RU2699639C1 - Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения - Google Patents

Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения Download PDF

Info

Publication number
RU2699639C1
RU2699639C1 RU2019105444A RU2019105444A RU2699639C1 RU 2699639 C1 RU2699639 C1 RU 2699639C1 RU 2019105444 A RU2019105444 A RU 2019105444A RU 2019105444 A RU2019105444 A RU 2019105444A RU 2699639 C1 RU2699639 C1 RU 2699639C1
Authority
RU
Russia
Prior art keywords
nonlinear
liga
monocrystal
value
general formula
Prior art date
Application number
RU2019105444A
Other languages
English (en)
Inventor
Павел Геннадьевич Криницын
Людмила Ивановна Исаенко
Александр Павлович Елисеев
Максим Сергеевич Молокеев
Алина Александровна Голошумова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН)
Priority to RU2019105444A priority Critical patent/RU2699639C1/ru
Application granted granted Critical
Publication of RU2699639C1 publication Critical patent/RU2699639C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. Получен нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, имеющий пространственную группу I
Figure 00000010
d тетрагональной симметрии, Z=4, с параметрами элементарной ячейки 6,3295<а<6,398
Figure 00000011
, 11,682<с<12,460
Figure 00000011
и объемом 468,01<V<510,0
Figure 00000012
, характеризующийся функциональными параметрами: диапазоном прозрачности от 0,76 до 14,8 микрон, шириной запрещенной зоны 1,837 эВ при 300 К, значениями двулучепреломления 0,049 при 2 мкм и нелинейными коэффициентами d13=3,70 пм/В и d14=48,73 пм/В. Способ получения монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, включает предварительный синтез соединения LiGaxIn1-xTe2 из элементарных компонентов Li, In, Ga и Te в условиях обеспечения стехиометрического соотношения компонентов, рост монокристалла модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле при обеспечении изменения соотношения температурных градиентов в расплаве и растущем кристалле при скорости выращивания от 2 до 10 мм/сутки и среднем значении аксиального температурного градиента от 2 до 3°С/мм и охлаждение печи со скоростью порядка 10°С/ч. Технический результат заключается в обеспечении возможности сдвига края поглощения в короткую область (по мере увеличения x) в сочетании с увеличением коэффициента преобразования за счет достижения некритичного фазового синхронизма. Ожидаемый эффект увеличения КПД преобразования лазерного излучения при использовании данного нелинейного монокристалла составит 10-30% по сравнению с нелинейными монокристаллами LiGaTe2. При варьировании значения (x) можно обеспечить согласование групповых и фазовых скоростей лазерного излучения, при котором увеличивается эффективная длина взаимодействия для фемтосекундного режима генерации, что обеспечит дополнительный эффект порядка 10-20% КПД. 2 н.п. ф-лы, 3 ил., 3 пр.

