WO2011040232A1 - 無機光学フィルター、光学素子及び光源 - Google Patents

無機光学フィルター、光学素子及び光源 Download PDF

Info

Publication number
WO2011040232A1
WO2011040232A1 PCT/JP2010/065833 JP2010065833W WO2011040232A1 WO 2011040232 A1 WO2011040232 A1 WO 2011040232A1 JP 2010065833 W JP2010065833 W JP 2010065833W WO 2011040232 A1 WO2011040232 A1 WO 2011040232A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
single crystal
container
optical filter
Prior art date
Application number
PCT/JP2010/065833
Other languages
English (en)
French (fr)
Inventor
住谷 圭二
島村 清史
ガルシア ビジョラ
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to EP10820351.4A priority Critical patent/EP2485071B1/en
Priority to US13/498,719 priority patent/US9217910B2/en
Publication of WO2011040232A1 publication Critical patent/WO2011040232A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Definitions

  • the present invention relates to an inorganic optical filter, an optical element, and a light source.
  • An excimer laser using KrF, ArF, or the like is used as a light source in a semiconductor lithography apparatus or a vision correction apparatus.
  • these light sources have shortcomings such as short life, harmful, and poor beam quality.
  • Non-Patent Document 1 An all-solid laser combining a solid-state laser and a wavelength conversion element has been studied.
  • a wavelength conversion element there is one utilizing a nonlinear optical effect called second harmonic generation (SHG) that emits light (second harmonic) having a frequency twice that of incident light.
  • SHG second harmonic generation
  • a wavelength conversion element made of a nonlinear optical crystal has been proposed (see, for example, Non-Patent Document 1).
  • the light emitted from the wavelength conversion element using SHG includes light of at least two different wavelengths, that is, the fundamental wave that is incident light and the second harmonic wave that is generated by SHG.
  • the fundamental wave that is incident light and the second harmonic wave that is generated by SHG.
  • an optical filter As a method for selectively extracting light of a specific wavelength.
  • the optical filter include a polarizing filter, and for example, Thorlabs' Diconic Color Filte is known.
  • the above optical filter is combined with a wavelength conversion element that converts the wavelength of solid laser light in the visible range to the near infrared range and emits the second harmonic in the visible range from the ultraviolet / vacuum ultraviolet (UV / VUV) range.
  • UV / VUV ultraviolet
  • the fundamental wave may not be sufficiently removed.
  • this method has a problem that the output of the second harmonic is greatly reduced.
  • Non-Patent Document 2 a single crystal has been developed as a scintillator material (see, for example, Non-Patent Document 2). According to Non-Patent Document 2, high-quality CeF 3 and NdF 3 single crystals can be obtained. However, there are no reports of applying these single crystals to optical components.
  • the present invention has been made in view of the above circumstances, and is used for an optical element capable of obtaining a high-efficiency second harmonic with sufficiently low mixing of fundamental waves from solid laser light, and the optical element.
  • An object of the present invention is to provide an inorganic optical filter capable of sufficiently removing the fundamental wave without lowering the output of the second harmonic, and a light source using the optical element.
  • the inorganic optical filter of the present invention is made of NdF 3 single crystal. According to the inorganic optical filter of the present invention, since it has a plurality of wavelength regions exhibiting high shielding properties and wavelength regions exhibiting high transmittance in the light transmission spectrum, it is possible to provide flexibility for the construction of the user's optical system. . In addition, since it is not necessary to combine a plurality of optical filters, if the inorganic optical filter of the present invention is employed, the optical system can be reduced in size and cost.
  • the NdF 3 single crystal has four wavelength ranges in which the transmittance is 1% or less in the wavelength range of 550 to 900 nm, and corresponds to each of the four wavelength ranges.
  • the transmittance in the half wavelength region is preferably 50% or more.
  • the above four wavelength ranges are in a range of 565 nm to 585 nm, a range of 726 nm to 747 nm, a range of 778 nm to 812 nm and a range of 855 nm to 870 nm, respectively.
  • An optical element includes a wavelength conversion element that converts the wavelength of incident light so as to have a double frequency by quasi phase matching using primary matching or tertiary matching, and outputs the wavelength conversion element from the wavelength conversion element.
  • the wavelength conversion element is Ba 1-y (Mg 1-x Zn x ) 1 + y F 4 (where 0 ⁇ x ⁇ 1). And ⁇ 0.2 ⁇ y ⁇ 0.2)).
  • the optical element of the present invention it is possible to obtain, from the solid laser beam, the second harmonic with sufficiently low mixing of fundamental waves with high conversion efficiency. For this reason, the present inventors are able to efficiently convert the solid-state laser light in the visible region to the near-infrared region into a second harmonic wave by the wavelength conversion element comprising the specific single crystal, and
  • the inorganic optical filter made of the specific single crystal has a plurality of wavelength regions exhibiting high shielding properties and wavelength regions exhibiting high transmittance in the light transmission spectrum, and the former has a wavelength of laser light. Therefore, it is considered that the second harmonic wavelength matches the latter.
  • the ferroelectric fluoride single crystal is preferably a BaMgF 4 single crystal from the viewpoint that it is more transmissive than an oxide optical crystal, particularly in the vacuum ultraviolet region.
  • the present invention also provides a light source comprising the optical element of the present invention and a solid-state laser that makes laser light incident on the wavelength conversion element of the optical element.
  • a light source comprising the optical element of the present invention and a solid-state laser that makes laser light incident on the wavelength conversion element of the optical element.
  • the wavelength of the laser light is preferably in a wavelength region having a transmittance of 3% or less in the light transmission spectrum of the inorganic optical filter.
  • an inorganic optical filter having a filter function with respect to a plurality of wavelength regions, an optical element capable of obtaining a second harmonic wave with sufficiently small mixing of fundamental waves from solid laser light with high conversion efficiency, and use thereof Can provide a light source.
  • FIG. 1 is a schematic diagram showing how wavelength conversion and fundamental wave removal are performed using the optical element according to the present invention.
  • An optical element 100 shown in FIG. 1 includes a wavelength conversion element 12 that converts the wavelength of incident light so as to have a double frequency by quasi phase matching using primary matching or tertiary matching, and wavelength conversion. And an inorganic optical filter 15 disposed in the optical path of the light emitted from the element 12.
  • the wavelength conversion element 12 converts the incident light 11 into the second harmonic 13 by SHG.
  • the light emitted from the wavelength conversion element 12 includes at least two types of light having different wavelengths, that is, the fundamental wave 14 that is incident light and the second harmonic wave 13 generated by SHG. A second harmonic with sufficiently little mixing can be obtained.
  • the wavelength conversion element 12 is represented by Ba 1-y (Mg 1-x Zn x ) 1 + y F 4 (where 0 ⁇ x ⁇ 1 and ⁇ 0.2 ⁇ y ⁇ 0.2). It consists of a ferroelectric fluoride single crystal. Further, it is more preferable that the ferroelectric fluoride has a ferroelectric characteristic in which a coercive electric field value at a frequency of 1 Hz or less is 10 kV / cm or less.
  • FIG. 2 is a diagram showing the structure of a crystal growth furnace for growing crystals of BaMgF 4 .
  • An airtight crystal growth (growing) furnace 10 shown in FIG. 2 has a water-cooled double structure by a chamber 1 made of SUS.
  • a SUS chamber 1 is provided with a container 6 for crystal growth and a pair of heaters 3 provided so as to face each other with the container 6 interposed therebetween.
  • a seed crystal 5 that is a raw material of BaMgF 4 crystal and a mixed raw material 4 are arranged.
  • the container 6 is placed at a predetermined height in the chamber 1 by being placed on the shaft 7 connected to the bottom of the chamber 1.
  • the heater 3 is formed along the side wall of the chamber 1, and a heat insulating material 2 for blocking the heat of the heater 3 is provided between the heater 3 and the side wall of the chamber 1. Further, an exhaust port 8 for exhausting the gas in the chamber 1 is provided on one side wall of the chamber 1.
  • the shaft 7 is water-cooled to prevent deformation due to heat.
  • the container 6 can be moved up and down by the shaft 7, that is, up and down along the movement direction axis D shown in FIG. 2. Due to the heating using the heater 3 outside the vessel 6, a temperature gradient is generated along the movement direction axis D in the crystal growth furnace 10. Due to this temperature gradient, the inside of the crystal growth furnace 10 becomes hotter in the upper part than in the lower part.
  • a ferroelectric fluoride single crystal can be manufactured by the so-called vertical Bridgman method using the crystal growth furnace 10 having such a structure.
  • a carbon or metal crucible used in the vertical Bridgman method can be used as the container 6, a carbon or metal crucible used in the vertical Bridgman method can be used.
  • the chamber 1 has a water-cooled double structure composed of SUS.
  • the shaft 7 is also preferably water-cooled. Thereby, the deformation
  • the chamber 1 After placing the container 6 containing the mixed raw material 4 on the shaft 7, the chamber 1 is closed, and the inside of the chamber 1 is evacuated using a vacuum system including an oil rotary pump, an oil diffusion pump, and the like.
  • the heater 3 is operated to raise the temperature in the chamber 1.
  • the heater 3 In the crystal growth furnace 10, the heater 3 is set so as to increase in temperature from a low position toward a high position.
  • the container 6 When heating, the container 6 is first placed at a low position and heated at a relatively low temperature. When a predetermined temperature is reached, the container 6 is raised and heated at a higher temperature. In this way, the heating temperature is gradually increased.
  • the container 6 can be moved by moving the shaft 7 up and down.
  • the mixed raw material 4 in the container 6 starts to melt gradually from the top.
  • the container 6 is further raised, and when the interface between the mixed raw material 4 and the seed crystal 5 in the container 6 reaches a position where it becomes a solid-liquid interface, the rising of the container 6 is stopped and the material in the container becomes uniform. Leave for several hours. After the predetermined time has elapsed, the container 6 is gradually lowered, so that the crystal grows while the solid-liquid interface gradually moves upward.
  • a crystal having a desired orientation can be obtained by placing the seed crystal on the bottom of the container and growing the crystal. At this time, the temperature gradient between the high temperature region and the low temperature region is maintained, and the position of the container is set so that the lowermost part of the seed crystal is not melted and the uppermost part is melted. Thereby, a single crystal grown with the same crystal axis orientation as the seed crystal remaining without melting can be obtained.
  • the crystal can be grown from the position of the seed crystal 5 by fixing the container 6 at a fixed position and continuously changing the temperature around the container 6.
  • the crystal growth When the crystal growth is completed, it is gradually cooled. When the temperature reaches room temperature, the pressure is restored by introducing an inert gas into the chamber 1 and the container is taken out, thereby obtaining a BaMgF 4 single crystal.
  • the obtained single crystal can be taken out of the container 6 and cut into a plate, for example, to obtain a plate oriented in the c-plane.
  • the ferroelectric fluoride single crystal has a single crystal growth direction in a range of ⁇ 20 ° or less from any one of the a-axis, b-axis, and c-axis directions of the crystal axis.
  • the crystal growth direction and the temperature gradient direction in the region where the single crystal is grown are preferably the same or grown in an environment where the angle formed by both is in the range of ⁇ 20 ° or less.
  • Such a single crystal has a cross section on the side in contact with the mixed raw material 4 of the BaMgF 4 seed crystal 5 arranged at the bottom of the container 6, in any orientation of the a-plane, b-plane and c-plane of the seed crystal. Can be grown by arranging the seed crystal 5 so that the orientation of the cross section coincides with the single crystal growth direction.
  • BaF 2 powder and MgF 2 powder as a fluorine-based compound are mixed at a molar ratio of 1: 1 so that the stoichiometric ratio of BaMgF 4 is obtained.
  • a mixed powder in which a scavenger is mixed can be used.
  • the fluorine-based compound commercially available compounds can be used, but from the viewpoint of obtaining a ferroelectric fluoride single crystal having sufficient transmittance, it is preferable to use a compound having a purity of 99.9% by mass or more.
  • the scavenger is an additive substance added to fluorinate a small amount of oxide contained in the powder of the fluorine compound.
  • the scavenger By including a scavenger in the raw material, it is possible to remove oxides that cause coloring of the fluoride single crystal and deterioration of internal transmittance.
  • the scavenger is preferably blended at a ratio of 0.001 to 10% by mass with respect to the fluorine compound. As a result, the remaining amount of scavenger in the ferroelectric fluoride single crystal can be sufficiently reduced while sufficiently removing the oxide.
  • the scavenger is at least one fluoride selected from the group consisting of polytetrafluoroethylene (PTFE), SnF 2 , SbF 3 , GaF 3 , BiF 3 , TiF 3 , PbF 2 , ZnF 2 , ZrF 4 and HfF 4. Is preferably used.
  • PTFE polytetrafluoroethylene
  • the inside of the crystal growth furnace 10 is a vacuum, but instead of the vacuum, for example, the atmosphere in the furnace is an inert gas atmosphere such as helium gas, argon gas, or nitrogen gas, or a reducing property such as hydrogen gas.
  • the atmosphere in the furnace is an inert gas atmosphere such as helium gas, argon gas, or nitrogen gas, or a reducing property such as hydrogen gas.
  • a gas atmosphere or a fluorine-based gas atmosphere such as CF 4 or C 2 H 5 F may be used.
  • the wavelength conversion element 12 is a periodic polarization reversal so that the period is 20 to 80 nm, for example, with respect to the plate-like crystal made of the ferroelectric fluoride single crystal oriented in the c-plane obtained above. It is formed by performing.
  • the ferroelectric domain in the wavelength conversion element 12 is periodically inverted, so that the fundamental wave 11 is subjected to quasi-phase matching.
  • the second harmonic wave 13 is generated and emitted (output) from the other end of the wavelength conversion element 12.
  • the wavelength conversion element 12 can generate light having a frequency twice that of the incident light.
  • Such a wavelength conversion element 12 can be used for the purpose of obtaining light of various wavelengths according to the application.
  • the wavelength conversion element 12 is one that generates light having a frequency in the terahertz region, one having a wavelength of at least one of which is 500 nm or less, and one having a wavelength of 1500 nm or more among the light emitted after wavelength conversion. Can be suitably used.
  • the inorganic optical filter 15 is made of NdF 3 single crystal.
  • This NdF 3 single crystal can also be obtained using the crystal growth furnace 10 shown in FIG. 2 in the same manner as BaMgF 4 described above.
  • each raw material having a purity of 99.9% or more for forming the NdF 3 single crystal is prepared, and the stoichiometric ratio of NdF 3 is obtained. And mixed with a scavenger to obtain a mixed raw material 4. After the mixed raw material 4 is put in the container 6, the container 6 is placed on the shaft 7 and placed in the chamber 1. At this time, the seed crystal 5 of NdF 3 is placed in the container 6 at the bottom of the mixed raw material 4.
  • the chamber 1 After placing the container 6 containing the mixed raw material 4 on the shaft 7, the chamber 1 is closed, and the inside of the chamber 1 is evacuated using a vacuum system including an oil rotary pump, an oil diffusion pump, and the like.
  • the heater 3 is operated to raise the temperature in the chamber 1.
  • the heater 3 In the crystal growth furnace 10, the heater 3 is set so as to increase in temperature from a low position toward a high position.
  • the container 6 When heating, the container 6 is first placed at a low position and heated at a relatively low temperature. When a predetermined temperature is reached, the container 6 is raised and heated at a higher temperature. In this way, the heating temperature is gradually increased.
  • the container 6 can be moved by moving the shaft 7 up and down.
  • the mixed raw material 4 in the container 6 starts to melt gradually from the top.
  • the container 6 is further raised, and when the interface between the mixed raw material 4 and the seed crystal 5 in the container 6 reaches a position where it becomes a solid-liquid interface, the rising of the container 6 is stopped and the material in the container becomes uniform. Leave for several hours. After the predetermined time has elapsed, the container 6 is gradually lowered, so that the crystal grows while the solid-liquid interface gradually moves upward.
  • a crystal having a desired orientation can be obtained by placing the seed crystal on the bottom of the container and growing the crystal. At this time, the temperature gradient between the high temperature region and the low temperature region is maintained, and the position of the container is set so that the lowermost part of the seed crystal is not melted and the uppermost part is melted. Thereby, a single crystal grown with the same crystal axis orientation as the seed crystal remaining without melting can be obtained.
  • the crystal can be grown from the position of the seed crystal 5 by fixing the container 6 at a fixed position and continuously changing the temperature around the container 6.
  • the NdF 3 single crystal has a single crystal growth direction that coincides with any one of the a-axis, b-axis, and c-axis of the crystal axis, or the a-axis and b-axis of the crystal axis. And a range of ⁇ 30 ° or less from either direction of the c-axis. Further, the NdF 3 single crystal was grown in an environment where the single crystal growth direction and the temperature gradient direction in the region where the single crystal is grown coincide with each other, or the angle between them is within a range of ⁇ 30 ° or less. It is preferable.
  • Such a single crystal has a cross section on the side in contact with the mixed raw material 4 of the seed crystal 5 of NdF 3 arranged at the bottom of the container 6 in any orientation of the a-plane, b-plane and c-plane of the seed crystal.
  • a powder composed of one or more fluorine-containing compounds containing Nd, or a fluoride raw material containing a single crystal or polycrystal obtained by solidifying such powder, and a scavenger are mixed.
  • the fluorine-based compound containing Nd include neodymium fluoride (NdF 3 ).
  • NdF 3 neodymium fluoride
  • a commercially available compound can be used. From the viewpoint of obtaining a ferroelectric fluoride single crystal having sufficient transmittance, a compound having a purity of 99.9% by mass or more should be used. preferable.
  • the scavenger is at least one fluoride selected from the group consisting of polytetrafluoroethylene (PTFE), SnF 2 , SbF 3 , GaF 3 , BiF 3 , TiF 3 , PbF 2 , ZnF 2 , ZrF 4 and HfF 4. Is preferably used.
  • the scavenger is preferably blended at a ratio of 0.001 to 10% by mass with respect to the fluoride raw material. Thereby, the residual amount of scavenger in the NdF 3 single crystal can be sufficiently reduced while sufficiently removing the oxide.
  • the inside of the crystal growth furnace 10 is a vacuum, but instead of the vacuum, for example, the atmosphere in the furnace is an inert gas atmosphere such as helium gas, argon gas, or nitrogen gas, or a reducing property such as hydrogen gas.
  • the atmosphere in the furnace is an inert gas atmosphere such as helium gas, argon gas, or nitrogen gas, or a reducing property such as hydrogen gas.
  • a gas atmosphere or a fluorine-based gas atmosphere such as CF 4 or C 2 H 5 F may be used.
  • the inorganic optical filter 15 made of NdF 3 single crystal thus obtained is arranged in the optical path of the light emitted from the wavelength conversion element 12, as shown in FIG.
  • the fundamental optical wave 14 included in the light emitted from the wavelength conversion element 12 is removed by the inorganic optical filter 15, and the second harmonic wave 13 can be obtained with sufficient output.
  • the inorganic optical filter made of an NdF 3 single crystal according to the present invention has high shielding properties with respect to fundamental waves of a plurality of wavelengths, and can have high transparency with respect to those second harmonics.
  • conventional optical filters for wavelengths have only a certain range of filter functions with respect to the target wavelength range, and thus have a single function in a sense and can be used for various laser beams. It was difficult.
  • conventional optical filters for wavelengths from the visible range to the near-infrared range have no light blocking ability, that is, there is no filter capable of blocking 100%, and even an optical filter described as having a transmittance of 1% or less is visually observable. There were many things with a low light-shielding ability so that it could confirm.
  • the light source of the present invention can be configured by combining the above-described optical element of the present embodiment with a solid-state laser that makes laser light incident on the wavelength conversion element of the optical element.
  • the wavelength of the laser light is preferably in the wavelength region of 3% or less, more preferably in the wavelength region of 1% or less, in the light transmission spectrum of the inorganic optical filter.
  • Examples of such a solid-state laser that emits laser light include a ruby laser, a YAG laser, and a titanium sapphire laser.
  • the light source of the present embodiment is preferably provided with a titanium sapphire laser as a solid-state laser from the viewpoint of being inexpensive and capable of relatively stably oscillating in the vacuum ultraviolet region of the second harmonic.
  • Wavelength conversion element 1 Using the apparatus shown in FIG. 2, an optical material composed of a BaMgF 4 single crystal was obtained according to the method described above. Specifically, we first weighed 368.91 g of BaF 2 powder raw material (purity 99.9% or higher) and 131.09 g of MgF 2 powder raw material (purity 99.9% or higher) (molar ratio 1: 1). As a scavenger, 1.00 g of BiF 3 was mixed to obtain a mixed powder. The mixed powder was put in a carbon container 6, and the container 6 was placed below the crystal growth furnace 10 shown in FIG.
  • the heater 3 was heated to 1000 ° C., and the container 6 was gradually raised to a high temperature range (500 ° C. or more) to melt the mixed powder. Thereafter, the container 6 was gradually lowered to a low temperature range (less than 500 ° C.) to grow crystals, and then the inside of the crystal growth furnace 10 was gradually cooled to obtain an optical material made of BaMgF 4 single crystal.
  • a thin sample made of a plate crystal oriented in the c-plane is collected from the obtained optical material, and this plate crystal is subjected to periodic polarization inversion so that the cycle is 20 to 80 nm as shown in FIG. A wavelength conversion element was formed.
  • the light having a wavelength of 1064 nm using an Nd: YAG laser was incident on one end of the wavelength conversion element as the fundamental wave 11.
  • the fundamental wave was subjected to quasi-phase matching due to the periodic inversion of the ferroelectric domain in the wavelength conversion element, and a second harmonic was generated.
  • the output light was green light with a wavelength of 532 nm.
  • the output light was purple light having a wavelength of 406 nm.
  • the fundamental wave was used as the fundamental wave.
  • the output light was green light having a wavelength of 396 nm.
  • ⁇ Preparation of inorganic optical filter> (Filter 1) Using the apparatus shown in FIG. 2, an optical material made of NdF 3 single crystal was obtained according to the method described above. Specifically, first, 500 g of NdF 3 powder raw material having a purity of 99.99% was mixed with 1.0 g of BiF 3 powder as a scavenger to obtain a mixed powder. The mixed powder was put in a carbon container 6, and the container 6 was placed below the crystal growth furnace 10 shown in FIG. After the pressure in the crystal growth furnace 10 is reduced to 10 ⁇ 3 Pa or less, the temperature in the crystal growth furnace is raised by the heater 3, and the temperature is low (about 500 ° C.
  • the container was gradually raised to a high temperature region at a speed of 1.0 mm / h to melt the raw material at the top of the container. Furthermore, when the container was raised and the seed crystal in the container reached a position where it became a solid-liquid interface, the container was stopped rising and allowed to stand for 12 hours until the inside of the container became uniform. Thereafter, the container was lowered to a low temperature range of about 500 ° C. or lower at a speed of 0.5 mm / h, and the solid-liquid interface moved upward to grow crystals. Next, the inside of the crystal growth furnace 10 was gradually cooled, and when the temperature reached room temperature, the inside of the furnace was restored with an inert gas or the like. Thereafter, the container was taken out to obtain an optical material composed of NdF 3 single crystal.
  • the obtained optical material was cut and formed to produce a filter made of a plate-like crystal having a thickness of 1 mm oriented on the c-plane.
  • FIG. 3 shows the light transmission spectrum of the filter made of NdF 3 single crystal obtained above.
  • 3A shows a light transmission spectrum at 200 to 450 nm
  • FIG. 3B shows a light transmission spectrum at 400 to 900 nm.
  • the transmittance is 1% or less
  • the transmittance is 70% or more. It was confirmed that there were multiple places.
  • regions A and B having transmittances of 1% or less in a range of 565 nm to 585 nm, a range of 726 nm to 747 nm, a range of 778 nm to 812 nm, and a range of 855 nm to 870 nm, respectively.
  • Half of the wavelength regions corresponding to each of these regions had a transmittance of at least 50%.
  • the half wavelength region corresponding to regions B and C had a transmittance of 70% or more.
  • the inorganic optical filter composed of the NdF 3 single crystal of the present invention shields light whose fundamental wave is in any one of the wavelength ranges of the regions A to D, and has the wavelength of the wavelength region of the regions A to D as the second harmonic. It turns out that it has the function to permeate
  • the inorganic optical filter of the present invention since the inorganic optical filter of the present invention has a filter function for a plurality of wavelength regions, it can provide flexibility in construction of an optical system. In addition, since it is not necessary to combine a plurality of optical filters, it is possible to reduce the size and cost of the optical system.
  • FIG. 4 shows light transmission spectra of the CaF 2 single crystal and the MgF 2 single crystal.
  • a represents the spectrum of the MgF 2 single crystal
  • b represents the spectrum of the CaF 2 single crystal.
  • the transmittance is 1% or less at 200 to 800 nm.
  • the region where the transmittance was 1% or less was only one region of 380 to 550 nm.
  • Example 1 As shown in FIG. 1, the wavelength conversion element 1 and the filter 1 were arranged to produce an optical element. With respect to the wavelength conversion element 1 of this optical element, light having a wavelength of 812 nm using a titanium sapphire laser is incident from one end as a fundamental wave, and output light from the other end of the wavelength conversion element 1 and output light transmitted through the filter 1
  • the transmittance and the second harmonic transmittance were measured with a vacuum ultraviolet spectrophotometer (KV-201V, manufactured by Spectrometer Co., Ltd.).
  • the fundamental wave transmittance and the second harmonic transmittance of the filter 1 were respectively calculated by a vacuum ultraviolet spectrophotometer. The results are shown in Table 1.
  • Example 2 The fundamental wave transmittance and the second harmonic transmittance were determined in the same manner as in Example 1 except that a titanium sapphire laser was used as the laser light source and light having a wavelength of 792 nm was incident from one end of the wavelength conversion element 1. The results are shown in Table 1.

Abstract

 本発明の無機光学フィルターは、NdF単結晶からなるものである。また、本発明の光学素子は、1次整合又は3次整合を用いた擬似位相整合により、入射した光を2倍の周波数となるように波長変換して出射する波長変換素子と、該波長変換素子から出射される光の光路に配置された無機光学フィルターと、を備え、波長変換素子が、Ba1-y(Mg1-xZn1+y(但し、0≦x≦1であり、かつ、-0.2≦y≦0.2である。)で表される強誘電体フッ化物単結晶からなるものであり、且つ、無機光学フィルターが、NdF単結晶からなるものである。

Description

無機光学フィルター、光学素子及び光源
 本発明は、無機光学フィルター、光学素子及び光源に関する。
 半導体リソグラフィ装置や視力矯正装置などには、KrFやArF等を用いたエキシマレーザーが光源として利用されている。しかし、これらの光源には、寿命が短い、有害である、得られるビームの品質が悪い等の欠点が指摘されている。
 そこで、固体レーザーと波長変換素子とを組み合わせた全固体レーザーの検討がなされている。波長変換素子としては、入射した光の2倍の振動数を有する光(第2高調波)を放射する第2高調波発生(SHG)という非線形光学効果を利用したものがあり、これまでにも非線形光学結晶からなる波長変換素子が提案されている(例えば、非特許文献1を参照)。
 SHGを利用した波長変換素子からの出射光には、入射光である基本波と、SHGによる第2高調波の少なくとも2種類の異なる波長の光が混在する。半導体リソグラフィ装置や視力矯正装置などの所定の短波長の光が必要とされる用途においては、他の光による影響を避けるために第2高調波のみ活用できることが望ましい。
 特定の波長の光を選択的に取出す方法として、光学フィルターを用いることが知られている。光学フィルターとしては、偏光フィルターが挙げられ、例えば、Thorlabs製Dichronic Color Filteなどが知られている。しかし、可視域から近赤外域にある固体レーザー光を波長変換して紫外/真空紫外(UV/VUV)域から可視域にある第2高調波を出射する波長変換素子に上記の光学フィルターを組み合わせても、基本波が十分除去されない場合があった。なお、複数の光学フィルターを組み合わせる或いはフィルターの厚みを大きくするなどにより基本波を除去することが考えられるが、この方法では、第2高調波の出力が大きく低下してしまうなどの問題がある。
 一方、シンチレータ材料として単結晶の開発が行われている(例えば、非特許文献2を参照)。非特許文献2によれば、良質なCeFおよびNdF単結晶が得られる。しかしながら、これらの単結晶を光学部品に応用した報告はない。
宮澤信太郎「分極反転デバイスの基礎と応用」オプトロ二クス社、(2005年) K. Shimamuraら, J. Cryst. Growth, 264(2004), 208-215
 本発明は、上記事情に鑑みてなされたものであり、固体レーザー光から基本波の混在が十分少ない第2高調波を高い変換効率で得ることができる光学素子と、該光学素子に用いられ、第2高調波の出力を低下することなく基本波を十分に除去することができる無機光学フィルターと、上記光学素子を用いた光源と、を提供することを目的とする。
 本発明の無機光学フィルターは、NdF単結晶からなる。本発明の無機光学フィルターによれば、光透過スペクトルにおいて高い遮蔽性を示す波長域と高い透過性を示す波長域とを複数有しているので、ユーザの光学システムの構築にフレキシビリティを提供できる。また、複数の光学フィルターを組み合わせる必要がないので、本発明の無機光学フィルターを採用すれば、光学システムの小型化、低コスト化を達成し得る。
 本発明の無機光学フィルターにおいては、上記NdF単結晶が、波長域550~900nmにおいて透過率が1%以下となる4つの波長域を有し、かつ、上記4つの波長域のそれぞれに対応する半分の波長域における透過率が50%以上であることが好ましい。
 また、上記4つの波長域が、それぞれ565nm以上585nm以下の範囲、726nm以上747nm以下の範囲、778nm以上812nm以下の範囲及び855nm以上870nm以下の範囲にあることが好ましい。
 本発明の光学素子は、1次整合又は3次整合を用いた擬似位相整合により、入射した光を2倍の周波数となるように波長変換して出射する波長変換素子と、該波長変換素子から出射される光の光路に配置された上記無機光学フィルターと、を備え、上記波長変換素子が、Ba1-y(Mg1-xZn1+y(但し、0≦x≦1であり、かつ、-0.2≦y≦0.2である。)で表される強誘電体フッ化物単結晶からなるものであることを特徴とする。
 本発明の光学素子によれば、固体レーザー光から、基本波の混在が十分少ない第2高調波を高い変換効率で得ることができる。この理由を本発明者らは、上記特定の単結晶からなる波長変換素子が、可視域から近赤外域にある固体レーザー光を第2高調波に効率よく変換することができるものであり、なおかつ、上記特定の単結晶からなる無機光学フィルターが、光透過スペクトルにおいて高い遮蔽性を示す波長域と高い透過性を示す波長域とを複数有しているものであり、前者にレーザー光の波長が合い、後者に第2高調波の波長が合うことによるものと考えている。
 本発明の光学素子において、酸化物系光学結晶よりも透過性、特に真空紫外領域の透過性に優れている点で、上記強誘電体フッ化物単結晶がBaMgF単結晶であることが好ましい。
 本発明はまた、本発明の光学素子と、該光学素子の波長変換素子にレーザー光を入射する固体レーザーと、を備える光源を提供する。本発明の光源によれば、固体レーザーに本発明の光学素子を組み合わせることにより、基本波の混在が十分少ない第2高調波を十分な出力で出射する全固体レーザーの実現が可能となる。
 上記レーザー光の波長は、上記無機光学フィルターの光透過スペクトルにおいて透過率が3%以下の波長域にあることが好ましい。
 本発明によれば、複数の波長域に対するフィルター機能を有する無機光学フィルター、固体レーザー光から基本波の混在が十分少ない第2高調波を高い変換効率で得ることができる光学素子、及びそれを用いた光源を提供することができる。
本発明に係る光学素子を用いて波長変換及び基本波の除去を行う様子を示す模式図である。 本発明に係る結晶育成を行うために好適に用いられる結晶育成炉の構造を示す概略図である。 本発明に係るNdF単結晶の光透過スペクトルを示す図である。 CaF単結晶及びMgF単結晶の光透過スペクトルを示す図である。
 図1は、本発明に係る光学素子を用いて波長変換及び基本波の除去を行う様子を示す模式図である。図1に示す光学素子100は、1次整合又は3次整合を用いた擬似位相整合により、入射した光を2倍の周波数となるように波長変換して出射する波長変換素子12と、波長変換素子12から出射される光の光路に配置された無機光学フィルター15とから構成されている。波長変換素子12は、入射光11をSHGにより第2高調波13へと変換するものである。波長変換素子12からの出射光には、入射光である基本波14と、SHGによる第2高調波13の少なくとも2種類の異なる波長の光が混在するが、無機光学フィルター15によって、基本波の混在が十分少ない第2高調波が得られる。
 波長変換素子12は、Ba1-y(Mg1-xZn1+y(但し、0≦x≦1であり且つ-0.2≦y≦0.2である。)で表される強誘電体フッ化物単結晶からなるものである。また、強誘電体フッ化物は、周波数1Hz以下における抗電界の値が10kV/cm以下である強誘電特性を有するものであるとより好ましい。
 波長変換素子12を構成する強誘電体フッ化物単結晶として、BaMgFを用いる場合について説明する。
 図2は、BaMgFの結晶育成を行う結晶成長炉の構造を示す図である。図2に示す気密化可能な結晶成長(育成)炉10はSUS製のチャンバー1により水冷2重構造となっている。SUS製のチャンバー1内に、結晶育成を行う容器6と、この容器6を挟んで対向するように設けられた一対のヒーター3とを備えている。容器6内には、BaMgF結晶の原料である種結晶5、及び、混合原料4が配置される。
 容器6は,チャンバー1の底部につながるシャフト7上に載置されることにより、チャンバー1内の所定の高さ位置に配置されている。ヒーター3は、チャンバー1の側壁に沿って形成されており、このヒーター3とチャンバー1の側壁との間には、ヒーター3の熱を遮断するための断熱材2がそれぞれ設けられている。また、チャンバー1の一方の側壁には、チャンバー1内の気体を排出するための排気口8が設けられている。なお、シャフト7は熱による変形を防ぐために水冷されている。
 結晶成長炉10内で容器6はシャフト7によって上下に、すなわち図2に示される移動方向軸Dに沿って上下に移動可能である。容器6の外側にあるヒーター3を用いた加熱により、結晶成長炉10には移動方向軸Dに沿って温度勾配が生じる。この温度勾配により結晶成長炉10内は下部より上部の方が高温になる。かかる構造を有する結晶成長炉10を用いた、いわゆる垂直ブリッジマン法により強誘電体フッ化物単結晶を製造できる。
 容器6としては、垂直ブリッジマン法に用いられるカーボン製又は金属製のるつぼを用いることができる。
 このような結晶育成炉10を用いてBaMgF結晶の製造を行う場合、まず、BaMgFを形成するための純度99.9%以上の各原料を準備し、BaMgFの化学量論比が得られるようにスカベンジャーとともに混合して、混合原料4を得る。この混合原料4を容器6に入れた後、この容器6をシャフト7上に載せてチャンバー1内に配置する。なお、この際、容器6内には、BaMgFの種結晶5を混合原料4よりも底部に入れておく。
 ここで、チャンバー1は、SUSから構成される水冷二重構造を有していると好ましい。また、シャフト7も、水冷されていると好ましい。これにより、後述する加熱の際の熱によるチャンバー1やシャフト7の変形を防ぐことができる。また、シャフト7を水冷しておくことで、容器6内で凝固した材料から潜熱を効率よく奪うことができる。
 混合原料4が入った容器6をシャフト7上に配置した後、チャンバー1を閉じ、油回転ポンプや油拡散ポンプ等から構成される真空システムを用いてチャンバー1内を真空にする。次いで、ヒーター3を稼動させてチャンバー1内を昇温していく。結晶育成炉10では、ヒーター3は、低い位置から高い位置に向かって高い温度となるように設定されている。そして、加熱の際には、まず、容器6を低い位置に配置して比較的低い温度で加熱し始める。ここで所定の温度に達したら、容器6を上昇させ、より高い温度で加熱を行う。このようにして加熱温度を徐々に上昇させる。なお、容器6の移動は、シャフト7を上下させることにより行うことができる。
 容器6の上昇とともに温度が高くなるにつれて、容器6内の混合原料4は、上部から徐々に溶融し始める。さらに容器6を上昇させていき、やがて容器6内の混合原料4と種結晶5との界面が固液界面となる位置に達したら、容器6の上昇を止めて容器内の材料が均一となるまで数時間放置する。所定時間が経過した後、容器6を徐々に降下させることで、これに伴って固液界面が徐々に上方に移動しながら結晶が成長することとなる。
 このように種結晶を容器の底部に置いて結晶成長させることで、所望の方位の結晶を得ることができる。この際、高温域と低温域の間の温度勾配を維持し、容器の位置を、種結晶の最下部は溶融せずに最上部が溶融する位置にしておく。これにより、溶融せずに残った種結晶と同一の結晶軸方位で成長した単結晶を得ることができる。
 なお、上記とは別の方法として、容器6を一定の位置に固定し、容器6の周囲の温度を連続的に変化させることで種結晶5の位置から結晶育成を行うこともできる。
 結晶成長が完了したら徐冷し、室温に達したら、チャンバー1内に不活性ガスを導入する等により復圧し、容器を取り出して、これによりBaMgF単結晶を得る。得られた単結晶は、容器6から取り出し、切断成形等を行うことによって、例えばc面に配向した板とすることができる。
 また、本実施形態において、強誘電体フッ化物単結晶は、単結晶育成方向が結晶軸のa軸、b軸及びc軸のうちのいずれかの方向から±20°以下の範囲であり、単結晶育成方向と、単結晶を育成する領域内の温度勾配方向とが、一致する、若しくは両者のなす角が±20°以下の範囲である環境で育成されたものであることが好ましい。
 このような単結晶は、容器6の底部に配置されるBaMgFの種結晶5の混合原料4と接する側の断面を、種結晶のa面、b面及びc面のうちのいずれかの方位から±20°以下の範囲内とし、かかる断面の方位が単結晶育成方向と一致するように種結晶5を配置することにより、育成することができる。
 容器6に収容される混合原料4としては、フッ素系化合物としてBaF粉体とMgF粉体とを、BaMgFの化学量論比となるように、1:1のモル比で混合し、さらにスカベンジャーを混合した混合粉体を用いることができる。フッ素系化合物としては、市販のものを用いることができるが、十分な透過率を有する強誘電体フッ化物単結晶を得る観点から、純度99.9質量%以上のものを用いることが好ましい。なお、スカベンジャーとは、フッ素系化合物の粉体中に含まれる微量の酸化物をフッ素化するために加える添加物質である。スカベンジャーを原料に含有させることによって、フッ化物単結晶の着色や内部透過率悪化の要因となる酸化物を除去することができる。しかし、スカベンジャー自身が強誘電体フッ化物単結晶中に残留すると、強誘電体フッ化物単結晶の着色や内部透過率の悪化が生じる。このため、スカベンジャーは、フッ素系化合物に対して0.001~10質量%の割合で配合することが好ましい。これによって、酸化物を十分に除去しつつ強誘電体フッ化物単結晶中のスカベンジャーの残留量を十分に低減することができる。
 スカベンジャーとしては、ポリテトラフルオロエチレン(PTFE)、SnF、SbF、GaF、BiF、TiF、PbF、ZnF、ZrF及びHfFからなる群より選ばれる少なくとも1種のフッ化物を用いることが好ましい。
 本実施形態では、結晶成長炉10内を真空としているが、真空に代えて、例えば、炉内の雰囲気をヘリウムガス、アルゴンガス、又は窒素ガスなどの不活性ガス雰囲気、水素ガスなどの還元性ガス雰囲気、あるいはCF、CFなどのフッ素系ガス雰囲気としてもよい。
 波長変換素子12は、図1に示すように、上記で得られるc面に配向した強誘電体フッ化物単結晶からなる板状結晶に対し、例えば周期が20~80nmとなるように周期分極反転を行うことで形成される。そして、この波長変換素子12の一端から基本波11である光を入射すると、波長変換素子12内の強誘電ドメインが周期的に反転していることによって、この基本波11が擬似位相整合を受け、第2高調波13が発生して、波長変換素子12の他端から出射(出力)される。その結果、波長変換素子12によって、入射した光の周波数の2倍の周波数の光を発生させることができる。
 このような波長変換素子12は、用途等に応じて種々の波長の光を得る目的で用いることができる。例えば、波長変換素子12は、波長変換して出射される光のうち、少なくとも一つの光の波長が500nm以下であるもの、1500nm以上であるもの、テラヘルツ領域の周波数を有する光を発生するもの、として好適に用いることができる。
 無機光学フィルター15は、NdF単結晶からなるものである。このNdF単結晶も、上述したBaMgFと同様に、図2に示す結晶成長炉10を用いて得ることができる。
 結晶育成炉10を用いてNdF単結晶の製造を行う場合、まず、NdF単結晶を形成するための純度99.9%以上の各原料を準備し、NdFの化学量論比が得られるようにスカベンジャーとともに混合して、混合原料4を得る。この混合原料4を容器6に入れた後、この容器6をシャフト7上に載せてチャンバー1内に配置する。なお、この際、容器6内には、NdFの種結晶5を混合原料4よりも底部に入れておく。
 混合原料4が入った容器6をシャフト7上に配置した後、チャンバー1を閉じ、油回転ポンプや油拡散ポンプ等から構成される真空システムを用いてチャンバー1内を真空にする。次いで、ヒーター3を稼動させてチャンバー1内を昇温していく。結晶育成炉10では、ヒーター3は、低い位置から高い位置に向かって高い温度となるように設定されている。そして、加熱の際には、まず、容器6を低い位置に配置して比較的低い温度で加熱し始める。ここで所定の温度に達したら、容器6を上昇させ、より高い温度で加熱を行う。このようにして加熱温度を徐々に上昇させる。なお、容器6の移動は、シャフト7を上下させることにより行うことができる。
 容器6の上昇とともに温度が高くなるにつれて、容器6内の混合原料4は、上部から徐々に溶融し始める。さらに容器6を上昇させていき、やがて容器6内の混合原料4と種結晶5との界面が固液界面となる位置に達したら、容器6の上昇を止めて容器内の材料が均一となるまで数時間放置する。所定時間が経過した後、容器6を徐々に降下させることで、これに伴って固液界面が徐々に上方に移動しながら結晶が成長することとなる。
 このように種結晶を容器の底部に置いて結晶成長させることで、所望の方位の結晶を得ることができる。この際、高温域と低温域の間の温度勾配を維持し、容器の位置を、種結晶の最下部は溶融せずに最上部が溶融する位置にしておく。これにより、溶融せずに残った種結晶と同一の結晶軸方位で成長した単結晶を得ることができる。
 なお、上記とは別の方法として、容器6を一定の位置に固定し、容器6の周囲の温度を連続的に変化させることで種結晶5の位置から結晶育成を行うこともできる。
 結晶成長が完了したら徐冷し、室温に達したら、チャンバー1内に不活性ガスを導入する等により復圧し、容器を取り出して、これによりNdF単結晶を得る。得られた単結晶は、容器6から取り出し、切断成形等を行うことによって、例えばc面に配向した板とすることができる。
 また、本実施形態において、NdF単結晶は、単結晶育成方向が結晶軸のa軸、b軸及びc軸のうちのいずれかの方向に一致する、又は、結晶軸のa軸、b軸及びc軸のうちのいずれかの方向から±30°以下の範囲であることが好ましい。また、NdF単結晶は、単結晶育成方向と、単結晶を育成する領域内の温度勾配方向とが、一致する、若しくは両者のなす角が±30°以下の範囲である環境で育成されたものであることが好ましい。
 このような単結晶は、容器6の底部に配置されるNdFの種結晶5の混合原料4と接する側の断面を、種結晶のa面、b面及びc面のうちのいずれかの方位から±30°以下の範囲内とし、かかる断面の方位が単結晶育成方向と一致するように種結晶5を配置することにより、育成することができる。
 容器6に収容される混合原料4としては、Ndを含むフッ素系化合物の1種以上からなる粉末、又は係る粉末を固化した単結晶体若しくは多結晶体を含むフッ化物原料と、スカベンジャーとを混合したものが挙げられる。Ndを含むフッ素系化合物としては、例えば、フッ化ネオジム(NdF)等が挙げられる。Ndを含むフッ素系化合物としては、市販のものを用いることができるが、十分な透過率を有する強誘電体フッ化物単結晶を得る観点から、純度99.9質量%以上のものを用いることが好ましい。
 スカベンジャーとしては、ポリテトラフルオロエチレン(PTFE)、SnF、SbF、GaF、BiF、TiF、PbF、ZnF、ZrF及びHfFからなる群より選ばれる少なくとも1種のフッ化物を用いることが好ましい。スカベンジャーは、上記フッ素物原料に対して0.001~10質量%の割合で配合することが好ましい。これによって、酸化物を十分に除去しつつNdF単結晶中のスカベンジャーの残留量を十分に低減することができる。
 本実施形態では、結晶成長炉10内を真空としているが、真空に代えて、例えば、炉内の雰囲気をヘリウムガス、アルゴンガス、又は窒素ガスなどの不活性ガス雰囲気、水素ガスなどの還元性ガス雰囲気、あるいはCF、CFなどのフッ素系ガス雰囲気としてもよい。
 こうして得られるNdF単結晶からなる無機光学フィルター15は、図1に示すように、波長変換素子12から出射される光の光路に配置される。そして、この無機光学フィルター15によって、波長変換素子12から出射される光に含まれる基本波14が除去され、第2高調波13を十分な出力で得ることができる。
 本発明に係るNdF単結晶からなる無機光学フィルターは、複数の波長の基本波に対して高い遮蔽性を有するとともに、それらの第2高調波に対しては高い透過性を有することができる。これに対して、従来の波長用光学フィルターは、目的の波長域に対して一定領域のフィルター機能しか有していないため、ある意味で単機能であり、種々のレーザー光に対しては活用しにくいものであった。また、従来の可視域から近赤外域における波長用光学フィルターは、遮光能力が完全なもの、すなわち100%遮光できるものがなく、透過率で1%以下と表記された光学フィルターでも目視で光が確認できるほど、遮光能力が低い水準のものが少なくなかった。このため、従来の可視域から近赤外域における波長用光学フィルターで遮光能力を100%にするには同フィルター材料の厚さを増大させることが必要であった。しかし、このフィルター材料の厚さの増大は、透過率低下によってパスさせるべきSHG光の強度を著しく低下(減衰)させてしまう。
 本発明の光源は、上述した本実施形態の光学素子に、該光学素子の波長変換素子にレーザー光を入射する固体レーザーを組み合わせることにより、構成することができる。
 本実施形態において、上記レーザー光の波長が、無機光学フィルターの光透過スペクトルにおいて透過率が3%以下の波長域にあることが好ましく、1%以下の波長域にあることがより好ましい。
 このようなレーザー光を発する固体レーザーとしては、ルビーレーザー、YAGレーザー、チタンサファイアレーザー等が挙げられる。
 本実施形態の光源は、安価であり、比較的安定に第2高調波の真空紫外領域での発振が可能であるとの観点から、固体レーザーとしてチタンサファイアレーザーを備えることが好ましい。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらに制限されるものではない。
<波長変換素子の作製>
(波長変換素子1)
 図2で示した装置を用い、上述したような方法にしたがってBaMgF単結晶からなる光学材料を得た。具体的には、まずBaF粉末原料(純度99.9%以上)368.91g及びMgF粉末原料(純度99.9%以上)131.09gを秤量し(モル比1:1)、これらとスカベンジャーとして1.00gのBiFとを混合して混合粉末を得た。カーボン製の容器6に混合粉末を入れ、図2に示す結晶成長炉10内の下方に容器6を配置した。結晶成長炉10内を10-3Pa以下まで減圧した後、ヒーター3を1000℃まで加熱し、容器6を徐々に高温域(500℃以上)へ上昇させて混合粉末を融解した。その後、低温域(500℃未満)まで容器6を徐々に降下させることで結晶を成長させ、次いで結晶成長炉10内を徐冷してBaMgF単結晶からなる光学材料を得た。
 得られた光学材料からc面に配向した板状結晶からなる薄いサンプルを採取し、この板状結晶に対し、図1に示すように周期が20~80nmとなるように周期分極反転を行って、波長変換素子を形成した。
 この波長変換素子に対し、Nd:YAGレーザーを用いた波長1064nmの光を基本波11として一端から入射した。その結果、基本波が、波長変換素子内で強誘電ドメインが周期的に反転していることにより擬似位相整合を受けて、第2高調波を発生した。出力された光は、緑色をした波長532nmの光であった。このように、波長変換素子によれば、入射した光の周波数の2倍の周波数の光を発生することが確認された。
 また、基本波として、チタンサファイアレーザーを用い、同様に波長変換素子の一端から波長812nmの光を入射したところ、出力された光は紫色をした波長406nmの光であった。
 更に、基本波として、チタンサファイアレーザーを用い、同様に波長変換素子の一端から波長792nmの光を入射したところ、出力された光は緑色をした波長396nmの光であった。
<無機光学フィルターの作製>
(フィルター1)
 図2で示した装置を用い、上述したような方法にしたがってNdF単結晶からなる光学材料を得た。具体的には、まず純度99.99%のNdF粉末原料500gを、スカベンジャーとしてのBiFの粉末1.0gと混合して混合粉末を得た。カーボン製の容器6に混合粉末を入れ、図2に示す結晶成長炉10内の下方に容器6を配置した。結晶成長炉10内を10-3Pa以下まで減圧した後、ヒーター3により結晶成長炉内を昇温し、炉内の低い位置では低温(約500℃以下)に、高い位置では高温(約1500℃)になるように設定した。炉内の高い位置が約1500℃の温度に達したら、高温域へ容器を1.0mm/hの速度で徐々に上昇させていき、容器最上部の原料を溶融させた。更に、容器を上昇させ、容器内の種結晶が固液界面となる位置に達したら、容器の上昇を止めて容器内が均一になるまで12時間静置した。その後、約500℃以下の低温域へ容器を0.5mm/hの速度で降下させていき、固液界面が上へと移動することで結晶を成長させた。次いで、結晶成長炉10内を徐冷し、室温に達したら不活性ガスなどで炉内を復圧した。その後、容器を取出してNdF単結晶からなる光学材料を得た。
 得られた光学材料を切断成形して、c面に配向した厚み1mmの板状結晶からなるフィルターを作製した。
 図3に、上記で得られたNdF単結晶からなるフィルターの光透過スペクトルを示す。図3の(a)は、200~450nmにおける光透過スペクトルを示し、図3の(b)は、400~900nmにおける光透過スペクトルを示す。図3の(b)に示す波長域400~900nmにおける光透過スペクトルには、透過率が1%以下となるA、B、C、Dの4つの領域が存在し、透過率が70%以上の箇所が複数あることが確認された。
 より詳細には、565nm以上585nm以下の範囲、726nm以上747nm以下の範囲、778nm以上812nm以下の範囲、および、855nm以上870nm以下の範囲に、それぞれ透過率が1%以下となる領域A、B、CおよびDがあった。これら領域のそれぞれに対応する半分の波長域は、少なくとも50%以上の透過率を有していた。さらに、領域BおよびCに対応する半分の波長域は、70%以上の透過率を有していた。
 以上より、本発明のNdF単結晶からなる無機光学フィルターは、基本波が領域A~Dの波長域のいずれかである光を遮蔽し、第2高調波として領域A~Dの波長域の半分の波長域のいずれかである光を透過させる機能を有することが分かる。このように、本発明の無機光学フィルターは、複数の波長域に対するフィルター機能を備えているので、光学システムの構築にフレキシビリティを提供できる。また、複数の光学フィルターを組み合わせる必要がないので、光学システムの小型化、低コスト化を達成し得る。
 比較のため、図4にCaF単結晶及びMgF単結晶の光透過スペクトルを示す。図4中、aがMgF単結晶のスペクトルを示し、bがCaF単結晶のスペクトルを示す。これらの光透過スペクトルには、200~800nmにおいて透過率が1%以下となる領域が見られない。
(フィルターC-1)
 Thorlabs製、商品名「Dichronic Color Filters (AdditiveFilters:Red)」(厚み1mmの)を準備した。
 このフィルターの光透過スペクトルで透過率が1%以下となる領域は、380~550nmの1領域のみであった。
(フィルターC-2)
 HOYA Glass製、商品名「Camera Lens Color Filters B-440」(厚み1mmの)を準備した。
(実施例1)
 図1に示すように波長変換素子1とフィルター1とを配置して、光学素子を作製した。この光学素子の波長変換素子1に対し、チタンサファイアレーザーを用いた波長812nmの光を基本波として一端から入射し、波長変換素子1の他端からの出力光及びフィルター1を透過した出力光について、真空紫外分光光度計(分光計器社製 KV-201V)により透過率及び第2高調波透過率を測定した。フィルター1の基本波透過率及び第2高調波透過率は、真空紫外分光光度計によりそれぞれ算出した。結果を表1に示す。
(実施例2)
 レーザー光源としてチタンサファイアレーザーを用い、波長変換素子1の一端から波長792nmの光を入射したこと以外は実施例1と同様にして、基本波透過率及び第2高調波透過率を求めた。結果を表1に示す。
(比較例1)
 フィルター1に代えて、フィルターC-1を用いたこと以外は実施例1と同様にして、基本波透過率及び第2高調波透過率を求めた。結果を表1に示す。
(比較例2)
 フィルター1に代えて、フィルターC-1を用いたこと以外は実施例2と同様にして、基本波透過率及び第2高調波透過率を求めた。結果を表1に示す。
(比較例3)
 フィルター1に代えて、フィルターC-2を用いたこと以外は実施例1と同様にして、基本波透過率及び第2高調波透過率を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
1…チャンバー、2…断熱材、3…ヒーター、4…混合原料、5…種結晶、6…容器、7…シャフト、8…排気口、10…結晶成長炉、11…基本波、12…波長変換素子、13…第2高調波、14…基本波、15…無機フィルター、100…光学素子。

Claims (7)

  1.  NdF単結晶からなる無機光学フィルター。
  2.  前記NdF単結晶は、波長域550~900nmにおいて透過率が1%以下となる4つの波長域を有し、かつ、前記4つの波長域のそれぞれに対応する半分の波長域における透過率が50%以上である、請求項1に記載の無機光学フィルター。
  3.  前記4つの波長域が、それぞれ565nm以上585nm以下の範囲、726nm以上747nm以下の範囲、778nm以上812nm以下の範囲及び855nm以上870nm以下の範囲にある、請求項2に記載の無機光学フィルター。
  4.  1次整合又は3次整合を用いた擬似位相整合により、入射した光を2倍の周波数となるように波長変換して出射する波長変換素子と、該波長変素子から出射される光の光路に配置された無機光学フィルターと、を備え、
     前記波長変換素子が、Ba1-y(Mg1-xZn1+y(但し、0≦x≦1であり、かつ、-0.2≦y≦0.2である。)で表される強誘電体フッ化物単結晶からなるものであり、かつ、前記無機光学フィルターが、請求項1~3のいずれか一項に記載の無機光学フィルターである、光学素子。
  5.  前記強誘電体フッ化物単結晶がBaMgF単結晶である、請求項4に記載の光学素子。
  6.  請求項4又は5に記載の光学素子と、該光学素子の前記波長変換素子にレーザー光を入射する固体レーザーと、を備える、光源。
  7.  前記レーザー光の波長が、前記無機光学フィルターの光透過スペクトルにおいて透過率が3%以下の波長域にある、請求項6に記載の光源。
PCT/JP2010/065833 2009-09-29 2010-09-14 無機光学フィルター、光学素子及び光源 WO2011040232A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10820351.4A EP2485071B1 (en) 2009-09-29 2010-09-14 Inorganic optical filter, optical element, and light source
US13/498,719 US9217910B2 (en) 2009-09-29 2010-09-14 Inorganic optical filter, optical element, and light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009225155A JP5515147B2 (ja) 2009-09-29 2009-09-29 光学素子及び光源
JP2009-225155 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040232A1 true WO2011040232A1 (ja) 2011-04-07

Family

ID=43826058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065833 WO2011040232A1 (ja) 2009-09-29 2010-09-14 無機光学フィルター、光学素子及び光源

Country Status (4)

Country Link
US (1) US9217910B2 (ja)
EP (1) EP2485071B1 (ja)
JP (1) JP5515147B2 (ja)
WO (1) WO2011040232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069392A (ja) * 2015-09-30 2017-04-06 日亜化学工業株式会社 装置光源

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907538B2 (ja) * 2011-03-28 2016-04-27 国立研究開発法人物質・材料研究機構 光加工器
JP6727483B2 (ja) 2014-10-08 2020-07-22 コンシューマー ライティング (ユー.エス.),エルエルシー 照明装置のカラーフィルター用材料および光学部品
CN105720163A (zh) 2014-12-04 2016-06-29 通用电气照明解决方案有限公司 一种照明装置
WO2017079187A1 (en) * 2015-11-03 2017-05-11 GE Lighting Solutions, LLC Color-shifted lamps using neodymium-fluorine containing coating
JP7385209B2 (ja) 2019-08-21 2023-11-22 国立大学法人 東京大学 真空紫外光の発生方法及びそれに用いる装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119952A (ja) * 2003-09-24 2005-05-12 Hokushin Ind Inc 放射線検出用フッ化物単結晶及び放射線検出器
JP2005345492A (ja) * 2004-05-31 2005-12-15 Canon Inc 光学素子及びミラー並びに反射防止膜
WO2009069706A1 (ja) * 2007-11-27 2009-06-04 Hitachi Chemical Company, Ltd. 光学材料、波長変換素子、強誘電体フッ化物単結晶、及び強誘電体フッ化物単結晶の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982136A (en) * 1975-07-23 1976-09-21 Bell Telephone Laboratories, Incorporated Ternary ferroelectric fluoride nonlinear devices
JPH0345904A (ja) 1989-07-13 1991-02-27 Nikon Corp ファブリ・ペローエタロン
US5940417A (en) * 1992-04-23 1999-08-17 University Of Science And Technology Of China CsB3 O 5 crystal and its nonlinear optical devices
US5339189A (en) * 1993-09-20 1994-08-16 The United States Of America As Represented By The Secretary Of The Navy Nonlinear frequency conversion optical filter
US5646781A (en) 1995-05-15 1997-07-08 Omega Optical, Inc. Optical filters for forming enhanced images
WO2001002907A1 (en) * 1999-07-01 2001-01-11 Smith Bruce W Apparatus and method of image enhancement through spatial filtering
JP2005001933A (ja) * 2003-06-11 2005-01-06 Fujikura Ltd 金属フッ化物体とその製造方法
EP1754808B1 (en) * 2004-04-12 2011-06-22 Stella Chemifa Corporation Solid solution material of rare earth element fluoride (polycrystal and single crystal), and radiation detector and test device
CN102026914A (zh) 2008-05-16 2011-04-20 株式会社德山 预处理金属氟化物及氟化物晶体的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119952A (ja) * 2003-09-24 2005-05-12 Hokushin Ind Inc 放射線検出用フッ化物単結晶及び放射線検出器
JP2005345492A (ja) * 2004-05-31 2005-12-15 Canon Inc 光学素子及びミラー並びに反射防止膜
WO2009069706A1 (ja) * 2007-11-27 2009-06-04 Hitachi Chemical Company, Ltd. 光学材料、波長変換素子、強誘電体フッ化物単結晶、及び強誘電体フッ化物単結晶の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. SHIMAMURA ET AL., J. CRYST. GROWTH, vol. 264, 2004, pages 208 - 215
MIYAZAWA, S.: "Polarization Reversal Devices - Fundamentals and Applications", OPTRONICS, 2005
See also references of EP2485071A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069392A (ja) * 2015-09-30 2017-04-06 日亜化学工業株式会社 装置光源

Also Published As

Publication number Publication date
US20120230032A1 (en) 2012-09-13
JP5515147B2 (ja) 2014-06-11
EP2485071B1 (en) 2016-11-30
JP2011075686A (ja) 2011-04-14
EP2485071A4 (en) 2013-04-10
US9217910B2 (en) 2015-12-22
EP2485071A1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2011040232A1 (ja) 無機光学フィルター、光学素子及び光源
Badikov et al. Phase-matching properties of BaGa4S7 and BaGa4Se7: Wide-bandgap nonlinear crystals for the mid-infrared
Shimamura et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere
CN109023502B (zh) 化合物氟碘酸铈和氟碘酸铈非线性光学晶体及制备方法和用途
CN107399722B (zh) 硒硅银钡和硒硅银钡中远红外非线性光学晶体及制备方法和用途
CN101024899B (zh) 一种非线性光学晶体硼酸亚硒
WO2016086425A1 (zh) 一种非线性光学晶体材料、其制备方法及应用
Knuteson et al. Quaternary AgGaGenSe2 (n+ 1) crystals for NLO applications
CN101831699B (zh) 一种非线性光学晶体碘酸铌钡
CN107557868A (zh) 硫锗镉钠和硫锗镉钠红外非线性光学晶体及制备方法和应用
CN101676442B (zh) 一种非线性光学晶体亚碲酸钼银及其制备方法和用途
CN117602589A (zh) 化合物硒镓镁钙和硒镓镁钙红外非线性光学晶体及制备方法和应用
JP5697002B2 (ja) 無機光学フィルター
CN106978630A (zh) 硒硅铜钡和硒硅铜钡中远红外非线性光学晶体及制备方法和用途
CN114134575B (zh) 含碱土金属缺陷黄铜矿类型化合物和红外非线性光学晶体及制备方法和应用
CN107557867A (zh) 硫锡锌钠和硫锡锌钠中远红外非线性光学晶体及制备方法和应用
JP5030861B2 (ja) 強誘電体フッ化物結晶
CN110578173B (zh) 一种非线性光学晶体锶锂硅硫及其制备方法与应用
JPWO2009069706A1 (ja) 光学材料、波長変換素子、強誘電体フッ化物単結晶、及び強誘電体フッ化物単結晶の製造方法
CN101298695A (zh) 铌酸钙单晶体的生长方法
CN110306240B (zh) 碘酸钾钠非线性光学晶体及其制备方法和用途
Wu et al. Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique
CN101230485B (zh) 一种去除紫外吸收的含铝光学晶体的生长方法
RU2699639C1 (ru) Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения
CN115404548A (zh) 化合物含氟钛碘酸盐和含氟钛碘酸盐非线性光学晶体及制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010820351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010820351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13498719

Country of ref document: US