仕込み、40℃に昇温し1時間、次いで60℃で1時間反応後にGPCを測定したところトリシクロデカンジメタノールのピークが消失していた。反応終了後、環状脂肪族炭化水素基(トリシクロデカンジメチル)を主骨格とする多価カルボン酸と、酸無水物(メチルヘキサヒドロフタル酸無水物)との混合物である硬化剤(B-3)を100部得た。得られた硬化剤(B-3)の官能基当量は171g/eq.であった(カルボン酸、酸無水物基をそれぞれ1官能基として考える)。粘度は15000mPa・s、外観は無色透明の液状であった。
Synthesis Example 6 (Synthesis Example of Mixture of Acid Anhydride and Multivalent Carboxylic Acid)
A glass separable flask equipped with a stirrer, a Dimroth condenser, and a thermometer, 12 parts of tricyclodecane dimethanol (TCD-AL, manufactured by Oxea), RIKACID MH (methylhexahydrophthalic anhydride, Shin Nippon Rika Co., Ltd.) )) 73 parts were charged into a reaction vessel (a glass four-necked flask equipped with a stirrer, Dimroth, and thermometer), heated to 40 ° C. for 1 hour, and then reacted at 60 ° C. for 1 hour, and GPC was measured. However, the peak of tricyclodecane dimethanol disappeared. After completion of the reaction, a curing agent (B-3), which is a mixture of a polyvalent carboxylic acid having a cyclic aliphatic hydrocarbon group (tricyclodecanedimethyl) as a main skeleton and an acid anhydride (methylhexahydrophthalic anhydride). ) Was obtained 100 parts. The functional group equivalent of the obtained curing agent (B-3) was 171 g / eq. (The carboxylic acid and acid anhydride groups are each considered as one functional group). The viscosity was 15000 mPa · s, and the appearance was a colorless and transparent liquid.
実施例1
 合成例1で得られたシリコーン骨格エポキシ樹脂(A-1)100部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例4で得られた多価カルボン酸(B-1)74部、PRIPOL1009(不飽和脂肪酸の多量体の還元体であるダイマー酸、クローダジャパン(株)製)8部、硬化促進剤として2-エチルヘキサン酸亜鉛1部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 1
100 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 5 parts of ERL-4221 (3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate, manufactured by Dow Chemical), epoxy 74 parts of polyvalent carboxylic acid (B-1) obtained in Synthesis Example 4 as a resin curing agent, 8 parts of PRIPOL 1009 (dimer acid which is a reduced product of unsaturated fatty acid multimer, manufactured by Claude Japan Co., Ltd.), curing 1 part of zinc 2-ethylhexanoate was added as an accelerator, mixed and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
実施例2
 合成例1で得られたシリコーン骨格エポキシ樹脂(A-1)70部、合成例3で得られたシリコーン骨格エポキシ樹脂(A-3)30部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例5で得られた多価カルボン酸(B-2)71部、硬化促進剤として2-エチルヘキサン酸亜鉛0.5部を入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。
Example 2
70 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 30 parts of silicone skeleton epoxy resin (A-3) obtained in Synthesis Example 3, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 71 parts of polycarboxylic acid (B-2) obtained in Synthesis Example 5 as an epoxy resin curing agent, 2-ethylhexane as a curing accelerator 0.5 parts of zinc acid was added, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation of the present invention.
比較例1
 合成例1で得られたシリコーン骨格エポキシ樹脂(A-1)40部、合成例3で得られたシリコーン骨格エポキシ樹脂(A-3)60部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例5で得られた多価カルボン酸(B-2)87部、PRIPOL1009(不飽和脂肪酸の多量体の還元体であるダイマー酸、クローダジャパン(株)製)10部、硬化促進剤として2-エチルヘキサン酸亜鉛1.2部を入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。
Comparative Example 1
40 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 60 parts of silicone skeleton epoxy resin (A-3) obtained in Synthesis Example 3, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 87 parts of polycarboxylic acid (B-2) obtained in Synthesis Example 5 as an epoxy resin curing agent, PRIPOL 1009 (multimer of unsaturated fatty acids) 10 parts of dimer acid, a product of Cloda Japan Co., Ltd.) and 1.2 parts of zinc 2-ethylhexanoate as a curing accelerator, mixed and degassed for 5 minutes to cure for optical semiconductor encapsulation A functional resin composition was obtained.
比較例2
 合成例1で得られたシリコーン骨格エポキシ樹脂(A-1)50部、合成例2で得られたシリコーン骨格エポキシ樹脂(A-2)50部、ERL-4221(3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ダウケミカル製)5部、エポキシ樹脂硬化剤として合成例6で得られた酸無水物と多価カルボン酸の混合物(B-3)23部、硬化促進剤として2-エチルヘキサン酸亜鉛0.2部を入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。
Comparative Example 2
50 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 50 parts of silicone skeleton epoxy resin (A-2) obtained in Synthesis Example 2, ERL-4221 (3,4-epoxycyclohexylmethyl- 5 parts of (3,4-epoxy) cyclohexyl carboxylate, manufactured by Dow Chemical), 23 parts of a mixture of acid anhydride and polycarboxylic acid obtained in Synthesis Example 6 as an epoxy resin curing agent (B-3), curing acceleration 0.2 parts of 2-ethylhexanoic acid zinc was added as an agent, mixed and defoamed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
比較例3
 合成例1で得られた、シリコーン骨格エポキシ樹脂(A-1)50部、合成例2で得られた、シリコーン骨格エポキシ樹脂(A-2)50部、エポキシ樹脂硬化剤として合成例6で得られた酸無水物と多価カルボン酸の混合物(B-3)26部、硬化促進剤として2-エチルヘキサン酸亜鉛0.8部を入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。
Comparative Example 3
50 parts of silicone skeleton epoxy resin (A-1) obtained in Synthesis Example 1, 50 parts of silicone skeleton epoxy resin (A-2) obtained in Synthesis Example 2, obtained in Synthesis Example 6 as an epoxy resin curing agent 26 parts of the resulting acid anhydride and polycarboxylic acid mixture (B-3) and 0.8 part of zinc 2-ethylhexanoate as a curing accelerator were added, mixed and degassed for 5 minutes to seal the optical semiconductor. A curable resin composition was obtained.
評価試験
 実施例1~2、比較例1~3で得られた光半導体封止用硬化性樹脂組成物の配合比とその硬化物の、DMA法により測定した0℃での貯蔵弾性率、DMA法により測定したガラス転移温度(Tg)、ヒートサイクル耐性、耐硫化試験の結果を表1に示す。表1における試験は以下のように行った。 
Evaluation test The blending ratio of the curable resin compositions for sealing an optical semiconductor obtained in Examples 1 and 2 and Comparative Examples 1 to 3, and the storage modulus of the cured product at 0 ° C. measured by the DMA method, DMA Table 1 shows the results of the glass transition temperature (Tg), heat cycle resistance, and sulfidation resistance measured by the method. The test in Table 1 was performed as follows.
(1)DMA法により測定した0℃での貯蔵弾性率;
 実施例1~2、比較例1~3で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ0.8mmの硬化膜を得た。得られた硬化物を幅5mm、長さ25mmに成形し、下記条件にてDMA(Dynamic Mechanical Analysis)を測定し、0℃での貯蔵弾性率を読み取った。
<DMA測定条件>
測定機器;セイコーインスツルメンツ製DMS6100
測定温度;-50℃~150℃
昇温速度;2℃/min
周波数;10Hz
測定モード;引張振動
(1) Storage elastic modulus at 0 ° C. measured by DMA method;
After carrying out vacuum defoaming for 5 minutes with the curable resin composition for sealing an optical semiconductor obtained in Examples 1 and 2 and Comparative Examples 1 to 3, heat-resistant tape was used so that the height would be 30 mm × 20 mm × height 0.8 mm. The dam was gently cast on the glass substrate. The cast was cured at 120 ° C. for 3 hours and then cured at 150 ° C. for 3 hours to obtain a cured film having a thickness of 0.8 mm. The obtained cured product was molded into a width of 5 mm and a length of 25 mm, DMA (Dynamic Mechanical Analysis) was measured under the following conditions, and the storage elastic modulus at 0 ° C. was read.
<DMA measurement conditions>
Measuring equipment: DMS6100 manufactured by Seiko Instruments Inc.
Measurement temperature: -50 ° C to 150 ° C
Temperature increase rate: 2 ° C / min
Frequency: 10Hz
Measurement mode: Tensile vibration
(2)DMA法により測定したガラス転移温度(Tg);
 前記(1)のDMAを測定した際の、貯蔵弾性率(E´)と損失弾性率(E´´)の商で表される損失係数(tanδ=E´´/E´)の極大点の温度を読み取った。
(3)ヒートサイクル試験
 実施例1~2、比較例1~3で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、シリンジに充填し精密吐出装置を使用して、底面に銀メッキを施した銅製電極を具備する5mm×5mm×1.4mm(封止部0.6mm)の表面実装型LEDパッケージに発光波長450nmを持つ発光素子を搭載した表面実装型LEDに、開口部が平面になるように注型した。120℃×1時間の予備硬化の後、150℃×3時間で硬化し、表面実装型LEDを封止した。このように封止した後に下記に示すヒートサイクル試験を行ない、その外観の変化を観察した。
<ヒートサイクル試験条件>
試験機器;エスペック製
1サイクル;-40℃30分~100℃30分
100サイクル毎に取り出し、300サイクルまで外観の変化を観察した。
(2) Glass transition temperature (Tg) measured by DMA method;
The maximum point of the loss coefficient (tan δ = E ″ / E ′) represented by the quotient of the storage elastic modulus (E ′) and the loss elastic modulus (E ″) when the DMA of (1) is measured. The temperature was read.
(3) Heat cycle test The curable resin composition for sealing an optical semiconductor obtained in Examples 1 and 2 and Comparative Examples 1 to 3 was vacuum degassed for 5 minutes, then filled into a syringe, and a precision dispensing device was used. A surface-mounted LED in which a light-emitting element having an emission wavelength of 450 nm is mounted on a surface-mounted LED package of 5 mm × 5 mm × 1.4 mm (sealing portion 0.6 mm) having a copper electrode with silver plating on the bottom surface In addition, casting was performed so that the opening was a flat surface. After pre-curing at 120 ° C. for 1 hour, it was cured at 150 ° C. for 3 hours to seal the surface-mounted LED. After sealing in this way, the heat cycle test shown below was performed, and the change in the appearance was observed.
<Heat cycle test conditions>
Test equipment: 1 cycle manufactured by ESPEC; -40 ° C. 30 minutes to 100 ° C. 30 minutes Taken every 100 cycles, and changes in appearance were observed up to 300 cycles.
(4)耐硫化試験
 前記ヒートサイクル試験と同様に封止した、表面実装型LEDを、20%硫化アンモニウム水溶液6mlを入れた開口部直径2cm、高さ1.5cmのポリエチレン製容器2つ(蓋は開放)と共に約3.2リッターのポリプロピレン製密閉容器に入れ、室温(20~27℃)にて10時間放置した。放置後に底面の銀メッキ部分の変色を目視にて確認した。表中、○;変色が全くないもの、△;やや変色しているもの、×;酷く変色しているもの。
(4) Sulfur resistance test Two surface-mounted LEDs, sealed in the same manner as in the heat cycle test, were made of two polyethylene containers with an opening diameter of 2 cm and a height of 1.5 cm containing 6 ml of 20% ammonium sulfide aqueous solution (lids) Was opened) and placed in a polypropylene sealed container of about 3.2 liters and allowed to stand at room temperature (20-27 ° C.) for 10 hours. After standing, the discoloration of the silver-plated portion on the bottom surface was visually confirmed. In the table, ○: no discoloration, Δ: slightly discolored, ×: severely discolored.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1に示す結果から明らかなように、DMA法による0℃の貯蔵弾性率が150MPaを上回り、且つそのガラス転移温度が10℃を上回る比較例1~3は、耐硫化性に優れるものの、ヒートサイクル試験において、300サイクルまでにワイヤー近傍の硬化物にクラック(ひび割れ)が確認され光半導体の信頼性に劣る。一方で、DMA法による0℃の貯蔵弾性率が0~150MPaの範囲で且つそのガラス転移温度が-10~10℃の範囲である実施例1~2は耐硫化性に優れるだけでなく、ヒートサイクル試験において、300サイクルを経ても外観に変化がなく、光半導体の信頼性に優れていた。 As is apparent from the results shown in Table 1, Comparative Examples 1 to 3 in which the storage elastic modulus at 0 ° C. by the DMA method exceeds 150 MPa and the glass transition temperature exceeds 10 ° C. are excellent in resistance to sulfidation. In the cycle test, cracks (cracks) are confirmed in the cured product near the wire by 300 cycles, and the reliability of the optical semiconductor is inferior. On the other hand, Examples 1 and 2 in which the storage elastic modulus at 0 ° C. by the DMA method is in the range of 0 to 150 MPa and the glass transition temperature is in the range of −10 to 10 ° C. are not only excellent in sulfidation resistance but also heat In the cycle test, the appearance did not change even after 300 cycles, and the reliability of the optical semiconductor was excellent.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2011年9月27日付で出願された日本特許出願(特願2011-210118)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application (Japanese Patent Application No. 2011-210118) filed on September 27, 2011, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明の硬化性樹脂組成物は、DMA法により測定したガラス転移温度(Tg)が-10~10℃の範囲で、DMA法により測定した0℃での貯蔵弾性率が0~150MPaの範囲である硬化物を与えることにより、ヒートサイクル耐性に極めて優れるため光半導体素子(LED)封止材としてきわめて有用である。 The curable resin composition of the present invention has a glass transition temperature (Tg) measured by DMA method in the range of −10 to 10 ° C. and a storage elastic modulus at 0 ° C. measured by DMA method in the range of 0 to 150 MPa. By giving a certain cured product, it is extremely useful as a sealing material for an optical semiconductor element (LED) because it has excellent heat cycle resistance.

Claims (9)

  1.  硬化物の、DMA法により測定したガラス転移温度(Tg)が-10~10℃の範囲であり、DMA法により測定した0℃での貯蔵弾性率が0~150MPaの範囲である光半導体素子封止用硬化性樹脂組成物。 The optical semiconductor device encapsulated product has a glass transition temperature (Tg) measured by DMA method in the range of −10 to 10 ° C. and a storage elastic modulus at 0 ° C. measured in DMA range of 0 to 150 MPa. Curable resin composition for stopping.
  2.  エポキシ樹脂(A)及びエポキシ樹脂硬化剤(B)を含有する、請求項1に記載の光半導体素子封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor element sealing of Claim 1 containing an epoxy resin (A) and an epoxy resin hardening | curing agent (B).
  3.  エポキシ樹脂(A)が、シリコーン骨格エポキシ樹脂である、請求項2に記載の光半導体素子封止用硬化性樹脂組成物。 The curable resin composition for optical semiconductor element sealing according to claim 2, wherein the epoxy resin (A) is a silicone skeleton epoxy resin.
  4.  シリコーン骨格エポキシ樹脂が、下記製造工程1、2を経て得られた、式(1)で表されるシラノール末端シリコーンオイルと式(2)で表されるエポキシ基含有ケイ素化合物の重合物であり、JIS K-7236に記載の方法で測定したエポキシ当量が300~1500g/eqである、請求項3に記載の光半導体素子封止用硬化性樹脂組成物。
    製造工程1
     シラノール末端シリコーンオイルのシラノール基と、エポキシ基含有ケイ素化合物のアルコキシ基を縮合させ、変性シリコーンオイルを得る工程。
    製造工程2
     製造工程1の後に、水を加え、残存するアルコキシ基の加水分解縮合を行なう工程。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Rは炭素数1~6のアルキル基又は炭素数5~10のアリール基を、mは平均値で3~200をそれぞれ表す。式中、複数存在するRは互いに同一であっても異なっていても良い)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、Xはエポキシ基を含有する有機基を、Rは炭素数1~10の直鎖状、分岐状または環状のアルキル基を、Rは炭素数1~10の直鎖状、分岐状または環状のアルキル基を、pは整数で0~2を、rは整数で(3-p)をそれぞれ表す。)
    The silicone skeleton epoxy resin is a polymer of a silanol-terminated silicone oil represented by formula (1) and an epoxy group-containing silicon compound represented by formula (2) obtained through the following production steps 1 and 2, The curable resin composition for optical semiconductor element encapsulation according to claim 3, wherein the epoxy equivalent measured by the method according to JIS K-7236 is 300 to 1500 g / eq.
    Manufacturing process 1
    A step of condensing a silanol group of a silanol-terminated silicone oil and an alkoxy group of an epoxy group-containing silicon compound to obtain a modified silicone oil.
    Manufacturing process 2
    A step of adding water after the production step 1 to hydrolyze and condense the remaining alkoxy groups.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 5 to 10 carbon atoms, and m represents an average value of 3 to 200. In the formula, a plurality of R 1 are present. They may be the same or different)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), X represents an organic group containing an epoxy group, R 2 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and R 3 represents a straight chain having 1 to 10 carbon atoms. A chain, branched or cyclic alkyl group, p is an integer from 0 to 2, and r is an integer and represents (3-p).)
  5.  エポキシ樹脂硬化剤(B)が、カルボン酸無水物及び/又はカルボン酸無水物をアルコール性水酸基で変性して得られるカルボン酸樹脂である、請求項2に記載の光半導体素子封止用硬化性樹脂組成物。 The curable resin for sealing an optical semiconductor element according to claim 2, wherein the epoxy resin curing agent (B) is a carboxylic acid resin obtained by modifying a carboxylic acid anhydride and / or a carboxylic acid anhydride with an alcoholic hydroxyl group. Resin composition.
  6.  さらに、硬化促進剤として、カルボン酸亜鉛を含むことを特徴とする請求項4又は請求項5に記載の光半導体素子封止用硬化性樹脂組成物。 Furthermore, zinc carboxylate is included as a hardening accelerator, The curable resin composition for optical semiconductor element sealing of Claim 4 or Claim 5 characterized by the above-mentioned.
  7.  カルボン酸亜鉛が、2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛から選ばれる一種以上である、請求項6に記載の光半導体素子封止用硬化性樹脂組成物。 The curable resin composition for sealing an optical semiconductor element according to claim 6, wherein the zinc carboxylate is at least one selected from zinc 2-ethylhexanoate, zinc stearate, zinc behenate, and zinc myristylate.
  8.  請求項1~請求項7のいずれか一項に記載の光半導体素子封止用硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition for sealing an optical semiconductor element according to any one of claims 1 to 7.
  9.  請求項8に記載の硬化物を具備するLED。 LED which comprises the hardened | cured material of Claim 8.
PCT/JP2012/074789 2011-09-27 2012-09-26 Curable resin composition for sealing optical semiconductor element, and cured material of same WO2013047620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-210118 2011-09-27
JP2011210118A JP6150415B2 (en) 2011-09-27 2011-09-27 Curable resin composition and cured product thereof

Publications (1)

Publication Number Publication Date
WO2013047620A1 true WO2013047620A1 (en) 2013-04-04

Family

ID=47995651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074789 WO2013047620A1 (en) 2011-09-27 2012-09-26 Curable resin composition for sealing optical semiconductor element, and cured material of same

Country Status (3)

Country Link
JP (1) JP6150415B2 (en)
TW (1) TW201323469A (en)
WO (1) WO2013047620A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173074A1 (en) * 2012-05-15 2013-11-21 Dow Corning Corporation Method of manufacturing an encapsulated semiconductor device and the encapsulated semiconductor device
CN111690309A (en) * 2020-07-16 2020-09-22 程浩源 Normal-temperature curing water-based epoxy resin coating and preparation method thereof
CN113242873A (en) * 2018-12-21 2021-08-10 昭和电工材料株式会社 Sealing composition and semiconductor device
WO2023079752A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Epoxy compound, epoxy resin, and sealing material
WO2023079753A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Epoxy resin composition, electronic component device, and method for manufacturing electronic component device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395597B2 (en) * 2014-12-25 2018-09-26 マクセルホールディングス株式会社 Dicing adhesive tape and semiconductor chip manufacturing method
CN115244100A (en) * 2020-02-21 2022-10-25 陶氏东丽株式会社 Solvent-free photocurable liquid composition, cured product thereof, optical filler comprising same, and display device comprising layer formed from cured product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same
WO2011043400A1 (en) * 2009-10-06 2011-04-14 日本化薬株式会社 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
WO2011108516A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Process for production of organopolysiloxane, organopolysiloxane obtained by the process, and composition that contains the organopolysiloxane
WO2011108588A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Curable resin composition and cured article thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071168A1 (en) * 2008-12-19 2010-06-24 日本化薬株式会社 Carboxylic acid compound and epoxy resin composition containing same
WO2011043400A1 (en) * 2009-10-06 2011-04-14 日本化薬株式会社 Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
WO2011108516A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Process for production of organopolysiloxane, organopolysiloxane obtained by the process, and composition that contains the organopolysiloxane
WO2011108588A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Curable resin composition and cured article thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173074A1 (en) * 2012-05-15 2013-11-21 Dow Corning Corporation Method of manufacturing an encapsulated semiconductor device and the encapsulated semiconductor device
CN113242873A (en) * 2018-12-21 2021-08-10 昭和电工材料株式会社 Sealing composition and semiconductor device
CN113242873B (en) * 2018-12-21 2024-04-19 株式会社力森诺科 Sealing composition and semiconductor device
CN111690309A (en) * 2020-07-16 2020-09-22 程浩源 Normal-temperature curing water-based epoxy resin coating and preparation method thereof
WO2023079752A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Epoxy compound, epoxy resin, and sealing material
WO2023079753A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Epoxy resin composition, electronic component device, and method for manufacturing electronic component device

Also Published As

Publication number Publication date
JP2013071950A (en) 2013-04-22
TW201323469A (en) 2013-06-16
JP6150415B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
TWI538959B (en) Hardened resin composition and hardened product thereof
JP6006725B2 (en) Curable resin composition for optical semiconductor element sealing and cured product thereof
JP5730852B2 (en) Method for producing organopolysiloxane, organopolysiloxane obtained by the production method, and composition containing the organopolysiloxane
JP6150415B2 (en) Curable resin composition and cured product thereof
JP5626856B2 (en) Curable resin composition and cured product thereof
KR102188989B1 (en) Curable resin composition and cured product thereof
JP5433705B2 (en) Curable resin composition and cured product thereof
TWI564318B (en) Epoxy resin composition
JP2014145073A (en) Curable resin composition and cured product of the same
JP6239616B2 (en) Epoxy group-containing polyorganosiloxane and curable resin composition containing the same
JP5472924B2 (en) Curable resin composition and cured product thereof
JP6279830B2 (en) Curable resin composition and cured product thereof
JP2015165013A (en) Epoxy resin curing agent composition and epoxy resin composition
JPWO2014157552A1 (en) Epoxy resin composition for optical semiconductor encapsulation, cured product thereof and optical semiconductor device
JP5832601B2 (en) Curable resin composition and cured product thereof
JP6016697B2 (en) Curable resin composition for light-emitting semiconductor coating protective material
JP2018030999A (en) Curable resin composition and cured product of the same
JP2014177531A (en) Epoxy resin composition including hydrotalcite compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835402

Country of ref document: EP

Kind code of ref document: A1