Description

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон.
Монокристаллы халькогенидов являются перспективными нелинейно-оптическими материалами для среднего инфракрасного диапазона. В настоящее время для преобразования лазерного излучения в среднем ИК-диапазоне наиболее часто используют монокристаллы тиогаллата серебра AgGaS2, селеногаллата серебра AgGaSe2 и тиогаллата ртути HgGa2S4 (см., например, Rotermund F., Petrov V., Noack F. OPTICS COMMUNICATIONS. - 2000, v. 185. - P. 177-183). Недостатками этих материалов являются: во-первых, большое двухфотонное поглощение, что неизбежно снижает эффективность преобразования лазерного излучения, во-вторых, значительная анизотропия теплового расширения (для AgGaS2 и AgGaSe2) и низкая теплопроводность, которая не позволяет использовать материалы при больших мощностях излучения из-за низкой лучевой стойкости, а также значительного эффекта образования тепловых линз.
Возможность управления составом в ряду непрерывных твердых растворов нелинейных соединений позволяет реализовать наиболее эффективное преобразование излучения в перестраиваемых лазерных системах. На сегодняшний день наиболее востребованными являются лазерные системы, реализующие некритичный фазовый синхронизм, поскольку именно такие системы обладают целым рядом достоинств: обладают большими значениями спектральной и угловой ширины синхронизма, являются высокоэффективными и удобными в эксплуатации, дают возможность использовать максимальный тензорный коэффициент нелинейности. Некритичный фазовый синхронизм определяется сочетанием определенного характера дисперсии показателей преломления и двулучепреломления используемого монокристалла. Использование полупроводниковых монокристаллов, смешанных четверных халькогенидов позволяет достигать некритичного фазового синхронизма в системах параметрической генерации света в среднем ИК диапазоне. Особый интерес представляют четверные соединения ряда твердых растворов, крайние члены которых (тройные халькогениды) отличаются по своим характеристикам: например, нелинейные тройные соединения AgInSe2 характеризуются более высокими нелинейными коэффициентами второго порядка по сравнению с аналогичными галлий-содержащими монокристаллами, но коэффициент двулучепреломления для них существенно ниже, чем для AgGaSe2 [Apollonov V.V., Lebedev S.P., Komandin G.A. et al. - LASER PHYSICS, 1999, v. 9, p. 1236-1239]. Именно в таком случае в ряду AgGaxIn1-xSe2 может быть достигнута оптимальная комбинация функциональных характеристик, позволяющая достичь положительных результатов с точки зрения повышения эффективности преобразования лазерного излучения, благодаря достижению некритичного фазового синхронизма. Новый тип смешанных нелинейных монокристаллов CdxHg1-х Ga2S4 и AgGa1-х InxSe2 позволил путем подбора оптимального значения х обеспечить выполнение условий некритичного фазового синхронизма при комнатной температуре и обеспечить условия выполнения группового синхронизма в направлении фазового. Условия некритичного фазового синхронизма, реализованные в монокристаллах AgGa1-х InxSe2, при определенных значениях х обеспечили увеличение эффективности генерации второй гармоники СО2-лазеров в 1.9 раза по сравнению с тройным соединением AgGaSe2. [Bhar G.C., Das S. et al. - OPTICS LETTERS, 1995, v. 20, p. 2057]. В последнее время оптическая параметрическая генерация в диапазоне 2.85-3.27 микрон в условиях некритичного синхронизма была продемонстрирована на монокристаллах смешанного состава HgxCd1-xGa2S4 [Banerjee S., Miyata K., Kato K. - Proc. of SPIE, 2008, v. 6875, p. 687517]. Авторы изобретения на примере монокристаллов LiInSe2 и LiGaSe2 показали, что замещение Ag на Li приводит к увеличению ширины запрещенной зоны, сдвигу края пропускания в коротковолновую область и, как следствие, к уменьшению двухфотонного поглощения в Li-содержащих монокристаллах по сравнению с Ag-содержащими халькогенидами. [L. Isaenko, A. Yeliseyev, S. Lobanov etc. - Journal of Applied Physics, 2002, v. 91, №12, p. 9475-80]. Кроме того, литийсодержащие халькогениды имеют теплопроводность примерно в 5 раз выше теплопроводности наиболее распространенных серебросодержащих халькогенидов. [L. Isaenko, A. Yeliseyev, S. Lobanov etc. - Journal of Non-Crystalline Solids, 2006, v. 352, p. 2439-2443]. Эффект тепловых линз в Li-содержащих монокристаллах в 10 раз ниже, чем в AgGaSe2. [A. Yeliseyev, L. Isaenko, S. Lobanov etc. - Journal of Applied Physics, 2004, v. 96 №7, p. 3659-3664]. Монокристаллы LiInSe2 и LiGaSe2 характеризуются низкой анизотропией коэффициента теплового расширения вдоль кристаллографических направлений. В результате в процессе роста не образуются типичные двойники и напряжения, связанные с этим явлением. Это обеспечивает технологичность процессов роста и изготовления элементов, а также покрытий на оптические поверхности. Монокристаллы теллурида LiGaTe2 демонстрируют увеличение нелинейной восприимчивости dij по сравнению с сульфидами и селенидами: в ряду LiGaS2 - LiGaSe2 - LiGaTe2 dij составляет 10.7, 18.2 и 43 пм/В, соответственно [Nikogosyan D.N. Nonlinear optical crystals, A complete survey - Springer Science+ Business Media, Inc.: New-York, USA, 2005]. Значения dij для индиевых аналогов этих соединений обычно на 30-50% выше, при этом теллуриды имеют примерно в 2 раза большее двулучепреломление Δn. Поэтому четверные смешанные монокристаллы на базе галлий- и индийсодержащих тройных теллуридов с большой разницей в показателях преломления могут оказаться очень перспективными с точки зрения получения некритического фазового синхронизма в системах параметрической генерации света в среднем ИК диапазоне [Isaenko L.I., Yelisseyev A.P. - Semiconductor Science and Technology, 2016, v. 31, p. 123001].
Задачей изобретения является создание нелинейного монокристаллического материала на базе твердых растворов LiGaxIn1-xTe2 при различных значениях (x) для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон, сочетающего низкое двухфотонное поглощение и достаточно высокий нелинейный коэффициент.
