WO2011043199A1 - 熱交換型蒸留装置 - Google Patents

熱交換型蒸留装置 Download PDF

Info

Publication number
WO2011043199A1
WO2011043199A1 PCT/JP2010/066498 JP2010066498W WO2011043199A1 WO 2011043199 A1 WO2011043199 A1 WO 2011043199A1 JP 2010066498 W JP2010066498 W JP 2010066498W WO 2011043199 A1 WO2011043199 A1 WO 2011043199A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
pipe
liquid
recovery
concentrating
Prior art date
Application number
PCT/JP2010/066498
Other languages
English (en)
French (fr)
Inventor
中岩 勝
敏祐 若林
昭彦 玉越
Original Assignee
独立行政法人産業技術総合研究所
東洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 東洋エンジニアリング株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to EP10821870.2A priority Critical patent/EP2486965B1/en
Priority to DK10821870.2T priority patent/DK2486965T3/en
Priority to US13/386,624 priority patent/US8440056B2/en
Priority to CN2010800355583A priority patent/CN102470283B/zh
Priority to KR1020127003808A priority patent/KR101235388B1/ko
Priority to ES10821870.2T priority patent/ES2651455T3/es
Publication of WO2011043199A1 publication Critical patent/WO2011043199A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/26Fractionating columns in which vapour and liquid flow past each other, or in which the fluid is sprayed into the vapour, or in which a two-phase mixture is passed in one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • B01D3/322Reboiler specifications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4261Side stream

Definitions

  • the present invention relates to a distillation apparatus for carrying out a distillation operation widely applied in many industrial processes, and more particularly to a heat exchange type distillation apparatus.
  • HIDiC Heat Integrated Distillation Column
  • This basic system of HIDiC has a structure in which a concentrating part (high pressure part) and a recovery part (low pressure part) are separated and arranged as shown in FIG. And the operation pressure of a concentration part is made higher than the operation pressure of a collection
  • the distillation apparatus is extremely energy efficient.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-16928
  • the distillation apparatus includes a main body cylinder 51 and a plurality of tube units 52 inserted into the main body cylinder 51, and each tube unit 52 is separated by an upper tube sheet 53a and a lower tube sheet 53b. It is formed by being connected to the main body barrel 51.
  • Each tube unit 52 has a double tube structure, and the inner tube 54 of the tube unit 52 is used as a concentrating portion, and the outer tube 5 surrounding the outer surface of the inner tube 54 is used as a collecting portion.
  • Fillers (regular fillers) 54a and 55a are filled in the inner tube 54 and between the outer tube 55 and the inner tube 54. See also FIG. 3 for the tube unit 52.
  • the plurality of tube units 52 are arranged so that the outer walls 65 of the outer tube 55 are in contact with each other.
  • a recovery unit liquid inlet 56 for supplying the raw material liquid to the outer tube (recovery unit) 55, and a recovery unit steam outlet 57 for extracting steam from the outer tube 55. are arranged.
  • a channel 58a communicating only with the inner tube (concentrating portion) 54 is formed above the upper tube sheet 53a.
  • the upper end surface of the outer tube 55 is opened away from the upper tube sheet 53a.
  • the upper channel 58a is provided with a concentrating part liquid inlet 59 for supplying a liquid (refluxed liquid) to the inner pipe 54 and a concentrating part steam outlet 60 for extracting steam from the inner pipe 54.
  • a recovery unit steam inlet 61 for supplying steam to the outer tube 55 and a recovery unit liquid outlet 62 for extracting the liquid from the outer tube 55 are disposed at the lower part of the main body body 51.
  • a channel 58b communicating with only the inner tube 54 is formed below the lower tube sheet 53b.
  • the lower end surface of the outer tube 55 is opened away from the lower tube sheet 53b.
  • the lower channel 58b is provided with a concentrating portion steam inlet 63 for supplying steam to the inner tube 54 and a concentrating portion liquid outlet 64 for extracting liquid from the inner tube 54.
  • the raw material liquid is supplied from the recovery section liquid inlet 56 and is uniformly dispersed on the upper surface of the outer tube 55 of each tube unit 52.
  • the liquid that was allowed to flow while the outer pipe 55 was distilled vertically downward flows from the recovery section liquid outlet 62 to the reboiler outside the tower and is heated.
  • the Steam generated by the reboiler heating enters the tower again from the recovery section steam inlet 61.
  • the steam from the recovery unit steam inlet 61 is distributed to the lower surface of the outer pipe 55 of each tube unit 52, and goes to the upper side in the vertical direction of each outer pipe 55.
  • the liquid remaining without being vaporized is dispensed as a canned product.
  • the steam that has risen while being distilled vertically upward in the outer pipe 55 goes from the recovery section steam outlet 57 to the compressor.
  • the steam having passed through the compressor enters from the concentrating section steam inlet 63.
  • the steam from the concentrating part steam inlet 63 is directed vertically upward from the lower surface of each inner tube 54.
  • Vapor that has risen while being distilled in the upper direction of the inner pipe 54 exits from the upper surface of each inner pipe 54 and travels from the condensing unit vapor outlet 60 to a condenser outside the tower.
  • the vapor from the concentrating section is fully condensed or partially condensed in a condenser. If necessary, a part of the steam is supplied as reflux to the inner pipe 54 via the concentrating section liquid inlet 59, and the rest is discharged as a distillate product. Is done.
  • Such a configuration causes heat transfer from the concentrating unit (inner tube 54) to the recovery unit (outer tube 55), so that the heat input amount in the reboiler and the heat removal amount in the condenser can be reduced, and the energy efficiency is extremely high.
  • the product cannot be side-cut.
  • the side cut refers to extraction of a middle distillate product during the distillation process until the final distillate product is obtained.
  • the tube unit groups having a double-pipe structure are arranged so as to contact each other.
  • the outer and inner tubes are filled with regular packing. For this reason, piping cannot be formed so that a middle distillate product can be taken out from the inner pipe of each tube unit, and as a result, side cut cannot be performed.
  • the raw material supply stage (feed stage) cannot be optimized. This is because the filling heights of the concentrating unit and the collecting unit constructed with a double pipe structure are the same, and the number of stages of the concentrating unit and the collecting unit cannot be freely set.
  • the amount of heat exchange between the concentrating unit and the collecting unit using a double pipe has no design freedom with respect to the heat transfer area and depends only on the temperature distribution of the distillation column. The degree of freedom in designing the exchange amount is small.
  • X ⁇ T.
  • the inner pipe wall surface is the heat transfer area. This heat transfer area is a fixed value determined by the shape of the double pipe.
  • the overall heat transfer coefficient is also a fixed value determined by the heat transfer structure and the physical properties of the fluid that performs heat exchange. Therefore, as can be seen from the above heat exchange amount calculation formula, the heat exchange amount at the time of design can only be changed by the temperature difference between the concentration unit and the recovery unit, which varies depending on the operating pressure of the concentration unit and the recovery unit.
  • the present invention provides a heat exchange distillation apparatus having the following aspect.
  • a concentrating tower which is a tower body used as a concentrating section and has a plate tower section or a packed tower section
  • a recovery tower that is arranged at a higher position than the concentrating tower and is used as a recovery section and has a tray tower section or a packed tower section,
  • a first pipe communicating the top of the recovery tower and the bottom of the concentrating tower;
  • a compressor installed in the middle of the first pipe and compressing the vapor from the top of the recovery tower and sending it to the bottom of the concentration tower.
  • an example of the present invention includes a heat exchanger disposed in a predetermined stage of a concentration tower, A liquid draining portion arranged at a predetermined stage of the recovery tower, and extracting a part of the liquid from the predetermined stage to the outside of the tower; A second pipe for introducing the liquid from the liquid drainage section into the heat exchanger, and the fluid flowing out from the heat exchanger after being introduced into the heat exchanger via the second pipe is directly below the liquid drainage section. And a third pipe to be introduced into the stage.
  • the liquid flows from the recovery tower to the heat exchanger of the concentrating tower through the second pipe, and the heat from the vapor in the concentrating tower is taken away by this heat exchanger, and this heat is removed from the concentrating tower through the third pipe. It can be moved to the recovery tower. Further, the liquid flows from the recovery tower to the concentrating tower by gravity, whereby the fluid in the heat exchanger is pushed away from the concentrating tower to the collecting tower. That is, since the configuration of this aspect is a thermosiphon system, no pressure feeding means such as a pump is required for liquid feeding from the concentrating tower to the collecting tower on the upper side in the vertical direction.
  • a liquid storage part provided in a predetermined stage of the recovery tower, for storing liquid flowing down from above;
  • a heat exchanger arranged in the liquid reservoir of the recovery tower;
  • a partition plate that is provided at a predetermined position of the concentrating tower and completely partitions the upper and lower stages;
  • a second pipe that introduces steam of the lower stage of the partition plate to the heat exchanger;
  • a third pipe for introducing the fluid flowing out from the heat exchanger after being introduced into the heat exchanger via the second pipe into the upper stage of the partition plate.
  • the steam in the concentrating tower can be extracted outside the tower through the second pipe, and the steam can be introduced into the heat exchanger in the collecting tower to transfer the heat of the concentrating tower to the collecting tower.
  • the high-pressure steam in the concentrating tower rises up the second pipe toward the heat exchanger in the recovery tower, so that the liquid transferred from the steam in the heat exchanger is transferred from the recovery tower to the third pipe outside the tower. And flow into the concentrating tower by gravity. Therefore, even in the configuration of this aspect, a pumping means such as a pump is unnecessary.
  • the apparatus configuration for performing heat transfer from the concentrating tower to the recovery tower using the second and third pipes and the heat exchanger as in the first embodiment and the second embodiment is as described above.
  • the heat removal amount of the condenser attached to the top of the concentration tower can be reduced, and the heat input of the reboiler attached to the bottom of the recovery tower can be reduced.
  • a distillation apparatus with extremely high energy efficiency can be provided.
  • the concentrating tower and the recovery tower are constructed using the same plate tower section or packed tower section as a normal distillation apparatus, it is possible to cope with side cuts and multi-feed without any special improvement of the apparatus.
  • the maintenance of the apparatus is also possible easily.
  • there is a degree of freedom in setting the number of stages of the concentration tower and the recovery tower, and the raw material supply stage can be optimized.
  • the heat transfer area provides the degree of freedom in design, the heat exchange amount can be determined without depending on the temperature difference in the tower.
  • the energy efficiency is excellent, the side cut can be easily performed and the feed stage position can be easily set, and the apparatus can be easily maintained.
  • the device of the present invention since the device of the present invention has a device structure with an increased degree of design freedom, it is easily accepted by the user.
  • FIG. 1 The figure which shows the basic structure of HIDiC.
  • FIG. 1 The horizontal sectional view which shows the double pipe structure in the distillation column of FIG.
  • a normal distillation apparatus that is not an internal heat exchange type is a tower that is built in the vertical direction, and is composed of a tower bottom part, a tower part (or packed tower part), and a tower top part. (Or packed tower section) has an enrichment section on the upper side and a collection section on the lower side with respect to the raw material supply position.
  • the heat exchange distillation apparatus of the present invention separates the recovery unit and the concentration unit as described above and uses a column (recovery tower) used as a recovery unit extending in the vertical direction, and extends in the vertical direction.
  • a basic feature is that a tower body (concentration tower) used as a concentrating section is provided, and a recovery tower is arranged at a higher position than the concentrating tower.
  • FIG. 4 shows an overall configuration diagram of the heat exchange distillation apparatus according to the first embodiment.
  • the heat exchange distillation apparatus of the present embodiment includes a concentration tower 1 and a recovery tower 2 arranged at a position higher than the concentration tower 1.
  • the concentration tower 1 is composed of a tower bottom 1a, a plate tower (or packed tower) 1b, and a tower top 1c.
  • the recovery tower 2 also includes a tower bottom 2a, a plate tower (or packed tower) 2b, and a tower top 2c.
  • the shelf towers 1b and 2b are towers with a number of horizontal shelves (tray) installed in the tower.
  • the space between each shelf is called a step.
  • Each stage promotes gas-liquid contact and mass transfer.
  • the gas phase which is richer in more volatile components, is sent to the upper stage and is enriched in less volatile components.
  • the liquid phase flows down to the lower stage, where it is brought into gas-liquid contact with a new liquid phase or gas phase, and mass transfer is performed.
  • the upper tier of the column is richer in highly volatile components
  • the lower tier is rich in less volatile components, and the distillation operation is performed.
  • the packed tower section that can be replaced with the plate tower section is a type of tower in which some packing is put into a hollow tower and gas-liquid contact is performed on the surface thereof.
  • the upper part of the tower is richer in highly volatile components, and the lower part is rich in less volatile components, and a distillation operation is performed.
  • each of the concentration tower 1 and the recovery tower 2 will be described in detail individually. First, the recovery tower 2 will be described.
  • a heater 3 called a reboiler is disposed outside the tower bottom 2 a of the recovery tower 2, and a pipe 21 is provided from the space lower part of the tower bottom 2 a to the space upper part of the tower bottom 2 a via the heater 3. ing. Therefore, the liquid that has flowed down the tray tower 2b (or packed tower) of the recovery tower 2 is accumulated in the tower bottom 2a, and a part of this liquid is heated by the heater 3 to become steam and returns to the tower bottom 2a. . In addition, a bottoms liquid rich in low volatility components is obtained through the pipe 22 from the bottom of the tower bottom 2a.
  • the tower top 2c of the recovery tower 2 is a position for supplying raw materials.
  • the tower top 2 c is connected to the tower bottom 1 a of the concentrating tower 1 via the compressor 4 using a pipe 23.
  • the raw material supply position is the tower top 2c of the recovery tower 2, but the raw material supply position may be any stage of the tray tower 2b (or packed tower). Even when there are a plurality of raw materials, the raw material supply position can be the top 2c of the recovery tower 2 and any other stage (including the stage of the concentrating tower 1).
  • the tray tower 2b (or packed tower) of the recovery tower 2 has a liquid drain 2d at a predetermined stage.
  • the liquid draining part 2 d stores the liquid 10 flowing down from the upper part of the recovery tower 2 on the liquid storage shelf 5 and extracts a part of the liquid 10 to the outside of the recovery tower 2.
  • a pipe 24 for connecting a part of the liquid 10 to the concentrating tower 1 is connected to the liquid draining part 2d.
  • a pipe 25 from the concentration tower 1 side is inserted through the outer wall of the recovery tower 2 immediately below the liquid drainage section 2d.
  • a fluid in which the vapor 11 and the liquid 12 are mixed is introduced from the pipe 25 inserted in the stage immediately below the liquid draining portion 2d, and the vapor 11 rises and the liquid 12 falls downward.
  • concentration tower 1 will be described.
  • One end of a pipe 26 is connected to the bottom of the tower bottom 1a of the concentrating tower 1, and the other end of the pipe 26 is connected to a pipe 27 for supplying a raw material to the tower top 2c of the recovery tower 2.
  • a delivery pump 6 is required in the middle of the pipe 26.
  • a condenser 7 called a condenser is disposed outside the tower top 1c of the concentration tower 1, and a pipe 28 is provided from the upper space of the tower top 1c to the condenser 7. Therefore, the steam that has moved to the tower top 1c of the concentrating tower 1 is cooled by the condenser 7 to become a liquid, and a distillate rich in highly volatile components is obtained. Moreover, a part of the liquid is refluxed to the tower top 1c as necessary.
  • a tube bundle type heat exchanger 8 is inserted into a predetermined stage of the shelf tower section 1b (or packed tower section) of the concentrating tower 1.
  • the parallel tube portions in the U-shaped tube of the tube bundle heat exchanger 8 are arranged along a liquid storage tray 9 for once storing the condensed liquid and rectifying the rising steam.
  • the lower tube portion 8a among the parallel tube portions is connected to a pipe 24 connected to the liquid draining portion 2d of the recovery tower 2.
  • the upper tube part 8b is connected with the piping 25 inserted in the step just under the liquid draining part 2d.
  • the vapor emitted from the top 2c of the recovery tower 2 is pressurized and heated by the compressor 4 and supplied to the bottom 1a of the concentrating tower 1.
  • the heated steam 13 (see FIG. 6) is introduced into the tray tower 1b and rises, and comes into contact with the U tube of the tube bundle type heat exchanger 8.
  • the liquid in the tube portion 8 a is heated by the heat of the steam 13.
  • a part of the vapor 13 in contact with the tube portion 8a becomes a liquid 14 and falls downward.
  • the liquid introduced into the heat exchanger 8 from the pipe 24 is transferred from the lower tube portion 8a to the upper tube portion 8b.
  • the liquid phase and the gas phase change to a mixed fluid.
  • this fluid is introduced into the stage immediately below the liquid drainage portion 2d of the recovery tower 2 through the pipe 25 outside the tower (see FIG. 4).
  • a pumping means such as a pump is not particularly required.
  • the pipe 24 connects the liquid draining portion 2d of the recovery tower 2 to the lower tube portion 8a of the heat exchanger 8 of the concentrating tower 1, and furthermore, the upper tube portion of the heat exchanger 8 of the concentrating tower 1 Since the pipe 25 connects from 8b to the stage immediately below the liquid draining part 2d of the recovery tower 2, the liquid flows from the recovery tower 2 to the concentrating tower 1 by gravity, so that the fluid does not have a pump. Is also swept away from the concentration tower 1 to the recovery tower 2.
  • the heat in the condensing tower 1 is taken away by the heat exchanger 8, and this heat can be transferred from the concentrating tower 1 to the recovery tower 2 by the pipe 25.
  • the heat transfer system using the pipes 24 and 25 and the heat exchanger 8 is as if a side condenser is installed at an arbitrary stage of the concentrating tower 1 and at the same time at an arbitrary stage of the recovery tower 2. It is as if a reboiler is installed. Therefore, the amount of heat removed from the condenser 7 of the concentrating tower 1 can be reduced and the amount of heat input to the reboiler 3 of the recovery tower 2 can be reduced compared to a distillation apparatus that does not include the heat transfer system. As a result, the distillation apparatus has extremely high energy efficiency. Can be provided.
  • FIG. 4 only one set of the heat transfer system is shown. However, for example, a set number of heat transfer systems corresponding to 10 to 30% of the total number of theoretical plates can be installed. Of course, the number of installed heat transfer systems and the arrangement positions of heat exchangers and pipes are arbitrarily determined according to the design.
  • FIG. 7 shows an overall configuration diagram of a heat exchange distillation apparatus according to the second embodiment.
  • the heat exchange distillation apparatus of the present embodiment includes a concentration tower 1 and a recovery tower 2 arranged at a position higher than the concentration tower 1.
  • the concentration tower 1 is composed of a tower bottom 1a, a plate tower (or packed tower) 1b, and a tower top 1c.
  • the recovery tower 2 also includes a tower bottom 2a, a plate tower (or packed tower) 2b, and a tower top 2c.
  • the specific configuration of the tray tower section or packed tower section is the same as in the first embodiment.
  • This embodiment is different from the first embodiment in that the tube bundle type heat exchanger 8 is arranged on the recovery tower 2 side.
  • the configurations attached to the tower bottom 2a and the tower top 2c are the same as in the first embodiment as shown in FIG.
  • the configuration relating to the plate tower 2b is changed as compared with the first embodiment.
  • the shelf tower section 2b (or packed tower section) has a liquid reservoir 2e at a predetermined stage.
  • the liquid reservoir 2e stores a predetermined amount of the liquid 10 flowing down from above on the liquid storage shelf 15, and the liquid overflowing from the liquid storage shelf 15 can be dropped downward.
  • the tube bundle heat exchanger 8 is inserted into the liquid reservoir 2e so that the U tube of the tube bundle heat exchanger 8 is immersed in the liquid stored in the liquid reservoir 2e (FIG. 8). reference).
  • Parallel tube portions 8 a and 8 b in the U-shaped tube of the tube bundle heat exchanger 8 are arranged along the liquid storage shelf 15.
  • a pipe 29 (see FIG. 7) for sending a fluid from the concentration tower 1 to the recovery tower 2 is connected to the upper tube portion 8b of the parallel tube portions.
  • a pipe 30 (see FIG. 7) for sending fluid from the recovery tower 2 to the concentration tower 1 is connected to the lower tube portion 8a.
  • the raw material liquid flows down from the top 2c of the recovery tower 2 through the shelf or packed bed.
  • the liquid 10 (see FIG. 8) is accumulated in the liquid reservoir 2e on the liquid reservoir shelf 15 provided at an arbitrary stage. Since the U-shaped tube of the tube bundle heat exchanger 8 is disposed in the liquid reservoir 2e, the U-shaped tube is immersed in the liquid 10. In this state, when the high-temperature steam in the concentrating tower 1 is introduced into the tube portion 8b on the upper side of the heat exchanger 8 through the pipe 29, the liquid 10 in contact with the outer walls of the tube portions 8b and 8a through which the high-temperature steam moves. The part is heated and rises as steam 18 (see FIG. 8).
  • the high-temperature steam introduced from the pipe 29 to the heat exchanger 8 changes to a fluid in which the liquid phase and the gas phase are mixed as it moves from the upper tube portion 8b to the lower tube portion 8a.
  • This fluid passes through a pipe 30 outside the tower and is introduced into a stage on the partition plate 16 of the concentrating tower 1 as described later (see FIG. 7).
  • the operation pressure on the partition plate 16 is set to be lower than that below the partition plate 16, and fluid is circulated by this pressure difference. In such a fluid circulation, this configuration does not particularly require a pumping means such as a pump as in the first embodiment.
  • the pipe 29 connects the predetermined stage in the concentrating tower 1 to the upper tube portion 8b of the heat exchanger 8 in the recovery tower 2, and the concentrating tower starts from the lower tube portion 8a of the heat exchanger 8 in the recovery tower 2.
  • the high pressure steam in the concentration tower 1 rises up the pipe 29 toward the heat exchanger 8 in the recovery tower 2 due to the pressure difference between the upper and lower parts of the partition plate 16.
  • the liquid transferred from the steam in the heat exchanger 8 is pushed out of the recovery tower 2 to the piping 30 outside the tower, and flows to the concentrating tower 1 by gravity. Therefore, a pumping means such as a pump is unnecessary.
  • the structures attached to the tower bottom 1a and the tower top 1c are the same as those in the first embodiment as shown in FIG.
  • the structure regarding the part 1b (or packed tower part) is changed compared with 1st embodiment.
  • the upper and lower stages of the shelf tower section 1b (or packed tower section) of the concentrating tower 1 are completely partitioned by the partition plate 16 at an intermediate position.
  • the stage immediately below the partition plate 16 communicates with the pipe 29, and the rising steam at this stage passes through the pipe 29 extending in the vertical direction in the heat exchanger 8 disposed in the liquid reservoir 2 e of the recovery tower 2. It is sent to the upper tube portion 8b.
  • a pipe 30 from the collection tower 2 side is inserted through the outer wall of the concentration tower 1.
  • a fluid in which steam and liquid are mixed is introduced from the pipe 30 to the upper stage of the partition plate 16, the steam rises, and the liquid falls downward and accumulates on the partition plate 16.
  • the rising steam moves to the tower top 1c, it is cooled by the condenser 7 through the pipe 28.
  • a distillate rich in highly volatile components can be obtained.
  • the two stages positioned above and below the partition plate 16 can be communicated by a pipe 31 provided with a control valve 17.
  • the liquid accumulated on the partition plate 16 is sent to the lower stage of the partition plate 16 in a timely manner by opening the control valve 17.
  • the steam in the concentration tower 1 is extracted outside the tower through the pipe 29 and introduced into the heat exchanger 8 in the recovery tower 2, thereby depriving the heat in the concentration tower 1. It can be moved into the recovery tower 2.
  • the heat transfer system using the pipes 29 and 30 and the heat exchanger 8 is as if a side condenser is installed at any stage of the concentrating tower 1 and at the same time at any stage of the recovery tower 2. It is as if a reboiler is installed.
  • the amount of heat removed from the condenser 7 of the concentrating tower 1 can be reduced and the amount of heat input to the reboiler 3 of the recovery tower 2 can be reduced compared to a distillation apparatus that does not include the heat transfer system.
  • the distillation apparatus has extremely high energy efficiency. Can be provided.
  • FIG. 7 only one set of the heat transfer system is shown, but in the case of this embodiment as well, the number of heat transfer systems installed and the positions of the heat exchangers and pipes are as in the first embodiment. It is decided arbitrarily according to the design.
  • the heat exchange type distillation apparatus of the present invention exemplified as the first and second embodiments is configured by using a plate tower section or a packed tower section similar to an ordinary distillation apparatus, It is possible to cope with cutting and multi-feed without special improvement of the apparatus, and maintenance of the apparatus can be easily performed. For the same reason, since there is a degree of freedom in setting the number of stages of the concentration tower and recovery tower, it is possible to optimize the raw material supply stage. That is, the above-mentioned 1) to 5) mentioned as problems of the heat exchange distillation apparatus using a double tube structure represented by Patent Document 1 are solved by the present invention.
  • the tube bundle type heat exchanger 8 is used as a component of the heat transfer system for transferring heat from the concentrating tower 1 to the recovery tower 2, heat transfer is performed by the tube design of the heat exchanger 8. Area A can be changed freely. Therefore, regarding the determination of the amount of heat exchange between the concentrating tower 1 and the recovery tower 2, not only the temperature difference ⁇ T between the concentrating tower 1 and the recovery tower 2 but also the heat transfer area A should be designed with a degree of freedom. I can do it. This solves the problem 6) of the heat exchange type distillation apparatus using the double pipe structure.
  • the present invention is not limited to this form.
  • the heat exchanger may be installed outside the distillation tower.
  • the shape of the heat exchanger in the above embodiment, as a general example when the heat exchanger is incorporated in the distillation column, only a tube bundle type heat exchanger of U tube is shown. A shaped heat exchanger may be used.
  • the concentrating tower 1 and the collecting tower 2 are vertically connected in the vertical direction, but the present invention is not limited to this form. That is, the present invention includes a configuration in which the concentrating tower 1 and the collecting tower 2 are configured separately and the collecting tower 2 is disposed at a higher position than the concentrating tower 1.
  • Concentration tower 1a Tower bottom 1b Shelf tower (or packed tower) 1c tower top part 2 recovery tower 2a tower bottom part 2b plate tower part (or packed tower part) 2c Tower top part 2d Liquid drainage part 2e Liquid reservoir part 3 Heater (reboiler) 4 Compressor 5 Shelf 6 Pressure feeding means 7 Condenser 8 Tube bundle type heat exchanger 5, 15 Shelf plate for liquid storage 9 Liquid storage tray 10, 12, 14 Liquid 11, 13, 18 Steam (vapor) 16 Partition plate 17 Control valve 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 Piping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 本発明では、通常の蒸留塔と比べて、エネルギー効率が高く、設計の自由度が大きく装置のメンテナンスも容易になる熱交換型蒸留装置が提供される。そのため、本発明の蒸留装置は、濃縮塔(1)と、濃縮塔1よりも高い位置に配置された回収塔(2)と、回収塔の塔頂部(2c)と濃縮塔の塔底部(1a)を連通させる第一の配管(23)と、回収塔の塔頂部(2c)からの蒸気を圧縮して濃縮塔の塔底部(1a)に送るコンプレッサー(4)とを備える。さらに本発明の蒸留装置は、濃縮塔(1)の所定の段に配置された熱交換器(8)と、回収塔(2)の所定の段に配置され、該所定の段から一部の液を塔外部へ抜き出す液抜き部(2d)と、液抜き部(2d)からの液を熱交換器(8)へ導入する第二の配管(24)と、第二の配管(24)を経由して熱交換器(8)へ導入された後に熱交換器(8)より流出する流体を液抜き部(2d)の直下の段へ導入する第三の配管(25)と、を備えている。

Description

熱交換型蒸留装置
 本発明は、多くの工業プロセスで広く適用される蒸留操作を実施するための蒸留装置であって、特に熱交換型蒸留装置に関する。
 蒸留分離操作は、工業プロセス全般で広く適用されているが、消費エネルギーが非常に大きい単位操作でもある。そのため産業界では消費エネルギーを低減できる蒸留装置の研究がなされてきた。こうした研究において、少エネルギー性に優れた蒸留装置として内部熱交換型蒸留塔(Heat Integrated Distillation Column、以下、HIDiC と称す。)の開発が行われている。
 このHIDiCの基本的なシステムは図1に示すように、濃縮部(高圧部)と回収部(低圧部)を分離して並べた構造を有している。そして、濃縮部の操作温度が回収部の操作温度よりも高くなるように、濃縮部の操作圧力を回収部の操作圧力よりも高くする。このことによって、両者間に熱交換面があれば濃縮部から回収部に熱移動が生じるため、リボイラーにおける入熱量を小さくできる。また濃縮部の熱は回収部へ移動するため、コンデンサーにおける除熱量も小さくできる。したがって、エネルギー効率が極めて高い蒸留装置となる。
 このようなHIDiCを実用化するために、特開2004-16928号公報(以下、特許文献1と称す)に示すような二重管構造を有する蒸留装置が提案されている。
 この蒸留装置は、図2に示すように、本体胴51と、本体胴51内に挿入された複数のチューブユニット52とを備え、各チューブユニット52を上側チューブシート53a及び下側チューブシート53bによって本体胴51と連結させることにより形成されている。
 各チューブユニット52は二重管構造を有しており、チューブユニット52の内管54が濃縮部、内管54の外側面を囲む外管5が回収部として利用される。内管54の内部と外管55と内管54の間には充填物(規則充填物)54a,55aが充填されている。チューブユニット52については図3も参照されたい。また複数のチューブユニット52は外管55の外壁65どうしが互いに接触するように配設されている。
 再び図2を参照すると、本体胴51の上部には、外管(回収部)55に原料液を供給するための回収部液入口56と、外管55からの蒸気を抜き出す回収部蒸気出口57とが配設されている。
 上側チューブシート53aより上側に、内管(濃縮部)54のみと連通するチャンネル58aが形成されている。外管55の上端面は上側チューブシート53aから離れて開放されている。
 上側チャンネル58aには、内管54に液(還流液)を供給するための濃縮部液入口59と、内管54からの蒸気を抜き出す濃縮部蒸気出口60とが配設されている。
 本体胴51の下部には、外管55に蒸気を供給するための回収部蒸気入口61と、外管55からの液を抜き出す回収部液出口62とが配設されている。
 下側チューブシート53bより下側に、内管54のみと連通するチャンネル58bが形成されている。外管55の下端面は下側チューブシート53bから離れて開放されている。
 下側チャンネル58bには、内管54に蒸気を供給するための濃縮部蒸気入口63と、内管54からの液を抜き出す濃縮部液出口64とが配設されている。
 上記の蒸留装置では、原料液が回収部液入口56から供給され、それぞれのチューブユニット52の外管55の上面に均一に分散される。各外管55の上端面に供給された原料液のうちの、外管55を鉛直方向下側に蒸留されながら流下できた液は、回収部液出口62から塔外のリボイラーに流れて加熱される。リボイラーの加熱で生じた蒸気は回収部蒸気入口61から再び塔内に入る。回収部蒸気入口61からの蒸気は各チューブユニット52の外管55の下面に分配され、各外管55を鉛直方向上側に向かう。気化せずに残った液は缶出製品として払出される。
 外管55を鉛直方向上側に蒸留されながら上昇できた蒸気は回収部蒸気出口57からコンプレッサーに向かう。コンプレッサーを経た蒸気は濃縮部蒸気入口63から入る。濃縮部蒸気入口63からの蒸気は各内管54の下面から鉛直方向上側に向かう。内管54を鉛直方向上側に蒸留されながら上昇した蒸気は各内管54の上面を出て、濃縮部蒸気出口60から塔外のコンデンサーに向かう。濃縮部から出た蒸気はコンデンサーにて、全凝縮、或いは部分凝縮し、必要な場合、一部は還流として内管54へ濃縮部液入口59を介して供給され、残りは留出製品として払出される。
 こうした構成は濃縮部(内管54)から回収部(外管55)へ熱移動が生じるため、リボイラーにおける入熱量とコンデンサーにおける除熱量を小さくでき、エネルギー効率が極めて高い。
 しかしながら、特許文献1に開示されるように濃縮部と回収部が二重管構造で構築された熱交換型蒸留装置は、次の1)~6)のような課題がある。
 1)製品のサイドカットを行なうことが出来ない。サイドカットとは、最終の留出製品を得るまでの蒸留プロセスの途中のものを中間留分製品として抽出することをいう。
 特許文献1記載の蒸留装置では二重管構造のチューブユニット群が互いに接するように配置されている。その上、外管および内管には規則充填物が充填されている。このため、各チューブユニットの内管から中間留分製品を取り出せるように配管を形成することが出来ず、結果、サイドカットが出来ない。
 2)原料供給段(フィード段)の最適化を行うことが出来ない。二重管構造で構築された濃縮部と回収部ではそれぞれの充填高が同じになってしまい、濃縮部と回収部の段数を自由に設定できないからである。
 3)供給する原料に応じて供給位置を変えられない。上記2)で述べたようにフィード段位置を自由に設定できない構造だからである。
 4)マルチフィード(複数の原料ストリームの受け入れ)に対応できない。上記1)で述べたように二重管の途中に原料を供給することができない構造だからである。
 5)装置のメンテナンスが困難である。上記1)で述べたように規則充填物を用いたチューブユニットが互いに隣接して密集している為、所望のチューブユニットへ完全にアクセスすることが出来ず、それらのメンテナンスを行うことが出来ない。
 6)二重管を用いた濃縮部と回収部の間の熱交換量は、伝熱面積に対して設計上の自由度がなく蒸留塔の温度分布のみに依存しており、装置設計において熱交換量の設計上の自由度が小さい。
 濃縮部と回収部の間での熱交換量Qは、総括伝熱係数をUとし、伝熱面積をAとし、濃縮部と回収部の間の温度差をΔTとすると、Q=U×A×ΔT で表される。二重管構造を用いたHIDiCでは内管壁面が伝熱面積となる。この伝熱面積は二重管の形で決まる固定値である。また総括伝熱係数についても、伝熱構造および熱交換を行う流体物性により決まる固定値である。そのため、上記の熱交換量算出式から分かるように、設計時の熱交換量は、濃縮部と回収部の操作圧力によって変化する、濃縮部と回収部の間の温度差によって変更できるだけである。
 本発明は、上記のような課題に鑑みて以下の態様の熱交換型蒸留装置を提供する。
 一つの態様の熱交換型蒸留装置は、
 濃縮部として利用される塔体であり棚段塔部或いは充填塔部を有する濃縮塔と、
 濃縮塔よりも高い位置に配置され、回収部として利用される塔体であり棚段塔部或いは充填塔部を有する回収塔と、
 回収塔の塔頂部と濃縮塔の塔底部を連通させる第一の配管と、
 第一の配管の途中に設置され、回収塔の塔頂部からの蒸気を圧縮して濃縮塔の塔底部に送るコンプレッサーと、を備える。
 このような態様に加えて、本発明の一例は、濃縮塔の所定の段に配置された熱交換器と、
 回収塔の所定の段に配置され、該所定の段から一部の液を塔外部へ抜き出す液抜き部と、
 液抜き部からの液を熱交換器へ導入する第二の配管と、該第二の配管を経由して熱交換器へ導入された後に該熱交換器より流出する流体を液抜き部の直下の段へ導入する第三の配管と、をさらに備えている。
 この態様例では、第二の配管によって回収塔から濃縮塔の熱交換器へ液体が流れ、この熱交換器によって濃縮塔内の蒸気の熱を奪い、この熱を第三の配管によって濃縮塔から回収塔へ移動させることができる。また、回収塔から濃縮塔へ重力により液体が流れ、これによって、熱交換器内の流体は濃縮塔から回収塔へ押し流される。すなわち本態様の構成はサーモサイフォン方式となっているため、濃縮塔から鉛直方向上側の回収塔への液送においてポンプなどの圧送手段を必要としない。
 また、上記の態様例に替わる別の態様例は、
 回収塔の所定の段に設けられ、上から流下してきた液を溜める液溜め部と、
 回収塔の液溜め部内に配置された熱交換器と、
 濃縮塔の所定の位置に設けられた、上下の段を完全に仕切る仕切板と、仕切板の下側の段の蒸気を熱交換器へ導入する第二の配管と、
 該第二の配管を経由して熱交換器へ導入された後に該熱交換器より流出する流体を仕切板の上側の段へ導入する第三の配管と、を備えている。
 この代替例では、第二の配管によって濃縮塔内の蒸気を塔外に抜き出し、その蒸気を回収塔内の熱交換器に導入して、濃縮塔の熱を回収塔に移動させることができる。また、濃縮塔内の高圧蒸気は回収塔における熱交換器に向かって第二の配管を上昇し、これによって、熱交換器内で蒸気から変移した液が回収塔から塔外の第三の配管に押し出され、濃縮塔へ重力により流れる。したがって、本態様の構成においてもポンプなどの圧送手段は不要である。
 また上記の第一の態様例や第二の態様例のように第二及び第三の配管並びに熱交換器を用いて濃縮塔から回収塔へ熱移動を行う装置構成は、このような熱移動の構成を備えない蒸留装置と比べて、濃縮塔の塔頂部に取り付けられるコンデンサーの除熱量が小さくでき、また、回収塔の塔底部に取り付けられるリボイラーの入熱量も小さくできる。結果、エネルギー効率の極めて高い蒸留装置を提供することができる。
 また、濃縮塔や回収塔が普通の蒸留装置と同じ棚段塔部或いは充填塔部を用いて構成されるものなので、サイドカットやマルチフィードの実施において装置を特別に改良することなく対応することが可能で、また装置のメンテナンスも容易に可能である。また同様の理由から、濃縮塔や回収塔の段数の設定には自由度があり、原料供給段の最適化も行える。
 さらに、伝熱面積が設計の自由度となるので、塔内温度差に依存しないで熱交換量を決定できる。
 以上のように本発明によれば、エネルギー効率が優れ、サイドカットの実施やフィード段位置の設定に対して容易に対応することができ、装置のメンテナンスも容易になる。
 また、本発明の装置は設計の自由度が増した装置構造となるため、ユーザー側に受け入れられやすい。
HIDiCの基本的な構造を示す図。 特許文献1に記載の、二重管構造を用いた熱交換型蒸留塔を示す図。 図2の蒸留塔における二重管構造を示す水平断面図。 本発明の第一の実施形態による熱交換型蒸留装置の全体構成図。 図4の液抜き部の構成図。 図4の濃縮塔内に配置されたチューブバンドル型熱交換器の周辺構成を示す図。 本発明の第二の実施形態による熱交換型蒸留装置の全体構成図。 図7の回収塔内に配置されたチューブバンドル型熱交換器の周辺構成を示す図。
 内部熱交換型ではない普通の蒸留装置は、鉛直方向に建てられる塔であって塔底部と棚段塔部(或いは充填塔部)と塔頂部とで構成された塔からなり、棚段塔部(或いは充填塔部)は原料供給位置を境に上側が濃縮部、下側が回収部となっている。これに対し、本発明の熱交換型蒸留装置は、上記のような回収部と濃縮部を分離して、鉛直方向に延びる回収部として利用される塔体(回収塔)と、鉛直方向に延びる濃縮部として利用される塔体(濃縮塔)とを設け、回収塔を濃縮塔よりも高い位置に配置した点を基本的特徴とする。以下、本発明の実施の形態について図面を参照して説明する。
 (第一の実施形態)
 図4は第一の実施形態による熱交換型蒸留装置の全体構成図を示している。本実施形態の熱交換型蒸留装置は、濃縮塔1と、濃縮塔1よりも高い位置に配置された回収塔2とを有している。濃縮塔1は、塔底部1aと、棚段塔部(或いは充填塔部)1bと、塔頂部1cとから構成されている。回収塔2もまた、塔底部2aと、棚段塔部(或いは充填塔部)2bと、塔頂部2cとから構成されている。
 棚段塔部1b,2bは塔内に水平な棚板(トレイ)をいくつも設置したタイプの塔である。それぞれの棚板間の空間を段という。各段では気液接触が促進され物質移動が行われる結果、より揮発性の高い成分に富むことになった気相は上の段に送られ、より揮発性の低い成分に富むことになった液相は下の段へ流れ落ち、そこでまた新たな液相、或いは気相と気液接触を行い物質移動が行われる。このようにして塔の上部の段ほど揮発性の高い成分に富み、下部の段ほど揮発性の低い成分に富むことになり、蒸留操作が行われる。
 棚段塔部に置換可能な充填塔部は中空の塔内に何らかの充填物を入れ、その表面で気液接触を行わせるタイプの塔である。棚段塔部と同じ機構により塔の上部ほど揮発性の高い成分に富み、下部ほど揮発性の低い成分に富むことになり、蒸留操作が行われる。
 図4では棚段塔部1b,2b(或いは充填塔部)の内部が空白に描かれているが、実際は上記のような構造が採られている。
 さらに濃縮塔1および回収塔2の各々について個別に詳述する。まずは、回収塔2を説明する。
 回収塔2の塔底部2aの外側には、リボイラーと呼ばれる加熱器3が配設されており、配管21が塔底部2aの空間下部から加熱器3を介して塔底部2aの空間上部へ設けられている。したがって、回収塔2の棚段塔部2b(或いは充填塔部)を流下した液は塔底部2aに溜まり、この液の一部は加熱器3で加熱されて蒸気になって塔底部2aに戻る。また、塔底部2aの最底から、揮発性の低い成分に富んだ缶出液が配管22を通して得られる。
 回収塔2の塔頂部2cは原料を供給する位置となっている。塔頂部2cはコンプレッサー4を介して濃縮塔1の塔底部1aに、配管23を用いて接続されている。本実施形態では原料供給位置を回収塔2の塔頂部2cとしたが、原料供給位置は棚段塔部2b(或いは充填塔部)の任意の段であってもよい。また、原料が複数存在する場合でも、原料供給位置は回収塔2の塔頂部2cと、それ以外の任意の段(濃縮塔1の段も含む)とすることも可能である。
 加えて、回収塔2の棚段塔部2b(或いは充填塔部)は所定の段に液抜き部2dを有している。液抜き部2dは、図5に示すように、回収塔2の上部から流下してきた液10を液溜め用棚板5に溜め、液10の一部を回収塔2の外部へ抜き出す。液抜き部2dには、液10の一部を濃縮塔1へ向かわせる配管24が接続されている。また、液抜き部2dの直ぐ下の段には、濃縮塔1側からの配管25が回収塔2の外壁を貫通して挿入されている。液抜き部2dの直ぐ下の段に挿入された配管25からは、後述するように蒸気11と液12が混ざった流体が導入され、蒸気11は上昇し、液12は下へ落ちる。
 さらに濃縮塔1を説明する。
 濃縮塔1の塔底部1aの最底には配管26の一端が接続されており、この配管26の他端は、回収塔2の塔頂部2cへ原料を供給する配管27と接続されている。濃縮塔1の塔底部1aに溜まった液を、濃縮塔1よりも高い位置に位置する回収塔2の塔頂部2cに還流するため、配管26の途中には送出ポンプ6が必要となる。
 濃縮塔1の塔頂部1cの外側には、コンデンサーと呼ばれる凝縮器7が配設されており、配管28が塔頂部1cの空間上部から凝縮器7へ設けられている。したがって、濃縮塔1の塔頂部1cに移動してきた蒸気は凝縮器7で冷却されて液体になり、揮発性の高い成分に富んだ留出液が得られる。また、その液体の一部は必要に応じて塔頂部1cに還流される。
 加えて、濃縮塔1の棚段塔部1b(或いは充填塔部)には所定の段にチューブバンドル型熱交換器8が差し込まれている。チューブバンドル型熱交換器8のU形チューブにおける平行なチューブ部分は、凝縮した液を一度溜め、また上昇蒸気を整流するための液溜め用トレイ9に沿って配されている。該平行なチューブ部分のうち下側のチューブ部分8aは、回収塔2の液抜き部2dに接続された配管24と繋がっている。そして上側のチューブ部分8bは、液抜き部2dの直ぐ下の段に挿入されている配管25と繋がっている。
 ここで、チューブバンドル型熱交換器8の作用について説明する。
 本装置では回収塔2の塔頂部2cから出た蒸気はコンプレッサー4にて昇圧および昇温されて濃縮塔1の塔底部1aに供給される。この昇温された蒸気13(図6参照)は棚段塔部1bに導入されて上昇し、チューブバンドル型熱交換器8のUチューブと接触する。このとき、熱交換器8の下側のチューブ部分8aには回収塔2の任意の段における液が配管24により導入されているため、このチューブ部分8a内の液が蒸気13の熱で加熱されるとともに、チューブ部分8aに接触した蒸気13の一部は液14となって下へと落ちる。さらに、熱交換器8の上側のチューブ部分8bも蒸気13の熱で加熱されているので、配管24から熱交換器8内に導入された液体は下側のチューブ部分8aから上側のチューブ部分8bを移動するにつれて、液相と気相が混ざった流体に変わる。そして、この流体は塔外の配管25を通って回収塔2の液抜き部2dの直ぐ下の段に導入される(図4参照)。このような流体の循環においては、本構成がサーモサイフォン方式となっているため、ポンプなどの圧送手段を特に必要としない。
 つまり、回収塔2の液抜き部2dから濃縮塔1の熱交換器8の下側のチューブ部分8aまでを配管24で接続し、さらには、濃縮塔1の熱交換器8の上側のチューブ部分8bから回収塔2の液抜き部2dの直ぐ下の段までを配管25で接続しているため、回収塔2から濃縮塔1へ重力により液体が流れ、これによって上記の流体はポンプが無くても濃縮塔1から回収塔2へ押し流される。
 以上のように本実施形態では、熱交換器8によって濃縮塔1内の蒸気の熱を奪い、この熱を配管25によって濃縮塔1から回収塔2へ移動させることができる。本実施形態のように配管24,25および熱交換器8を用いた熱移動システムは、あたかも、濃縮塔1の任意の段にサイドコンデンサーが設置されると同時に回収塔2の任意の段にサイドリボイラーが設置されているかのような構成である。したがって、上記熱移動システムを備えない蒸留装置と比べて、濃縮塔1のコンデンサー7の除熱量が小さくでき、回収塔2のリボイラー3の入熱量も小さくでき、結果、エネルギー効率の極めて高い蒸留装置を提供することができる。
 なお、図4では上記熱移動システムが1セットだけ示されているが、例えば全理論段数の10~30%に相当するセット数の熱移動システムを設置することができる。勿論、熱移動システムの設置数、熱交換器や配管の配置位置は設計に応じて任意に決められている。
 (第二の実施形態)
 次に本発明の第二の実施形態を説明するが、第一の実施形態と同じ構成要素については同じ符号を使用して説明することにする。
 図7は第二の実施形態による熱交換型蒸留装置の全体構成図を示している。本実施形態の熱交換型蒸留装置は、濃縮塔1と、濃縮塔1よりも高い位置に配置された回収塔2とを有している。濃縮塔1は、塔底部1aと、棚段塔部(或いは充填塔部)1bと、塔頂部1cとから構成されている。回収塔2もまた、塔底部2aと、棚段塔部(或いは充填塔部)2bと、塔頂部2cとから構成されている。棚段塔部或いは充填塔部の具体的構成は第一の実施形態と同様である。
 本実施形態は、チューブバンドル型熱交換器8が回収塔2側に配置されている点が第一の実施形態と比べて異なっている。
 本実施形態の回収塔2については、塔底部2aと塔頂部2cに付属する構成(リボイラー3、配管21,22,23,27など)は図7に示すように第一の実施形態と同じであるが、棚段塔部2b(或いは充填塔部)に関する構成が第一の実施形態と比べて変更されている。
 棚段塔部2b(或いは充填塔部)は所定の段に液溜め部2eを有している。液溜め部2eは、上から流下してきた液10を液溜め用棚板15上に所定量貯留し、液溜め用棚板15から溢れた液は下へ落とせるようになっている。液溜め部2eに貯留された液の中にチューブバンドル型熱交換器8のUチューブが浸漬されるように、液溜め部2e内にチューブバンドル型熱交換器8が差し込まれている(図8参照)。チューブバンドル型熱交換器8のU形チューブにおける平行なチューブ部分8a,8bは、液溜め用棚板15に沿って配されている。
 該平行なチューブ部分のうち上側のチューブ部分8bには、濃縮塔1から回収塔2へ流体を送る配管29(図7参照)が接続されている。下側のチューブ部分8aには、回収塔2から濃縮塔1へ流体を送る配管30(図7参照)が接続されている。
 ここで、液溜め部2eでの熱交換器8の作用について説明する。
 本装置では回収塔2の塔頂部2cから棚段或いは充填層を通って原料液が流下してくる。この液10(図8参照)は、任意の段に設けられた液溜め用棚板15上の液溜め部2eに溜まる。液溜め部2e内にはチューブバンドル型熱交換器8のU形チューブが配置されているため、該U形チューブは液10の中に浸漬されることとなる。この状態において熱交換器8の上側のチューブ部分8bに濃縮塔1内の高温蒸気が配管29によって導入されたとき、高温蒸気が移動するチューブ部分8b,8aの外壁と接している液10の一部は加熱され蒸気18になって上昇する(図8参照)。また配管29から熱交換器8に導入された高温蒸気は、上側のチューブ部分8bから下側のチューブ部分8aを移動するにつれて、液相と気相が混ざった流体に変わる。この流体は塔外の配管30を通り、後述するような濃縮塔1の仕切板16上の段に導入される(図7参照)。仕切板16上は仕切板16下よりも低い操作圧力に設定されており、この圧力差により流体の循環が行われる。このような流体の循環においては、本構成は第一の実施形態と同じようにポンプなどの圧送手段を特に必要としない。
 つまり、濃縮塔1における所定の段から回収塔2における熱交換器8の上側のチューブ部分8bまでを配管29で接続し、回収塔2における熱交換器8の下側のチューブ部分8aから濃縮塔1における前記所定の段までを配管30で接続しているため、仕切板16上下の圧力差により、濃縮塔1内の高圧蒸気は回収塔2における熱交換器8に向かって配管29を上昇し、これによって、熱交換器8内で蒸気から変移した液が回収塔2から塔外の配管30に押し出され、濃縮塔1へ重力により流れる。したがって、ポンプなどの圧送手段は不要である。
 さらに本実施形態の濃縮塔1を説明する。
 濃縮塔1についても、塔底部1aと塔頂部1cに付属する構成(コンデンサー7、配管23,26,28など)は図7に示すように第一の実施形態と同じであるが、棚段塔部1b(或いは充填塔部)に関する構成が第一の実施形態と比べて変更されている。具体的には、濃縮塔1の棚段塔部1b(或いは充填塔部)は途中の位置で仕切板16により上下の段が完全に仕切られている。仕切板16の直ぐ下の段は配管29と連通しており、この段での上昇蒸気は、鉛直方向に延びる配管29によって、回収塔2の液溜め部2eに配置された熱交換器8の上側のチューブ部分8bに送られる。
 仕切板16の上側の段には、回収塔2側からの配管30が濃縮塔1の外壁を貫通して挿入されている。この配管30から仕切板16の上側の段に、蒸気と液が混ざった流体が導入され、蒸気は上昇し、液は下へ落ちて仕切板16上に溜まる。その上昇蒸気は塔頂部1cに移動すると、配管28を通って凝縮器7で冷却される。結果、揮発性の高い成分に富んだ留出液が得られる。
 また仕切板16を挟んで上下に位置する二つ段は、制御弁17を備えた配管31により連絡可能となっている。仕切板16上に溜まった液は、制御弁17の開放操作により、仕切板16の下方の段へ適時送られる。
 以上のように本実施形態では、配管29によって濃縮塔1内の蒸気を塔外に抜き出し、その蒸気を回収塔2内の熱交換器8に導入することで、濃縮塔1内の熱を奪い回収塔2内に移動させることができる。本実施形態のように配管29,30および熱交換器8を用いた熱移動システムは、あたかも、濃縮塔1の任意の段にサイドコンデンサーが設置されると同時に回収塔2の任意の段にサイドリボイラーが設置されているかのような構成である。したがって、上記熱移動システムを備えない蒸留装置と比べて、濃縮塔1のコンデンサー7の除熱量が小さくでき、回収塔2のリボイラー3の入熱量も小さくでき、結果、エネルギー効率の極めて高い蒸留装置を提供することができる。
 なお、図7では上記熱移動システムが1セットだけ示されているが、本実施形態の場合も第一の実施形態のように、熱移動システムの設置数、熱交換器や配管の配置位置は設計に応じて任意に決められている。
 以上、第一および第二の実施形態として例示された本発明の熱交換型蒸留装置は、普通の蒸留装置と同じような棚段塔部或いは充填塔部を用いて構成されているため、サイドカットやマルチフィードの実施において装置を特別に改良することなく対応することが可能で、また装置のメンテナンスも容易に可能である。また同様の理由から、濃縮塔や回収塔の段数の設定には自由度があるため、原料供給段の最適化も行うことが可能となる。すなわち、特許文献1に代表される二重管構造を用いた熱交換型蒸留装置の課題として挙げた前記1)~5)が本発明によって解決される。
 また本発明の実施形態では、濃縮塔1から回収塔2へ熱移動を行わせる熱移動システムの構成要素としてチューブバンドル型熱交換器8を用いるため、この熱交換器8のチューブ設計によって伝熱面積Aが自由に変えられる。したがって、濃縮塔1と回収塔2の間での熱交換量の決定に関して、濃縮塔1と回収塔2の間の温度差ΔTだけでなく、伝熱面積Aも設計上の自由度とすることが出来る。この事により、前記二重管構造を用いた熱交換型蒸留装置の課題6)が本発明によって解決されている。
 以上のように本発明の好ましい実施形態について幾つかの実施形態を例示して説明したが、本願発明はこれらの実施形態に限定されるものではなく、その技術思想を逸脱しない範囲で種々変更して実施することが可能であることは言うまでもない。
 第一および第二の実施形態では熱交換器が蒸留塔内に組み込まれた形態を示したが、本発明はこの形態に限定されない。本発明では、回収塔のある部分の流体と濃縮塔のある部分の流体との熱交換が実施できればよいので、熱交換器が蒸留塔外部に設置されてもよい。また、熱交換器の形状についても、上記の実施形態では熱交換器を蒸留塔内に組み込む場合の一般的な例として、Uチューブのチューブバンドル型熱交換器を示したに過ぎず、その他の形状の熱交換器を使用してもよい。
 また上記の各実施形態では、濃縮塔1と回収塔2が鉛直方向上下に連結された形態を示したが、本発明はこの形態にも限定されない。すなわち本発明は、濃縮塔1と回収塔2が別個独立の構成で、回収塔2が濃縮塔1より高い位置に配置される形態を含むものである。
1  濃縮塔
1a  塔底部
1b  棚段塔部(或いは充填塔部)
1c  塔頂部
2  回収塔
2a  塔底部
2b  棚段塔部(或いは充填塔部)
2c  塔頂部
2d  液抜き部
2e  液溜め部
3  加熱器(リボイラー)
4  コンプレッサー
5  棚板
6  圧送手段
7  凝縮器(コンデンサー)
8  チューブバンドル型熱交換器
5、15  液溜め用棚板
9  液溜め用トレイ
10、12、14  液
11、13、18  蒸気(ベーパー)
16  仕切板
17  制御弁
21、22、23、24、25、26、27、28、29、30、31  配管

Claims (5)

  1.  濃縮部として利用される棚段塔部或いは充填塔部を有する濃縮塔と、
     前記濃縮塔よりも高い位置に配置され、回収部として利用される棚段塔部或いは充填塔部を有する回収塔と、
     前記回収塔の塔頂部と前記濃縮塔の塔底部を連通させる第一の配管と、
     前記第一の配管の途中に設置され、前記回収塔の塔頂部からの蒸気を圧縮して前記濃縮塔の塔底部に送るコンプレッサーと、
     前記濃縮塔の所定の段に配置された熱交換器と、
     前記回収塔の所定の段に配置され、該所定の段から一部の液を塔外部へ抜き出す液抜き部と、
     前記液抜き部からの液を前記熱交換器へ導入する第二の配管と、
     前記第二の配管を経由して前記熱交換器へ導入された後に該熱交換器より流出する流体を前記液抜き部の直下の段へ導入する第三の配管と、
     を備えた熱交換型蒸留装置。
  2.  濃縮部として利用される棚段塔部或いは充填塔部を有する濃縮塔と、
     前記濃縮塔よりも高い位置に配置され、回収部として利用される棚段塔部或いは充填塔部を有する回収塔と、
     前記回収塔の塔頂部と前記濃縮塔の塔底部を連通させる第一の配管と、
     前記第一の配管の途中に設置され、前記回収塔の塔頂部からの蒸気を圧縮して前記濃縮塔の塔底部に送るコンプレッサーと、
     前記回収塔の所定の段に設けられ、上から流下してきた液を溜める液溜め部と、
     前記回収塔の前記液溜め部内に配置された熱交換器と、
     前記濃縮塔の所定の位置に設けられた、上下の段を完全に仕切る仕切板と、
     前記仕切板の下側の蒸気を前記熱交換器へ導入する第二の配管と、
     前記第二の配管を経由して前記熱交換器へ導入された後に前記熱交換器より流出する流体を前記仕切板の上側へ導入する第三の配管と、
     を備えた熱交換型蒸留装置。
  3.  前記仕切板を挟んで上下に位置する空間を連通させる、制御弁を備えた配管をさらに備えた、請求項2に記載の熱交換型蒸留装置。
  4.  前記回収塔の塔頂部に、及び/又は、前記棚段塔部或いは充填塔部の所定の段に原料を供給する原料供給配管をさらに備えた、請求項1から3のいずれか1項に記載の熱交換型蒸留装置。
  5.  前記濃縮塔の塔底部に溜まった液を前記原料供給配管へ圧送するためのポンプ及び配管をさらに備えた、請求項4に記載の熱交換型蒸留装置。
PCT/JP2010/066498 2009-10-05 2010-09-24 熱交換型蒸留装置 WO2011043199A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10821870.2A EP2486965B1 (en) 2009-10-05 2010-09-24 Heat-exchange-type distillation apparatus
DK10821870.2T DK2486965T3 (en) 2009-10-05 2010-09-24 HEAT EXCHANGE TYPE DISTILLATION DEVICE
US13/386,624 US8440056B2 (en) 2009-10-05 2010-09-24 Heat integrated distillation apparatus
CN2010800355583A CN102470283B (zh) 2009-10-05 2010-09-24 热交换型蒸馏装置
KR1020127003808A KR101235388B1 (ko) 2009-10-05 2010-09-24 열 통합 증류 장치
ES10821870.2T ES2651455T3 (es) 2009-10-05 2010-09-24 Equipo de destilación del tipo de intercambio de calor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009231490A JP4803470B2 (ja) 2009-10-05 2009-10-05 熱交換型蒸留装置
JP2009-231490 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011043199A1 true WO2011043199A1 (ja) 2011-04-14

Family

ID=43856663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066498 WO2011043199A1 (ja) 2009-10-05 2010-09-24 熱交換型蒸留装置

Country Status (8)

Country Link
US (1) US8440056B2 (ja)
EP (1) EP2486965B1 (ja)
JP (1) JP4803470B2 (ja)
KR (1) KR101235388B1 (ja)
CN (1) CN102470283B (ja)
DK (1) DK2486965T3 (ja)
ES (1) ES2651455T3 (ja)
WO (1) WO2011043199A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232244A (ja) * 2011-04-28 2012-11-29 Mitsumaru Kagaku Kk 回分式の内部熱交換型蒸留装置
EP2732859A1 (en) 2012-11-15 2014-05-21 Toyo Engineering Corporation Distillation apparatus and method for controlling the same
EP2732860A2 (en) 2012-11-16 2014-05-21 Toyo Engineering Corporation Aromatic hydrocarbon production apparatus
EP2875850A1 (en) 2013-11-21 2015-05-27 Toyo Engineering Corporation Heat integrated three columns for separating 1-butene
EP2896442A1 (en) 2014-01-17 2015-07-22 Toyo Engineering Corporation Distillation column divided in several parts comprising a mechanical heat pump
EP3199216A1 (en) 2016-01-26 2017-08-02 Toyo Engineering Corporation Method of adjusting duty of heat exchange in heat integrated distillation column
EP2644241B1 (en) * 2012-03-30 2018-06-13 Toyo Engineering Corporation Heat integrated distillation apparatus
WO2018183468A3 (en) * 2017-03-28 2018-12-27 Gti Solutions International Llc INTEGRATED HEAT SEPARATION SYSTEM WITH ACTIVE STEAM CONTROL

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085126A1 (en) * 2010-10-06 2012-04-12 Exxonmobil Research And Engineering Company Low energy distillation system and method
JP5956772B2 (ja) 2012-02-20 2016-07-27 東洋エンジニアリング株式会社 熱交換型蒸留装置
JP5923335B2 (ja) 2012-02-24 2016-05-24 東洋エンジニアリング株式会社 熱交換型蒸留装置
JP6006596B2 (ja) 2012-09-21 2016-10-12 東洋エンジニアリング株式会社 芳香族製造装置の分離工程のストリッパーおよび、その運転方法
US20140262729A1 (en) * 2013-03-14 2014-09-18 Elwha Llc Heat transfer between a distillation column and a temperature source
US9937437B2 (en) * 2013-08-23 2018-04-10 Uop Llc Fractionation system having rectifying and stripping columns in a single vessel with a uniform diameter
US20150052940A1 (en) * 2013-08-23 2015-02-26 Uop Llc Fractionation system and method including depropanizer column and bottoms stripping column
EP3338867B1 (de) * 2016-12-22 2019-09-25 GEA Wiegand GmbH Anlage und verfahren zum entalkoholisieren von alkoholhaltigen getränken
US11103803B2 (en) * 2017-06-08 2021-08-31 Lg Chem, Ltd. Distillation device and distillation method
CN108007068B (zh) * 2018-01-07 2024-03-29 中国科学院工程热物理研究所 一种lng冷能利用的热集成精馏空分系统
JP6963094B2 (ja) * 2018-03-15 2021-11-05 東洋エンジニアリング株式会社 非断熱型蒸留塔
CN112774236B (zh) * 2020-12-10 2022-02-18 大连理工大学 一种管壳式主动型气相分配器
US11827535B2 (en) * 2021-08-31 2023-11-28 Air Products And Chemicals, Inc. Integrated heat exchanger and sour water stripper
CN115317947B (zh) * 2022-08-30 2023-08-11 山东神驰石化有限公司 一种丙烯生产用高效精馏塔

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250801A (ja) * 1991-01-07 1992-09-07 Kobe Steel Ltd 蒸留方法及び装置
WO2004002602A1 (ja) * 2002-06-28 2004-01-08 Kansai Chemical Engineering Co., Ltd. 内部熱交換型蒸留塔
WO2006022208A1 (ja) * 2004-08-24 2006-03-02 Kansai Chemical Engineering Co., Ltd. 多重構造型内部熱交換型蒸留塔

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575007A (en) * 1968-03-26 1971-04-13 Treadwell Corp Isothermal fractional distillation of materials of differing volatilities
GB1310514A (en) * 1969-07-02 1973-03-21 Bligh B R Process of contunuous distillation
US4234391A (en) * 1978-10-13 1980-11-18 University Of Utah Continuous distillation apparatus and method
US4277268A (en) * 1979-10-17 1981-07-07 Conoco, Inc. Heat pump fractionation process
US4961826A (en) * 1986-02-13 1990-10-09 Trustees Of Dartmouth College Distillation process for ethanol
US4737177A (en) * 1986-08-01 1988-04-12 Erickson Donald C Air distillation improvements for high purity oxygen
US5351492A (en) * 1992-09-23 1994-10-04 Air Products And Chemicals, Inc. Distillation strategies for the production of carbon monoxide-free nitrogen
US5435436A (en) * 1994-01-21 1995-07-25 Manley; David B. Thermomechanically integrated distillation of close-boiling light hydrocarbons
JP2694425B2 (ja) * 1994-08-29 1997-12-24 木村化工機株式会社 内部熱交換型蒸留塔
US6045660A (en) * 1996-03-08 2000-04-04 Savage; Kern Mechanically assisted two-phase contactor and fuel ethanol production system
US5737940A (en) * 1996-06-07 1998-04-14 Yao; Jame Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US5682762A (en) * 1996-10-01 1997-11-04 Air Products And Chemicals, Inc. Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns
EP0842686B1 (de) * 1996-11-19 2003-04-02 Sulzer Chemtech AG Destillationsanlage mit Wärmepumpe
US6605190B1 (en) * 1997-02-14 2003-08-12 San Diego State University Foundation Staged optimal externally-controlled systems and method thereof
AUPO775697A0 (en) * 1997-07-07 1997-07-31 Inland Oil Refiners (Qld) Pty Ltd Method and apparatus for fractional distillation
DE19959153A1 (de) * 1999-12-08 2001-06-21 Basf Ag Verfahren zur Herstellung von Alkalimethylaten
JP3990202B2 (ja) 2002-06-17 2007-10-10 木村化工機株式会社 内部熱交換型蒸留塔
DE102005004948B3 (de) * 2005-02-02 2006-03-02 Uhde Gmbh Verfahren zur Erhöhung der Selektivität von physikalisch wirkenden Lösungsmitteln bei einer Absorption von Gaskomponenten aus technischen Gasen
US20070221065A1 (en) * 2006-03-23 2007-09-27 Adisorn Aroonwilas Heat recovery gas absorption process
US8002952B2 (en) * 2007-11-02 2011-08-23 Uop Llc Heat pump distillation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250801A (ja) * 1991-01-07 1992-09-07 Kobe Steel Ltd 蒸留方法及び装置
WO2004002602A1 (ja) * 2002-06-28 2004-01-08 Kansai Chemical Engineering Co., Ltd. 内部熱交換型蒸留塔
WO2006022208A1 (ja) * 2004-08-24 2006-03-02 Kansai Chemical Engineering Co., Ltd. 多重構造型内部熱交換型蒸留塔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2486965A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232244A (ja) * 2011-04-28 2012-11-29 Mitsumaru Kagaku Kk 回分式の内部熱交換型蒸留装置
EP2644241B1 (en) * 2012-03-30 2018-06-13 Toyo Engineering Corporation Heat integrated distillation apparatus
EP2732859A1 (en) 2012-11-15 2014-05-21 Toyo Engineering Corporation Distillation apparatus and method for controlling the same
EP2732860A2 (en) 2012-11-16 2014-05-21 Toyo Engineering Corporation Aromatic hydrocarbon production apparatus
JP2014097966A (ja) * 2012-11-16 2014-05-29 Toyo Engineering Corp 芳香族炭化水素製造装置
US9573866B2 (en) 2012-11-16 2017-02-21 Toyo Engineering Corporation Aromatic hydrocarbon production apparatus
US9851140B2 (en) 2013-11-21 2017-12-26 Toyo Engineering Corporation Distillation apparatus
EP2875850A1 (en) 2013-11-21 2015-05-27 Toyo Engineering Corporation Heat integrated three columns for separating 1-butene
US10016699B2 (en) 2014-01-17 2018-07-10 Toyo Engingeering Corporation Distillation column
EP2896442A1 (en) 2014-01-17 2015-07-22 Toyo Engineering Corporation Distillation column divided in several parts comprising a mechanical heat pump
JP2017131813A (ja) * 2016-01-26 2017-08-03 東洋エンジニアリング株式会社 内部熱交換型蒸留塔の熱交換量調節方法
KR20170089414A (ko) * 2016-01-26 2017-08-03 토요엔지니어링 카부시키가이샤 열 통합형 증류탑에서 열교환 듀티를 조절하는 방법
EP3199216A1 (en) 2016-01-26 2017-08-02 Toyo Engineering Corporation Method of adjusting duty of heat exchange in heat integrated distillation column
US10265640B2 (en) 2016-01-26 2019-04-23 Toyo Engineering Corporation Method of adjusting duty of heat exchange in heat integrated distillation column
KR102513055B1 (ko) 2016-01-26 2023-03-22 토요엔지니어링 카부시키가이샤 열 통합형 증류탑에서 열교환 듀티를 조절하는 방법
WO2018183468A3 (en) * 2017-03-28 2018-12-27 Gti Solutions International Llc INTEGRATED HEAT SEPARATION SYSTEM WITH ACTIVE STEAM CONTROL

Also Published As

Publication number Publication date
US20120125761A1 (en) 2012-05-24
EP2486965A1 (en) 2012-08-15
CN102470283B (zh) 2013-09-25
CN102470283A (zh) 2012-05-23
JP4803470B2 (ja) 2011-10-26
EP2486965B1 (en) 2017-09-13
KR20120028401A (ko) 2012-03-22
EP2486965A4 (en) 2013-08-14
US8440056B2 (en) 2013-05-14
ES2651455T3 (es) 2018-01-26
KR101235388B1 (ko) 2013-02-20
JP2011078872A (ja) 2011-04-21
DK2486965T3 (en) 2017-12-04

Similar Documents

Publication Publication Date Title
JP4803470B2 (ja) 熱交換型蒸留装置
JP5923367B2 (ja) 熱交換型蒸留装置
JP5956772B2 (ja) 熱交換型蒸留装置
JP5923335B2 (ja) 熱交換型蒸留装置
JP6140591B2 (ja) 蒸留装置
JP2015100724A5 (ja)
JP6289112B2 (ja) 蒸留塔
JP6266876B2 (ja) 蒸留装置とその制御方法
WO2007086776A1 (fr) Procédé de séparation d'un mélange de composants liquides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035558.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13386624

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010821870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010821870

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127003808

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000631

Country of ref document: TH