WO2011043191A1 - 基地局装置、移動局装置及び送信電力制御方法 - Google Patents

基地局装置、移動局装置及び送信電力制御方法 Download PDF

Info

Publication number
WO2011043191A1
WO2011043191A1 PCT/JP2010/066416 JP2010066416W WO2011043191A1 WO 2011043191 A1 WO2011043191 A1 WO 2011043191A1 JP 2010066416 W JP2010066416 W JP 2010066416W WO 2011043191 A1 WO2011043191 A1 WO 2011043191A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
station apparatus
power control
base station
power
Prior art date
Application number
PCT/JP2010/066416
Other languages
English (en)
French (fr)
Inventor
秀和 田岡
佑一 柿島
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/498,918 priority Critical patent/US8787261B2/en
Priority to EP10821862.9A priority patent/EP2487965A4/en
Priority to CN201080044652.5A priority patent/CN102577532B/zh
Publication of WO2011043191A1 publication Critical patent/WO2011043191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0652Feedback error handling

Definitions

  • the present invention relates to a base station apparatus, a mobile station apparatus, and a transmission power control method, and more particularly, to a base station apparatus, a mobile station apparatus, and a transmission power control method corresponding to downlink multi-antenna transmission.
  • UMTS Universal Mobile Telecommunications System
  • WSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • CDMA Wideband Code Division Multiple Access
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • LTE-A LTE Advanced
  • a MIMO (Multi Input Multi Output) antenna system has been proposed as a wireless communication technology that transmits and receives data with a plurality of antennas and improves throughput and frequency utilization efficiency (for example, non-patent literature). 1).
  • a spatial multiplexing transmission mode (SU-MIMO (Single User MIMO)) is defined as a downlink MIMO mode.
  • the spatial multiplexing transmission mode is a mode in which a plurality of streams of signals are spatially multiplexed and transmitted at the same frequency and time, and is effective in improving throughput.
  • different transmission signals can be transmitted in parallel from a maximum of four transmission antennas and spatially multiplexed.
  • LTE-A it is planned to expand the maximum number of transmission antennas (four) of the LTE specification to eight.
  • An object of the present invention has been made in view of such circumstances, and a base station capable of suppressing deterioration of throughput characteristics in the entire system even when a plurality of transmission antennas are arranged in an indoor environment.
  • An apparatus, a mobile station apparatus, and a transmission power control method are provided.
  • the base station apparatus of the present invention includes a power control matrix generation unit that generates a power control matrix that reflects the average received power of each transmission signal from a plurality of transmission antennas, and a codebook that defines a plurality of precoding weights in advance.
  • An update unit that updates in accordance with a power control matrix, a selection unit that selects a precoding weight that maximizes a throughput or reception SINR after combining each transmission signal from the updated codebook, and a selection unit that is selected by the selection unit
  • a transmission power control unit that controls transmission power of each transmission signal in accordance with the precoding weight.
  • the transmission power of each transmission signal is determined according to the average reception power of the transmission signal from each transmission antenna, the average reception power of the transmission signal from each transmission antenna is reflected flexibly. Since the transmission power of each transmission signal can be controlled, for example, transmission power control for increasing the transmission power of a transmission signal with a small path loss and transmission power control for increasing the transmission power of a transmission signal with a large path loss are possible. Even when a plurality of transmission antennas are arranged in an indoor environment, it is possible to suppress degradation of throughput characteristics in the entire system.
  • the mobile station apparatus of the present invention includes an average received power measuring unit that measures average received power of each transmission signal from a plurality of transmission antennas of a base station apparatus, and power control that generates a power control matrix reflecting the average received power A matrix generation unit, an update unit that updates a codebook in which a plurality of precoding weights are determined in advance according to the power control matrix, and a maximum throughput or reception SINR after combining each transmission signal from the updated codebook A selection unit that selects a precoding weight to be, and a transmission unit that transmits information on the average received power measured by the average received power measurement unit and the precoding weight selected by the selection unit to a base station apparatus. It is characterized by comprising.
  • the precoding weight that maximizes the throughput or reception SINR after combining the transmission signals is selected based on the average received power of the transmission signals from the transmission antennas of the base station apparatus, and the precoding is performed. Since the information about the weight is transmitted to the base station apparatus, it is possible to provide the base station apparatus with information about the precoding weight that reflects the average received power of the transmission signal from each transmission antenna. It is possible to simplify the processing when controlling the transmission power of the transmission signal.
  • the transmission power of each transmission signal is determined according to the average reception power of the transmission signal from each transmission antenna, the average reception power of the transmission signal from each transmission antenna is reflected flexibly. Since the transmission power of each transmission signal can be controlled, for example, transmission power control for increasing the transmission power of a transmission signal with a small path loss and transmission power control for increasing the transmission power of a transmission signal with a large path loss are possible. Even when a plurality of transmission antennas are arranged in an indoor environment, it is possible to suppress degradation of throughput characteristics in the entire system.
  • FIG. 1 is a diagram for explaining an example of an application environment of a base station apparatus eNode B and a mobile station apparatus UE according to the present invention.
  • the base station device eNode B is of the LTE-A specification and has eight transmission antennas.
  • the configuration of the base station device eNode B is not limited to this. It can be changed as appropriate. For example, it can be applied to a base station apparatus eNode B that is of LTE specification and includes four transmission antennas.
  • the base station apparatus eNode B includes eight transmission antennas TX # 1 to TX # 8, and SU-MIMO in the downlink by these transmission antennas TX # 1 to TX # 8.
  • Transmission can be performed.
  • These transmission antennas TX # 1 to TX # 8 are distributed in an indoor environment constituted by the space S. Specifically, four each of the pair of wall surfaces in the longitudinal direction of the space S are arranged at equal intervals.
  • the mobile station apparatus UE is located in the space S, and can obtain a reception signal by separating transmission signals from these transmission antennas TX # 1 to TX # 8.
  • the distances between the transmission antennas TX # 1 to TX # 8 and the mobile station apparatus UE according to the position of the mobile station apparatus UE Therefore, a difference occurs in the attenuation amount (path loss) of the transmission signal.
  • path loss the attenuation amount of the transmission signal.
  • the mobile station apparatus UE is located near the center of one wall surface in the longitudinal direction in the space S, the distance to the transmission antenna TX # 4 is the same as that of the transmission antenna TX # 6. Therefore, the path loss of the transmission signal from the transmission antenna TX # 4 is larger than the path loss of the transmission signal from the transmission antenna TX # 6.
  • a transmission signal from the transmission antenna TX # 4 cannot be obtained on the mobile station apparatus UE side, and throughput characteristics in the entire system can be deteriorated.
  • a transmission signal with a large path loss does not sufficiently contribute to information transmission to the mobile station apparatus UE to be received, but may cause interference in adjacent cells.
  • the mobile station apparatus UE located in the adjacent cell a situation in which a reception signal cannot be obtained properly occurs, and the throughput characteristics in the cell can be deteriorated.
  • the path loss of the transmission signal is related to the transmission power from each transmission antenna, and the present inventors control the transmission power from each transmission antenna in accordance with the path loss of the transmission signal. It was found to be effective for suppression.
  • the present inventors have focused on the above points and have come to the present invention to control the degradation of throughput characteristics due to the difference in path loss caused between transmission signals by controlling the transmission power from each transmission antenna. It was. That is, the gist of the present invention is to update and update a codebook in which a plurality of precoding weights are determined in advance by a power control matrix reflecting the average received power of each transmission signal from a plurality of transmission antennas of the base station apparatus. This is to select a precoding weight that maximizes the throughput or reception SINR after combining each transmission signal from the codebook, and to control the transmission power of each transmission signal according to the selected precoding weight.
  • FIG. 2 is a conceptual diagram of a MIMO system including the base station apparatus eNode B and the mobile station apparatus UE according to the present invention.
  • the base station apparatus eNode B corresponds to a layer mapping unit 11 that distributes downlink transmission data to the number of transmission layers (number of streams) and eight transmission antennas TX # 1 to TX # 8. 8 strains of multipliers 121-128 and radio frequency (RF) transmit circuitry 131-138, average received power feedback value S m and the precoding matrix index is notified from the mobile station apparatus UE: based on (PMI precoding matrix Indicator) And a precoding weight determining unit 14 that determines a precoding weight (phase / amplitude control amount).
  • RF radio frequency
  • the layer mapping unit 11 distributes the transmission data to the number of transmission layers instructed from the higher station apparatus. Thereafter, the multipliers 121 to 128 multiply the downlink transmission data by a precoding weight, and control (shift) the phase and amplitude, respectively.
  • the phase / amplitude-shifted transmission data is subjected to frequency conversion processing for conversion into a radio frequency band by the RF transmission circuits 131 to 138, and then transmitted as transmission signals from the eight transmission antennas TX # 1 to TX # 8. Is done.
  • the precoding weight determination unit 14 is based on the average received power feedback value S m and PMI indicating the average received power of each transmission signal from the transmission antennas TX # 1 to TX # 8, which is notified from the mobile station apparatus UE.
  • An optimum precoding weight that maximizes the throughput (or reception SINR) after combining the transmission signals from the transmission antennas TX # 1 to TX # 8 is determined and provided to the multipliers 121 to 128. That is, the base station apparatus eNode B transmits to the mobile station apparatus UE a transmission signal that is phase and amplitude shifted to reflect the average received power and PMI of each transmission signal from the transmission antennas TX # 1 to TX # 8. Has become.
  • the precoding weight determination unit 14 includes a codebook (hereinafter referred to as “base codebook”) in which N precoding weights known in both the base station apparatus eNode B and the mobile station apparatus UE are defined, and average received power transmission power control matrix generated according to the feedback value S m (hereinafter, "power control matrix” hereinafter) (more specifically, the precoding weights defined in the base codebook) based codebook with Sx the Update. From the precoding weights defined in the updated codebook (hereinafter referred to as “updated codebook”), an optimal one is selected according to the PMI notified from the precoding weight determination unit 24. The configuration of the power control matrix Sx used when updating the base codebook will be described later.
  • base codebook a codebook in which N precoding weights known in both the base station apparatus eNode B and the mobile station apparatus UE are defined, and average received power transmission power control matrix generated according to the feedback value S m (hereinafter, "power control matrix” hereinafter) (more specifically, the
  • the mobile station apparatus UE has eight radio frequency (RF) receiving circuits 211 to 218 corresponding to the eight receiving antennas RX # 1 to RX # 8, and received signals received by these RF receiving circuits 211 to 218.
  • RF radio frequency
  • a signal separation unit 22 that separates the received signal and an average reception that measures the average received power of the transmission signal from each of the transmission antennas TX # 1 to TX # 8 of the base station apparatus eNode B from the reference signal (reference signal) included in the reception signal
  • a power measuring unit 23 and a precoding weight determining unit that determines a precoding weight (phase / amplitude control amount) based on the average received power measured by the average received power measuring unit 23 and a reference signal included in the received signal 24.
  • Received signals input via the receiving antennas RX # 1 to RX # 8 are subjected to frequency conversion processing for converting radio frequency signals to baseband signals by the RF receiving circuits 211 to 218.
  • the received signal converted into the baseband signal is separated into received signals for each stream by the signal separation unit 22.
  • the downlink transmission data is reproduced by subjecting the received signal related to each stream to data demodulation processing and channel decoding processing.
  • the average received power measurement unit 23 the average received power measured at the receiving antennas RX # 1 ⁇ RX # 8 in response to the reference signal included in the received signal, the average received power measured as the average received power feedback value S m Notify the precoding weight determination unit 24 and the precoding determination unit 14 of the base station apparatus eNode B.
  • CSI-RS channel state information reference signal
  • LTE-A LTE It is also possible to use a specified cell-specific reference signal.
  • the precoding weight determination unit 24 based on the average received power feedback value S m notified from the average received power measurement unit 23 and the reference signal (eg, CSI-RS) included in the received signal, base station apparatus eNode B Determine the optimum precoding weight that maximizes the throughput (or reception SINR) after combining the transmission signals from the transmission antennas TX # 1 to TX # 8, and the PMI corresponding to the precoding weight is determined by the base station. Notify the precoding determination unit 14 of the device eNode B.
  • the reference signal eg, CSI-RS
  • the precoding weight determination unit 24 is a base codebook that defines N precoding weights known to both the base station device eNode B and the mobile station device UE. the equipped, to update the precoding weights defined in the base codebook according to the power control matrix Sx generated in accordance with the average reception power feedback value S m. Then, an optimal precoding weight is selected according to the reference signal included in the received signal among the precoding weights defined in the update codebook. Thereafter, the precoding weight determination unit 24 notifies the precoding weight determination unit 14 of the PMI corresponding to the selected precoding weight.
  • the precoding weight determination unit 24 has a known base codebook in both the base station apparatus eNode B and the mobile station apparatus UE, and therefore notifies the selected precoding weight only by notifying the PMI. It is possible to do.
  • This PMI constitutes information on the optimum precoding weight determined by the precoding weight determination unit 24.
  • precoding weight determining unit 14 and the precoding weight determining unit 24 includes a common base codebook, since it generates a power control matrix Sx in accordance with the average reception power feedback value S m, the same power The control matrix Sx can be obtained. Since the base codebook is updated using this power control matrix Sx, the same updated codebook can be obtained.
  • FIG. 3 is a diagram for explaining the power control matrix Sx used by the precoding determination unit 14 of the base station apparatus eNode B and the precoding weight determination unit 24 of the mobile station apparatus UE according to the present invention.
  • the power control matrix Sx is a diagonal matrix having dimensions of the number of transmission antennas of the base station apparatus eNode B (the number of reception antennas of the mobile station apparatus UE) (that is, an 8-order diagonal matrix here). ). Further, the power control matrix Sx has an average received power value of transmission signals from the transmission antennas TX # 1 to TX # 8 as diagonal elements of matrix elements, and has a “0” component as other matrix elements. ing.
  • “t 0” indicates the averaging initial time
  • T indicates the averaging time
  • N TX ” and “N RX ” indicate the number of transmission antennas and reception, respectively.
  • the number of antennas is indicated
  • “r ij (t)” indicates the received signal power between the transmitting antenna i and the receiving antenna j.
  • precoding weights are used for 1 to 8 layer transmission, respectively. It is considered to prepare weights, and these are defined as matrix elements. Note that the number of precoding weights defined in the base codebook is not particularly limited, and can be changed as appropriate.
  • the precoding weight (precoding matrix) determined in such a base codebook is updated using the power control matrix Sx described above. More specifically, the base codebook is updated by multiplying the precoding weight determined in the base codebook by the square root of the power control matrix Sx.
  • the updated precoding weights reflect the average received power values of the transmission signals from the transmission antennas TX # 1 to TX # 8.
  • the transmission power of a transmission signal having a relatively small average received power value from each of the transmission antennas TX # 1 to TX # 8 is reduced, while each of the transmission antennas
  • the transmission power of transmission signals having relatively large average reception power values from TX # 1 to TX # 8 is increased.
  • a transmission signal from a transmission antenna with a small path loss is assigned to a transmission signal from a transmission antenna with a small path loss compared to a transmission signal from a transmission antenna with a large path loss. Since it can be transmitted to the station apparatus UE, signal transmission is performed more efficiently than in the case where there is a difference in path loss depending on the distance between each of the transmission antennas TX # 1 to TX # 8 and the mobile station apparatus UE. Therefore, it is possible to suppress degradation of the throughput characteristics in the entire system.
  • the power control matrix Sx shown in FIG. 3 the case where the average received power value is provided as the diagonal component of the matrix element is shown.
  • the diagonal component of the matrix element is limited to the average received power value. It is not a thing.
  • the reciprocal of the path loss of the transmission signal from each of the transmission antennas TX # 1 to TX # 8 (hereinafter simply referred to as “reciprocal of the path loss”) or a value proportional thereto may be used.
  • the reciprocal of the path loss can be estimated from the above-described average received power value and the ratio of the transmission power value at each of the transmission antennas TX # 1 to TX # 8.
  • precoding weight determining unit 14 and 24 based on the average reception power feedback value S m, and generates power control matrix Sx including the inverse of such path loss to the matrix elements, using the power control matrix Sx base Update the precoding weight specified in the codebook.
  • the base codebook is updated using the power control matrix Sx including the inverse of the path loss in the diagonal component of the matrix element, what is the power control matrix Sx including the average received power in the diagonal component of the matrix element?
  • the transmission power of transmission signals having relatively small average received power values from the transmission antennas TX # 1 to TX # 8 is increased, while each transmission antenna TX # 1 is increased.
  • Transmission power of a transmission signal having a relatively large average received power value from TX # 8 (that is, a transmission signal with a small path loss) is reduced.
  • the transmission power allocated to the transmission signal from the transmission antenna having a small path loss and the transmission power allocated to the transmission signal from the transmission antenna having a large path loss are adjusted to be approximately equal to each other. Since it is possible to make it difficult for the mobile station apparatus UE to obtain a transmission signal from the antenna, it is possible to reduce the path loss according to the distance between each of the transmission antennas TX # 1 to TX # 8 and the mobile station apparatus UE. Compared with the case where there is a difference between the two, it is possible to perform signal transmission more efficiently and to suppress the deterioration of the throughput characteristics in the entire system.
  • the average received power value or the reciprocal of the path loss is a diagonal component of the matrix element depends on the environment to which the MIMO system according to the present embodiment is applied and what throughput (for example, It is preferable to select the peak throughput or cell edge throughput).
  • FIG. 4 is a network configuration diagram of a mobile communication system to which the base station apparatus eNode B and the mobile station apparatus UE according to the present embodiment are applied.
  • the mobile communication system 1000 is a system to which, for example, LTE (Long Term Evolution) -Advanced is applied.
  • the mobile communication system 1000 includes a base station device 100 and a plurality of mobile station devices 200 (200 1 , 200 2 , 200 3 ,... 200 n , where n is an integer of n> 0) communicating with the base station device 100. Is provided.
  • Base station apparatus 100 is connected to an upper station, for example, access gateway apparatus 300, and access gateway apparatus 300 is connected to core network 400.
  • the mobile station device 200 communicates with the base station device 100 in the cell 50 by LTE-Advanced.
  • the access gateway device 300 may be referred to as MME / SGW (Mobility Management Entity / Serving Gateway).
  • each mobile station apparatus 200 1 , 200 2 , 200 3 ,... 200 n has the same configuration, function, and state, the following description will be given as the mobile station apparatus 200 unless otherwise specified. Shall proceed.
  • the mobile station device 200 wirelessly communicates with the base station device 100, but more generally a mobile device such as a mobile phone device or a user device (UE) including a fixed terminal such as a personal computer. Good.
  • radio access based on OFDMA (Orthogonal Frequency Division Multiple Access) for the downlink and SC-FDMA (Single Carrier Frequency Division Multiple Access) is applied for the uplink as the radio access scheme.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • a physical downlink shared channel (PDSCH) shared by each mobile station device 200, a physical downlink control channel (PDCCH: Physical Downlink Control Channel) that is a downlink control channel, a downlink L1 / L2 control channel).
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control Channel
  • User data that is, a normal data signal is transmitted through the physical downlink shared channel.
  • broadcast channels such as Physical-Broadcast Channel (P-BCH) and Dynamic Broadcast Channel (D-BCH) are transmitted.
  • Information transmitted by the P-BCH is a Master Information Block (MIB)
  • information transmitted by the D-BCH is a System Information Block (SIB).
  • SIB System Information Block
  • the D-BCH is mapped to the PDSCH and transmitted from the base station apparatus 100 to the mobile station apparatus 200n.
  • a physical uplink shared channel (PUSCH) shared by the mobile station apparatuses 200 and a physical uplink control channel (PUCCH) that is an uplink control channel are used.
  • Channel is used.
  • User data that is, a normal data signal is transmitted through the physical uplink shared channel.
  • the physical uplink control channel uses a precoding matrix index (PMI) for downlink MIMO transmission, an average received power feedback value S m , delivery confirmation information for a downlink shared channel, and downlink channel state information (CSI: Channel State Information) is transmitted.
  • PMI and the average received power feedback value S m may be transmitted in the physical uplink shared channel (PUSCH).
  • a physical random access channel for initial connection and the like is defined.
  • the mobile station apparatus 200 transmits a random access preamble to the base station apparatus 100 in PRACH.
  • FIG. 5 is a block diagram showing a configuration of base station apparatus 100 according to the present embodiment.
  • FIG. 6 is a block diagram showing a configuration of mobile station apparatus 200 according to the present embodiment. Note that the configurations of the base station apparatus 100 and the mobile station apparatus 200 shown in FIGS. 5 and 6 are simplified to explain the present invention, and the configurations of the normal base station apparatus and the mobile station apparatus are respectively It shall be provided.
  • transmission data is distributed to the number of transmission layers (number of streams) instructed by the higher-level station apparatus by a layer mapping unit (not shown) and input to serial / parallel conversion unit 501.
  • Transmission data related to each stream is subjected to serial / parallel conversion processing by the serial / parallel converter 501, and then channel encoders 502 # 1 to 502 #N stream and data modulators 503 # 1 to 503 #N stream, respectively.
  • Channel coding and data modulation are examples of data modulation.
  • Transmission data modulated by the data modulators 503 # 1 to 503 # N stream is subjected to inverse Fourier transform by a discrete Fourier transform unit (not shown), and converted from a time-series signal to a frequency domain signal to be a subcarrier mapping unit. It is output to 504.
  • Subcarrier mapping section 504 is a schedule provided from a scheduler (not shown) with transmission data related to each stream processed by channel encoding sections 502 # 1-502 # N stream and data modulation sections 503 # 1-503 # N stream. Mapping to subcarriers according to information.
  • the subcarrier mapping unit 504 generates a demodulation reference signal (for example, DM-RS) generated by the demodulation reference signal (RS) generation unit 505 and a channel state information reference signal (CSI-RS).
  • the CSI-RS generated by unit 506 is mapped (multiplexed) to subcarriers together with transmission data.
  • the transmission data mapped to the subcarrier in this way is input to the precoding multiplier 507.
  • the CSI-RS functions as a reference signal for measuring the average received power from each of the transmission antennas TX # 1 to TX # 8 in the mobile station apparatus 200.
  • the CSI-RS is transmitted with a constant transmission power without being affected by the power control matrix Sx described above. As described above, by transmitting the CSI-RS with a constant transmission power, it is possible to improve the accuracy when measuring the average reception power in the mobile station apparatus 200.
  • the CSI-RS is also used when the PMI is selected by the mobile station apparatus 200.
  • Precoding multiplication section 507 functions as a transmission power control section, and transmits a transmission signal for each of transmission antennas TX # 1 to TX # N TX based on a precoding weight given from precoding weight determination section 508 described later. Are shifted in phase and / or amplitude (weighting of transmission antennas TX # 1 to TX # N TX by precoding). For example, when a precoding weight selected from an update codebook updated by a power control matrix Sx including an average received power value as a matrix element is given, the precoding multiplication unit 507 transmits a relatively small average received power.
  • transmission power control is performed to increase the transmission power of a transmission signal having a relatively large average reception power (that is, a transmission signal having a small path loss).
  • the precoding multiplication unit 507 transmits the transmission signal having a relatively small average received power.
  • transmission power control is performed to increase the transmission power of a transmission signal (that is, a transmission signal having a large path loss) while reducing the transmission power of a transmission signal having a relatively large average reception power value (that is, a transmission signal having a small path loss).
  • a power control matrix Sx including an average received power value as a matrix element As a result of reducing the transmission power of a transmission signal having a relatively small average received power (that is, a transmission signal having a large path loss),
  • a transmission power threshold it is preferable as an embodiment to set the transmission power to “0” and limit the transmission of the transmission signal.
  • the transmission power of the transmission signal from the transmission antenna having a large path loss is set to “0”, it is possible to eliminate the influence of the transmission signal on the adjacent cell as an interference signal. A situation in which the characteristics are deteriorated can be made less likely to occur, and the deterioration of the throughput characteristics in the entire system can be suppressed.
  • Precoding weight determining unit 508 a base codebook holding unit 508a for holding the base codebook, the power control matrix that generates power control matrix Sx in accordance with the average reception power feedback value S m notified from the mobile station device 200 A generation unit 508b, a codebook update unit 508c that updates a precoding weight determined in the base codebook according to the power control matrix Sx, and an updated codebook according to the PMI notified from the mobile station apparatus 200 ( A precoding weight selection unit 508d that selects an optimal one of the precoding weights defined in the update codebook).
  • the precoding weight determination unit 508 receives feedback of the average received power feedback value S m and PMI from the mobile station apparatus 200 in the uplink, the power control matrix generation unit 508b described above based on the average received power feedback value S m .
  • a power control matrix Sx is generated.
  • the precoding weight selecting unit 508d selects the optimum precoding weight of the updated codebook according to the PMI, and the precoding weight is selected. The result is output to the precoding multiplier 507.
  • the power control matrix generation unit 508b when the power control matrix generation unit 508b generates a power control matrix Sx including the reciprocal of the path loss described above as a matrix element, the average received power feedback value S m and each of the transmission antennas TX # 1 to TX # N TX The reciprocal of the path loss is estimated from the ratio to the transmission power at.
  • the transmission signal whose phase and / or amplitude has been shifted by the precoding multiplier 507 is subjected to inverse fast Fourier transform by the inverse fast Fourier transform units 509 # 1 to 509 # N TX to convert from the frequency domain signal to the time domain signal. Is done. Then, a cyclic prefix is assigned by cyclic prefix assigning sections 510 # 1 to 510 # N TX .
  • the transmission signal to which the cyclic prefix is added is transmitted to the RF transmission circuits 511 # 1 to 511 # N TX , subjected to frequency conversion processing for conversion into a radio frequency band, and then transmitted to the transmission antennas TX # 1 to TX # N. It is transmitted to the mobile station apparatus 200 on the downlink via TX .
  • transmission signals transmitted from base station apparatus 100 are received by reception antennas RX # 1 to RX # N RX , and are transmitted by duplexers 601 # 1 to 601 # N RX .
  • the signals After being electrically separated into a transmission path and a reception path, the signals are output to the RF reception circuits 602 # 1 to 602 # N RX .
  • the received signals After frequency conversion processing for converting a radio frequency signal into a baseband signal is performed in the RF reception circuits 602 # 1 to 602 # N RX , the received signals are converted into reception signals by the CP removal units 603 # 1 to 603 # N RX.
  • the assigned cyclic prefix is removed and output to fast Fourier transform sections (FFT sections) 604 # 1 to 604 # N RX .
  • FFT sections fast Fourier transform sections
  • the reception timing estimation unit 605 acquires reception signals output from the RF reception circuits 602 # 1 to 602 # N RX , for example, estimates reception timing (FFT processing timing) from a reference signal included in the reception signal, Notify FFT sections 604 # 1-604 # N RX .
  • Received signals from the RF receiving circuits 602 # 1 to 602 # N RX are Fourier-transformed by the FFT units 604 # 1 to 604 # N RX according to the reception timing notified from the reception timing estimation unit 605, and are time-series. After being converted from a signal to a signal in the frequency domain, it is output to the data channel signal separator 606.
  • the data channel signal separation unit 606 separates the reception signals input from the FFT units 604 # 1 to 604 # N RX by, for example, a maximum likelihood detection (MLD) signal separation method. As a result, the received signal that has arrived from base station apparatus 100 is separated into received signals related to streams # 1 to #N stream .
  • the channel estimation unit 607 estimates the channel state from the reference signal included in the received signal output from the FFT units 604 # 1 to 604 # N RX, and notifies the data channel signal separation unit 606 of the estimated channel state.
  • Data channel signal separation section 606 separates the received signal by the MLD signal separation method based on the notified channel state.
  • Received signals relating to the separated streams # 1 ⁇ # N stream by the data channel signal separation unit 606, after being returned to the signal of time series is demapped by a subcarrier demapping unit (not shown), not shown in the data Data is demodulated by the demodulator. Then, the channel decoding unit 608 performs channel decoding processing to reproduce the transmission signal.
  • the average received power measurement unit 609 starts from the reception state of the reference signal (CSI-RS) included in the reception signals input from the FFT units 604 # 1 to 604 # N RX from the transmission antennas TX # 1 to TX # N TX. Measure the average received power of the transmitted signal. The measured average received power is notified as an average received power feedback value S m to a power control matrix generation unit 610b of a precoding weight determination unit 610 described later and to an uplink control signal generation unit (not shown). . Average received power feedback value S m is sent to the base station apparatus 100 in uplink, including uplink control signal generated by the uplink control signal generator (PUCCH) (feedback).
  • PUCCH uplink control signal generator
  • the average received power feedback value S that is fed back to the last A method of feeding back the difference from m can be considered.
  • Precoding weight determining unit 610 power generating base codebook holding unit 610a for holding the base codebook, the power control matrix Sx in accordance with the average reception power feedback value S m notified from the average received power measuring unit 609
  • the received signals input from the control matrix generation unit 610b, the codebook update unit 610c that updates the precoding weight determined in the base codebook according to the power control matrix, and the FFT units 604 # 1 to 604 # N RX
  • a precoding weight selection unit 610d that selects an optimal one of precoding weights defined in the updated codebook (updated codebook) according to the reception state of the included reference signal (CSI-RS). .
  • the power control matrix generation unit 610b uses the power control matrix described above based on the average received power feedback value S m. Sx is generated. Then, after updating the base codebook according to the power control matrix Sx by the codebook updating unit 610c, the precoding weight selection unit 508d updates the update codebook according to the reception state of the reference signal (CSI-RS) included in the received signal. Select the optimal precoding weight. Then, the PMI corresponding to the selected optimal precoding weight is transmitted to base station apparatus 100 in the uplink.
  • CSI-RS reception state of the reference signal
  • the PMI is notified to an uplink control signal generation unit (not shown), is included in the uplink control signal (PUCCH) generated by the uplink control signal generation unit, and is transmitted to the base station apparatus 100 via the uplink.
  • the power control matrix generation unit 610b generates a power control matrix Sx including the reciprocal of the path loss described above as a matrix element, the average received power feedback value S m and each transmission antenna TX # 1 of the base station apparatus 100 ⁇ TX # N
  • the reciprocal of the path loss is estimated from the ratio to the transmission power in TX .
  • the average received power of the transmission signals from the transmission antennas TX # 1 to TX # N TX of the base station apparatus 100 is measured, and the average received power feedback value S m is used as the base station.
  • the power control matrix Sx reflecting this is generated.
  • the optimal precoding weight of the updated codebook is selected, and the corresponding PMI is fed back to the base station apparatus 100.
  • an optimal precoding weight is selected based on the average received power of transmission signals from each of transmission antennas TX # 1 to TX # N TX of base station apparatus 100, Since the PMI corresponding to the precoding weight is fed back to the base station apparatus 100, the PMI reflecting the average received power of transmission signals from the transmission antennas TX # 1 to TX # N TX is provided to the base station apparatus 100. Therefore, it is possible to simplify the processing when the transmission power of each transmission signal in the base station apparatus 100 is controlled.
  • the base station apparatus 100 receives the feedback of the average received power feedback value S m and PMI from the mobile station device 200 generates a power control matrix Sx reflecting the average received power feedback value S m, this power control Update base codebook with matrix Sx. Then, the optimum precoding weight of this update codebook is selected according to the PMI, and the transmission signal related to each stream is multiplied by the precoding weight and transmitted to the mobile station apparatus 200.
  • transmission related to each stream is performed according to power control matrix Sx generated based on the average received power of transmission signals from transmission antennas TX # 1 to TX # N TX.
  • the precoding weight to be multiplied by the signal is adjusted, and the transmission power of the transmission signal for each stream is controlled.
  • the transmission antennas TX # 1 ⁇ TX # N Since it is possible to flexibly control the transmission power of the transmission signal for each stream reflecting the average reception power of the transmission signal from TX , even when multiple transmission antennas are arranged in an indoor environment, It is possible to suppress degradation of the throughput characteristics.
  • base station apparatus 100 receives feedback of average received power feedback value S m from mobile station apparatus 200 and generates power control matrix Sx according to this average received power feedback value S m. Therefore, since the power control matrix Sx common to the mobile station apparatus 200 can be generated, the same update codebook can be surely obtained from the base codebook common to both. Also, in base station apparatus 100, the optimum precoding weight is selected from the update codebook according to the PMI fed back from mobile station apparatus 200, so that the same precoding weight as mobile station apparatus 200 can be reliably selected. It has become.
  • a large transmission power is obtained for a transmission signal from a transmission antenna having a small path loss compared to a transmission signal from a transmission antenna having a large path loss. Since the transmission signal from the transmission antenna with a small path loss can be reliably transmitted to the mobile station apparatus 200, the transmission antenna TX # 1 to TX # N TX and the mobile station apparatus UE according to the distance between them. Therefore, signal transmission can be performed more efficiently than when a difference occurs in path loss, and degradation of throughput characteristics in the entire system can be suppressed.
  • transmission power allocated to a transmission signal from a transmission antenna having a small path loss and transmission power allocated to a transmission signal from a transmission antenna having a large path loss are adjusted so as to be substantially equal to each other, it is possible to make it difficult for the mobile station apparatus UE to obtain a transmission signal from a transmission antenna with a large path loss, so that each transmission antenna TX # Compared with a case where a difference occurs in path loss depending on the distance between 1 to TX # N TX and the mobile station apparatus UE, signal transmission can be performed more efficiently, and degradation of throughput characteristics in the entire system can be suppressed. .
  • the power control matrix Sx is configured by a diagonal matrix having the dimension of the number of transmission antennas of the base station apparatus 100, and the average received power value from each of the transmission antennas TX # 1 to TX # N TX (or the average received power).
  • the reciprocal of the path loss based on the value) is included in the diagonal component of the matrix element. For this reason, as feedback information necessary for generating the power control matrix Sx in the base station apparatus 100, a diagonal component of the matrix element of the power control matrix Sx from the mobile station apparatus 200 (for example, when the number of transmission antennas is eight). Therefore, it is not necessary to secure a large number of information bits for the feedback information for generating the power control matrix Sx.
  • a component that turns off transmission power of the transmission signal as a precoding weight (that is, Content that restricts transmission of transmission signals from specific transmission antennas using a code book that defines "0" component) has been proposed (3GPP, TR36.814, "Further Advancements for E-UTRA: Physical Layer Aspects" ").
  • a code book When such a code book is used, it is possible to turn on / off the transmission power of a transmission signal from a specific transmission antenna.
  • a case where a transmission signal path loss occurs due to a plurality of transmission antennas being distributed is described as a specific example.
  • the application target of the present invention is that a plurality of transmission antennas are distributed.
  • the arrangement is not limited.
  • a plurality of transmission antennas are locally arranged (localized arrangement) and there is a difference in transmission signal path loss, or when a vertical / horizontal polarization antenna is used,
  • the present invention can also be applied when the reception level difference is different between the wavefront and the horizontal polarization plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 屋内環境にて複数の送信アンテナが配置される場合においても、システム全体におけるスループット特性の劣化を抑制すること。基地局装置(eNode B)は、複数の送信アンテナ(TX#1~TX#NTX)からの各送信信号の平均受信電力を反映した電力制御行列(Sx)を生成する電力制御行列生成部(508b)と、予め複数のプリコーディングウェイトを定めたコードブックを電力制御行列(Sx)に応じて更新するコードブック更新部(508c)と、更新したコードブックから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択するプリコーディングウェイト選択部(508d)と、選択したプリコーディングウェイトに応じて各送信信号の送信電力を制御するプリコーディング乗算部(送信電力制御部)(507)とを備える。

Description

基地局装置、移動局装置及び送信電力制御方法
 本発明は、基地局装置、移動局装置及び送信電力制御方法に関し、特に、下りリンクのマルチアンテナ伝送に対応する基地局装置、移動局装置及び送信電力制御方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTE方式のシステムにおいては、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。例えば、LTE-Aにおいては、LTE仕様の最大システム帯域である20MHzを、100MHz程度まで拡張することが予定されている。
 また、LTE方式のシステムにおいては、複数のアンテナでデータを送受信し、スループット、周波数利用効率を向上させる無線通信技術としてMIMO(Multi Input Multi Output)アンテナシステムが提案されている(例えば、非特許文献1参照)。LTE方式のシステムにおいては、下りリンクMIMOモードとして、空間多重伝送モード(SU-MIMO(Single User MIMO))が規定されている。空間多重伝送モードは、複数ストリームの信号を、同一の周波数及び時間において空間的に多重して送信するモードであり、スループットの向上に有効である。LTE方式のシステムにおいては、最大4つの送信アンテナから異なる送信信号を並列送信して空間的に多重できるものとなっている。LTE-Aにおいては、LTE仕様の最大送信アンテナ数(4つ)を、8つまで拡張することが予定されている。
 このような空間多重伝送モードを屋内環境で利用する場合には、例えば、一定の空間内において複数の送信アンテナを分散して配置(分散配置:Distributed配置)することが考えられる。LTE-A方式のシステムにおいては、最大8つの送信アンテナを分散配置し、各送信アンテナから複数ストリームの送信信号を空間的に多重して送信する一方、移動局装置側でこのような複数ストリームの送信信号を適切に分離して受信信号を得ることにより、スループットを向上することができるものとなっている。
 しかしながら、上述したように、一定の空間内において複数の送信アンテナを分散配置する場合には、移動局装置の位置に応じて各送信アンテナとの距離が異なってくるため、送信信号の減衰量(パスロス)に差異が生じることとなる。このように送信信号のパスロスに差異が生じた状態においては、空間多重伝送モードにおけるパフォーマンスを十分に発揮することができず、システム全体におけるスループット特性が劣化するという事態が想定される。
 本発明の目的は、このような実情に鑑みてなされたものであり、屋内環境にて複数の送信アンテナが配置される場合においても、システム全体におけるスループット特性の劣化を抑制することができる基地局装置、移動局装置及び送信電力制御方法を提供することである。
 本発明の基地局装置は、複数の送信アンテナからの各送信信号の平均受信電力を反映した電力制御行列を生成する電力制御行列生成部と、予め複数のプリコーディングウェイトを定めたコードブックを前記電力制御行列に応じて更新する更新部と、更新した前記コードブックから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択する選択部と、前記選択部により選択されたプリコーディングウェイトに応じて各送信信号の送信電力を制御する送信電力制御部とを具備することを特徴とする。
 この構成によれば、各送信アンテナからの送信信号の平均受信電力に応じて各送信信号の送信電力が決定されることから、各送信アンテナからの送信信号の平均受信電力を反映して柔軟に各送信信号の送信電力を制御することができるので、例えば、パスロスの小さい送信信号の送信電力を増大する送信電力制御や、パスロスの大きい送信信号の送信電力を増大する送信電力制御などが可能となり、屋内環境にて複数の送信アンテナが配置される場合においても、システム全体におけるスループット特性の劣化を抑制することが可能となる。
 本発明の移動局装置は、基地局装置の複数の送信アンテナからの各送信信号の平均受信電力を測定する平均受信電力測定部と、前記平均受信電力を反映した電力制御行列を生成する電力制御行列生成部と、予め複数のプリコーディングウェイトを定めたコードブックを前記電力制御行列に応じて更新する更新部と、更新した前記コードブックから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択する選択部と、前記平均受信電力測定部により測定された前記平均受信電力及び前記選択部により選択されたプリコーディングウェイトに関する情報を基地局装置に送信する送信部とを具備することを特徴とする。
 この構成によれば、基地局装置の各送信アンテナからの送信信号の平均受信電力に基づいて各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトが選択され、当該プリコーディングウェイトに関する情報が基地局装置に送信されることから、各送信アンテナからの送信信号の平均受信電力を反映したプリコーディングウェイトに関する情報を基地局装置に提供することができるので、基地局装置における各送信信号の送信電力を制御する際の処理を簡素化することが可能となる。
 本発明によれば、各送信アンテナからの送信信号の平均受信電力に応じて各送信信号の送信電力が決定されることから、各送信アンテナからの送信信号の平均受信電力を反映して柔軟に各送信信号の送信電力を制御することができるので、例えば、パスロスの小さい送信信号の送信電力を増大する送信電力制御や、パスロスの大きい送信信号の送信電力を増大する送信電力制御などが可能となり、屋内環境にて複数の送信アンテナが配置される場合においても、システム全体におけるスループット特性の劣化を抑制することが可能となる。
本発明に係る基地局装置及び移動局装置の適用環境の一例を説明するための図である。 本発明に係る基地局装置及び移動局装置で構成されるMIMOシステムの概念図である。 本発明に係る基地局装置及び移動局装置のプリコーディング決定部が利用する電力制御行列の一例を示す図である。 本実施の形態に係る基地局装置及び移動局装置が適用される移動通信システムのネットワーク構成図である。 本実施の形態に係る基地局装置の構成を示すブロック図である。 本実施の形態に係る移動局装置の構成を示すブロック図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、以下においては、本発明を基地局装置、移動局装置及び移動通信システムに具現化した場合について説明しているが、本発明は、これらに限定されるものではなく、基地局装置における送信電力制御方法としても成立するものである。
 まず、本発明に係る基地局装置eNode B及び移動局装置UEの適用環境について説明する。図1は、本発明に係る基地局装置eNode B及び移動局装置UEの適用環境の一例を説明するための図である。なお、図1において、基地局装置eNode Bは、LTE-A仕様のものであり、送信アンテナを8つ備える場合について示すが、基地局装置eNode Bの構成については、これに限定されるものではなく適宜変更が可能である。例えば、LTE仕様のものであって、送信アンテナを4つ備える基地局装置eNode Bにも適用することも可能である。
 図1に示すように、本発明に係る基地局装置eNode Bは、8つの送信アンテナTX#1~TX#8を備え、これらの送信アンテナTX#1~TX#8により下りリンクでSU-MIMO伝送(空間多重伝送)を行うことが可能となっている。これらの送信アンテナTX#1~TX#8は、空間Sで構成される屋内環境において分散配置されている。具体的には、空間Sの長手方向の一対の壁面にそれぞれ4つずつ等間隔に配置されている。移動局装置UEは、空間S内に位置し、これらの送信アンテナTX#1~TX#8からの送信信号を分離して受信信号を得ることが可能となっている。
 複数の送信アンテナTX#1~TX#8を空間Sに分散配置する場合には、移動局装置UEの位置に応じて、各送信アンテナTX#1~TX#8と移動局装置UEとの距離が異なってくるため、送信信号の減衰量(パスロス)に差異が生じることとなる。例えば、図1に示すように、空間Sにおける長手方向の一方の壁面際の中央近傍に移動局装置UEが位置している場合、送信アンテナTX#4との距離は、送信アンテナTX#6との距離よりも長いことから、送信アンテナTX#4からの送信信号のパスロスは、送信アンテナTX#6からの送信信号のパスロスよりも大きくなる。この場合、送信アンテナTX#4からの送信信号を移動局装置UE側で得ることができず、システム全体におけるスループット特性が劣化し得る。また、パスロスの大きい送信信号は、受信対象となる移動局装置UEに対する情報伝送に十分に寄与しない一方で、隣接セルにおける干渉の原因となり得る。この場合には、隣接セルに位置する移動局装置UEにおいて、適切に受信信号を得られなくなる事態が発生し、当該セルにおけるスループット特性を劣化させ得る。送信信号のパスロスは、各送信アンテナからの送信電力に関係するものであり、本発明者らは、送信信号のパスロスに応じて各送信アンテナからの送信電力を制御することがスループット特性の劣化を抑制に有効であることを見出した。
 本発明者らは、上記の点に着目し、各送信アンテナからの送信電力を制御することで送信信号間に生じるパスロスの差異に起因するスループット特性の劣化を抑制すべく本発明をするに至った。すなわち、本発明の骨子は、基地局装置の複数の送信アンテナからの各送信信号の平均受信電力を反映した電力制御行列によって、予め複数のプリコーディングウェイトを定めたコードブックを更新し、更新したコードブックから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択し、選択されたプリコーディングウェイトに応じて各送信信号の送信電力を制御することである。
 図2は、本発明に係る基地局装置eNode B及び移動局装置UEで構成されるMIMOシステムの概念図である。図2に示すMIMOシステムにおいて、基地局装置eNode Bは、下り送信データを送信レイヤ数(ストリーム数)分に分配するレイヤマッピング部11と、8つの送信アンテナTX#1~TX#8に対応する8系統の乗算器121~128及び無線周波数(RF)送信回路131~138と、移動局装置UEから通知される平均受信電力フィードバック値S及びプリコーディング行列インデックス(PMI:Precoding Matrix Indicator)に基づいてプリコーディングウェイト(位相・振幅制御量)を決定するプリコーディングウェイト決定部14とを含んで構成されている。
 下り送信データが入力されると、レイヤマッピング部11によって上位局装置から指示された送信レイヤ数分に分配される。その後、乗算器121~128によって下り送信データにプリコーディングウェイトが乗算されて位相・振幅がそれぞれ制御(シフト)される。そして、位相・振幅シフトされた送信データは、RF送信回路131~138により無線周波数帯に変換する周波数変換処理が施された後、8つの送信アンテナTX#1~TX#8から送信信号として送信される。
 プリコーディングウェイト決定部14は、移動局装置UEから通知される、送信アンテナTX#1~TX#8からの各送信信号の平均受信電力を示す平均受信電力フィードバック値S及びPMIに基づいて、各送信アンテナTX#1~TX#8からの送信信号を合成した後のスループット(又は受信SINR)が最大となる最適なプリコーディングウェイトを決定し、乗算器121~128に与える。すなわち、基地局装置eNode Bからは、送信アンテナTX#1~TX#8からの各送信信号の平均受信電力及びPMIを反映して位相・振幅シフトされた送信信号が移動局装置UEに送信されるものとなっている。
 プリコーディングウェイト決定部14は、基地局装置eNode B及び移動局装置UEの双方で既知のN個のプリコーディングウェイトを定めたコードブック(以下、「ベースコードブック」という)を備え、平均受信電力フィードバック値Sに応じて生成される送信電力制御行列(以下、「電力制御行列」という)Sxを用いてベースコードブック(より具体的には、ベースコードブックに定められたプリコーディングウェイト)を更新する。そして、この更新されたコードブック(以下、「更新コードブック」という)に定められたプリコーディングウェイトのうち、プリコーディングウェイト決定部24から通知されたPMIに応じて最適なものを選択する。なお、ベースコードブックを更新する際に利用される電力制御行列Sxの構成については後述する。
 一方、移動局装置UEは、8つの受信アンテナRX#1~RX#8に対応する8系統の無線周波数(RF)受信回路211~218と、これらのRF受信回路211~218で受信した受信信号を分離する信号分離部22と、受信信号に含まれるリファレンス信号(参照信号)から基地局装置eNode Bの各送信アンテナTX#1~TX#8からの送信信号の平均受信電力を測定する平均受信電力測定部23と、この平均受信電力測定部23で測定された平均受信電力及び受信信号に含まれるリファレンス信号に基づいて、プリコーディングウェイト(位相・振幅制御量)を決定するプリコーディングウェイト決定部24とを含んで構成されている。
 受信アンテナRX#1~RX#8を介して入力された受信信号は、RF受信回路211~218により無線周波数信号からベースバンド信号に変換する周波数変換処理が施される。ベースバンド信号に変換された受信信号は、信号分離部22により各ストリームに関する受信信号に分離される。そして、各ストリームに関する受信信号に、データ復調処理及びチャネル復号処理が施されることで下り送信データが再生されるものとなっている。
 平均受信電力測定部23は、受信信号に含まれるリファレンス信号に応じて各受信アンテナRX#1~RX#8における平均受信電力を測定し、測定した平均受信電力を平均受信電力フィードバック値Sとしてプリコーディングウェイト決定部24及び基地局装置eNode Bのプリコーディング決定部14に通知する。平均受信電力の測定には、例えば、LTE-Aで規定されるチャネル状態情報リファレンス信号(CSI-RS:Channel State Information-Reference Signal)が用いられるが、これに限定されるものではなく、LTEで規定されるセル特定リファレンス信号(Cell-specific Reference Signal)を用いることも可能である。
 プリコーディングウェイト決定部24は、平均受信電力測定部23から通知される平均受信電力フィードバック値Sと、受信信号に含まれるリファレンス信号(例えば、CSI-RS)に基づいて、基地局装置eNode Bの各送信アンテナTX#1~TX#8からの送信信号を合成した後のスループット(又は受信SINR)が最大となる最適なプリコーディングウェイトを決定し、このプリコーディングウェイトに対応するPMIを基地局装置eNode Bのプリコーディング決定部14に通知する。
 プリコーディングウェイト決定部24は、基地局装置eNode Bのプリコーディング決定部14と同様に、基地局装置eNode B及び移動局装置UEの双方で既知のN個のプリコーディングウェイトを定めたベースコードブックを備え、平均受信電力フィードバック値Sに応じて生成される電力制御行列Sxに応じてベースコードブックに定められたプリコーディングウェイトを更新する。そして、この更新コードブックに定められたプリコーディングウェイトのうち、受信信号に含まれるリファレンス信号に応じて最適なプリコーディングウェイトを選択する。その後、プリコーディングウェイト決定部24は、選択したプリコーディングウェイトに対応するPMIをプリコーディングウェイト決定部14に通知する。
 なお、プリコーディングウェイト決定部24においては、基地局装置eNode B及び移動局装置UEの双方で既知のベースコードブックを備えているため、PMIを通知するだけで選択したプリコーディングウェイトを通知することができるものとなっている。このPMIは、プリコーディングウェイト決定部24により決定された最適なプリコーディングウェイトに関する情報を構成する。また、プリコーディングウェイト決定部14及びプリコーディングウェイト決定部24は、共通するベースコードブックを備えており、平均受信電力フィードバック値Sに応じて電力制御行列Sxを生成することから、同一の電力制御行列Sxを得ることができるものとなっている。そして、この電力制御行列Sxを用いてベースコードブックを更新することから、同一の更新コードブックを得ることができるものとなっている。
 ここで、プリコーディングウェイト決定部14及びプリコーディングウェイト決定部24でベースコードブックを更新する際に利用される電力制御行列Sxについて説明する。図3は、本発明に係る基地局装置eNode Bのプリコーディング決定部14及び移動局装置UEのプリコーディングウェイト決定部24が利用する電力制御行列Sxを説明するための図である。
 図3に示すように、電力制御行列Sxは、基地局装置eNode Bの送信アンテナ数(移動局装置UEの受信アンテナ数)の次元を有する対角行列(すなわち、ここでは8次の対角行列)で構成される。また、電力制御行列Sxは、各送信アンテナTX#1~TX#8からの送信信号の平均受信電力値を行列要素の対角成分に有し、その他の行列要素に「0」成分を有している。なお、図3に示す電力制御行列Sxにおいて、「t0」は平均化初期時間を示し、「T」は平均化時間を示し、「NTX」、「NRX」はそれぞれ送信アンテナ数、受信アンテナ数を示し、「rij(t)」は送信アンテナi、受信アンテナj間の受信信号電力を示している。
 図2に示すような8つの送信アンテナTX#1~TX#8を備える基地局装置eNode Bが保持するベースコードブックにおいては、例えば、1~8レイヤ送信用にそれぞれ16から32個のプリコーディングウェイトを用意することが検討され、これらが行列要素として定められている。なお、このベースコードブックに定められるプリコーディングウェイトの個数については、特に限定されるものではなく、適宜変更することが可能である。このようなベースコードブックに定められたプリコーディングウェイト(プリコーディング行列)が、上述した電力制御行列Sxを用いて更新される。より具体的には、ベースコードブックに定められたプリコーディングウェイトに電力制御行列Sxの平方根を乗算することでベースコードブックが更新される。
 このようにベースコードブックに定められたプリコーディングウェイトを更新することにより、更新後のプリコーディングウェイトには、各送信アンテナTX#1~TX#8からの送信信号の平均受信電力値が反映される。より具体的には、各送信アンテナTX#1~TX#8からの平均受信電力値が相対的に小さい送信信号(つまり、パスロスの大きい送信信号)の送信電力が低減される一方、各送信アンテナTX#1~TX#8からの平均受信電力値が相対的に大きい送信信号(つまり、パスロスの小さい送信信号)の送信電力が増大される。これにより、パスロスが小さい送信アンテナからの送信信号に対して、パスロスが大きい送信アンテナからの送信信号と比べて大きな送信電力が割り当てられることから、パスロスが小さい送信アンテナからの送信信号を確実に移動局装置UEに伝送することができるので、各送信アンテナTX#1~TX#8と移動局装置UEとの距離に応じてパスロスに差異が生じる場合と比べて、より効率的に信号伝送を行うことが可能となり、システム全体におけるスループット特性の劣化を抑制することができるものとなっている。
 また、この場合、パスロスが大きい送信アンテナからの送信信号の送信電力が低減されることから、当該送信信号が干渉信号として隣接セルに与える影響を低減することができるので、当該セルにおけるスループット特性が劣化する事態を発生し難くすることができ、システム全体におけるスループット特性の劣化を抑制することが可能となる。
 なお、図3に示す電力制御行列Sxにおいては、行列要素の対角成分として平均受信電力値を有する場合について示しているが、行列要素の対角成分については、平均受信電力値に限定されるものではない。例えば、平均受信電力値の他、各送信アンテナTX#1~TX#8からの送信信号のパスロスの逆数(以下、単に「パスロスの逆数」という)や、これらに比例した値であっても良い。例えば、パスロスの逆数は、上述した平均受信電力値と、各送信アンテナTX#1~TX#8における送信電力値の比から推定することができる。プリコーディングウェイト決定部14、24においては、平均受信電力フィードバック値Sに基づいて、このようなパスロスの逆数を行列要素に含む電力制御行列Sxを生成し、この電力制御行列Sxを用いてベースコードブックに定められたプリコーディングウェイトを更新する。
 このようにパスロスの逆数を行列要素の対角成分に含む電力制御行列Sxを用いてベースコードブックを更新した場合には、平均受信電力を行列要素の対角成分に含む電力制御行列Sxとは逆に、各送信アンテナTX#1~TX#8からの平均受信電力値が相対的に小さい送信信号(つまり、パスロスが大きい送信信号)の送信電力が増大される一方、各送信アンテナTX#1~TX#8からの平均受信電力値が相対的に大きい送信信号(つまり、パスロスが小さい送信信号)の送信電力が低減される。これにより、パスロスが小さい送信アンテナからの送信信号に割り当てられる送信電力と、パスロスが大きい送信アンテナからの送信信号に割り当てられる送信電力とが略等しくなるように調整されることから、パスロスが大きい送信アンテナからの送信信号を移動局装置UE側で得ることができないという事態を発生し難くすることができるので、各送信アンテナTX#1~TX#8と移動局装置UEとの距離に応じてパスロスに差異が生じる場合と比べて、より効率的に信号伝送を行うことが可能となり、システム全体におけるスループット特性の劣化を抑制することができるものとなっている。
 なお、電力制御行列Sxにおいて、行列要素の対角成分として平均受信電力値又はパスロスの逆数を有するかは、本実施の形態に係るMIMOシステムが適用される環境や、どのようなスループット(例えば、ピークスループット又はセル端スループット)を重視するかで選択することが好ましい。
 以下、本実施の形態に係る基地局装置eNode B及び移動局装置UEを有する移動通信システムの構成について説明する。図4は、本実施の形態に係る基地局装置eNode B及び移動局装置UEが適用される移動通信システムのネットワーク構成図である。
 移動通信システム1000は、例えば、LTE(Long Term Evolution)-Advancedが適用されるシステムである。移動通信システム1000は、基地局装置100と、基地局装置100と通信する複数の移動局装置200(200、200、200、・・・200、nはn>0の整数)とを備える。基地局装置100は、上位局、例えば、アクセスゲートウェイ装置300と接続され、アクセスゲートウェイ装置300は、コアネットワーク400と接続される。移動局装置200は、セル50において基地局装置100とLTE-Advancedにより通信を行っている。なお、アクセスゲートウェイ装置300は、MME/SGW (Mobility Management Entity/Serving Gateway)と呼ばれてもよい。
 各移動局装置200、200、200、・・・200は、同一の構成、機能、状態を有するので、以下の説明においては、特段の断りがない限り移動局装置200として説明を進めるものとする。説明の便宜上、基地局装置100と無線通信するのは移動局装置200であるが、より一般的には携帯電話装置などの移動端末や、パーソナルコンピュータなどの固定端末も含むユーザ装置(UE)でよい。
 移動通信システム1000では、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)に基づく無線アクセスが適用される。ここで、OFDMA(Orthogonal Frequency Division Multiplexing Access)は、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータを載せて伝送を行うマルチキャリア伝送方式である。SC-FDMA(Single-Carrier Frequency Division Multiple Access)は、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、LTE-Advancedにおける通信チャネルについて説明する。下りリンクについては、各移動局装置200で共有される物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)と、下りリンクの制御チャネルである物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel、下りL1/L2制御チャネルともいう)とが用いられる。上記物理下りリンク共有チャネルにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。
 また、下りリンクにおいては、Physical-Broadcast Channel(P-BCH)やDynamic Broadcast Channel(D-BCH)等の報知チャネルが送信される。P-BCHにより伝送される情報は、Master Information Block(MIB)であり、D-BCHにより伝送される情報は、System Information Block(SIB)である。D-BCHは、PDSCHにマッピングされて、基地局装置100より移動局装置200nに伝送される。
 上りリンクについては、各移動局装置200で共有して使用される物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)と、上りリンクの制御チャネルである物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)とが用いられる。物理上りリンク共有チャネルにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。また、物理上りリンク制御チャネルにより、下りリンクMIMO伝送のためのプリコーディング行列インデックス(PMI)、平均受信電力フィードバック値S、下りリンクの共有チャネルに対する送達確認情報や、下りリンクのチャネル状態情報(CSI:Channel State Information)等が伝送される。なお、PMIや平均受信電力フィードバック値Sは、物理上りリンク共有チャネル(PUSCH)で伝送されても良い。
 また、上りリンクにおいては、初期接続等のための物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)が定義されている。移動局装置200は、PRACHにおいて、ランダムアクセスプリアンブルを基地局装置100に送信するものとなっている。
 図5は、本実施の形態に係る基地局装置100の構成を示すブロック図である。図6は、本実施の形態に係る移動局装置200の構成を示すブロック図である。なお、図5及び図6に示す基地局装置100及び移動局装置200の構成は、本発明を説明するために簡略化したものであり、それぞれ通常の基地局装置及び移動局装置が有する構成は備えているものとする。
 図5に示す基地局装置100において、送信データは、不図示のレイヤマッピング部により上位局装置から指示された送信レイヤ数(ストリーム数)分に分配されて直列/並列変換部501に入力される。各ストリームに関する送信データは、直列/並列変換部501により直列/並列変換処理が施された後、それぞれチャネル符号化部502#1~502#Nstream、データ変調部503#1~503#Nstreamでチャネル符号化、データ変調される。データ変調部503#1~503#Nstreamでデータ変調された送信データは、不図示の離散フーリエ変換部で逆フーリエ変換され、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部504に出力される。
 サブキャリアマッピング部504は、チャネル符号化部502#1~502#Nstream、データ変調部503#1~503#Nstreamにより処理された各ストリームに関する送信データを、不図示のスケジューラから与えられるスケジュール情報に応じてサブキャリアにマッピングする。このとき、サブキャリアマッピング部504は、復調用リファレンス信号(RS)生成部505により生成された復調用リファレンス信号(例えば、DM-RS)、並びに、チャネル状態情報用リファレンス信号(CSI-RS)生成部506により生成されたCSI-RSを送信データと共にサブキャリアにマッピング(多重)する。このようにしてサブキャリアにマッピングされた送信データは、プリコーディング乗算部507に入力される。
 ここで、CSI-RSは、移動局装置200における各送信アンテナTX#1~TX#8からの平均受信電力を測定するためのリファレンス信号として機能するものである。このCSI-RSは、上述した電力制御行列Sxの影響を受けることなく、一定の送信電力で送信される。このようにCSI-RSを一定の送信電力で送信することにより、移動局装置200における平均受信電力を測定する際の精度を高めることができるものとなっている。なお、このCSI-RSは、移動局装置200におけるPMIの選択の際にも利用される。
 プリコーディング乗算部507は、送信電力制御部として機能するものであり、後述するプリコーディングウェイト決定部508から与えられるプリコーディングウェイトに基づいて、送信アンテナTX#1~TX#NTX毎に送信信号を位相及び/又は振幅シフトする(プリコーディングによる送信アンテナTX#1~TX#NTXの重み付け)。例えば、平均受信電力値を行列要素に含む電力制御行列Sxにより更新された更新コードブックから選択されたプリコーディングウェイトが与えられる場合、プリコーディング乗算部507は、平均受信電力が相対的に小さい送信信号(つまり、パスロスが大きい送信信号)の送信電力を低減する一方、平均受信電力が相対的に大きい送信信号(つまり、パスロスが小さい送信信号)の送信電力を増大する送信電力制御を行う。一方、パスロスの逆数を行列要素に含む電力制御行列Sxにより更新された更新コードブックから選択されたプリコーディングウェイトが与えられる場合、プリコーディング乗算部507は、平均受信電力が相対的に小さい送信信号(つまり、パスロスが大きい送信信号)の送信電力を増大する一方、平均受信電力値が相対的に大きい送信信号(つまり、パスロスが小さい送信信号)の送信電力を低減する送信電力制御を行う。
 なお、例えば、平均受信電力値を行列要素に含む電力制御行列Sxを用いる場合において、平均受信電力が相対的に小さい送信信号(つまり、パスロスが大きい送信信号)の送信電力を低減した結果、その送信電力が予め定めた送信電力の閾値を下回る場合にその送信電力を「0」とし、当該送信信号の送信を制限することは実施の形態として好ましい。この場合には、パスロスが大きい送信アンテナからの送信信号の送信電力が「0」とされることから、当該送信信号が干渉信号として隣接セルに与える影響をなくすことができるので、当該セルにおけるスループット特性が劣化する事態をより発生し難くすることができ、システム全体におけるスループット特性の劣化を抑制することができる。
 プリコーディングウェイト決定部508は、ベースコードブックを保持するベースコードブック保持部508aと、移動局装置200から通知される平均受信電力フィードバック値Sに応じて電力制御行列Sxを生成する電力制御行列生成部508bと、電力制御行列Sxに応じてベースコードブックに定められたプリコーディングウェイトを更新するコードブック更新部508cと、移動局装置200から通知されるPMIに応じて更新後のコードブック(更新コードブック)に定められたプリコーディングウェイトのうち、最適なものを選択するプリコーディングウェイト選択部508dとを備える。
 プリコーディングウェイト決定部508は、移動局装置200から上りリンクで平均受信電力フィードバック値S及びPMIのフィードバックを受けると、電力制御行列生成部508bで平均受信電力フィードバック値Sに基づいて上述した電力制御行列Sxを生成する。そして、コードブック更新部508cでベースコードブックを電力制御行列Sxに応じて更新した後、プリコーディングウェイト選択部508dでPMIに従って更新コードブックの最適なプリコーディングウェイトを選択し、当該プリコーディングウェイトをプリコーディング乗算部507に出力する。なお、電力制御行列生成部508bで上述したパスロスの逆数を行列要素に含む電力制御行列Sxを生成する場合には、平均受信電力フィードバック値Sと、各送信アンテナTX#1~TX#NTXにおける送信電力との比からパスロスの逆数が推定される。
 プリコーディング乗算部507により位相及び/又は振幅シフトされた送信信号は、逆高速フーリエ変換部509#1~509#NTXにて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換される。そして、サイクリックプレフィックス付与部510#1~510#NTXにてサイクリックプレフィックスが付与される。サイクリックプレフィックスが付与された送信信号は、RF送信回路511#1~511#NTXへ送出され、無線周波数帯に変換する周波数変換処理が施された後、送信アンテナTX#1~TX#NTXを介して下りリンクで移動局装置200に送出される。
 次に、図6を参照して本実施の形態に係る移動局装置200の構成について説明する。図6に示す移動局装置200において、基地局装置100から送信された送信信号は、受信アンテナRX#1~RX#NRXにより受信され、デュプレクサ(Duplexer)601#1~601#NRXにて送信経路と受信経路とに電気的に分離された後、RF受信回路602#1~602#NRXに出力される。そして、RF受信回路602#1~602#NRXにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施された後、CP除去部603#1~603#NRXにより受信信号に付与されたサイクリックプレフィックスが除去され、高速フーリエ変換部(FFT部)604#1~604#NRXに出力される。
 受信タイミング推定部605は、RF受信回路602#1~602#NRXから出力された受信信号を取得し、例えば、この受信信号に含まれるリファレンス信号から受信タイミング(FFT処理タイミング)を推定し、FFT部604#1~604#NRXに通知する。RF受信回路602#1~602#NRXからの受信信号は、FFT部604#1~604#NRXにおいて、受信タイミング推定部605から通知された受信タイミングに応じてフーリエ変換され、時系列の信号から周波数領域の信号に変換された後、データチャネル信号分離部606に出力される。
 データチャネル信号分離部606は、FFT部604#1~604#NRXから入力された受信信号を、例えば、最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、基地局装置100から到来した受信信号は、ストリーム#1~#Nstreamに関する受信信号に分離される。チャネル推定部607は、FFT部604#1~604#NRXから出力された受信信号に含まれるリファレンス信号からチャネル状態を推定し、推定したチャネル状態をデータチャネル信号分離部606に通知する。データチャネル信号分離部606においては、通知されたチャネル状態に基づいて、受信信号をMLD信号分離法により分離する。
 データチャネル信号分離部606により分離されたストリーム#1~#Nstreamに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻された後、不図示のデータ復調部でデータ復調される。そして、チャネル復号部608にてチャネル復号処理が施されることで送信信号が再生される。
 平均受信電力測定部609は、FFT部604#1~604#NRXから入力された受信信号に含まれるリファレンス信号(CSI-RS)の受信状態から各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力を測定する。測定された平均受信電力は、平均受信電力フィードバック値Sとして、後述するプリコーディングウェイト決定部610の電力制御行列生成部610bに通知されると共に、不図示の上り制御信号生成部に通知される。平均受信電力フィードバック値Sは、上り制御信号生成部により生成された上り制御信号(PUCCH)に含めて上りリンクで基地局装置100に送出(フィードバック)される。なお、平均受信電力フィードバック値Sを基地局装置100側にフィードバックする際には、例えば、平均受信電力フィードバック値Sの絶対値をフィードバックする方法や、前回にフィードバックした平均受信電力フィードバック値Sからの差分をフィードバックする方法が考えられる。
 プリコーディングウェイト決定部610は、ベースコードブックを保持するベースコードブック保持部610aと、平均受信電力測定部609から通知される平均受信電力フィードバック値Sに応じて電力制御行列Sxを生成する電力制御行列生成部610bと、電力制御行列に応じてベースコードブックに定められたプリコーディングウェイトを更新するコードブック更新部610cと、FFT部604#1~604#NRXから入力された受信信号に含まれるリファレンス信号(CSI-RS)の受信状態に応じて更新後のコードブック(更新コードブック)に定められたプリコーディングウェイトのうち、最適なものを選択するプリコーディングウェイト選択部610dとを備える。
 プリコーディングウェイト決定部610は、平均受信電力測定部609から平均受信電力フィードバック値Sの通知を受けると、電力制御行列生成部610bで平均受信電力フィードバック値Sに基づいて上述した電力制御行列Sxを生成する。そして、コードブック更新部610cでベースコードブックを電力制御行列Sxに従って更新した後、プリコーディングウェイト選択部508dで受信信号に含まれるリファレンス信号(CSI-RS)の受信状態に応じて更新コードブックの最適なプリコーディングウェイトを選択する。そして、選択した最適なプリコーディングウェイトに対応するPMIを上りリンクで基地局装置100に送出する。PMIは、不図示の上り制御信号生成部に通知され、この上り制御信号生成部により生成された上り制御信号(PUCCH)に含めて上りリンクで基地局装置100に送出される。なお、電力制御行列生成部610bで上述したパスロスの逆数を行列要素に含む電力制御行列Sxを生成する場合には、平均受信電力フィードバック値Sと、基地局装置100の各送信アンテナTX#1~TX#NTXにおける送信電力との比からパスロスの逆数が推定される。
 このような構成を有する移動局装置200においては、基地局装置100の各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力を測定し、平均受信電力フィードバック値Sを基地局装置100にフィードバックすると共に、これを反映した電力制御行列Sxを生成する。そして、この電力制御行列Sxでベースコードブックを更新した後、この更新コードブックの最適なプリコーディングウェイトを選択すると共に、これに対応するPMIを基地局装置100にフィードバックする。
 本実施の形態に係る移動局装置200によれば、基地局装置100の各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力に基づいて最適なプリコーディングウェイトが選択され、当該プリコーディングウェイトに対応するPMIが基地局装置100にフィードバックされることから、各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力を反映したPMIを基地局装置100に提供することができるので、基地局装置100における各送信信号の送信電力を制御する際の処理を簡素化することが可能である。
 一方、基地局装置100においては、移動局装置200から平均受信電力フィードバック値S及びPMIのフィードバックを受けると、平均受信電力フィードバック値Sを反映した電力制御行列Sxを生成し、この電力制御行列Sxでベースコードブックを更新する。そして、この更新コードブックの最適なプリコーディングウェイトを上記PMIに従って選択し、当該プリコーディングウェイトを各ストリームに関する送信信号に乗算して移動局装置200に送出する。
 本実施の形態に係る基地局装置100によれば、各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力に基づいて生成される電力制御行列Sxに応じて各ストリームに関する送信信号に乗算されるプリコーディグウェイトを調整し、各ストリームに関する送信信号の送信電力を制御する。これにより、各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力に応じて各ストリームに関する送信信号の送信電力が決定されることから、各送信アンテナTX#1~TX#NTXからの送信信号の平均受信電力を反映して柔軟に各ストリームに関する送信信号の送信電力を制御することができるので、屋内環境にて複数の送信アンテナが配置される場合においても、システム全体におけるスループット特性の劣化を抑制することが可能となる。
 特に、本実施の形態に係る基地局装置100においては、移動局装置200から平均受信電力フィードバック値Sのフィードバックを受け、この平均受信電力フィードバック値Sに応じて電力制御行列Sxを生成することから、移動局装置200と共通する電力制御行列Sxを生成することができるので、双方で共通するベースコードブックから確実に同一の更新コードブックを得ることができるものとなっている。また、基地局装置100においては、移動局装置200からフィードバックされるPMIに従って更新コードブックから最適なプリコーディングウェイトを選択することから、確実に移動局装置200と同一のプリコーディングウェイトを選択できるものとなっている。
 例えば、平均受信電力値を行列要素に含む電力制御行列Sxを用いる場合には、パスロスが小さい送信アンテナからの送信信号に対して、パスロスが大きい送信アンテナからの送信信号と比べて大きな送信電力が割り当てられることから、パスロスが小さい送信アンテナからの送信信号を確実に移動局装置200に伝送することができるので、各送信アンテナTX#1~TX#NTXと移動局装置UEとの距離に応じてパスロスに差異が生じる場合と比べて、より効率的に信号伝送でき、システム全体におけるスループット特性の劣化を抑制することが可能となる。
 また、パスロスの逆数を行列要素に含む電力制御行列Sxを用いる場合には、パスロスが小さい送信アンテナからの送信信号に割り当てられる送信電力と、パスロスが大きい送信アンテナからの送信信号に割り当てられる送信電力とが略等しくなるように調整されることから、パスロスの大きい送信アンテナからの送信信号を移動局装置UE側で得ることができないという事態を発生し難くすることができるので、各送信アンテナTX#1~TX#NTXと移動局装置UEとの距離に応じてパスロスに差異が生じる場合と比べて、より効率的に信号伝送でき、システム全体におけるスループット特性の劣化を抑制することが可能となる。
 さらに、電力制御行列Sxは、基地局装置100の送信アンテナ数の次元を有する対角行列で構成され、各送信アンテナTX#1~TX#NTXからの平均受信電力値(又はこの平均受信電力値に基づくパスロスの逆数)を行列要素の対角成分に有している。このため、基地局装置100で電力制御行列Sxを生成するために必要なフィードバック情報として、移動局装置200から電力制御行列Sxの行列要素の対角成分(例えば、送信アンテナ数が8つの場合には、8つの対角成分)だけフィードバックすれば良いので、電力制御行列Sxを生成するためのフィードバック情報のために多量の情報ビット数を確保する必要がなくなる。
 例えば、複数の送信アンテナと移動局装置UEとの位置関係に起因して生じる送信信号のパスロスの差異に対応する類似技術として、プリコーディングウェイトとして送信信号の送信電力をオフとする成分(つまり、「0」成分)を定めるコードブックを用いて、特定の送信アンテナからの送信信号の送信を制限する内容が提案されている(3GPP, TR36.814, “Further Advancements for E-UTRA: Physical Layer Aspects”)。このようなコードブックを用いる場合には、特定の送信アンテナからの送信信号の送信電力をオン/オフすることが可能である。しかしながら、送信アンテナ数に応じてコードブックに定められるプリコーディングウェイトの数を増大する必要があり、これらのプリコーディングウェイトの特定に必要となるフィードバック情報量も、特にアンテナ数が多いほど大きくなる。これに対して、本実施の形態に係る移動通信システム1000においては、移動局装置200から電力制御行列Sxの行列要素の対角成分だけフィードバックすれば良いので、移動局装置200から基地局装置100へのフィードバック情報量を大幅に低減することが可能となる。
 なお、以上の説明では、複数の送信アンテナが分散配置されることにより、送信信号のパスロスが発生する場合を具体例として説明しているが、本発明の適用対象は、複数の送信アンテナが分散配置される場合に限定されるものではない。例えば、複数の送信アンテナが局所的に配置(局所配置:Localized配置)される場合であって送信信号のパスロスに差異が生じる場合や、垂直/水平偏波アンテナを用いる場合であって、垂直偏波面と水平偏波面とで受信レベル差が異なる場合等にも適用することが可能である。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2009年10月5日出願の特願2009-231924に基づく。この内容は全てここに含めておく。

Claims (14)

  1.  複数の送信アンテナからの各送信信号の平均受信電力を反映した電力制御行列を生成する電力制御行列生成部と、予め複数のプリコーディングウェイトを定めたコードブックを前記電力制御行列に応じて更新する更新部と、更新した前記コードブックから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択する選択部と、前記選択部により選択されたプリコーディングウェイトに応じて各送信信号の送信電力を制御する送信電力制御部とを具備することを特徴とする基地局装置。
  2.  各送信アンテナからの送信信号から前記平均受信電力を測定すると共に、当該平均受信電力を反映した電力制御行列を生成し、予め定めた複数のプリコーディングウェイトを前記電力制御行列に応じて更新し、更新後のプリコーディングウェイトから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択する移動局装置から、前記平均受信電力及び選択したプリコーディングウェイトに関する情報を受信する受信部を具備し、前記電力制御行列生成部は、移動局装置で測定した前記平均受信電力に応じて前記電力制御行列を生成し、前記選択部は、移動局装置で選択したプリコーディングウェイトに関する情報に応じてプリコーディングウェイトを選択することを特徴とする請求項1記載の基地局装置。
  3.  前記電力制御行列生成部は、送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の平均受信電力値を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項1記載の基地局装置。
  4.  前記送信電力制御部は、前記選択部により選択されたプリコーディングウェイトにより決定した送信信号の送信電力が所定の閾値を下回る場合に当該送信信号の送信電力を0とすることを特徴とする請求項3記載の基地局装置。
  5.  前記電力制御行列生成部は、送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の減衰量の逆数を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項1記載の基地局装置。
  6.  基地局装置の複数の送信アンテナからの各送信信号の平均受信電力を測定する平均受信電力測定部と、前記平均受信電力を反映した電力制御行列を生成する電力制御行列生成部と、予め複数のプリコーディングウェイトを定めたコードブックを前記電力制御行列に応じて更新する更新部と、更新した前記コードブックから各送信信号を合成した後のスループット又は受信SINRが最大となるプリコーディングウェイトを選択する選択部と、前記平均受信電力測定部により測定された前記平均受信電力及び前記選択部により選択されたプリコーディングウェイトに関する情報を基地局装置に送信する送信部とを具備することを特徴とする移動局装置。
  7.  前記電力制御行列生成部は、基地局装置の送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の平均受信電力値を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項6記載の移動局装置。
  8.  前記電力制御行列生成部は、基地局装置の送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の減衰量の逆数を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項6記載の移動局装置。
  9.  基地局装置の複数の送信アンテナから送信信号を空間多重伝送により送信し、当該送信信号を移動局装置で分離して受信信号を得る移動通信システムであって、
     前記複数の送信アンテナからの各送信信号の平均受信電力を測定する平均受信電力測定部と、前記平均受信電力を反映した電力制御行列を生成し、予め定めた複数のプリコーディングウェイトを前記電力制御行列に応じて更新し、更新後のプリコーディングウェイトから最適なプリコーディングウェイトを選択する第1のプリコーディングウェイト決定部と、前記平均受信電力及び前記最適なプリコーディングウェイトに関する情報を基地局装置に送信する送信部とを有する移動局装置と、
     移動局装置から送信された前記平均受信電力を反映した電力制御行列を生成し、予め定めた複数のプリコーディングウェイトを前記電力制御行列に応じて更新し、更新後のプリコーディングウェイトから最適なプリコーディングウェイトを、移動局装置から送信された前記最適なプリコーディングウェイトに関する情報に応じて選択する第2のプリコーディングウェイト決定部と、前記第2のプリコーディング決定部により選択されたプリコーディングウェイトにより各送信信号の送信電力を制御する送信電力制御部とを有する基地局装置とを具備することを特徴とする移動通信システム。
  10.  前記第1、第2のプリコーディング決定部は、基地局装置の送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の平均受信電力値を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項9記載の移動通信システム。
  11.  前記第1、第2のプリコーディング決定部は、基地局装置の送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の減衰量の逆数を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項9記載の移動通信システム。
  12.  複数の送信アンテナから送信信号を空間多重伝送により移動局装置に送信する基地局装置における送信電力制御方法であって、
     移動局装置において、前記複数の送信アンテナからの各送信信号の平均受信電力を測定するステップと、前記平均受信電力を反映した電力制御行列を生成し、予め定めた複数のプリコーディングウェイトを前記電力制御行列に応じて更新し、更新後のプリコーディングウェイトから最適なプリコーディングウェイトを選択するステップと、前記平均受信電力及び前記最適なプリコーディングウェイトに関する情報を基地局装置に送信するステップと、
     基地局装置において、移動局装置から送信された前記平均受信電力を反映した電力制御行列を生成し、予め定めた複数のプリコーディングウェイトを前記電力制御行列に応じて更新し、更新後のプリコーディングウェイトから最適なプリコーディングウェイトを、移動局装置から送信された前記最適なプリコーディングウェイトに関する情報に応じて選択するステップと、選択された前記最適なプリコーディングウェイトにより各送信信号の送信電力を制御するステップとを具備することを特徴とする送信電力制御方法。
  13.  基地局装置及び移動局装置において、基地局装置の送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の平均受信電力値を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項12記載の送信電力制御方法。
  14.  基地局装置及び移動局装置において、基地局装置の送信アンテナの数に応じた次元を有する対角行列であって、各送信アンテナからの送信信号の減衰量の逆数を行列要素の対角成分に有する前記電力制御行列を生成することを特徴とする請求項12記載の送信電力制御方法。
PCT/JP2010/066416 2009-10-05 2010-09-22 基地局装置、移動局装置及び送信電力制御方法 WO2011043191A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/498,918 US8787261B2 (en) 2009-10-05 2010-09-22 Base station apparatus, mobile station apparatus and transmission power control method
EP10821862.9A EP2487965A4 (en) 2009-10-05 2010-09-22 BASIC STATION DEVICE, MOBILE STATION DEVICE AND TRANSMISSION POWER CONTROL METHOD
CN201080044652.5A CN102577532B (zh) 2009-10-05 2010-09-22 基站装置、移动台装置及发送功率控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009231924A JP5039110B2 (ja) 2009-10-05 2009-10-05 基地局装置、移動局装置及び送信電力制御方法
JP2009-231924 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011043191A1 true WO2011043191A1 (ja) 2011-04-14

Family

ID=43856659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066416 WO2011043191A1 (ja) 2009-10-05 2010-09-22 基地局装置、移動局装置及び送信電力制御方法

Country Status (5)

Country Link
US (1) US8787261B2 (ja)
EP (1) EP2487965A4 (ja)
JP (1) JP5039110B2 (ja)
CN (1) CN102577532B (ja)
WO (1) WO2011043191A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472542B1 (en) * 2012-02-29 2013-06-25 Huawei Technologies Co., Ltd. Method, apparatus, and system for signal transmission
CN103297178A (zh) * 2012-02-29 2013-09-11 华为技术有限公司 一种信号传输方法、装置及系统
CN103378889A (zh) * 2012-04-24 2013-10-30 株式会社Ntt都科摩 码本生成方法、码本生成装置以及初始码本生成方法
US20140177467A1 (en) * 2011-08-19 2014-06-26 Lg Electronics Inc. Method for terminal deciding uplink transmission power in macro cell environment comprising remote radio head (rrh), and terminal apparatus for same
JP2014175810A (ja) * 2013-03-07 2014-09-22 Ntt Docomo Inc ユーザ装置及び基地局

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20131090A1 (es) 2010-12-10 2013-10-16 Panasonic Ip Corp America Metodo y dispositivo de generacion de senales
CN103004118B (zh) 2010-12-10 2016-04-27 松下电器(美国)知识产权公司 预编码方法、发送装置
EP2663130B1 (en) * 2011-01-04 2018-08-08 LG Electronics Inc. Method and apparatus for selecting a node in a distributed multi-node system
BR112013002605B1 (pt) 2011-02-18 2022-08-23 Sun Patent Trust Método de transmissão, aparelho de transmissão, método de recepção e aparelho de recepção
JP5784740B2 (ja) 2011-09-08 2015-09-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法及び信号生成装置
JP2013135271A (ja) * 2011-12-26 2013-07-08 Sharp Corp 通信装置、通信方法、通信プログラム、プロセッサ、及び通信システム
JP5863940B2 (ja) * 2012-02-29 2016-02-17 京セラ株式会社 通信制御方法、ユーザ端末、及び基地局
US8897702B2 (en) 2012-06-26 2014-11-25 Intel Corporation Mobility measurement using CSI-RS in additional carrier
JP6121118B2 (ja) * 2012-09-07 2017-04-26 株式会社Nttドコモ 無線通信方法、ユーザ端末、無線基地局及び無線通信システム
US10284266B2 (en) 2012-12-06 2019-05-07 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, wireless communication system and integrated circuit
US8891657B2 (en) * 2012-12-14 2014-11-18 Telefonaktiebolaget L M Ericsson(Publ) Transmission power distribution for MIMO communications when multiplicative noise limited
CN103974315B (zh) 2013-02-05 2018-01-19 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
US9225396B2 (en) * 2013-02-15 2015-12-29 Intel Corporation Apparatus, system and method of transmit power control for wireless communication
JP5726934B2 (ja) * 2013-03-14 2015-06-03 株式会社東芝 制御装置、代表基地局、無線通信システム及び基地局制御方法
KR102065696B1 (ko) * 2013-08-01 2020-01-14 삼성전자주식회사 무선 통신 시스템에서 적응적 송신 전력 정규화를 위한 장치 및 방법
US9450657B2 (en) * 2013-08-28 2016-09-20 Nec Corporation Low-complexity precoder design for large-scale MIMO communication systems
WO2016108482A1 (ko) * 2014-12-30 2016-07-07 엘지전자(주) 무선 통신 시스템에서 코드북을 이용하여 프리코딩을 수행하기 위한 방법 및 이를 위한 장치
CN106257951B (zh) * 2015-06-19 2021-04-30 中兴通讯股份有限公司 一种数据传输方法和基站
CN106487436B (zh) * 2015-09-01 2021-03-23 中兴通讯股份有限公司 一种混合波束赋形上行多用户配对方法及其装置
KR102421473B1 (ko) * 2015-10-01 2022-07-18 삼성전자주식회사 Td-scdma 시스템에서 캐리어 서치를 수행하는 통신 디바이스 및 그 제어 방법
WO2017165668A1 (en) * 2016-03-25 2017-09-28 Intel Corporation Uplink power control for 5g systems
US9918317B2 (en) * 2016-07-08 2018-03-13 Alcatel-Lucent Usa Inc. Apparatus configured to approximate a power coefficient in a cell-free massive MIMO wireless system and method of performing same
US11201647B2 (en) * 2016-08-11 2021-12-14 Motorola Mobility Llc Method and apparatus for equal energy codebooks for coupled antennas with transmission lines
JP6994304B2 (ja) * 2017-03-02 2022-01-14 株式会社Nttドコモ 無線端末、送信電力制御方法、および無線基地局
JP6967358B2 (ja) 2017-03-02 2021-11-17 株式会社Nttドコモ 無線基地局および送信電力制御方法
EP3665819A4 (en) 2017-08-11 2021-06-23 Lenovo (Beijing) Limited ENCODING THE RECEIVED POWER OF A REFERENCE SIGNAL
CN112867121B (zh) * 2018-01-12 2022-06-10 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点
WO2019144377A1 (en) * 2018-01-26 2019-08-01 Qualcomm Incorporated Techniques and apparatuses for precoding configuration
CN110830090B (zh) * 2018-08-10 2021-08-13 华为技术有限公司 信号处理方法和装置
CN113424603B (zh) * 2019-02-14 2024-02-20 Lg电子株式会社 在无线通信系统中为上行链路传输确定传输功率的方法及其设备
WO2022176289A1 (ja) * 2021-02-16 2022-08-25 日本電気株式会社 基地局、無線通信方法、無線通信システム、端末、及びコンピュータ可読媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125068A (ja) * 2006-10-30 2008-05-29 Ntt Docomo Inc 受信装置、送信装置及びプリコーディング情報を提供する方法
JP2008125069A (ja) * 2006-10-30 2008-05-29 Ntt Docomo Inc 受信装置、送信装置、及びmimo伝送における送信装置でのプリコーディングを制御する受信及び送信方法
JP2008136199A (ja) * 2006-10-30 2008-06-12 Ntt Docomo Inc コードブックジェネレータ、コードブック、及びmimo伝送を用いたプリコーディングスキームにおいて使用される更新用行列を求める方法
WO2008100038A2 (en) * 2007-02-14 2008-08-21 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
JP2009231924A (ja) 2008-03-19 2009-10-08 Mitsubishi Electric Corp フレームデータ転送システム、フレームデータ転送装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008032358A1 (ja) * 2006-09-11 2010-01-21 富士通株式会社 無線通信装置および無線通信方法
US7702029B2 (en) * 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
DE602006012691D1 (de) * 2006-10-30 2010-04-15 Ntt Docomo Inc Empfänger, Sender sowie Übertragungs- bzw. Empfangsverfahren zur Steuerung einer Vorkodierung in einem Sender in einer MIMO-Übertragung
EP1919097B1 (en) * 2006-10-30 2010-01-06 NTT DoCoMo Inc. Codebook generator, codebook and method for generating update matrices to be used in a precoding scheme with MIMO transmission
US20080187062A1 (en) * 2007-02-06 2008-08-07 Interdigital Technology Corporation Method and apparatus for multiple-input multiple- output feedback generation
EP2078443A1 (en) * 2007-08-31 2009-07-15 Fujitsu Limited Feedback apparatus, feedback method, scheduling apparatus, and scheduling method
JP5256955B2 (ja) * 2008-09-12 2013-08-07 富士通株式会社 制御方法、通信特性制御方法、基地局装置、及び移動局装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125068A (ja) * 2006-10-30 2008-05-29 Ntt Docomo Inc 受信装置、送信装置及びプリコーディング情報を提供する方法
JP2008125069A (ja) * 2006-10-30 2008-05-29 Ntt Docomo Inc 受信装置、送信装置、及びmimo伝送における送信装置でのプリコーディングを制御する受信及び送信方法
JP2008136199A (ja) * 2006-10-30 2008-06-12 Ntt Docomo Inc コードブックジェネレータ、コードブック、及びmimo伝送を用いたプリコーディングスキームにおいて使用される更新用行列を求める方法
WO2008100038A2 (en) * 2007-02-14 2008-08-21 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
JP2009231924A (ja) 2008-03-19 2009-10-08 Mitsubishi Electric Corp フレームデータ転送システム、フレームデータ転送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2487965A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177467A1 (en) * 2011-08-19 2014-06-26 Lg Electronics Inc. Method for terminal deciding uplink transmission power in macro cell environment comprising remote radio head (rrh), and terminal apparatus for same
US9226247B2 (en) * 2011-08-19 2015-12-29 Lg Electronics Inc. Method for terminal deciding uplink transmission power in macro cell environment comprising remote radio head (RRH), and terminal apparatus for same
US8472542B1 (en) * 2012-02-29 2013-06-25 Huawei Technologies Co., Ltd. Method, apparatus, and system for signal transmission
CN103297178A (zh) * 2012-02-29 2013-09-11 华为技术有限公司 一种信号传输方法、装置及系统
CN103378889A (zh) * 2012-04-24 2013-10-30 株式会社Ntt都科摩 码本生成方法、码本生成装置以及初始码本生成方法
JP2014175810A (ja) * 2013-03-07 2014-09-22 Ntt Docomo Inc ユーザ装置及び基地局
US9391682B2 (en) 2013-03-07 2016-07-12 Ntt Docomo, Inc. User equipment and base station

Also Published As

Publication number Publication date
US20120195264A1 (en) 2012-08-02
JP2011082705A (ja) 2011-04-21
EP2487965A4 (en) 2015-05-06
EP2487965A1 (en) 2012-08-15
CN102577532B (zh) 2015-04-08
JP5039110B2 (ja) 2012-10-03
CN102577532A (zh) 2012-07-11
US8787261B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
JP5039110B2 (ja) 基地局装置、移動局装置及び送信電力制御方法
US9172448B2 (en) Base-station apparatus, terminal apparatus, communication system, and communication method
JP6224880B2 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
US9124320B2 (en) Mobile terminal apparatus, radio base station apparatus and radio communication method
US8873666B2 (en) Communication control method, base station apparatus and mobile station apparatus
US8842763B2 (en) Precoding weight generation method, mobile station apparatus and base station apparatus
US20120218962A1 (en) Radio base station apparatus, mobile terminal apparatus and radio communication method
WO2013084693A1 (ja) 無線基地局装置、無線通信システム及び無線通信方法
US8976882B2 (en) Precoding weight generation method and control apparatus
WO2011136113A1 (ja) データ送信方法、基地局装置及び移動局装置
WO2012137709A1 (ja) 端末、基地局、通信システムおよび通信方法
US11177982B2 (en) System and method for providing explicit feedback in the uplink
EP3371894A1 (en) Radio communication system, radio base station, and user equipment
WO2011090105A1 (ja) 移動局装置、チャネル情報フィードバック方法
JP2018029375A (ja) 基地局装置、ユーザ端末及び通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044652.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010821862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3066/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13498918

Country of ref document: US