Технический результат заключается в обеспечении возможности сдвига края поглощения в короткую область (по мере увеличения x), в сочетании с увеличением коэффициента преобразования за счет достижения некритичного фазового синхронизма. Ожидаемый эффект увеличения КПД преобразования лазерного излучения при использовании данного нелинейного материала составит 10-30% по сравнению с нелинейными монокристаллами LiGaTe2. Также при варьировании значения (x) можно добиться такого согласования групповых и фазовых скоростей лазерного излучения, при котором увеличивается эффективная длина взаимодействия, что очень важно для фемтосекундного режима генерации, и это даст дополнительный эффект порядка 10-20% КПД. Таким образом, можно ожидать увеличение КПД на 30-50%.
Поставленная задача решена созданием нелинейного монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0.1 до 0.9, имеющего пространственную группу I
Figure 00000001
d тетрагональной симметрии, Z=4, параметры элементарной ячейки 6.3295<а<6.398
Figure 00000002
, 11.682<с<12.460
Figure 00000002
, объем 468.01<V<510.0
Figure 00000003
Монокристалл состава LiGa0.55In0.45Te2 характеризуется диапазоном прозрачности от 0.76 до 14.8 микрон, шириной запрещенной зоны 1.837 эВ при 300 К. Рассчитанные значения двулучепреломления составляют 0.049 при 2 микрон и нелинейных коэффициентов d13=-3.70 пм/В и d14=-48.73 пм/В
Монокристалл общей формулой LiGaxIn1-xTe2, где х принимает любое значение от 0.1 до 0.9, выращивают модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле с предварительным синтезом соединения состава LiGaxIn1-xTe2 из элементарных компонентов Li, In, Ga и Te в условиях обеспечения стехиометрического соотношения компонентов. В процессе роста обеспечивается изменение соотношения температурных градиентов в расплаве и растущем кристалле при скорости выращивания от 2 до 10 мм/сутки при среднем значении аксиального температурного градиента от 2 до 3°С/мм. Эти условия обеспечивают сохранение постоянства состава (х) выращиваемого кристалла. Затем печь охлаждают со скоростью порядка 10°С/час. Небольшие нарушения стехиометрии, возникающие в процессе синтеза из-за высокой химической активности Li и летучести теллура, корректируют путем введения избытка лития и теллура. После загрузки исходных веществ в стеклографитовый тигель его помещают в кварцевый контейнер. Особая геометрия тигля [патент РФ 2189405, МПК: C30B 11/02, опубл. 20.09.2002] и загрузки предотвращает прямое сплавление компонентов, приводящее к выделению большого количества тепла и существенному нарушению стехиометрии в процессе синтеза.
Частичная замена ионов Ga3+ на In3+ позволяет улучшать нелинейные свойства LiGaxIn1-xTe2 по сравнению с LiGaTe2 (48.73 для LiGa0.55In0.45Te2 и 43 пм/В для LiGaTe2), сохраняя при этом возможность широкой настройки полосы в оптических параметрических осцилляторах.
На фиг. 1 представлен выращенный слиток LiGaxIn1-xTe2 (а) и его изображение в проходящем свете (b), полученное с помощью телевизионной камеры, чувствительной в инфракрасном диапазоне.
На фиг. 2 приведена кристаллическая структура LiGa0.55In0.45Te2.
На фиг. 3 представлен спектр пропускания монокристалла LiGa0.55In0.45Te2 (а) и построение по Тауцу для прямых межзонных электронных переходов (b).
Примеры конкретного выполнения.
Пример 1. Для получения образца LiGa0.55In0.45Te2 массой 30 г используют исходные элементарные компоненты: литий, галлий, индий и теллур высокой чистоты: литий - 0.763 г, галлий - 3.482 г, индий - 5.741 г, теллур - 26,158 г. Исходные элементарные вещества имели чистоту квалификации о.с.ч. Содержание основного вещества в исходных материалах: Li - 99.9 %, In - 99.9999 %, Ga - 99.9999 %, Te - 99.9999 %. Небольшие нарушения стехиометрии, возникающие в процессе синтеза из-за высокой химической активности Li и летучести теллура, корректировали путем введения избытка лития и теллура. После загрузки исходных веществ в стеклографитовый тигель его помещают внутрь кварцевого контейнера. После загрузки исходных веществ контейнер с тиглем подключают к вакуумному посту. Свободный объем контейнера откачивают или заполняют инертным газом, после чего проводят его отпайку. Для синтеза LiGaxIn1-xTe2, кварцевый контейнер с размещенным в нем стеклографитовым тиглем медленно задвигают в трубчатую печь сопротивления, прогретую до 850°С градусов. Затем контейнер выдерживают при 850°С в течение суток, снижают температуру до 700°С и выдерживают еще сутки, после чего охлаждают до комнатной температуры в режиме выключенной печи. В результате получают плотные тёмные мелкокристаллические слитки с содержанием фазы LiGa0.55In0.45Te2, близким к 100%. Раскалывание и перекладывание слитков в ростовой контейнер проводят в инертной атмосфере. Ростовой контейнер помещают в вертикальную печь сопротивления. После перекладывания контейнер с загрузкой подключают к вакуумному посту и отпаивают до остаточного давления 10-4 торр. Выращивание монокристалла осуществляют модифицированным методом Бриджмена-Стокбаргера с возможностью изменения соотношения температурных градиентов в расплаве и растущем кристалле. Печь нагревают, доводя шихту до плавления. Аксиальный температурный градиент составляет от 2 до 3°С/мм. Скорость выращивания составляет 4 мм/сутки. Использована конструкция печи, позволяющая менять соотношение температурных градиентов в расплаве и растущем кристалле, что позволяет преодолеть ряд сложных моментов, связанных с особенностью теплофизических свойств теллуридов [
Figure 00000004
Figure 00000005
Neumann H. Zeitschrift
Figure 00000006
anorganische und allgemeine Chemie, 1986, v. 532, p. 150-156]. После стадии выращивания печь охлаждают со скоростью 10°С/час.
Параметры ячейки полученного монокристалла: а=6.38124 (8) A, с=12.1108 (2) A, V=493.16 (2) A3. Диапазон прозрачности от 0.76 до 14.8 мкм, ширина запрещенной зоны 1.837 эВ при 300 К, рассчитанные значения двулучепреломления 0.049 при 2 микрон и нелинейных коэффициентов d13=-3.70 пм/В и d14=-48.73 пм/В.
Пример 2. Для получения монокристаллического образца LiGa0.75In0.25Te2 используют исходные элементарные компоненты: литий, галлий, индий и теллур высокой чистоты: литий - 0.694 г, галлий - 5.301 г, индий - 2.874 г, теллур - 25.520 г. Условия получения, как в примере 1. Получен образец LiGa0.75In0.25Te2 массой до 30 г. Диапазон прозрачности от 0.64 до 15 мкм.
Пример 3. Для получения образца LiGa0.25In0.75Te2 массой до 30 г используют исходные элементарные компоненты: литий, галлий, индий и теллур высокой чистоты: литий - 0.703 г, галлий - 1.749 г, индий - 8.621 г, теллур - 25.532 г. Условия получения, как в примере 1. Диапазон прозрачности от 0.87 до 15.5 мкм.

Claims (2)

1. Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, имеющий пространственную группу I
Figure 00000007
d тетрагональной симметрии, Z=4, с параметрами элементарной ячейки 6,3295<а<6,398
Figure 00000008
, 11,682<с<12,460
Figure 00000008
и объемом 468,01<V<510,0
Figure 00000009
, характеризующийся функциональными параметрами: диапазоном прозрачности от 0,76 до 14,8 микрон, шириной запрещенной зоны 1,837 эВ при 300 К, значениями двулучепреломления 0,049 при 2 мкм и нелинейными коэффициентами d13=3,70 пм/В и d14=48,73 пм/В.
2. Способ получения монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, включает предварительный синтез соединения LiGaxIn1-xTe2 из элементарных компонентов Li, In, Ga и Te в условиях обеспечения стехиометрического соотношения компонентов, рост монокристалла модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле при обеспечении изменения соотношения температурных градиентов в расплаве и растущем кристалле при скорости выращивания от 2 до 10 мм/сутки и среднем значении аксиального температурного градиента от 2 до 3°С/мм и охлаждение печи со скоростью порядка 10°С/ч.
RU2019105444A 2019-02-26 2019-02-26 Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения RU2699639C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019105444A RU2699639C1 (ru) 2019-02-26 2019-02-26 Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019105444A RU2699639C1 (ru) 2019-02-26 2019-02-26 Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения

Publications (1)

Publication Number Publication Date
RU2699639C1 true RU2699639C1 (ru) 2019-09-06

Family

ID=67851953

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019105444A RU2699639C1 (ru) 2019-02-26 2019-02-26 Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения

Country Status (1)

Country Link
RU (1) RU2699639C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763463C1 (ru) * 2021-06-07 2021-12-29 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Нелинейный монокристалл литиевых халькогенидов и способ его получения
RU2783926C1 (ru) * 2021-10-05 2022-11-22 Максим Владимирович Григорьев Способ получения селенидов (Sr,Eu)LnCuSe3 (Ln = La, Nd, Sm, Gd-Lu, Sc, Y) ромбической сингонии

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2344208C1 (ru) * 2007-05-28 2009-01-20 Институт геологии и минералогии Сибирского отделения Российской академии наук (ИГМ СО РАН) Нелинейный монокристалл литиевых халькогенидов

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2344208C1 (ru) * 2007-05-28 2009-01-20 Институт геологии и минералогии Сибирского отделения Российской академии наук (ИГМ СО РАН) Нелинейный монокристалл литиевых халькогенидов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISAENKO L.I. et al., Recent studies of nonlinear chalcogenide crystals for the mid-IR, "Semiconductor Science and Technology", 2016, Vol.31, No.12, 123001. *
ИСАЕНКО Л.И. и др., Нелинейные кристаллы халькогенидных соединений: Рост, структура, свойства, "ГЕОЛОГИЯ И МИНЕРАГЕНИЯ СЕВЕРНОЙ ЕВРАЗИИ", материалы совещания, приуроченного к 60-летию Института геологии и геофизики СО АН СССР, 3-5 октября 2017, Новосибирск, стр.93-94. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763463C1 (ru) * 2021-06-07 2021-12-29 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Нелинейный монокристалл литиевых халькогенидов и способ его получения
RU2783926C1 (ru) * 2021-10-05 2022-11-22 Максим Владимирович Григорьев Способ получения селенидов (Sr,Eu)LnCuSe3 (Ln = La, Nd, Sm, Gd-Lu, Sc, Y) ромбической сингонии

Similar Documents

Publication Publication Date Title
Isaenko et al. LiInSe 2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared
Isaenko et al. Ternary chalcogenides LiBC2 (B= In, Ga; C= S, Se, Te) for mid-IR nonlinear optics
Furukawa et al. The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure
Kumar et al. Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications
Guo et al. Growth and characterizations of BaGa4S7 crystal
US10626519B2 (en) Lead oxychloride, infrared nonlinear optical crystal, and preparation method thereof
Yelisseyev et al. The optical properties of the nonlinear crystal BaGa4Se7
RU2763463C1 (ru) Нелинейный монокристалл литиевых халькогенидов и способ его получения
Lin et al. External influence on third-order optical nonlinearity of transparent chalcogenide glass-ceramics
Schunemann Crystal growth and properties of nonlinear optical materials
Cheng et al. Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry
Wang et al. Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal
Avanesov et al. Phase equilibrium studies in the PbTe–Ga2Te3 and PbTe–In2Te3 systems for growing new nonlinear optical crystals of PbGa6Te10 and PbIn6Te10 with transparency extending into the far-IR
RU2699639C1 (ru) Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2 и способ его получения
RU2344208C1 (ru) Нелинейный монокристалл литиевых халькогенидов
Zhang et al. Vertical Bridgman growth and optical properties of CdSiP 2 crystals
Roth et al. Growth of large size high optical quality KTP-type crystals
Huang et al. Effect of thermal annealing treatment and defect analysis on AgGaGeS4 single crystals
Liu et al. Hydrothermal growth and optical properties of RbBe2BO3F2 crystals
Hu et al. Large-size high-quality CdSe-OPO component for far IR laser output prepared by directional crystal growth technique
JP3479111B2 (ja) 電気光学品
Guo et al. Li7Cd4. 5Ge4Se16 and Li6. 4Cd4. 8Sn4Se16: Strong Nonlinear Optical Response in Quaternary Diamond‐Like Selenide Networks
Singh et al. Periodically poled materials for long wavelength infrared (LWIR) NLO applications
Magesh et al. Investigation of structural and optical properties in LiInS2 single crystal grown by Bridgman-Stockbarger method for mid IR laser application
Wu et al. Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique