WO2011040320A1 - 圧電マイクロブロア - Google Patents

圧電マイクロブロア Download PDF

Info

Publication number
WO2011040320A1
WO2011040320A1 PCT/JP2010/066521 JP2010066521W WO2011040320A1 WO 2011040320 A1 WO2011040320 A1 WO 2011040320A1 JP 2010066521 W JP2010066521 W JP 2010066521W WO 2011040320 A1 WO2011040320 A1 WO 2011040320A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
blower
diaphragm
hole
piezoelectric
Prior art date
Application number
PCT/JP2010/066521
Other languages
English (en)
French (fr)
Inventor
雅章 藤崎
平田 篤彦
栗原 潔
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP10820438.9A priority Critical patent/EP2484906B1/en
Priority to JP2011534215A priority patent/JP5316644B2/ja
Publication of WO2011040320A1 publication Critical patent/WO2011040320A1/ja
Priority to US13/423,342 priority patent/US8721303B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/09Pumps having electric drive
    • F04B43/095Piezoelectric drive

Definitions

  • the present invention relates to a piezoelectric microblower suitable for transporting a compressive fluid such as air or gas.
  • Piezoelectric micro blowers are known as blowers for blowing air for releasing heat generated inside a casing of a portable electronic device to the outside or supplying oxygen necessary for power generation by a fuel cell.
  • a piezoelectric micro blower is a kind of pump that uses a diaphragm that bends and deforms when a voltage is applied to a piezoelectric element.
  • the piezoelectric micro blower has an advantage that it has a simple structure, can be made compact and thin, and has low power consumption.
  • Patent Document 1 discloses a flow generator using a piezoelectric element. As shown in FIG. 14, this flow generator forms a pressurizing chamber 103 between a base body 100 and a nozzle plate 101, fixes a ring-shaped piezoelectric element 104 to the nozzle plate 101, and A plurality of nozzle holes 102 are formed in the center. A case 105 is provided so as to surround the base body 100 with a predetermined gap, and a cylindrical guide 106 is formed at a portion of the case 105 facing the nozzle hole 102.
  • the nozzle plate 101 By driving the piezoelectric element 104 at a high frequency, the nozzle plate 101 is bent and vibrated to generate a jet flow from the plurality of nozzle holes 102, and the air flow jetted from the nozzle holes 102 entrains the surrounding air and guides 106 of the case 105. Can be discharged to the outside.
  • Patent Document 1 by driving the piezoelectric element 104, the central portion of the nozzle plate 101 is greatly bent and vibrated, and a jet can be generated according to the displacement.
  • the wall portion of the substrate 100 facing the nozzle plate 101 with the pressurizing chamber 103 in between is a fixed wall, an increase in the flow rate cannot be expected so much only by the vibration of the nozzle plate 101.
  • Patent Document 2 discloses a gas flow generator.
  • the gas flow generator includes an ultrasonic driver 110 in which a ring-shaped piezoelectric element 112 is fixed on a ring-shaped substrate 111, and a first surface fixed to the lower surface of the driver 110.
  • the central portion of the first film body 113 bulges downward, and a plurality of holes 115 are formed in the central portion of the second film body 114.
  • this gas flow generator when the ultrasonic driver 110 is driven at a high frequency, air around the hole 115 formed in the central portion of the second film body 114 is sucked in or entrained, and the air is drawn into the hole 115. It is possible to generate inertial injection (jet) by discharging in the orthogonal direction. However, since the periphery of the hole 115 of the second film body 114 is an open space, there is a drawback that the jetted airflow diffuses and a desired flow rate cannot be obtained. In addition, there is a problem in that air vortex is generated around the hole 115 and a large noise is generated.
  • this micro blower has a blower main body 120, an outer peripheral portion fixed to the blower main body 120, a diaphragm 121 having a piezoelectric element 122, and between the blower main body 120 and the diaphragm 121. And a blower chamber 123 formed.
  • a first wall 124 that resonates with the vibration of the diaphragm 121 is provided at a portion facing the diaphragm 121 with the blower chamber 123 therebetween, and a first opening 125 is formed at the center of the first wall 124. Is formed.
  • a second wall 126 is provided on the opposite side of the blower chamber 123 with the first wall 124 in between, and a second opening 127 is formed at a portion of the second wall 126 facing the first opening 125. Yes.
  • An inflow passage 129 communicating with the suction port 128 is formed between the first wall portion 124 and the second wall portion 126.
  • an object of the present invention is to provide a low-noise piezoelectric microblower while maintaining a flow rate characteristic.
  • the present invention provides a blower body, a diaphragm having an outer peripheral portion fixed to the blower body, having a piezoelectric element, and a blower formed between the blower body and the diaphragm. And a first wall portion of a blower body which is provided at a portion facing the diaphragm with the chamber between the blower chamber and vibrates with the vibration of the diaphragm, and a first wall portion formed on the first wall portion.
  • a piezoelectric microblower provided with an inflow passage formed between the first wall portion and the second wall portion, each of the first opening portion and the second opening portion includes a plurality of holes, Each hole of the first opening and each hole of the second opening are provided at positions facing each other individually.
  • FIG. 13 shows the flow of airflow and velocity distribution in the prior art (Patent Document 3), and (b) shows the flow of airflow and velocity distribution of an example of the present invention.
  • the velocity distribution is represented by a thin line.
  • Reference numeral 200 denotes a first wall
  • 210 denotes a second wall
  • 201 and 202 denote first openings
  • 211 and 212 denote second openings.
  • FIG. 13A since one first opening 201 is formed at the central portion where the amplitude of the first wall portion 200 is maximum, the first opening 201 is formed at the center of the first opening 201.
  • a high-speed airflow 220 having a large speed peak is generated.
  • the high-speed airflow 220 flowing through the center has a speed of, for example, 100 m / s. Therefore, there is a large difference in velocity distribution immediately above and around the first opening 201, and the fact that the high-speed airflow 220 interferes with the second opening 220 is near the first opening 201 and the second opening 220. It is thought that this is the cause of loud noise (wind noise).
  • the individual air currents 221 generated in the plurality of first openings 202 are quickly mixed with the surrounding air, so that the speed difference from the surrounding air is increased. Because it decreases, the velocity peak is relatively small and distributed. Therefore, the flow velocity difference between the first opening 202 and the surrounding area, and the flow velocity of the high-speed airflow 221 that interferes with the second opening 221 can be reduced, and the first opening 202 and the second opening 212 are in the vicinity. It is thought that noise can be reduced. Since the magnitude of noise is considered to be proportional to the fourth to eighth power of the flow velocity, the sound pressure level of noise can be greatly reduced.
  • the second opening When the first opening is porous and the second opening is a single hole (see Patent Document 1), the second opening has a size that includes all the first openings in order to reduce fluid resistance. It is necessary to. However, in that case, the air outside the second opening may flow backward to the first opening depending on the pressure difference inside and outside the second opening and the ventilation resistance of the second opening. There is a possibility that it will decrease.
  • a plurality of holes in the second opening 212 are provided so as to individually face the holes in the first opening 202, so that backflow in the vicinity of the second opening 212 can be prevented. The flow rate characteristic can be maintained.
  • the diameter d2 of each hole in the second opening is desirably 1 to 3 times the diameter d1 of each hole in the first opening.
  • the second opening and the first opening may have the same diameter, but in the case of the same diameter, the air flow generated in the first opening collides with the edge of the second opening and the flow path. There is a possibility of increasing the resistance. On the other hand, if the second opening is too large, a backflow near the second opening may occur. Therefore, by setting the diameter d2 of each hole in the second opening to be 1 to 3 times the diameter d1 of each hole in the first opening, the flow resistance in the second opening is reduced and the backflow is prevented. And a large flow rate can be obtained.
  • each of the first opening and the second opening is configured by a plurality of holes, and the first opening and the second opening overlap in the facing direction. Therefore, it is possible to disperse the velocity peaks of the individual airflows generated in the plurality of first openings, and to reduce the flow velocity difference between the first opening and the surrounding area, and the first opening and the second opening. Noise near the area can be reduced.
  • the second opening since the second opening has a plurality of holes facing the first opening, backflow in the vicinity of the second opening can be prevented and flow characteristics can be maintained.
  • FIG. 6 It is a cross-sectional view of Comparative Example 1 and Comparative Example 2.
  • FIG. It is a PQ characteristic diagram of the first example and Comparative Examples 1 and 2. It is the schematic of the measuring apparatus for measuring a PQ characteristic. It is a figure which shows the noise characteristic of 1st Example and Comparative Examples 1 and 2.
  • FIG. 1 It is the partial top view which looked at the piezoelectric micro blower shown in FIG. 1 from the discharge side. It is the disassembled perspective view seen from the 2nd wall part side of the piezoelectric micro blower shown in FIG. It is the disassembled perspective view seen from the diaphragm side of the piezoelectric micro blower shown in FIG. 6 is a cross-sectional view of Comparative Example 1 and Comparative Example 2.
  • FIG. It is a PQ characteristic diagram of the first example and Comparative Examples 1 and 2. It is the schematic of the measuring apparatus for measuring a PQ characteristic. It is a figure which shows the noise characteristic of 1st Example and Comparative Examples 1 and 2.
  • FIG. 10 is a PQ characteristic diagram of the third example and Comparative Example 1. It is a figure which shows the noise characteristic of 3rd Example and the comparative example 1.
  • FIG. It is a figure which shows the flow and velocity distribution of the airflow in a conventional structure and this invention. It is sectional drawing of the flow generator in patent document 1.
  • FIG. It is sectional drawing of the gas flow generator in patent document 2.
  • FIG. It is sectional drawing of the micro blower in patent document 3.
  • FIG. 1 to 4 show a first embodiment of a piezoelectric microblower according to the present invention.
  • the blower body 1 of the piezoelectric micro blower A is composed of an inner case 10 and an outer case 50 that covers the outer side of the inner case 10 in a non-contact manner with a predetermined gap, between the inner case 10 and the outer case 50.
  • the inner case 10 is formed in a U-shaped cross-section with an opening at the bottom, and the diaphragm 20 is fixed so as to close the lower opening of the inner case 10, and between the inner case 10 and the diaphragm 20.
  • a blower chamber 3 is formed.
  • the diaphragm 20 of the present embodiment has a unimorph structure in which a piezoelectric element 21 made of piezoelectric ceramic and an intermediate plate 22 made of a metal thin plate are attached to the center of a diaphragm 23 made of a metal thin plate, and the piezoelectric element 21 has a predetermined frequency. Is applied, the entire diaphragm 20 is resonantly driven in a bending mode.
  • the diaphragm 20 is not limited to the unimorph type as described above, but is a bimorph type in which piezoelectric elements 21 extending and contracting in opposite directions are pasted on both surfaces of the diaphragm 23, or a laminated piezoelectric element that itself bends and deforms on one side of the diaphragm.
  • a bimorph type with an element attached thereto, or a diaphragm itself composed of a laminated piezoelectric element may be used.
  • the shape of the piezoelectric element 21 is not limited to a disk shape, and may be a rectangular shape or an annular shape.
  • a structure in which the intermediate plate 22 is omitted and the piezoelectric element 21 is directly attached to the diaphragm 23 may be employed. In any case, any diaphragm that flexures and vibrates by applying an alternating voltage (AC voltage or rectangular wave voltage) to the piezoelectric element 21 may be used.
  • the central portion of the top plate (first wall portion) 11 of the inner case 10 that faces the central portion of the diaphragm 20 with the blower chamber 3 interposed therebetween includes a plurality of holes 12a and 12b.
  • a first opening 12 is formed.
  • the top plate 11 of the inner case 10 is formed of a thin metal plate so as to resonate with the resonance drive of the diaphragm 20.
  • the outer peripheral portion 13 of the top plate 11 protrudes in the radial direction, and the outer peripheral portion 13 is fixed by an outer case 50.
  • a plurality (four in this case) of spring connecting portions 15 divided by the arc-shaped slits 14 are formed.
  • the inner case 10 is elastically supported by the spring connecting portions 15 with respect to the outer case 50, and when the inner case 10 vibrates in the vertical direction with the resonance drive of the diaphragm 20, the vibration leaks to the outer case 50. It has a function to suppress the performance.
  • the inner case 10 of this embodiment is obtained by laminating and bonding a first inner frame body 16, a diaphragm 23, a second inner frame body 17, and a top plate 11 in this order from the lower side.
  • each of the first opening 12 and the second opening 52 has one hole (12a, 52a) at the center and eight holes (12b, 52b) around it.
  • the outer case 50 of this embodiment has a first outer frame body 53, a second outer frame body 54, a top plate 11 of the inner case 10, a third outer frame body 55, and a top plate 51 laminated in order from the lower side. It is.
  • the primary resonance frequency may be audible to humans and may increase noise.
  • the amount of displacement is smaller than in the primary resonance mode, but it can be driven at a frequency exceeding the audible range, so that noise can be prevented.
  • the vibration plate 20 and the top plate (first wall portion) 11 may vibrate in the same vibration mode, or may vibrate in different vibration modes (for example, one is a primary resonance mode and the other is a third resonance mode). Good.
  • the primary resonance mode is a mode in which one belly appears on the vibration plate 20 or the top plate 11, and the tertiary resonance mode is a central portion of the vibration plate 20 or the top plate 11 and its peripheral portion. This is a mode in which one belly occurs.
  • a central space 6 is formed between the top plate 11 and the top plate 51, and the central space 6 communicates with the first opening 12 and the second opening 52.
  • the central space 6 is connected to an annular inflow port 7 formed in a gap between the inner case 10 and the outer case 50 through the slit 14 described above. Therefore, when an air flow in the direction of the arrow is generated in the first opening 12 by driving the diaphragm 20, outside air is sucked from the inlet 7 and is discharged from the second opening 52 through the slit 14 and the central space 6. .
  • the operation of the piezoelectric micro blower A having the above-described configuration will be described.
  • the diaphragm 20 is resonantly driven in the primary resonance mode or the tertiary resonance mode, and thereby the distance between the first opening 12 and the diaphragm 20 changes.
  • the distance between the first opening 12 and the diaphragm 20 increases, the air in the central space 6 is sucked into the blower chamber 3 through the first opening 12, and conversely, the first opening 12 and the diaphragm 20
  • the distance decreases the air in the blower chamber 3 passes through the first opening 12 and is discharged into the central space 6.
  • the diaphragm 20 Since the diaphragm 20 is driven at a high frequency, the high speed / high energy air flow discharged from the first opening 12 to the central space 6 passes through the central space 6 and is discharged from the second opening 52. . At this time, the air in the central space 6 is discharged from the second opening 52 while entraining the air, so that a continuous air flow from the inlet 7 toward the central space 6 occurs, and the air is jetted from the second opening 52. It is discharged continuously. The air flow is indicated by arrows in FIG.
  • the top plate 11 of the inner case 10 is thinly formed so as to resonate with the resonance drive of the diaphragm 20, the distance between the first opening 12 and the diaphragm 20 is synchronized with the vibration of the diaphragm 20. Therefore, compared with the case where the top plate 11 does not resonate, the flow rate of the air discharged from the second opening 52 is dramatically increased.
  • the entire top plate 11 is formed thin as shown in FIG. 1, the entire top plate 11 can be resonated, so that a further increase in flow rate can be realized.
  • the top plate 11 may resonate in either the primary resonance mode or the tertiary resonance mode.
  • FIG. 5A shows a comparative example 1 in which the first opening 12 and the second opening 52 in the piezoelectric microblower A of the first embodiment are each formed as a single hole in the same manner as in Patent Document 3. It is.
  • FIG. 5B shows Comparative Example 2, in which the first opening 12 is a plurality of holes and the second opening 52 is a single hole.
  • the 1st opening part 12 is a porous structure like the comparative example 2, and the 2nd opening part 52 is comprised with the single hole, the 2nd opening part 52 is the magnitude
  • each dimension is as follows. The cross-sectional area when the first opening is single and the total cross-sectional area when there are multiple first openings are set to be the same.
  • FIG. 6 shows the PQ (pressure-flow rate) characteristics of the first example, comparative example 1 and comparative example 2 of the present invention.
  • the PQ characteristic is that a microblower A is fixed to one side wall of the air chamber 90 so as to send outside air into the air chamber 90, and a pipe 91 connected to the opposite side wall of the air chamber 90 is provided. The flowing flow rate is measured by the flow meter 92 and the pressure is measured by the pressure gauge 93. The tip of the pipe 91 is open to the atmosphere via a valve 94, and the valve 94 is opened when measuring the flow rate and closed when measuring pressure.
  • the pressure is reduced by about half compared to Comparative Example 1, but the flow rate is increased by about 1.7 times.
  • Comparative Example 2 it can be seen that the pressure increases about 3.5 times and the flow rate increases about 1.2 times.
  • the first embodiment is effective in applications where a large flow rate is required.
  • FIG. 8 shows the noise characteristics of the first embodiment, comparative example 1, and comparative example 2 of the present invention.
  • a microphone was installed at a position 30 mm away from the suction side and the discharge side of the micro blower, and the sound pressures on the suction side and the discharge side were measured.
  • the sound pressure measurement conditions are as follows.
  • the background noise represents noise when the blower is not driven.
  • Sound pressure measurement time 10 [s]
  • Sampling frequency 51.2kHz
  • Analysis method FFT analysis and overall value calculation
  • Filter at the time of FFT analysis A characteristic Averaging: Measurement data for 10 seconds is a simple average overlap value: 90%
  • the noise is reduced by 6.2 dB on the suction side and 5.6 db on the discharge side as compared with the first comparative example.
  • the pressure increases by 2.2 dB on the suction side and 1.6 dB on the discharge side. Since the sound pressure has a difference of 1.4 times at 3 dB and 2 times at 6 dB, it can be seen that the sound pressure of the noise can be reduced to about a half in the first example as compared with the comparative example 1.
  • the sound pressure is slightly higher than that of the comparative example 2, but there is a large difference in the PQ characteristics (see FIG. 6). Therefore, the noise characteristics and the PQ characteristics are comprehensively compared. Considering this, it can be seen that the first embodiment has good characteristics.
  • the first embodiment has the following effects. (1) By making the first opening porous, the jet of air coming out of the first opening is quickly mixed with the surrounding air, the flow velocity is reduced, and the noise is reduced. Moreover, by mixing, the amount of surrounding air increased and the maximum flow rate increased. (2) By making the second opening porous, the total cross-sectional area of the second opening was reduced, the flow of air flowing backward from the blower discharge side was suppressed, and an increase in flow rate was achieved.
  • FIG. 9 shows a second embodiment of the piezoelectric microblower according to the present invention.
  • a cylindrical nozzle 56 is formed on the top surface of the top plate (second wall portion) 51 so as to surround the entire second opening 52.
  • the present invention as shown in FIG. 13, since the flow velocity of air discharged from each hole of the second opening 52 is smaller than the flow velocity of air discharged from a single hole, it is arranged on the outer peripheral portion. The air discharged from the holes 52b may diffuse around.
  • the nozzle 56 is formed on the top surface of the top plate 51 so as to surround the periphery of the holes 52b arranged in the outer peripheral portion, the respective airflows discharged from the plurality of holes 52a and 52b are converged into one. Thus, diffusion of the air flow can be suppressed.
  • the shape of the nozzle 56 is not limited to a simple cylindrical shape, but may be a tapered shape or a trumpet shape.
  • FIGS. 10A and 10B show a third embodiment of the first opening 12 and the second opening 52.
  • the first opening 12 and the second opening 52 are configured by a total of 37 small holes dispersed in a hexagonal shape.
  • Each hole diameter of the first opening 12 is ⁇ 0.1 mm, and the pitch p1 is 0.4 mm.
  • each hole diameter of the second opening 52 is ⁇ 0.3 mm, and the pitch p2 is 0.4 mm.
  • the central axis of each hole in the first opening 12 and the central axis of each hole in the second opening 52 are aligned in a straight line.
  • Other structures are the same as those of the first embodiment.
  • Comparative Example 1 is the same as that described in the first example. Also in this case, the cross-sectional area (0.28 mm 2 ) of the first opening of Comparative Example 1 and the total cross-sectional area (0.29 mm 2 ) of the first opening of the third embodiment are set to be substantially the same. .
  • FIG. 11 shows the PQ (pressure-flow rate) characteristics of the third embodiment of the present invention and Comparative Example 1.
  • the method for measuring the PQ characteristic is the same as in the first embodiment.
  • the pressure is reduced to about 1/3 compared to the comparative example 1, but it can be seen that the flow rate can be maintained substantially equal.
  • FIG. 12 shows the noise characteristics of the third embodiment of the present invention and Comparative Example 1.
  • the method for measuring the noise characteristics is the same as in the first embodiment.
  • the noise in the third example is significantly reduced on both the suction side and the discharge side as compared with Comparative Example 1. Specifically, compared with Comparative Example 1, it is reduced by 38 dB on the suction side and 32 dB on the discharge side. In other words, it means that the sound pressure has decreased to several tenths compared to Comparative Example 1.
  • the flow rate characteristics can maintain substantially the same performance as Comparative Example 1. Therefore, it can be seen that noise can be reduced while maintaining the maximum flow rate.
  • the present invention is not limited to the embodiments described above.
  • the inner case and the outer case are configured separately, the inner case is supported by the outer case via the spring connecting portion, and the vibration of the inner case is suppressed from spreading to the outer case.
  • the inner case and the outer case may be fixed or integrally formed.
  • the inner case 10 and the outer case 50 each have a structure in which a plurality of plate-like members are stacked, the present invention is not limited to this.
  • a Piezoelectric micro blower 1 Blower body 10 Inner case 11 Top plate (first wall) 12 1st opening part 12a, 12b hole 15 spring connection part 20 diaphragm 21 piezoelectric element 23 diaphragm 3 blower chamber 50 outer case 51 top plate (2nd wall part) 52 2nd opening 52a, 52b hole 56 nozzle 6 central space 7 inflow port

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

【課題】流量特性を維持しながら低騒音の圧電マイクロブロアを提供する。 【解決手段】ブロア本体1と振動板20との間に形成されたブロア室3と、ブロア室を間にして振動板と対向する部位に設けられ、振動板の振動に伴って振動するブロア本体の第1壁部11と、第1壁部に形成された第1開口部12と、第1壁部を間にしてブロア室と反対側に設けられた第2壁部51と、第1開口部と対向する第2壁部の部位に形成された第2開口部52と、第1壁部と第2壁部との間に形成された流入通路6とを備えた圧電マイクロブロアである。第1開口部12及び第2開口部52はそれぞれ複数の孔で構成され、第1開口部の各孔と前記第2開口部の各孔とは個別に対向する位置に設けられているため、流量特性を維持しながら騒音を低減できる。

Description

圧電マイクロブロア
本発明は空気やガスのような圧縮性流体を輸送するのに適した圧電マイクロブロアに関するものである。
携帯型電子機器の筐体内部で発生する熱を外部に放出させるためや、燃料電池で発電するのに必要な酸素を供給するための送風用ブロアとして、圧電マイクロブロアが知られている。圧電マイクロブロアは、圧電素子への電圧印加により屈曲変形するダイヤフラムを用いた一種のポンプであり、構造が簡単で、小型・薄型に構成でき、かつ低消費電力であるという利点がある。
特許文献1(図14)には、圧電素子を用いた流れ発生装置が開示されている。この流れ発生装置は、図14に示すように、基体100とノズル板101との間に加圧室103を形成し、ノズル板101にリング状の圧電素子104を固定すると共に、ノズル板101の中央部に複数のノズル穴102を形成してある。基体100を所定の隙間をあけて取り囲むようにケース105を設け、ノズル穴102と対向するケース105の部位に筒状のガイド106を形成してある。圧電素子104を高周波で駆動させることにより、ノズル板101を屈曲振動させ、複数のノズル穴102から噴流を発生させると共に、ノズル穴102から噴出した気流が周囲の空気を巻き込み、ケース105のガイド106から外部へ吐出することができる。
特許文献1では、圧電素子104を駆動することにより、ノズル板101の中央部が大きく屈曲振動し、その変位に応じて噴流を発生させることができる。しかし、加圧室103を間にしてノズル板101と対向する基体100の壁部は固定壁であるため、ノズル板101が振動するだけでは流量増加はさほど望めない。
特許文献2には、ガス流発生器が開示されている。このガス流発生器は、図15に示すように、リング状の基板111上にリング状の圧電素子112を固定した超音波駆動体110と、この駆動体110の下面に固定された第1のステンレス製膜体113と、第1の膜体113から所定の間隔を隔てて平行に取り付けられた第2のステンレス製膜体114と、膜体113と114とを離間状態で保持するスペーサ116とを備えている。第1の膜体113の中央部が下方へ膨出しており、第2の膜体114の中央部には複数の孔115が形成されている。
このガス流発生器の場合、超音波駆動体110を高周波で駆動すると、第2の膜体114の中心部分に形成された孔115の周囲の空気を吸い込み、あるいは巻き込みながら、空気を孔115の直交方向に吐出し、慣性噴射(ジェット)を発生させることができる。しかし、第2の膜体114の孔115の周囲が開放空間であるため、噴出した気流が拡散してしまい、所望の流量が得られないという欠点がある。また、孔115の周囲で空気の渦が発生し、大きな騒音が発生するという問題がある。
そこで、本願出願人は、圧力及び流量の大きな圧電マイクロブロアを提案した(特許文献3)。このマイクロブロアは、図16に示すように、ブロア本体120と、外周部がブロア本体120に対して固定され、圧電素子122を有する振動板121と、ブロア本体120と振動板121との間に形成されたブロア室123とを備えている。ブロア室123を間にして振動板121と対向する部位に、振動板121の振動に伴って共振する第1壁部124が設けられ、第1壁部124の中央部には第1開口部125が形成されている。第1壁部124を間にしてブロア室123と反対側に第2壁部126が設けられ、第1開口部125と対向する第2壁部126の部位に第2開口部127が形成されている。第1壁部124と第2壁部126との間には、吸込み口128と連通した流入通路129が形成されている。振動板121が振動すると、ブロア室123の体積変化によって第1開口部125から流体が噴出し、流入通路129における周囲の流体を巻き込みながら第2開口部127から外部へ吐出することができる。
この圧電マイクロブロアでは、振動板121を振動させた時、ある半周期では流体が第1開口部125から吸い込まれ、次の半周期では排出されるが、第1開口部125から排出される高速気流によりその周囲にある空気を巻き込みながら第2開口部127から同時に排出するため、振動板121の変位体積以上の吐出流量を第2開口部127で得ることができる。しかも、振動板121の振動に伴って第1壁部124を共振させることで、振動板121の変位体積を第1壁部124の変位によって増加させる働きがあり、大きな圧力と流量とを得ることができる。このように優れた効果を持つ反面、第1開口部125の付近で大きな騒音(風切音)が生じるという課題があった。
特公昭64-2793号公報 特表2006-522896号公報 WO2008/69266号公報
そこで、本発明の目的は、流量特性を維持しながら低騒音の圧電マイクロブロアを提供することにある。
前記目的を達成するため、本発明は、ブロア本体と、外周部が前記ブロア本体に対して固定され、圧電素子を有する振動板と、前記ブロア本体と前記振動板との間に形成されたブロア室と、前記ブロア室を間にして振動板と対向する部位に設けられ、前記振動板の振動に伴って振動するブロア本体の第1壁部と、前記第1壁部に形成された第1開口部と、前記第1壁部を間にしてブロア室と反対側に設けられた第2壁部と、前記第1開口部と対向する第2壁部の部位に形成された第2開口部と、前記第1壁部と第2壁部との間に形成された流入通路とを備えた圧電マイクロブロアにおいて、前記第1開口部及び前記第2開口部はそれぞれ複数の孔で構成され、前記第1開口部の各孔と前記第2開口部の各孔とは個別に対向する位置に設けられていることを特徴とする圧電マイクロブロアを提供する。
図13の(a)は、従来(特許文献3)における気流の流れと速度分布とを示し、(b)は本発明の一例の気流の流れと速度分布とを示す。速度分布は細線で表してある。200は第1壁部、210は第2壁部、201,202は第1開口部、211,212は第2開口部である。従来では、図13の(a)に示すように、第1壁部200の振幅が最大となる中央部に1つの第1開口部201が形成されているため、第1開口部201の中心に大きな速度ピークを持つ高速気流220が発生する。中心を流れる高速気流220は例えば100m/sもの速度を持つ。そのため、第1開口部201の直上とその周辺とでは速度分布に大きな差が生じ、且つ高速気流220が第2開口部220と干渉することが第1開口部201及び第2開口部220の付近で大きな騒音(風切り音)が発生する原因であると考えられる。
これに対し、本発明では、図13の(b)に示すように、複数の第1開口部202に発生する個々の気流221が周囲の空気と速やかに混合されて周辺空気との速度差が減少するため、速度ピークは相対的に小さく、分散される。そのため、第1開口部202とその周辺領域との流速差及び第2開口部221と干渉する高速気流221の流速を小さくすることができ、第1開口部202及び第2開口部212付近での騒音を低減できると考えられる。騒音の大きさは、流速の4乗~8乗に比例すると考えられるので、騒音の音圧レベルを大幅に低減できる。さらに、他の効果として、第1開口部が単一の場合よりも複数設けられた場合の方が、第1開口部202付近での流体の巻き込み領域が増えるため、流量が大きくなる。この比較は、第1開口部が単一の場合の断面積と複数の場合の合計断面積とが同じであるという前提での比較である。
第1開口部が多孔で、第2開口部が単孔である場合(特許文献1参照)には、流体抵抗を低くするため、第2開口部は全ての第1開口部を包含する大きさにする必要がある。しかし、その場合には第2開口部の外側の空気が、第2開口部内外の圧力差や第2開口部の通気抵抗によっては第1開口部側へ逆流してくることがあり、吐出流量としては減少する可能性がある。これに対し、本発明では第2開口部212の各孔が第1開口部202の各孔と個別に対向するように複数個設けてあるので、第2開口部212付近の逆流を防ぐことができ、流量特性を維持することができる。
第1開口部の各孔の中心軸と、第2開口部の各孔の中心軸とが一致しているのが望ましい。第1開口部の孔の中心軸に対して、第2開口部の孔の中心軸が完全に一致している必要はないが、一致している場合には、個々の第1開口部から噴出した気流が直線的に第2開口部を通過できるので、流体抵抗を低減でき、流量特性を向上させることができる。
第2開口部の各孔の直径d2は第1開口部の各孔の直径d1の1~3倍であることが望ましい。第2開口部と第1開口部とが同一径であっても構わないが、同一径の場合には第1開口部で発生した気流が第2開口部の口縁部に衝突して流路抵抗を増大させる可能性がある。一方、第2開口部が大き過ぎると、第2開口部付近の逆流が発生する可能性がある。そこで、第2開口部の各孔の直径d2を第1開口部の各孔の直径d1の1~3倍とすることで、第2開口部における流路抵抗を小さくしながら、逆流を防ぐことができ、大きな流量が得られる。
以上のように、本発明の圧電マイクロブロアによれば、第1開口部と第2開口部とをそれぞれ複数の孔で構成し、第1開口部と第2開口部とが対向方向に重なるようにしたので、複数の第1開口部に発生する個々の気流の速度ピークを分散させ、第1開口部とその周辺領域との流速差を小さくすることができ、第1開口部及び第2開口部付近での騒音を低減できる。また、第2開口部を第1開口部と対向する複数の孔としたので、第2開口部付近の逆流を防ぐことができ、流量特性を維持することができる。
本発明に係る圧電マイクロブロアの第1実施例の断面図である。 図1に示す圧電マイクロブロアを吐出側から見た部分平面図である。 図1に示す圧電マイクロブロアの第2壁部側からみた分解斜視図である。 図1に示す圧電マイクロブロアの振動板側からみた分解斜視図である。 比較例1及び比較例2の断面図である。 第1実施例と比較例1,2とのP-Q特性図である。 P-Q特性を測定するための測定装置の概略図である。 第1実施例と比較例1,2との騒音特性を示す図である。 本発明に係る圧電マイクロブロアの第2実施例の断面図である。 第3実施例の第2開口部及び第1開口部を示す図である。 第3実施例と比較例1とのP-Q特性図である。 第3実施例と比較例1との騒音特性を示す図である。 従来構造及び本発明における気流の流れと速度分布とを示す図である。 特許文献1における流れ発生装置の断面図である。 特許文献2におけるガス流発生器の断面図である。 特許文献3におけるマイクロブロアの断面図である。
〔第1実施例〕
図1~図4は本発明にかかる圧電マイクロブロアの第1実施例を示す。この圧電マイクロブロアAのブロア本体1は、内ケース10と、内ケース10の外側を所定の隙間をもって非接触で覆う外ケース50とで構成されており、内ケース10と外ケース50との間が複数のばね連結部15によって連結されている。本実施例では、内ケース10は下方が開口した断面コの字形に形成され、内ケース10の下側開口を閉じるように振動板20が固定され、内ケース10と振動板20との間でブロア室3が形成されている。本実施例の振動板20は、圧電セラミックよりなる圧電素子21と金属薄板よりなる中間板22とを金属薄板よりなるダイヤフラム23の中央部に貼り付けたユニモルフ構造であり、圧電素子21に所定周波数の電圧を印加することにより、振動板20全体がベンディングモードで共振駆動される。
振動板20としては、上述のようなユニモルフ型に限らず、ダイヤフラム23の両面に互いに逆方向に伸縮する圧電素子21を貼り付けたバイモルフ型、ダイヤフラムの片面にそれ自体が屈曲変形する積層型圧電素子を貼り付けたバイモルフ型、さらにはダイヤフラム自体が積層型圧電素子で構成されたものなどでもよい。また、圧電素子21の形状は、円板状に限らず、矩形状や円環状であってもよい。中間板22を省略して圧電素子21をダイヤフラム23に直接貼り付けた構造でもよい。いずれにしても、圧電素子21に交番電圧(交流電圧または矩形波電圧)を印加することによって、屈曲振動する振動板であればよい。
図1に示すように、ブロア室3を間にして振動板20の中央部と対向する内ケース10の天板(第1壁部)11の中央部には、複数の孔12a,12bよりなる第1開口部12が形成されている。内ケース10の天板11は、振動板20の共振駆動に伴って共振するように薄肉な金属板で形成されている。天板11の外周部13は半径方向に突出しており、その外周部13が外ケース50によって固定されている。天板11の内ケース10と外ケース50との間には、図3に示すように、円弧状スリット14によって分断された複数(ここでは4個)のばね連結部15が形成されている。これらばね連結部15によって内ケース10は外ケース50に対して弾性的に支持され、振動板20の共振駆動に伴って内ケース10が上下方向に振動したとき、その振動が外ケース50に漏洩するのを抑制する働きを持つ。この実施例の内ケース10は、下側から第1内枠体16、ダイヤフラム23、第2内枠体17、天板11を順に積層接着したものである。
内ケース10の天板11と対向する外ケース50の天板(第2壁部)51の中央部には、第1開口部12の各孔12a,12bとそれぞれ対向する複数の孔52a,52bを持つ第2開口部52が形成されている。本実施例では、第1開口部12の各孔12a,12bの中心軸と第2開口部52の各孔52a,52bの中心軸とは一直線状に並んでおり、第2開口部52の各孔の直径d2は第1開口部12の各孔の直径d1より大きい。この実施例では、図2に示すように、第1開口部12及び第2開口部52は、それぞれ中心に1個の孔(12a,52a)、その周囲に8個の孔(12b,52b)がリング状に並んだ合計9個の丸孔で構成されているが、これに限るものではない。この実施例の外ケース50は、下側から第1外枠体53、第2外枠体54、内ケース10の天板11、第3外枠体55、天板51を順に積層接着したものである。
振動板20を1次共振モードで駆動するのが、最も大きな変位量が得られるので望ましいが、1次共振周波数は人間の可聴領域となり、騒音が大きくなる場合がある。これに対し、3次共振モードで駆動すると、1次共振モードに比べて変位量が小さくなるものの、可聴領域を越えた周波数で駆動できるため、騒音を防ぐことができる。振動板20と天板(第1壁部)11とは同じ振動モードで振動してもよいし、異なる振動モード(例えば一方が1次共振モード、他方が3次共振モード)で振動してもよい。なお、1次共振モードとは、振動板20又は天板11に腹が1つ現れるモードのことであり、3次共振モードとは、振動板20又は天板11の中央部とその周辺部とでそれぞれ腹が1つずつ生じるモードのことである。
天板11と天板51との間には中央空間6が形成されおり、この中央空間6は第1開口部12及び第2開口部52と通じている。中央空間6は、前述のスリット14を経て、内ケース10と外ケース50との隙間に形成された円環状の流入口7と接続されている。そのため、振動板20の駆動によって第1開口部12に矢印方向の空気の流れが発生すると、流入口7から外気が吸い込まれ、スリット14、中央空間6を経て第2開口部52から吐出される。
ここで、前記構成の圧電マイクロブロアAの作動を説明する。圧電素子21に所定周波数の交流電圧を印加すると、振動板20が1次共振モード又は3次共振モードで共振駆動され、それにより第1開口部12と振動板20の距離が変化する。第1開口部12と振動板20の距離が増大するとき、中央空間6内の空気が第1開口部12を通りブロア室3へと吸い込まれ、逆に第1開口部12と振動板20との距離が減少するとき、ブロア室3内の空気が第1開口部12を通り中央空間6へと排出される。振動板20は高周波で駆動されるため、第1開口部12から中央空間6へと排出された高速/高エネルギーの空気流は、中央空間6を通過し、第2開口部52から排出される。このとき、中央空間6内にある空気を巻き込みながら第2開口部52から排出されるので、流入口7から中央空間6へ向かう連続した空気の流れが生じ、第2開口部52から空気は噴流となって連続的に排出される。空気の流れを図1に矢印で示す。
内ケース10の天板11が、振動板20の共振駆動に伴って共振するように薄肉に形成されているので、第1開口部12と振動板20との距離が振動板20の振動に同調して変化するため、天板11が共振しない場合に比べて、第2開口部52から排出される空気の流量が飛躍的に増大する。図1のように天板11全体が薄肉に形成されている場合には、天板11全体を共振させることができるので、さらなる流量増加を実現できる。天板11は1次共振モード又は3次共振モードのいずれで共振してもよい。
さて、第1開口部12及び第2開口部52がそれぞれ9個の孔(図2参照)で構成されていることによる作用効果を、比較例1,2と対比して説明する。図5の(a)は比較例1を示し、第1実施例の圧電マイクロブロアAにおける第1開口部12及び第2開口部52を、特許文献3と同様にそれぞれ単一の孔とした例である。図5の(b)は比較例2を示し、第1開口部12を複数の孔とし、第2開口部52を単一の孔とした例である。比較例2のように第1開口部12が多孔構造で、第2開口部52が単一の孔で構成した場合には、第2開口部52が全ての第1開口部12を包含できる大きさとしている。ここで、各寸法は以下の通りである。第1開口部が単一の場合の断面積と複数の場合の合計断面積とを同じに設定している。
-第1実施例-
圧電体21:厚み0.15mm、直径φ11mmのPZT
中間板22:厚み0.2mm、直径φ11mmのSUS430
ダイヤフラム23:厚み0.05mm、直径φ17mmの42Ni
天板11:厚み0.1mmのSUS430
ブロア室3:厚み0.15mm、直径φ14mmのSUS430
ばね連結部15:長さ0.5mm、幅1mm
流入口7:幅0.5mm
外ケース50:厚み3.0mm、20mm×20mm
第1開口部12:φ0.2mm×9個、孔の分布径=φ2mm
第2開口部52:φ0.4mm×9個
駆動電圧:15Vp-p
駆動周波数:25kHz(振動板20、天板11共に3次共振)
-比較例1-
第1開口部:φ0.6mm
第2開口部:φ0.8mm
-比較例2-
第1開口部:φ0.2mm×9個、孔の分布径=φ2mm
第2開口部:φ2.4mm
図6は、本発明の第1実施例、比較例1、比較例2の各P-Q(圧力-流量)特性を示す。P-Q特性は、図7に示すように、外気を空気室90に送り込むようにマイクロブロアAを空気室90の一側壁に固定し、空気室90の反対側側壁に接続された配管91を流れる流量を流量計92で測定すると共に、圧力を圧力計93で測定したものである。配管91の先端はバルブ94を介して大気に開放しており、流量測定時にはバルブ94を開状態、圧力測定時には閉状態とした。
図6から明らかなように、第1実施例では比較例1に比べて圧力は約半分に低下するが、流量が約1.7倍に増加することがわかる。また、比較例2に比べると、圧力は約3.5倍、流量が約1.2倍に増加していることがわかる。このように、第1実施例は大流量が求められる用途において有効である。
図8は本発明の第1実施例、比較例1、比較例2の騒音特性を示す。ここでは、マイクロブロアの吸引側と吐出側からそれぞれ30mm離れた位置にマイクロホンを設置し、吸引側と吐出側のそれぞれの音圧を測定した。音圧測定条件は次の通りである。背景雑音とは、ブロアを駆動していないときの騒音を表す。
音圧測定時間:10[s] 
サンプリング周波数:51.2kHz 
解析方法:FFT 解析してオーバーオール値を計算
FFT 解析時のフィルタ:A特性
アベレージング:10秒間の測定データを単純平均
オーバーラップ値:90% 
図8から明らかなように、第1実施例は比較例1に比べて、騒音が吸引側で6.2dB、吐出側で5.6db低下している。比較例2と比べると、吸引側で2.2dB、吐出側で1.6dB上昇する。音圧は3dBで1.4倍、6dBが2倍の差があるので、第1実施例では比較例1に比べて騒音の音圧を約半分に低減できたことがわかる。なお、第1実施例は比較例2に比べると、音圧が多少高くなるが、P-Q特性において大きな差がある(図6参照)ので、騒音特性とP-Q特性とを総合的に勘案すると、第1実施例が良好な特性を有することがわかる。
以上のように、第1実施例は次のような効果を有する。
(1)第1開口部を多孔にすることで、第1開口部から出る空気の噴流が速やかに周辺空気と混合されて流速が低下し、騒音が低下した。また、混合されることで、周辺空気の巻き込み量が増加し、最大流量が増加した。
(2)第2開口部を多孔にすることで、第2開口部の総断面積を小さくし、ブロア吐出側から逆流する空気の流れを抑制し、流量増加を達成できた。
〔第2実施例〕
図9は本発明に係る圧電マイクロブロアの第2実施例を示す。このマイクロブロアBでは、第2開口部52の全体を取り囲むように円筒状のノズル56を天板(第2壁部)51の上面に形成したものである。本発明では、図13に示すように、第2開口部52の各孔から吐出される空気の流速は、単一の孔から吐出される空気の流速に比べて小さいため、外周部に配列された孔52bから吐出された空気が周囲に拡散することがある。そこで、天板51の上面に、外周部に配列された孔52bの周囲を取り囲むようにノズル56を形成することで、複数の孔52a,52bから吐出されたそれぞれの空気流が1つに集束され、空気流の拡散を抑制することができる。なお、ノズル56の形状は単純な円筒形状に限らず、先細状としたり、ラッパ状とすることもできる。
〔第3実施例〕
図10の(a)と(b)は第1開口部12と第2開口部52の第3実施例を示す。この例では、第1開口部12及び第2開口部52が六角形状に分散配置された合計37個の小孔で構成されている。第1開口部12の各孔径はφ0.1mmであり、ピッチp1は0.4mmである。同様に、第2開口部52の各孔径はφ0.3mmであり、ピッチp2は0.4mmである。第1開口部12の各穴の中心軸と第2開口部52の各穴の中心軸とは一直線状に並んでいる。他の構造は第1実施例と同様である。
さて、第1開口部12及び第2開口部52がそれぞれ37個の孔で構成されていることによる作用効果を、比較例1と対比して説明する。比較例1は第1実施例で述べたものと同様である。この場合も、比較例1の第1開口部の断面積(0.28mm2 )と第3実施例の第1開口部の合計断面積(0.29mm2 )とをほぼ同じに設定している。
図11は、本発明の第3実施例と比較例1の各P-Q(圧力-流量)特性を示す。P-Q特性の測定方法は第1実施例と同様である。図11から明らかなように、第3実施例では比較例1に比べて圧力は約1/3に低下するが、流量はほぼ同等に維持できることがわかる。
図12は本発明の第3実施例と比較例1の騒音特性を示す。騒音特性の測定方法は第1実施例と同様である。図12から明らかなように、第3実施例は比較例1に比べて、騒音が吸引側、吐出側ともに大幅に低下していることがわかる。具体的には、比較例1と比べて、吸引側で38dB、吐出側で32dB低下している。つまり、比較例1と比べて音圧が数十分の1に低下したことを意味する。一方、流量特性は比較例1とほぼ同等の性能を維持できている。したがって、最大流量を維持しつつ騒音を低下できることがわかる。
本発明は前述の実施例に限定されるものではない。例えば前記実施例では、内ケースと外ケースとを別体で構成し、内ケースをばね連結部を介して外ケースで支持し、内ケースの振動が外ケースへ波及するのを抑制する例を示したが、内ケースと外ケースとが固定又は一体形成されたものでもよい。また、内ケース10及び外ケース50がそれぞれ複数の板状部材を積層した構造となっているが、これに限るものではない。
A      圧電マイクロブロア
1      ブロア本体
10     内ケース
11     天板(第1壁部)
12     第1開口部
12a,12b 孔
15     ばね連結部
20     振動板
21     圧電素子
23     ダイヤフラム
3      ブロア室
50     外ケース
51     天板(第2壁部)
52     第2開口部
52a,52b 孔
56     ノズル
6      中央空間
7      流入口

Claims (4)

  1. ブロア本体と、外周部が前記ブロア本体に対して固定され、圧電素子を有する振動板と、前記ブロア本体と前記振動板との間に形成されたブロア室と、前記ブロア室を間にして振動板と対向する部位に設けられ、前記振動板の振動に伴って振動するブロア本体の第1壁部と、前記第1壁部に形成された第1開口部と、前記第1壁部を間にしてブロア室と反対側に設けられた第2壁部と、前記第1開口部と対向する第2壁部の部位に形成された第2開口部と、前記第1壁部と第2壁部との間に形成された流入通路とを備えた圧電マイクロブロアにおいて、
    前記第1開口部及び前記第2開口部はそれぞれ複数の孔で構成され、
    前記第1開口部の各孔と前記第2開口部の各孔とは個別に対向する位置に設けられていることを特徴とする圧電マイクロブロア。
  2. 前記第1開口部の各孔の中心軸と、前記第2開口部の各孔の中心軸とが一致していることを特徴とする請求項1に記載の圧電マイクロブロア。
  3. 前記第2開口部の各孔の直径d2は前記第1開口部の各孔の直径d1の1~3倍であることを特徴とする請求項1又は2に記載の圧電マイクロブロア。
  4. 前記第2壁部の外面には、前記第2開口部の全ての孔を取り囲む筒状のノズルが形成されていることを特徴とする請求項1乃至3の何れか1項に記載の圧電マイクロブロア。
PCT/JP2010/066521 2009-10-01 2010-09-24 圧電マイクロブロア WO2011040320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10820438.9A EP2484906B1 (en) 2009-10-01 2010-09-24 Piezoelectric micro-blower
JP2011534215A JP5316644B2 (ja) 2009-10-01 2010-09-24 圧電マイクロブロア
US13/423,342 US8721303B2 (en) 2009-10-01 2012-03-19 Piezoelectric micro-blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-229195 2009-10-01
JP2009229195 2009-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/423,342 Continuation US8721303B2 (en) 2009-10-01 2012-03-19 Piezoelectric micro-blower

Publications (1)

Publication Number Publication Date
WO2011040320A1 true WO2011040320A1 (ja) 2011-04-07

Family

ID=43826141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066521 WO2011040320A1 (ja) 2009-10-01 2010-09-24 圧電マイクロブロア

Country Status (4)

Country Link
US (1) US8721303B2 (ja)
EP (1) EP2484906B1 (ja)
JP (1) JP5316644B2 (ja)
WO (1) WO2011040320A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120301333A1 (en) * 2011-05-26 2012-11-29 Samsung Electro-Mechanics Co., Ltd. Piezoelectric type cooling device
JP2013068215A (ja) * 2011-09-06 2013-04-18 Murata Mfg Co Ltd 流体制御装置
JP2013100746A (ja) * 2011-11-08 2013-05-23 Murata Mfg Co Ltd 流体制御装置
WO2013187271A1 (ja) * 2012-06-11 2013-12-19 株式会社村田製作所 ブロア
WO2013187270A1 (ja) * 2012-06-11 2013-12-19 株式会社村田製作所 ブロア
WO2014024608A1 (ja) * 2012-08-10 2014-02-13 株式会社村田製作所 ブロア
JP2014240662A (ja) * 2014-10-03 2014-12-25 株式会社村田製作所 流体制御装置
US9103337B2 (en) 2011-09-06 2015-08-11 Murata Manufacturing Co., Ltd. Fluid control device
CN108757407A (zh) * 2018-06-06 2018-11-06 南京航空航天大学 一种驻波型双振子无阀压电泵及其工作方法
JP2019044769A (ja) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 気体輸送装置
WO2019221121A1 (ja) * 2018-05-15 2019-11-21 京セラ株式会社 圧電ガスポンプ
WO2020138214A1 (ja) * 2018-12-28 2020-07-02 株式会社Nttドコモ 飛行体
CN112204255A (zh) * 2018-05-29 2021-01-08 株式会社村田制作所 流体控制装置
US11041580B2 (en) 2014-10-23 2021-06-22 Murata Manufacturing Co., Ltd. Valve and fluid control device
US20220372965A1 (en) * 2019-11-08 2022-11-24 Sony Group Corporation Valve module, fluid control apparatus, and electronic apparatus

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201322103D0 (en) * 2013-12-13 2014-01-29 The Technology Partnership Plc Fluid pump
US20150192119A1 (en) * 2014-01-08 2015-07-09 Samsung Electro-Mechanics Co., Ltd. Piezoelectric blower
GB2538413B (en) * 2014-03-07 2020-08-05 Murata Manufacturing Co Blower
US20150314092A1 (en) * 2014-04-30 2015-11-05 Covidien Lp Tracheal tube with controlled-pressure cuff
WO2016014153A1 (en) * 2014-07-23 2016-01-28 Microdose Therapeutx, Inc. Dry powder nebulizer
US9645618B2 (en) 2014-07-31 2017-05-09 Google Technology Holdings LLC Skin oscillation convective cooling
TWI553230B (zh) * 2014-09-15 2016-10-11 研能科技股份有限公司 微型氣壓動力裝置
CN107532584B (zh) * 2015-05-08 2019-12-27 株式会社村田制作所 泵和流体控制装置
GB2557088B (en) 2015-08-31 2021-05-19 Murata Manufacturing Co Blower
US10451051B2 (en) 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
EP3203077B1 (en) 2016-01-29 2021-06-16 Microjet Technology Co., Ltd Piezoelectric actuator
US10487820B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature pneumatic device
US10388850B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10388849B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
EP3203080B1 (en) 2016-01-29 2021-09-22 Microjet Technology Co., Ltd Miniature pneumatic device
EP3203076B1 (en) 2016-01-29 2021-05-12 Microjet Technology Co., Ltd Miniature fluid control device
US10371136B2 (en) 2016-01-29 2019-08-06 Microjet Technology Co., Ltd. Miniature pneumatic device
US10529911B2 (en) 2016-01-29 2020-01-07 Microjet Technology Co., Ltd. Piezoelectric actuator
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
US9976673B2 (en) * 2016-01-29 2018-05-22 Microjet Technology Co., Ltd. Miniature fluid control device
TWI606936B (zh) 2016-09-05 2017-12-01 研能科技股份有限公司 流體控制裝置
TWI602995B (zh) 2016-09-05 2017-10-21 研能科技股份有限公司 流體控制裝置
TWI625468B (zh) 2016-09-05 2018-06-01 研能科技股份有限公司 流體控制裝置
TWI613367B (zh) * 2016-09-05 2018-02-01 研能科技股份有限公司 流體控制裝置
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
TWI636189B (zh) 2017-08-21 2018-09-21 研能科技股份有限公司 微型氣體控制裝置
TWI642850B (zh) * 2017-08-21 2018-12-01 研能科技股份有限公司 氣體循環控制裝置
TWI683059B (zh) * 2017-08-31 2020-01-21 研能科技股份有限公司 氣體輸送裝置
TW201912248A (zh) 2017-08-31 2019-04-01 研能科技股份有限公司 氣體輸送裝置
TWI635291B (zh) * 2017-12-29 2018-09-11 研能科技股份有限公司 微型丙酮檢測裝置
GB2582485B (en) * 2018-02-16 2022-08-17 Murata Manufacturing Co Fluid control apparatus
GB2583226B (en) * 2018-02-16 2022-11-16 Murata Manufacturing Co Fluid control apparatus
TWI708933B (zh) * 2018-04-27 2020-11-01 研能科技股份有限公司 致動傳感模組
US11710678B2 (en) 2018-08-10 2023-07-25 Frore Systems Inc. Combined architecture for cooling devices
US12089374B2 (en) 2018-08-10 2024-09-10 Frore Systems Inc. MEMS-based active cooling systems
CN111151311B (zh) * 2018-11-07 2021-10-12 研能科技股份有限公司 微流道结构的制造方法
US20220316467A1 (en) * 2019-09-11 2022-10-06 Kyocera Corporation Piezoelectric pump and pump unit
KR102677216B1 (ko) 2019-10-30 2024-06-24 프로리 시스템스 인코포레이티드 Mems 기반 기류 시스템
TWI747076B (zh) * 2019-11-08 2021-11-21 研能科技股份有限公司 行動裝置散熱組件
TWI758667B (zh) * 2019-12-06 2022-03-21 研能科技股份有限公司 微型鼓風機
US11796262B2 (en) 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
US20210180723A1 (en) * 2019-12-16 2021-06-17 Frore Systems Inc. Virtual valve in a mems-based cooling system
US12033917B2 (en) 2019-12-17 2024-07-09 Frore Systems Inc. Airflow control in active cooling systems
WO2021126791A1 (en) 2019-12-17 2021-06-24 Frore Systems Inc. Mems-based cooling systems for closed and open devices
CN113685337B (zh) * 2020-05-19 2023-06-16 研能科技股份有限公司 流体传输致动器
TW202144677A (zh) * 2020-05-19 2021-12-01 研能科技股份有限公司 流體傳輸致動器
CN116325139A (zh) * 2020-10-02 2023-06-23 福珞尔系统公司 主动式热沉
WO2022187158A1 (en) 2021-03-02 2022-09-09 Frore Systems Inc. Mounting and use of piezoelectric cooling systems in devices
US11978690B2 (en) * 2021-07-09 2024-05-07 Frore Systems Inc. Anchor and cavity configuration for MEMS-based cooling systems
WO2023244838A1 (en) * 2022-06-17 2023-12-21 Frore Systems Inc. Cover for mems-based cooling systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642793A (en) 1987-06-23 1989-01-06 Mitsubishi Electric Corp Laser beam cutting method for al
JP2005090510A (ja) * 2003-09-12 2005-04-07 Samsung Electronics Co Ltd ダイヤフラムエアーポンプ
JP2006522896A (ja) 2003-04-09 2006-10-05 ザ テクノロジー パートナーシップ ピーエルシー ガス流発生器
WO2008069266A1 (ja) 2006-12-09 2008-06-12 Murata Manufacturing Co., Ltd. 圧電マイクロブロア
JP2009103111A (ja) * 2007-10-25 2009-05-14 Sony Corp 冷却装置及び電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175097A (ja) * 2007-01-17 2008-07-31 Alps Electric Co Ltd 圧電ポンプ
CN101589233B (zh) * 2007-01-23 2012-02-08 日本电气株式会社 隔膜泵
JP5205957B2 (ja) * 2007-12-27 2013-06-05 ソニー株式会社 圧電ポンプ、冷却装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642793A (en) 1987-06-23 1989-01-06 Mitsubishi Electric Corp Laser beam cutting method for al
JP2006522896A (ja) 2003-04-09 2006-10-05 ザ テクノロジー パートナーシップ ピーエルシー ガス流発生器
JP2005090510A (ja) * 2003-09-12 2005-04-07 Samsung Electronics Co Ltd ダイヤフラムエアーポンプ
WO2008069266A1 (ja) 2006-12-09 2008-06-12 Murata Manufacturing Co., Ltd. 圧電マイクロブロア
JP2009103111A (ja) * 2007-10-25 2009-05-14 Sony Corp 冷却装置及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484906A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120301333A1 (en) * 2011-05-26 2012-11-29 Samsung Electro-Mechanics Co., Ltd. Piezoelectric type cooling device
JP2013068215A (ja) * 2011-09-06 2013-04-18 Murata Mfg Co Ltd 流体制御装置
US9103337B2 (en) 2011-09-06 2015-08-11 Murata Manufacturing Co., Ltd. Fluid control device
EP3290707A1 (en) * 2011-09-06 2018-03-07 Murata Manufacturing Co., Ltd. Fluid control device
JP2013100746A (ja) * 2011-11-08 2013-05-23 Murata Mfg Co Ltd 流体制御装置
US10626861B2 (en) 2012-06-11 2020-04-21 Murata Manufacturing Co., Ltd. Blower
WO2013187271A1 (ja) * 2012-06-11 2013-12-19 株式会社村田製作所 ブロア
WO2013187270A1 (ja) * 2012-06-11 2013-12-19 株式会社村田製作所 ブロア
JP5692465B2 (ja) * 2012-06-11 2015-04-01 株式会社村田製作所 ブロア
WO2014024608A1 (ja) * 2012-08-10 2014-02-13 株式会社村田製作所 ブロア
JP5692468B2 (ja) * 2012-08-10 2015-04-01 株式会社村田製作所 ブロア
JP2014240662A (ja) * 2014-10-03 2014-12-25 株式会社村田製作所 流体制御装置
US11041580B2 (en) 2014-10-23 2021-06-22 Murata Manufacturing Co., Ltd. Valve and fluid control device
JP2019044769A (ja) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 気体輸送装置
JP7137407B2 (ja) 2017-08-31 2022-09-14 研能科技股▲ふん▼有限公司 気体輸送装置
JPWO2019221121A1 (ja) * 2018-05-15 2021-03-18 京セラ株式会社 圧電ガスポンプ
WO2019221121A1 (ja) * 2018-05-15 2019-11-21 京セラ株式会社 圧電ガスポンプ
CN112204255A (zh) * 2018-05-29 2021-01-08 株式会社村田制作所 流体控制装置
US11391276B2 (en) 2018-05-29 2022-07-19 Murata Manufacturing Co., Ltd. Fluid control device
CN112204255B (zh) * 2018-05-29 2022-08-30 株式会社村田制作所 流体控制装置
US11761439B2 (en) 2018-05-29 2023-09-19 Murata Manufacturing Co., Ltd. Fluid control device
CN108757407A (zh) * 2018-06-06 2018-11-06 南京航空航天大学 一种驻波型双振子无阀压电泵及其工作方法
JPWO2020138214A1 (ja) * 2018-12-28 2021-11-11 株式会社Nttドコモ 飛行体
WO2020138214A1 (ja) * 2018-12-28 2020-07-02 株式会社Nttドコモ 飛行体
JP7355761B2 (ja) 2018-12-28 2023-10-03 株式会社Nttドコモ 飛行体
US20220372965A1 (en) * 2019-11-08 2022-11-24 Sony Group Corporation Valve module, fluid control apparatus, and electronic apparatus
US12085067B2 (en) * 2019-11-08 2024-09-10 Sony Group Corporation Valve module, fluid control apparatus, and electronic apparatus

Also Published As

Publication number Publication date
EP2484906B1 (en) 2019-08-28
EP2484906A4 (en) 2017-06-21
JPWO2011040320A1 (ja) 2013-02-28
EP2484906A1 (en) 2012-08-08
US20130071269A1 (en) 2013-03-21
US8721303B2 (en) 2014-05-13
JP5316644B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5316644B2 (ja) 圧電マイクロブロア
JP5012889B2 (ja) 圧電マイクロブロア
JP5287854B2 (ja) 圧電マイクロブロア
JP5110159B2 (ja) 圧電マイクロブロア
EP2090781B1 (en) Piezoelectric micro-blower
JP5360229B2 (ja) 圧電マイクロブロア
JP5333012B2 (ja) マイクロブロア
JP5115626B2 (ja) 圧電マイクロブロア
US20060201327A1 (en) Gas flow generator
JPWO2017038565A1 (ja) ブロア
WO2009087714A1 (ja) ダイヤフラム式エアポンプ
US10125760B2 (en) Pump
JPWO2010035862A1 (ja) 圧電ポンプ
JP2009097393A (ja) 圧電マイクロブロア
JP7147919B2 (ja) 流体制御装置
JP2012077677A (ja) 圧電マイクロブロア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534215

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010820438

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE